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In the context of transition analysis, linear input–output analysis determines the
worst-case disturbances to a laminar base flow based on a generic right-hand-side
volumetric/boundary forcing term. The worst-case forcing is not physically realizable,
and, to our knowledge, a generic framework for posing physically realizable worst-case
disturbance problems is lacking. In natural receptivity analysis, disturbances are forced by
matching (typically local) solutions within the boundary layer to outer solutions consisting
of free-stream vortical, entropic and acoustic disturbances. We pose a scattering formalism
to restrict the input forcing to a set of realizable disturbances associated with plane-wave
solutions of the outer problem. The formulation is validated by comparing with direct
numerical simulations of a Mach 4.5 flat-plate boundary layer. We show that the method
provides insight into transition mechanisms by identifying those linear combinations of
plane-wave disturbances that maximize energy amplification over a range of frequencies.
We also discuss how the framework can be extended to accommodate scattering from
shocks and in shock layers for supersonic flow.
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1. Introduction

Boundary-layer receptivity analyses determine how free-stream vortical, entropic and
acoustic waves excite instabilities. Several approaches have been developed to accomplish
this inner-to-outer matching, such as forcing a flat-plate boundary layer with an
induced travelling wave having the frequency of an incident acoustic wave and a
wavenumber associated with surface irregularities (Crouch 1992). However, many studies
(Goldstein 1983; Duck, Ruban & Zhikharev 1996; Qin & Wu 2016; Ruban, Keshari &
Kravtsova 2021) still rely upon asymptotic expansions, which often require additional

† Email address for correspondence: okamal@caltech.edu

© The Author(s), 2023. Published by Cambridge University Press 956 R5-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

48
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

mailto:okamal@caltech.edu
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2023.48&domain=pdf
https://doi.org/10.1017/jfm.2023.48


O. Kamal, M.T. Lakebrink and T. Colonius

approximations, such as restrictions to low frequencies (Fedorov 2003). Although
direct numerical simulations (DNS) can alleviate these challenges, many (expensive)
calculations are needed to characterize the dominant natural receptivity mechanisms. This
is especially apparent for design problems, where the inverse study is often more useful:
What are the worst-case disturbances that lead to maximal amplification?

Input–output analysis provides a framework for this kind of optimization problem by
determining surface or volumetric inhomogeneities, i.e. inputs, that lead to maximal
amplification of disturbances, i.e. outputs. Trefethen et al. (1993) introduced studying
the pseudospectra of the ‘linearized Navier–Stokes evolution’ operator as a tool for
understanding non-modal amplification of disturbances in Couette and Poiseuille flows.
Monokrousos et al. (2010) used the input–output framework to determine optimal
amplification in the spatially evolving flat-plate boundary layer, and it has subsequently
been used in a variety of contexts, including extensions to computing optimal disturbances
in turbulent mean flows (Schmidt et al. 2018). The framework has also been adapted
to high-speed compressible flows (Nichols & Lele 2011; Bugeat et al. 2019; Nichols &
Candler 2019; Bae, Dawson & McKeon 2020; Cook et al. 2020; Lugrin et al. 2021; Cook &
Nichols 2022). Furthermore, there have been contemporary methodological advancements
pertaining to the nature of the optimal forcing, such as using sparsity-promoting norms in
computing localized forcing structures (Skene et al. 2022).

However, while the inputs can be readily restricted to subspaces by, for example, forcing
only in certain equations (mass, momentum or energy), and/or in certain flow regions (e.g.
Jeun, Nichols & Jovanović 2016), the resulting inhomogeneous problem is not physically
realizable, in the sense that the sources are unconnected to any physical mechanism that
produces them. In this work, we employ a scattering formalism to restrict input–output
analysis to forcings that are associated with free-stream disturbances. We decompose the
full linear solution into an incident component, representing vortical, entropic or acoustic
disturbances to the free stream, and a scattered (or residual) component that is forced by
the incident wave propagated through the linearized equations. This forcing approaches
zero in the free stream where the incident waves satisfy the governing equations, but
is non-zero within the shock- and boundary-layer regions, where it can be parametrized
and optimized using the standard input–output (singular value decomposition) framework.
This permits natural receptivity analysis to be performed directly in the global framework
without recourse to asymptotic analysis (though with its own challenges, as we discuss).

The global optimal receptivity formalism is developed in § 2, after which the problem
is simplified to high-speed flow over a two-dimensional (2-D) flat plate (ignoring
any shock) in order to validate the methodology with previous results. In § 3, we
employ the input–output scattering formalism with various free-stream waves and analyse
the corresponding responses. Thereafter, we compute the optimal incident waves that
maximize 2-D disturbance-energy amplification for a Mach 4.5 flat-plate boundary layer
over a range of frequencies, showing how the input–output framework complements and
extends traditional receptivity theory. In § 4, we summarize and discuss future work.

2. Methodology

2.1. Scattering ansatz
We begin with the non-dimensional, fully compressible Navier–Stokes equations,
linearized about a time-independent base flow, such that

q(x, y, z, t) = q̄(x, y, z) + q′(x, y, z, t), (2.1)
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where q = [ρ, u, v, w, T]T is the state vector and (x, y, z) are the streamwise, wall-normal
and spanwise directions, respectively. We take these variables as non-dimensionalized by
the free-stream density ρ∗∞, sound speed c∗∞ and temperature c∗2∞/c∗

p∞, where ∗ represents
dimensional quantities. Note that length scales are normalized with δ∗

0 = √
ν∗∞x∗

0/U∗∞,
where x∗

0 is the inlet x coordinate.
After analytically linearizing about the steady laminar flow and transforming to the

frequency domain, the equations may be written as

Lq̂ = 0, (2.2)

where

L = −iωG + A + Ax
∂

∂x
+ Ay

∂

∂y
+ Az

∂

∂z
+ Axx

∂2

∂x2 + Ayy
∂2

∂y2 + Azz
∂2

∂z2

+ Axy
∂2

∂x∂y
+ Axz

∂2

∂x∂z
+ Ayz

∂2

∂y∂z
. (2.3)

We wish to solve these equations subject to inhomogeneous boundary conditions
that represent free-stream vortical, acoustic and entropic waves far from the surface,
and homogeneous boundary conditions that represent no-slip and adiabatic/isothermal
conditions at the surface. Formally, we write the boundary conditions as

Cq̂ = ĝ, (2.4)

where C is an appropriate differential operator and ĝ represents the incident waves at
infinity. Practical implementation of the boundary conditions is discussed later.

Without loss of generality, we can recast this inhomogeneous boundary-value problem
as volumetrically forced partial differential equations with homogeneous boundary
conditions by using a scattering ansatz. We decompose the solution into incident
and scattered components, q̂ = q̂i + q̂s, where the incident component satisfies the
inhomogeneous boundary conditions, Cq̂i = ĝ. Then (2.2) and (2.4) become

Lq̂s = −Lq̂i, Cq̂s = 0. (2.5a,b)

For a known incident-wave solution, these equations can be solved for the scattered
component. After discretization (details discussed in § 2.4), (2.5a,b) become

L q̂s = −L′q̂i ≡ f̂ , (2.6)

where the inhomogeneous boundary conditions have been imposed in the left-hand-side L
matrix but not in the right-hand-side L′ matrix. In discretizing, we have also truncated the
computational domain to a region incorporating the boundary layer and a portion of the
free stream (shock layer inclusive), and posed far-field artificial (non-reflecting) boundary
conditions. We further specify that the incident component takes the form of appropriate
linear vortical, entropic or acoustic waves in a uniform flow (whose analytical solution is
known and given in § 2.3), such that L′q̂i ≈ 0 towards the free stream.

The support of the forcing term, f̂ , is shown in figure 1, and is confined to the shock-
and boundary-layer regions for supersonic flow, depicted by volumetric sources (blue)
and surface sources (red). In the discretized case, these are not distinct and are both
incorporated directly in L′q̂i. The source originating at the shock surface includes the
reflection and transmission of incident disturbances of each type to every other. In the
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Figure 1. A depiction of supp(L′q̂i): (a) supersonic case generally; and (b) idealized supersonic flat plate
without shock layer. The depth of the blue shaded region corresponds to the strength of supp(L′q̂i), whereas
the red dashed lines indicate surface scattering from the body and shock. The grey shaded region in panel (b)
corresponds to the computational domain utilized.

linearized framework proposed here, we are implicitly linearizing about a fixed shock
position, and this would also neglect effects associated with shock oscillations (Cook &
Nichols 2022).

The shock also gives rise to technical challenges, since we are discretizing about a
discontinuous solution. As a first step towards establishing the general framework, in
what follows we limit further analysis to the flat-plate scenario shown in figure 1(b),
where any shock and shock layer are neglected and L′q̂i decays smoothly towards infinity
(similar to the scenario in subsonic flow). We choose the computational domain depicted
in the sketch, which also neglects scattering sources from any leading-edge geometry, and
scattered waves that are generated from below and diffracted around the plate, which are
expected to be small compared to direct irradiation. We choose the downstream extent of
the computational domain on physical grounds, so that dominant instability mechanisms
(as a function of Reynolds number) are captured within the domain.

Three potential sources of error may be identified in our framework. The first of these
is discretization error, which is controlled by choosing a sufficiently fine grid. However,
typical grids that are desirable for the scattered-field solution, i.e. ones that are highly
stretched outside the boundary layer, present a challenge for incident waves of sufficiently
high frequency, in that a direct computation of L′q̂i in this region is prone to large errors.
This is alleviated by computing L′q̂i on a much finer grid and then interpolating the
results onto the coarser computational mesh used for the solution of the scattered field.
The remaining two errors are associated with posing the correct outer solution for q̂i. It
is desirable to use analytical solutions for these free-stream disturbances, but these are
only readily available for the inviscid uniform-flow case. Then, depending on the choice
of base flow, an asymptotic error arises in that the base flow may not exactly approach
uniform flow (e.g. if a boundary-layer solution is utilized), thus yielding L′q̂i /= 0 in the far
field, indicative of an artificial source of scattered waves. For example, if a boundary-layer
solution is used for the base flow, then there is a spurious source of O(Re−1/2). Moreover,
our L′ includes viscous terms, and so L′q̂i → 1/Re in the far field rather than zero, and
there are again artificial sources, which we term the viscous error.

In the present work, we control both uniform-flow and viscous errors by choosing
a sufficiently high Reynolds number such that the true sources are much larger than
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the spurious ones. More specifically, the choice of the Reynolds number restricts the
maximum cross-stream wavenumbers of the ansatz assumed for q̂i as explained next in
§§ 2.2 and 2.3. We verify this approach by comparing our solutions with ones where the
region outside the boundary layer is artificially zeroed in § 3. In principle, there are more
sophisticated ways of minimizing these errors, such as using a DNS for the base flow or
by choosing incident waves that account for viscosity.

2.2. Optimization
We may write the incident wave as a sum of fundamental solutions to the (assumed
inviscid) exterior (uniform flow) problem,

q̂i =
N∑

j=1

ajψ j ≡ ψa, (2.7)

where the ψ j are each a fundamental solution and are placed as columns of the matrix ψ .
The specific form (plane waves) is enumerated in § 2.3. Now, let B ≡ −L′ψ so that (2.6)
can be rewritten as

L q̂s = Ba, (2.8)

where the vector of amplitudes a is the input to the linearized system (analogous to the
input forcing fields in the unconstrained problem).

We next define a global inner product,

〈b, d〉 = bHWxyzWe d = bHW d, (2.9)

where H indicates the Hermitian transpose and W is a positive-definite weight matrix.
This matrix W is constructed as a product of Wxyz, a diagonal positive-definite matrix
of quadrature weights, and We, an energy-weight matrix, so that 〈·, ·〉 represents the
volume-integrated quantity (up to a discretization error). The gain can thus be defined
as a Rayleigh quotient

G2 = 〈q̂s, q̂s〉
aHa

= q̂s HW q̂s

aHa
= aHBHRHWRBa

aHa
, (2.10)

with optimal solution
{q̂opt, aopt} = argmax G, (2.11)

where R = L−1 is the global resolvent operator. In the optimization, we restrict ‖a‖2 = 1
and scale each column of B so that 〈bj, bj〉 = 1, which nullifies the arbitrary norm
associated with −L′ψ j. Lastly, comparison with the unconstrained problem can be made
by defining the following gains:

Gc = (〈q̂s, q̂s〉/〈 f̂ , f̂ 〉)1/2, Guc = 〈q̂s, q̂s〉1/2, (2.12a,b)

where f̂ = Ba for the constrained problem and where 〈 f̂ , f̂ 〉 = 1 for the unconstrained
optimization, thereby enforcing Gc � Guc.

To summarize, the scattered-wave ansatz allows us to constrain the optimization to
realistic input forcings given by solutions to the outer problem in the form of plane
acoustic, vortical and entropic waves. We will find linear combinations of such waves that
maximize the amplification (according to the chosen norm) of the response. The solutions
can be directly compared with the worst-case disturbances for right-hand-side forcings that
are not restricted to realizable disturbances to the outer problem.
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2.3. Incident waves
Plane acoustic waves in the uniform (assumed inviscid) free stream take the form

ψa = q̂a exp(i(−ωt + αax + κay + βaz)), (2.13)

where αa, κa, βa ∈ R are the acoustic wavenumbers in the x, y and z directions,
respectively, and where ω′2 = c2∞(α2

a + κ2
a + β2

a ) and the amplitude

q̂a =
[

1
c∞αa

ω′
c∞κa

ω′
c∞βa

ω′ (γ − 1)T∞
]T

, (2.14)

both with ω′ = ω − αaU∞. These waves satisfy the Euler equations linearized about a
uniform flow (taken in the x direction with speed U∞).

In the 2-D case considered here, βa = 0, and the waves are parametrized with αa (or
a wave angle) at a specified real frequency, ω. The ranges of permitted values of αa are
based on the aforementioned dispersion relation for the different Mach-number regimes.
For those cases where |αa| is unbounded, we limit it to the highest wavenumber that can
be resolved over 10 grid points, so that we take |αa| � 2π/(10�x).

Planar vortical and entropic wave solutions in the uniform free stream are of the form

ψv,e = q̂v,e exp(i(−ωt + αv,ex + κv,ey + βv,ez)), (2.15)

where the amplitudes are

q̂v =
[

0 −κv + βv

αv

1 1 0
]T

and q̂e = [−1 0 0 0 T∞
]T

, (2.16a,b)

respectively. The wavenumbers αv,e = ω/M∞, κv,e and βv,e correspond to the Cartesian
x, y and z directions, respectively, in which the latter two quantities are real but otherwise
unconstrained. Realistic vortical and entropic disturbances will be compact and thus an
infinite superposition of the plane waves. However, decomposing the disturbances into
Fourier modes has the advantage of identifying those wavelengths of disturbances to which
the boundary layer is most receptive. As in the acoustic waves, we limit our attention to the
2-D case (βv,e = 0) and set max(κv,e) to the minimum of either those supported by at least
15 grid points within the boundary layer or those which satisfy Reλv,e � 2000. The latter
constraint is set to minimize the free-stream viscous error, while still retaining a broad
spectrum for κv,e.

2.4. Computational details
From now, we restrict our attention to strictly 2-D flat-plate boundary layers. The
linearized Navier–Stokes (LNS) equations are discretized with fourth-order central
finite-difference schemes and closed with no-slip boundary conditions (û′ = v̂′ = 0) and
one-dimensional inviscid Thompson characteristic boundary conditions (Thompson 1987)
at the wall-normal boundaries. Isothermal conditions (T̂ ′ = 0) are enforced at the wall
for the parametric study and those validating to Ma & Zhong (2005), whereas adiabatic
conditions (∂T̂ ′/∂y = 0) are used for all other analyses. We employ inlet and outlet
sponges to model open boundaries. The full computational details of the code, CSTAT,
are given in Kamal et al. (2021).

The computational domain contains wall-normal grid clustering in the boundary
layer (Malik 1990) and extends from x∗ ∈ [0.006, 0.4] m and y∗ ∈ [0, 0.01] m with
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Paper Relevant DNS

MZ1 Steady-state base flow characterizing the oblique shock.
MZ2 Wall-pressure response from an incident fast acoustic wave at

θ∗∞ = 22.5◦; quantification of the response of boundary-layer
modes (mode F1/F2 and second mode) to free-stream fast acoustic
waves for θ∗∞ ∈ [0, 90]◦.

MZ3 Wall-pressure response from an incident slow acoustic wave at
θ∗∞ = 0◦.

Table 1. Summary of relevant DNS performed by MZ1 (Ma & Zhong 2003a), MZ2 (Ma & Zhong 2003b)
and MZ3 (Ma & Zhong 2005) of a 2-D Mach 4.5 adiabatic-wall, flat-plate boundary layer.

Nx × Ny = 3001 × 250. The base flow is computed using the Howarth–Dorodnitsyn
transformation of the compressible Blasius equations. Note that each forcing vector −L′ψ j
is computed with a wall-normal resolution of 5Ny and interpolated back onto the stability
grid to minimize free-stream discretization error.

Different inner products (and associated norm) can be used to measure the strength
of the response. Hereafter, we exclusively employ the Chu energy (Chu 1965) for both
the forcing and response norms, which follows the previous compressible input–output
analyses of Schmidt et al. (2018), Cook & Nichols (2022) and Towne et al. (2022).
The columns of the B matrix, which correspond to the scattered forcings, are thus also
normalized similarly.

2.5. Validation
We validate our methodology by comparing to DNS of a 2-D Mach 4.5 adiabatic-wall,
flat-plate boundary layer from Ma & Zhong (2003a,b, 2005), which we subsequently refer
to as MZ1, MZ2 and MZ3, respectively. A summary of the relevant computations from
each paper is provided in table 1. For validation purposes, we focus on the case where
the boundary layer is excited by free-stream slow and fast acoustic waves at incident
angles of θ∗∞ = 0◦ and θ∗∞ = 22.5◦, respectively, processed through an oblique shock
using DNS. Although the shock is neglected in our computations, the linear theoretical
formulation of McKenzie & Westphal (1968) predicts the maximum deflection of fast
acoustic waves with θ∗∞ ∈ [0, 90]◦ to be just ≈ 1.24◦. This is computed with a constant
shock angle of θ∗

s ≈ 13.69◦ from figure 4 of MZ1. Furthermore, MZ2 found that, for
incident fast acoustic waves, the transmitted waves of the same type are responsible for
synchronizing with the boundary-layer modes (explained further later), and thus the other
wave modes generated downstream of the shock are unimportant. Lastly, slow acoustic
waves at θ∗∞ = 0◦ impinging on the shock generate predominantly the same type of waves
propagating nearly parallel to the wall (MZ3). We can thus neglect the shock in comparing
our results to MZ2 and MZ3.

In our computations, we force the LNS equations with −L′ψ j corresponding to fast and
slow acoustic waves at the aforementioned incident angles and compare the total solution
q̂ = q̂i + q̂s to the DNS. In comparing results, we adopt the following nomenclature
from local linear stability theory (LST): modes F1 and F2 are the sequential discrete
modes emanating from the fast acoustic branch, whereas mode S originates from the
slow continuous spectrum, such that the second mode corresponds to mode S during and
post-synchronization with mode F1.
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Figure 2. (a) Wall-pressure amplitudes for the present q̂ solution compared to those of MZ2 and MZ3 with
free-stream slow (SA) and fast (FA) acoustic waves at M∞ = 4.5 and F = 2.2 × 10−4. (b,c) The corresponding
density responses for SA (b) and FA (c).

Figure 2(a) compares the wall-pressure amplitudes between the DNS and the present
solution at F = ω∗ν∗∞/U∗2∞ = 2.2 × 10−4. The pressure amplitude has been normalized
to agree at the peak of each curve, since both sets of computations are linear. For the DNS,
linearity implies that the non-dimensional amplitudes of the disturbances were at least
one order of magnitude larger than the maximum numerical noise while also sufficiently
small to remain in the linear regime (MZ1). Great agreement is observed for the slow
acoustic wave, and the agreement is satisfactory for the fast acoustic wave, especially
in the region 0.1 < x∗ < 0.2 m, which corresponds to the location where the second
Mack mode is dominant. We speculate that the discrepancy in the leading-edge region
is due to the shock in the DNS being locally oriented at θ∗

s ≈ 15.8◦, which contrasts
with the global shock angle of θ∗

s ≈ 13.69◦ used to estimate the maximum deflection of
incident fast acoustic waves, resulting in larger local refraction when compared to further
downstream. This likely affects the resonance with mode F1 (the dominant mode near
the inlet), since it exhibits higher sensitivity to incident-disturbance angles compared to
the second mode (see figure 3a). Finally, the density response for slow acoustic waves at
θ∗∞ = 0◦ in figure 2(b) matches well with the corresponding figure 11 of MZ3.

3. Optimal global receptivity analysis

We now investigate the inverse problem of determining the linear combination of
free-stream disturbances that lead to the maximal flow response. We use the same base
flow and parameters as in § 2.5.

To allow comparison with the results of MZ2 for the forward problem, we initially
restrict our attention to downstream-propagating fast acoustic waves from above the plate,
i.e. αa � 0 and κa � 0, with F = 2.2 × 10−4. We discretize the corresponding incident
wave angles 0 � θ∗∞ � 90◦ using N = 1000 points. The corresponding distribution of
waves with amplitude a is plotted against θ∗∞ in figure 3(a), with prominent peaks observed
at incident wave angles of 25◦ and 35◦, and a less significant peak at 44◦. We compare
this curve to response coefficients computed by MZ2 for the forward problem computed
over the range of angles. They measured approximate response coefficients for modes
F1 and F2 by using the maximum wave amplitudes in their respective dominant regions,
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Figure 3. (a) Optimal amplitude profiles with free-stream fast acoustic waves at M∞ = 4.5 and F = 2.2 ×
10−4. (b,c) The corresponding q̂s responses (the green isocontour is δ99). Coloured lines in panel (a) are the
response coefficients from MZ2, the dashed lines are along the optimal angles from the scattering framework,
and the dash-dotted line is the optimal amplitude profile with scattering sources restricted to δ99.

according to LST, whereas the second-mode response coefficients were calculated by
Fourier-transforming the pressure from the global DNS (at the specified frequency) and
selecting the second-mode amplitude, with its wavelength again inferred from LST.

The comparison allows us to interpret the optimal solution as one that directly excites
the second mode by selecting the fast acoustic waves at θ∗∞ = 25◦, but also one that
excites mode F1 over a range of angles where its response coefficient is largest (and
larger than that of the second mode). The higher response coefficient for mode F1 is due
to the synchronization between its wavenumber/wave speed and those of the free-stream
fast acoustic waves at these angles, and largest near the leading edge due to the strongest
base-flow non-parallelism, as is evident in figure 3(b). Downstream of the leading edge,
the phase speeds of modes F1 and S approach one another, and by x∗ ≈ 0.11 m, these
two modes fully synchronize, which incites the second mode. The second mode remains
unstable until it passes through the branch II neutral point at x∗ ≈ 0.155 m (MZ2) and
decays thereafter as modes F1 and S desynchronize, the latter of which is now the second
mode. For x∗ > 0.3 m, the small growth and subsequent decay in figure 3(b) is due to the
emergence of mode F2 caused by the wavenumber/wave speed synchronization with the
fast acoustic waves.

The importance of mode F1 to second-mode amplification corroborates the finding of
MZ2, and is further highlighted by comparing the respective gains from this optimal linear
combination of fast acoustic waves, Gc ≈ 40, with the gain obtained by limiting the input
to only fast acoustic waves at θ∗∞ = 25◦, which we computed as Gc ≈ 21, a reduction of
about 48 %.

Lastly, we demonstrate how the true scattering sources in our framework are
significantly larger than the spurious ones induced by the three sources of error mentioned
in § 2.1 by repeating the above computation and artificially removing any sources outside
the boundary layer. The corresponding amplitude profile is shown in figure 3(a), which is
quantitatively similar to the original solution, with Gc decreasing by only ≈2 %.

We next analyse the case where the free stream is restricted to vortical waves, again
at F = 2.2 × 10−4. As investigated by Schrader, Brandt & Henningson (2009), there are
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Re(û′)

5.1

3.4

1.7

0 0.1 0.2 0.3 0.4

10

–10

0

(×10–3)

x∗ (m)

Re(T̂ ′)

|a|

(a)

κv

Figure 4. (a) Optimal amplitude profile with free-stream vortical waves at M∞ = 4.5 and F = 2.2 × 10−4.
(b,c) The corresponding q̂s responses (the green isocontour is δ99).

two competing mechanisms for optimally perturbing the boundary layer using free-stream
vortical disturbances: smaller wavelengths (large κv) are able to penetrate deeper into
the boundary layer, but suffer faster viscous decay, whereas the opposite is true for
larger wavelengths. The optimal distribution of vortical waves, shown in figure 4(a),
shows two maxima corresponding to κv ≈ 0.014 and κv ≈ 0.31. Maximal excitation
of disturbances is achieved by simultaneously subjecting the boundary layer to highly
penetrating free-stream vortical modes and those that exhibit minimal viscous decay.
Near the leading edge, free-stream vorticity penetrates the boundary layer and elicits a
non-modal response characterized by large-scale streamwise jets emanating from the wall
in the û′ response field of figure 4(b). These jets are also seen to be modulated by modes
F1 and S.

Downstream of the leading edge, the phase speed of mode F1 decreases, and by
x∗ ≈ 0.11 m, mode F1 synchronizes with mode S to incite the second mode. During the
second-mode growth, however, the streamwise jets remain as seen in figure 4(b). Once the
second mode has decayed appreciably by x∗ ≈ 0.18 m, the jets are once again visible,
but only weakly and for a short length, as they suffer viscous decay. This is because
free-stream vortical disturbances with κv ≈ 0.31, which corresponds to λv ≈ 1.5δ99 at the
inlet, optimally excite the jets, but also experience relatively large viscous decay.

Similar calculations were performed for slow acoustic waves, for entropic waves and
for the gamut of all free-stream waves. The respective gains are summarized in table 2.
Firstly, the slow acoustic waves yielded a gain ≈1.9 times greater than that of the fast
acoustic waves, which corroborates the general understanding that slow waves dominate
acoustically induced transition onset in adiabatic-wall high-speed boundary layers (MZ3;
Balakumar 2015). Vortical waves yielded a gain nearly identical to Gc

all, suggesting that
transient streamwise jets excited by vortical disturbances is the dominant receptivity
mechanism for the current configuration. Entropy waves, on the other hand, play no
significant role at these conditions. Lastly, the unconstrained optimization (standard
input–output) problem yielded a gain nearly 300 times greater than Gc

all, suggesting that the
physically realizable inputs have a small projection onto the unconstrained (non-physically
realizable) inputs. Conversely, a large number of unconstrained forcing modes would be
required to represent the physical forcing.
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Case Gc or Guc

Fast acoustic (αa � 0 and κa � 0) 40
Slow acoustic (κa � 0) 76
Vortical 95
Entropic 11
All 96
Unconstrained 3.0 × 104

Table 2. Gains from (un)constrained optimizations at M∞ = 4.5 and F = 2.2 × 10−4.
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Figure 5. Plot of Gc versus F at M∞ = 4.5 with the gamut of free-stream waves with the corresponding
maximum amplitude from each wave mode (fast/slow acoustic, vortical and entropic).

We now compute Gc for the gamut of free-stream disturbances across a range of
frequencies. Here, each wave mode (fast/slow acoustic, vortical and entropic) is discretized
with N = 1000 points, but in contrast to § 2.5, half the acoustic waves radiate above
(κa � 0) while the other half radiate below (κa � 0) the plate. Additionally, αa < 0 is
included in the fast acoustic ansatz. The gain profile and the maximum amplitude from
each wave mode, which reveals the dominant free-stream disturbance type, are shown in
figure 5. The first mode is optimally excited at Fopt ≈ 0.1 × 10−4, but the gain rapidly
decreases with increasing frequency up until F ≈ 0.7 × 10−4. Then, for F > 1.1 × 10−4,
the second mode becomes the dominant instability and peaks at Fopt ≈ 1.4 × 10−4.

Across all frequencies, |a|max for entropic waves is the lowest, closely followed by fast
acoustic waves. Although |a|max is attributed to a vortical wave at the lowest frequencies,
the relative importance of slow acoustic waves steeply increases from F ≈ 0.05 × 10−4

and eventually overtakes vortical waves at F ≈ 0.3 × 10−4, before becoming subdominant
again by F ≈ 0.9 × 10−4. The dominance of the vortical wave at high frequencies is
likely attributed to the ‘swallowing’ effect (Fedorov & Khokhlov 2001) where mode
F1 synchronizes with the continuous vorticity branch. The resulting mode F1 waves, as
discussed above, maximize the amplification of the second mode. While the fast acoustic
waves are closer in wavenumber to mode F1, the vortical waves are apparently more
effective because they can simultaneously excite mode F1 (‘swallowing’ effect) and mode
S (similar wavenumber).
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4. Discussion and future work

We have developed a scattering ansatz to study optimal natural boundary-layer receptivity.
The technique can be understood as a generalization of receptivity theory to determine the
linear combinations of free-stream disturbances that give rise to the maximal disturbance
amplification in the boundary layer. At the same time, it can be considered as a restriction
of the forcing field in input–output analysis to a subspace associated with excitation by
free-stream disturbances. As compared to many receptivity studies based on local methods,
the global approach circumvents the need for asymptotics.

As a first application of the approach, we consider 2-D disturbances to a Mach 4.5
flat-plate boundary layer, for which the forward receptivity problem was previously
solved using DNS (MZ2; MZ3). The results validate the approach and reveal optimal
disturbance amplification scenarios. When the free stream is restricted to fast acoustic
waves, maximal response is achieved by subjecting the boundary layer to acoustic
waves with incident angles that optimally excite the second mode, but also, to a
lesser extent, mode F1. The receptivity mechanism vastly changes, however, in the
case of incident vortical waves, where an optimal combination of highly penetrating
and minimally decaying incident waves produces a transient response characterized by
large-scale streamwise jets emanating from the wall and modulated by modes F1 and
S in the û′ response field. Finally, the efficiency of our approach was demonstrated
by computing the optimal receptivity for the same Mach 4.5 flat-plate boundary
layer over a range of frequencies, highlighting where first-mode (low-frequency) and
second-mode (high-frequency) instabilities are most receptive to different types of
free-stream disturbances. While the configurations considered here are restricted, the
methodology can be readily applied to three-dimensional disturbances and more complex
geometries, and the scattering ansatz can include sources associated with the shock and
shock layer.
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