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Abstract. A fundamental question in the field of cohomology of dynamical systems is to
determine when there are solutions to the coboundary equation:

f = g − g ◦ T .

In many cases, T is given to be an ergodic invertible measure-preserving transformation
on a standard probability space (X, B, μ) and f : X → IR is contained in Lp for p ≥ 0.
We extend previous results by showing for any measurable f that is non-zero on a set of
positive measure, the class of measure-preserving T with a measurable solution g is meager
(including the case where

∫
X
f dμ = 0). From this fact, a natural question arises: given f,

does there always exist a solution pair T and g? In regards to this question, our main results
are as follows. Given measurable f, there exist an ergodic invertible measure-preserving
transformation T and measurable function g such that f (x) = g(x)− g(T x) for almost
every (a.e.) x ∈ X, if and only if

∫
f>0 f dμ = − ∫

f<0 f dμ (whether finite or ∞). Given
mean-zero f ∈ Lp(μ) for p ≥ 1, there exist an ergodic invertible measure-preserving
T and g ∈ Lp−1(μ) such that f (x) = g(x)− g(T x) for a.e. x ∈ X. In some sense, the
previous existence result is the best possible. For p ≥ 1, there exists a dense Gδ set of
mean-zero f ∈ Lp(μ) such that for any ergodic invertible measure-preserving T and any
measurable g such that f (x) = g(x)− g(T x) almost everywhere, then g /∈ Lq(μ) for
q > p − 1. Finally, it is shown that we cannot expect finite moments for solutions g, when
f ∈ L1(μ). In particular, given any φ : IR → IR such that limx→∞ φ(x) = ∞, there exist
mean-zero f ∈ L1(μ) such that for any solutions T and g, the transfer function g satisfies:∫

X

φ(|g(x)|) dμ = ∞.
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1. Introduction
We give new fundamental results concerning solutions to the coboundary equation:

f = g − g ◦ T . (1.1)

There has been substantial progress in many cases such as homogeneous spaces, smooth
actions, Lie groups, as well as many other important families of dynamical systems. Most
previous research focuses on the case where a measurable transformation, or topological
dynamical system is specified, and a solution g is sought for individual f or families
of functions f (e.g., Hölder f ). In this paper, we study the situation from the general
perspective of solutions T and g where f may be any real-valued measurable function,
or function f ∈ Lp for p ≥ 0.

In this paper, we assume all measurable dynamical systems are defined on a Lebesgue
space (X, B, μ). Thus, by the Rokhlin isomorphism theorem [38, 39], we take X = [0, 1),
μ is Lebesgue measure, and B is the collection of Lebesgue measurable sets. For p > 0,
define the standard Lp space, Lp = {f : X → IR| f is measurable and

∫
X

|f |p dμ
< ∞}. For p ≥ 1, define L

p

0 = {f ∈ Lp :
∫
X
f dμ = 0}. Also, L∞ is the set of

essentially bounded measurable functions on (X, B, μ) and similarly, L∞
0 are functions in

L∞ with zero integral. The space L0 is the set of measurable functions on (X, B, μ). Let
M be the family of invertible measure-preserving transformations defined on (X, B, μ)
and E is the family of ergodic invertible measure-preserving transformations on (X, B, μ).
We obtain the following main positive result.

THEOREM 1.1. (Existence of solutions) Let 1 ≤ p ≤ ∞ and suppose f ∈ Lp0 . There exist
T ∈ E and g ∈ Lp−1 such that f (x) = g(x)− g(T x) for almost every (a.e.) x ∈ X.

In some sense, Theorem 1.1 gives the best possible positive result. The following
theorem demonstrates a major limitation for solutions to the coboundary equation. In
particular, typically, there is no solution g in the same integrability class as f, even when
allowing T to range over all of E.

THEOREM 1.2. (Lq non-existence) Given 1 ≤ p < ∞, there exist f ∈ Lp0 such that for
any solution T ∈ E and measurable g to the coboundary equation f = g − g ◦ T , then
g /∈ Lq for q > p − 1. More generally, there exists a dense Gδ set Gp ⊂ L

p

0 such that for
any f ∈ Gp, and any solution pair T , g with T ∈ E, then g /∈ Lq for q > p − 1.

The solution g is referred to as the transfer function for coboundary f. Theorem 1.2
implies that for generic mean-zero f ∈ Lp for p < 2, any transfer function is not
integrable, regardless of T ∈ E. However, for f ∈ L1

0, we can always find a solution with
measurable g ∈ L0.

For the case where f is only assumed to be measurable, we give a straightforward
equivalent condition for the existence of a measurable transfer function. Also, Theorem 1.3
highlights the need to control T, or the inter-dependence of T and f, if one hopes to find a
measurable transfer function.
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THEOREM 1.3. (Measurable transfer functions) Suppose (X, B, μ) is a standard proba-
bility space and f ∈ L0 is non-zero on a set of positive measure.
• The coboundary equation f = g − g ◦ T has a solution pair, T ∈ E, g ∈ L0, if and

only if
∫
f>0 f dμ = − ∫

f<0 f dμ, whether both integrals are ∞ or finite.
• The class of ergodic invertible measure-preserving transformations T such that f =

g − g ◦ T has a measurable solution g is first category (that is, meager).

2. Connections to previous research
There has been substantial interest in the study of the cohomology of dynamical systems.
Much of the recent focus is on smooth dynamics including hyperbolic actions or actions
of Lie groups. Powerful rigidity or local rigidity results have been obtained involving
cocycles. Some of the earliest results include [27, 28]. Cocycle rigidity depends closely
on solving the coboundary equation, since the difference between cohomologous cocycles
is a coboundary. Livs̆ic [34] provided one of the earliest regularity results in this setting
by demonstrating Hölder cocycle rigidity for families of U-systems, topological Markov
chains, and Smale systems. More recently, this Hölder regularity has been extended to
non-uniformly expanding Markov maps [22], and to Weyl chamber flows or twisted Weyl
chamber flows [42]. In [41], Veech proves that the coboundary equation f = g − g ◦ T
admits a C∞ solution g for C∞f when T is an ergodic toral endomorphism and f sums
to zero over every periodic orbit. Also, a connection is made to the generalized Riemann
hypothesis.

We will consider the coboundary equation in a general context. In the setting of
topological dynamics, the following early result was observed in Gottschalk and Hedlund
[21]: a bounded continuous function f is a coboundary for a minimal homeomorphism on
a compact space if and only if the following is uniformly bounded for positive n,∣∣∣∣

n−1∑
i=0

f (T ix)

∣∣∣∣.
More recently, Quas [37] proves for a μ-invariant minimal homeomorphism on a compact
probability space, if a continuous f is a coboundary with an L∞(μ) transfer function, then
f is a coboundary with a continuous transfer function. Also, we would like to mention a
result of Baggett, Medina, and Merrill which is in the same spirit of Theorem 1.3. They
prove in [5] that if f ∈ L1

0(S
1) is not a trigonometric polynomial, then the set of irrational

rotations of the unit circle S1, for which f is a coboundary with an integrable transfer
function, is of first category.

2.1. The Halász–Schmidt condition. The following associated condition for measurable
dynamics can be found in [25, 40]. A measurable function f is a coboundary for T ∈ E if
and only if for each δ > 0, there exists Mδ ∈ IN such that for n ∈ IN,

μ

({
x ∈ X :

∣∣∣∣
n−1∑
i=0

f (T ix)

∣∣∣∣ ≤ Mδ

})
> 1 − δ. (2.1)

This condition will be used in §5 to show for any measurable function f that is essentially
non-zero, then the class of ergodic invertible measure-preserving transformations T such
that f = g − g ◦ T has a measurable solution g is meager (first category). Anosov

https://doi.org/10.1017/etds.2022.29 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2022.29


2140 T. Adams and J. Rosenblatt

[4, Theorem 1] demonstrated that there are no measurable solutions g in the case that f
is integrable and

∫
X
f dμ 	= 0. However, our category results apply in the situation that∫

X
f dμ = 0.

2.2. Non-measurable solutions. Using the axiom of choice, we can always obtain a solu-
tion g. Partition X into orbits (mod measure zero). For each orbit O, choose a single point
x0 ∈ O. The coboundary equation leads to the following telescoping series, for n > 0,

g(T nx) = g(x)−
n−1∑
i=0

f (T ix),

and for backward iterates,

g(T −nx) = g(x)+
n∑
i=1

f (T −ix).

If we define g(x0) = 0, then the recursion formulas above uniquely determine g at all
points along the orbit of x0. It is easily checked that f (y) = g(y)− g(T y) on the orbit
of x0. By invoking the Axiom of Choice to select a point on each orbit, g is defined at
a.e. x ∈ X. However, the result of Anosov implies this g is not measurable when f has a
non-zero integral.

Here is another case where this construction clearly leads to a non-measurable solution.
Suppose α is irrational and 0 < α < 1. Define f on [0, 1] by

f (x) =

⎧⎪⎨
⎪⎩
α, if x ≤ 1

1 + α
,

−1 if x >
1

1 + α
.

The integral of f is zero. Since g(x) = 0 for a single point in each orbit, then the space X
equals the following disjoint union (modulo measure zero sets),

∞⋃
i=−∞

T i({x ∈ X : g(x) = 0}).

Since T is measure preserving, the set {x ∈ X : g(x) = 0} is not measurable and conse-
quently, g is not measurable.

There are cases where it is known that the coboundary equation has no measurable
solution g. It was pointed out in [25] that if f is a non-trivial mean-zero step function
taking on two values, then the transformation T must have a non-trivial eigenvalue. Thus,
if T is weakly mixing and f is a two-step function, there is no measurable solution g.
This implies for a two-step mean-zero non-zero function, the ergodic invertible measure
preserving transformation obtained in Theorem 1.1 is never weakly mixing.

In [24], given an irrational rotation T, the authors give necessary and sufficient
conditions for a step function φ and t ∈ IR/Z for there to exist measurable solutions to
the multiplicative cohomological equation:

e2πiφ = e2πit f

f ◦ T .

This result is critical in the study of eigenvalues of interval exchange transformations.
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2.3. Bounded coboundaries. This raises the question of when do solutions exist for
classes of measurable functions f, when T is allowed to range over E. In [2] (Theorem
11.2), it is shown that any finite step, mean-zero function is a coboundary for some
ergodic invertible measure-preserving transformation with a bounded transfer function g.
In particular, T may be chosen in one of the following categories:
(1) T is a transformation with a discrete spectrum;
(2) T is a product of rotations;
(3) T is a finite extension of a product of rotations.

Also, Theorems 11.2 and 12.1 in [2] show the existence of solutions is extended to
mean-zero bounded functions. The case of general Lp0 functions is more subtle and
addressed in this paper.

The paper [32] partially addresses the case of bounded coboundaries. However, the
arguments given in [32] are viewed as containing a gap, and the main theorem does not
apply in general beyond the case of continuous functions f.

2.4. Operator viewpoint. The coboundary equation has been viewed from the perspec-
tive of operator theory. Note that the coboundary equation may be written as

f = (I − UT )g,
where UT is the Koopman operator defined by UT (g) = g ◦ T , and I represents the
identity operator. Study of the operator (I − T ) when T is a linear operator (and not
necessarily unitary) goes back to the 19th century [35]. Similar to the case of real or
complex numbers, for an operator T with norm |T | < 1, then I − T has an inverse and

(I − T )−1 =
∞∑
i=0

T k .

However, for measure-preserving transformations, |UT | = 1, and solving f = (I − UT )g

becomes more complicated. Browder [8] provided the following equivalent condition for
a given contraction T on a reflexive Banach space E. The function f ∈ (I − T )E, if and
only if

sup
n

∥∥∥∥
n−1∑
i=0

T if

∥∥∥∥ < ∞.

A two-dimensional version of Browder’s result was proved by Cohen and Lin in [10].
Iterative techniques were given in [13–15, 23] as an aid for solving the coboundary

equation in this setting. The paper [33] of Lin and Sine shows that for a given T, when a
solution exists, it may be obtained in closed form as the following point-wise limit almost
everywhere:

g(x) = lim
n→∞

1
n

n∑
k=1

n−1∑
i=0

f (T ix).

Also, the authors extend their results from the classical Poisson equation,
f = (I − UT )g to the case of fractional coboundaries [12]. Their main results produce
equivalent conditions for solutions to occur for fixed T. Also, in the case of a unitary
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operator U on a Hilbert space H, a result from [31] shows that f ∈ (I − U)H , if and only
if

sup
N

1
N

N∑
n=1

∥∥∥∥
n−1∑
k=0

Ukf

∥∥∥∥
2

< ∞.

Also, of note, the authors prove in [16] that the following condition is equivalent to T being
weak mixing:

1
N

N∑
n=1

∥∥∥∥
n−1∑
k=0

(1A − μ(A)) ◦ T k
∥∥∥∥

2
−→ ∞ for all A ∈ B with μ(A) > 0.

Our main results can be recast in terms of operators in the following way.

COROLLARY 2.1. (Operator theoretic statement of Theorems 1.1 and 1.2) Let (X, B, μ) be
a standard probability space and E be the set of all ergodic invertible measure-preserving
transformations on (X, B, μ). Then Theorems 1.1 and 1.2 are equivalent to the following
statements respectively:

L
p

0 ⊂
⋃
T ∈E

(I − UT )(L
p−1)

and

L
p

0 ∩
⋃
T ∈E

⋃
q>p−1

(I − UT )(L
q) is meager in L

p

0 .

2.5. Ergodic averages. One of the main applications of coboundary solutions is to find
functions for which the ergodic averages are controlled and converge rapidly. Kachurovskii
observed in [26] that the cohomology equation has a solution if and only if the rate of
convergence in the Birkhoff theorem [7] is the highest possible rate and convergence is
uniform. We observe, in the case where f is a coboundary for T with integrable transfer
function g, all moving averages (vn, Ln) converge pointwise for an increasing sequence
Ln ∈ IN,

1
Ln

Ln∑
i=1

f (T vn+ix) → 0.

A proof of this fact is given in Appendix B. Other results [44] characterize the rate of
convergence in measure of ergodic averages of L∞ functions using uniform approximation
by coboundaries where the transfer function lands in a specific Lp space. For p ≥ 1, the
rate is of the order of n−p. For stationary processes exhibiting randomness (e.g., positive
entropy, random fields), there is a technique for decomposing the process into coboundary
and martingale components. See [18–20, 29, 43] and the references contained therein for
background on this technique and its applications. This has made it possible to establish
common statistical laws (central limit theorem, weak invariance principle) in these cases.

2.6. Non-singular transformations. There is also extensive research on the connections
of coboundaries to non-singular transformations. We do not discuss this in detail, but
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encourage the interested reader to check [1, 11] for its connections, including the
existence of equivalent finite or sigma-finite invariant measures. Techniques developed
from the operator theoretic viewpoint can also be applied to non-singular transformations
including [33], and [3], which develops a different approach for addressingLp integrability
constraints on solutions.

3. Coboundary existence theorem
In this section, we prove Theorem 1.1, although it is restated here in an equivalent form.
We will also show later that this is generally the best possible result.

THEOREM 3.1. Let p ∈ IR be such that p ≥ 1. Suppose (X, B, μ) is a standard probability
space and f ∈ Lp0 (X, μ). There exist an ergodic invertible measure-preserving transfor-
mation T and a function g ∈ Lp−1(X, μ) such that f (x) = g(T x)− g(x) for almost every
x ∈ X.

For the case of L∞, this theorem follows from Theorems 11.2 and 12.1 in [2]. However,
[2] did not handle unbounded functions.

To prove the existence result for unbounded functions, we will give a construction which
reduces the problem to bounded functions. A geometric tower of sets is constructed based
loosely on the method of cutting and stacking. (The proof of Theorem 1.2 is not based
on cutting and stacking, although it is constructive in nature.) See [17] for a guide to the
cutting and stacking method in ergodic theory. Also, we will use a connection between
coboundaries for an induced transformation and the coboundary for the full transformation.
In addition to looking at induced transformations, we obtain our limiting transformation
by iteratively gluing together an ensemble of transformations defined on subsets (towers)
of the full space.

3.1. Induced transformations and coboundaries. In this section, we show how to extend
a coboundary for an induced transformation to a coboundary for the full transformation.
Let T : X → X be an ergodic measure-preserving transformation. Let A ⊂ X be a set of
positive measure. Suppose

TA(x) = T nA(x)(x), x ∈ A,

where nA(x) is the smallest positive integer n such that T nx ∈ A. Note, nA(x) is defined
(and finite) for a.e. x ∈ A since the measure μ is not atomic. This defines the so-called
induced transformation on A. See [17, p. 9, Theorem 1.18] or [36] for further details on
induced transformations. Given measurable function f : X → IR and x ∈ A, define

fA(x) =
nA(x)−1∑
i=0

f (T ix).

We have the following lemma which will be used to prove Theorem 3.1.

LEMMA 3.2. Let f : X → IR be a measurable function and T : X → X be an ergodic
measure-preserving invertible transformation. Suppose fA is a coboundary for induced
transformation TA : A → A with transfer function gA such that fA = gA ◦ TA − gA.
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Given z ∈ X \ A, define jz = inf {j ∈ IN : T −j z ∈ A} and for z ∈ A, jz = 0. Since T is
ergodic and invertible, then jz < ∞ for a.e. z ∈ X and in particular, 0 ≤ jz ≤ nA(T

−jzz)
almost everywhere. Then f is a coboundary for transformation T with transfer function g
defined such that for z ∈ A, g(z) = gA(z) and for a.e. z ∈ X \ A,

g(z) = gA(T
−jzz)+

jz−1∑
i=0

f (T i−jzz).

Proof. For a.e. z ∈ X, let x = T −jzz. If 0 ≤ jz < nA(x)− 1, then

g(T z)− g(z) = gA(x)+
jz∑
i=0

f (T ix)− gA(x)−
jz−1∑
i=0

f (T ix) = f (T jzx) = f (z).

Now suppose jz = nA(x)− 1. Then

g(T z)− g(z) = gA(TAx)−
(
gA(x)+

nA(x)−2∑
i=0

f (T ix)

)
(3.1)

= fA(x)−
nA(x)−2∑
i=0

f (T ix) (3.2)

=
nA(x)−1∑
i=0

f (T ix)−
nA(x)−2∑
i=0

f (T ix) (3.3)

= f (T nA(x)−1x) = f (z). (3.4)

This proves that f is a coboundary for T with transfer function g for a.e. z ∈ X.

3.2. Tower constructions on subsets of the measure space. To construct the transforma-
tion and transfer function, we will first decompose the measure space into disjoint subsets
and then construct towers on each subset. Using the construction from a previous paper [2],
we will define the transformation on the top of the towers such that the full transformation
is ergodic measure preserving and invertible (that is, it glues all the towers together). This
construction will produce a transfer function with the required integrability properties.

Suppose f : X → IR is a measurable function and A ⊂ X is a measurable subset.
Define f|A : A → IR as the restriction of f to A:

f|A(x) = f (x) for x ∈ A.

For convenience, we may write � = f|A. To emphasize that a transformation is restricted
to a subset A, we use the notation T|A : A → A or, for convenience, τ : A → A. This
is distinct from the notion of induced transformation which is written as TA. Now we
prove the following lemma which is a basic building block for the construction of our full
transformation T.

LEMMA 3.3. Suppose A ⊂ X has positive measure and f|A : A → IR takes on two steps
with mean zero (that is,

∫
A
� dμ = 0, where � = f|A). Given h ∈ IN and ε > 0, there
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exist h1, h2 > h, disjoint I1, I2 ⊆ A, and an invertible measure-preserving map τ : A →
A such that

μ

( h1−1⋃
i=0

τ iI1 ∪
h2−1⋃
i=0

τ iI2

)
= μ(A), (3.5)

τ iI1, 0 ≤ i < h1, τ iI2, 0 ≤ i < h2 are all disjoint, (3.6)

∣∣∣∣
k∑
i=0

�(τ ix)

∣∣∣∣ ≤ ‖�‖∞ for x ∈ Ij , k < hj , j = 1, 2, (3.7)

∣∣∣∣
hj−1∑
i=0

�(τ ix)

∣∣∣∣ < ε for x ∈ Ij , j = 1, 2, (3.8)

hj−1∑
i=0

�(τ ix) =
hj−1∑
i=0

�(τ iy) for x, y ∈ Ij , j = 1, 2, (3.9)

1 − ε <
h1

h2
< 1 + ε. (3.10)

Proof. Without loss of generality, assume A ⊂ X = [0, 1]. Suppose � = bIB − cIC is
mean zero for b, c > 0 and disjoint B, C such that B ∪ C = A. The case where b/c
is rational is straightforward, so we assume b/c is irrational. There exist δ1, δ2 of the
same sign, and p1, q1, p2, q2 such that |δ2| < |δ1| < ε, p1 < εp2, q1 < εq2, p2 + q2 −
p1 − q1 > h, p1b − q1c = δ1, and p2b − q2c = δ2. Without loss of generality, assume
0 < δ2 < δ1 < ε. The case where δ1, δ2 are negative follows similarly. Let p3 = p2 − p1

and q3 = q2 − q1. Note,
p3b − q3c = δ2 − δ1 < 0.

Let δ3 = δ1 − δ2. Split B into two disjoint sets B1, B2 such that

μ(B1) = p2δ3

(p2 + q2)δ3 + (p3 + q3)δ2
and μ(B2) = p3δ2

(p2 + q2)δ3 + (p3 + q3)δ2
. (3.11)

Note,

μ(B1)+ μ(B2) = p2δ3 + p3δ2

(p2 + q2)δ3 + (p3 + q3)δ2
(3.12)

= p2(q3c − p3b)+ p3(p2b − q2c)

(p2 + q2)(q3c − p3b)+ (p3 + q3)(p2b − q2c)
(3.13)

= (p2q3 − p3q2)c

(p2q3 − p3q2)b + (p2q3 − p3q2)c
(3.14)

= c

b + c
= μ(B). (3.15)

Similarly, split C = C1 ∪ C2 such that

μ(C1) = q2δ3

(p2 + q2)δ3 + (p3 + q3)δ2
and μ(C2) = q3δ2

(p2 + q2)δ3 + (p3 + q3)δ2
.

(3.16)
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Divide B1 into p2 disjoint equimeasurable sets B1,j for j ∈ {1, 2, . . . , p2}. Divide
C1 into q2 disjoint equimeasurable sets C1,j for j ∈ {1, 2, . . . , q2}. Divide B2 into
p3 disjoint equimeasurable sets B2,j for j ∈ {1, 2, . . . , p3}. Divide C2 into q3 dis-
joint equimeasurable sets C2,j for j ∈ {1, 2, . . . , q3}. Thus, μ(C1,j ) = μ(B1,k) for j ∈
{1, 2, . . . , p2} and k ∈ {1, 2, . . . , q2}. Also, μ(C2,j ) = μ(B2,k) for j ∈ {1, 2, . . . , p3}
and k ∈ {1, 2, . . . , q3}. Let I1 = B1,1 and I2 = B2,1. Stack the sets B1,j and C1,k such
that whenever the sum of the values is negative, place a B next, and otherwise place a C
set next. Stack the sets B2,j and C2,k such that whenever the sum of the values is negative,
place a B next, and otherwise place a C set next. As long as δ1 < min {c, b}/2, then we have
the precise number of level sets B and C to complete the two towers. In this case, let h1 =
p2 + q2 and h2 = p3 + q3. Thus, the condition h2 = p3 + q3 = p2 − p1 + q2 − q1 > h

implies h1 = p2 + q2 > h.
For x ∈ I1,

∣∣∣∣
h1−1∑
i=0

�(τ ix)

∣∣∣∣ = |p2b − q2c| = δ2 < ε,

and for x ∈ I2,

∣∣∣∣
h2−1∑
i=0

�(τ ix)

∣∣∣∣ = |p3b − q3c| = δ1 − δ2 < ε.

Equation (3.7) holds due to the greedy stacking algorithm used. The other conditions in
the lemma hold by construction.

LEMMA 3.4. SupposeA ⊂ X is a set of positive measure and � : A → IR is a mean-zero,
non-zero finite step function. Explicitly, let � = ∑m

i=1 ai1Ii , where A = ⋃m
i=1 Ii is a

disjoint union of sets Ii of positive measure, and ai are distinct real numbers for 1 ≤ i ≤ m

and m ≥ 2. There exist disjoint measurable sets J1, J2, . . . , Jm−1 such that � takes on at
most two values almost everywhere on Ji and

∫
Ji
� dμ = 0 for 1 ≤ i ≤ m− 1.

Proof. We prove this by induction on m. Clearly, this is true for m = 2. Suppose it is true
for m = n and all finite measure spaces. Let m = n+ 1. Choose j such that for 1 ≤ i ≤
n+ 1, ∫

Ij

|�| dμ = |aj |μ(Ij ) ≤
∫
Ii

|�| dμ = |ai |μ(Ii).

If aj ≤ 0, choose k 	= j such that ak ≥ 0, otherwise choose k such that ak ≤ 0. Choose
I ′ ⊂ Ik such that

ajμ(Ij )+ akμ(I
′) = 0.

Define Jn = Ij ∪ I ′. Thus, � takes on at most n steps on the subset A \ Jn. By induction,
there exist J1, J2, . . . , Jn−1 such that � takes on at most two steps on Ji . Therefore, our
lemma is proved by induction.
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The next lemma uses the notion of a TUB tower which was defined in [2]. For
completeness, we present the definition here. The proof of the following Lemma 3.5 uses
Lemma A.2 which is stated and proved in Appendix A.2.

Let A be a measurable subset of X and f : A → IR a bounded, mean-zero function.
Given a finite measurable partition Q, h ∈ IN, and ε > 0, an ε-balanced and uniform tower
for f is a set of disjoint measurable sets Ii ⊂ A for i = 1, 2, . . . , h and an invertible
measure-preserving map T : Ii → Ii+1 for i = 1, 2, . . . , h− 1, such that

μ

( h⋃
i=1

Ii

)
> μ(A)− ε, (3.17)

|f (x)− f (y)| < ε for x, y ∈ Ii , 1 ≤ i < h, (3.18)∣∣∣∣
k∑
i=0

f (T ix)

∣∣∣∣ < ‖f ‖∞ + ε for x ∈ I1, k < h, (3.19)

h∑
i=1

∫
Ii

f dμ =
∫
A

f dμ, (3.20)

∣∣∣∣
h−1∑
i=0

f (T ix)

∣∣∣∣ < ε for x ∈ I1, (3.21)

for each q ∈ Q, there exists I ⊂ {1, . . . , h} such that μ
(
q�

( ⋃
i∈I

Ii

))
< ε. (3.22)

We refer to this type of tower as a TUB (ε, h, Q) tower for f|A.

LEMMA 3.5. Suppose A ⊂ X is a set of positive measure and � : A → IR is bounded
and mean zero. Given εi > 0 for i ∈ IN such that limi→∞ εi = 0, there exist an invertible
measure-preserving map T, disjoint sets Ii ⊂ A and natural numbers hi such that:
• A = ⋃∞

i=1
⋃hi−1
j=0 T j Ii is a disjoint union;

• | ∑hi−1
j=0 �(T j x)| < εi for x ∈ Ii; and

• | ∑k
j=0 �(T j x)| < ‖�‖∞ + εi for x ∈ Ii and 0 ≤ k < hi .

Proof. If � is a finite step function, then the lemma follows by applying Lemmas 3.4
and 3.3 with a finite number of sets Ji . If � is not a finite step function, then we apply
Lemma A.2, iteratively and potentially infinitely many times, to construct a sequence
of TUB towers that satisfy this lemma. By Lemma A.2, there exist I1 ⊂ A, h1 ∈ IN
and T which is invertible and measure preserving such that T i(I1) ⊂ A are disjoint for
i = 0, 1, . . . , h1 − 1 and μ(

⋃h1−1
i=0 T i(I1)) > μ(A)− ε1. Also, using Lemma A.2, we

can obtain the last two conditions of Lemma 3.5. Let A1 = A \ ⋃h1−1
i=0 T i(I1). In a similar

fashion, apply Lemma A.2 to A1 using parameter ε2. Thus, in general,

Ak = A \
k⋃
j=1

hj−1⋃
i=0

T i(Ij )

with μ(Ak) < εk → 0 as k → ∞ and our lemma is satisfied.
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Remark. The transformation T constructed in Lemma 3.5 does not need to be defined on
all of A. It may not be defined on the top of the towers, and instead,

T : A \
( ∞⋃
i=1

T hi−1Ii

)
→ A \

( ∞⋃
i=1

Ii

)
.

The following proposition was previously proved in [2]. A direct proof is given in
Appendix A.2.

PROPOSITION 3.6. Let (X, B, μ) be a standard probability space and A ⊂ X a set of
positive measure. Suppose f : A → IR is measurable, mean zero, and bounded. There
exist an ergodic measure-preserving transformation T : A → A and bounded function g
such that f = g − g ◦ T almost everywhere. Moreover, the transformation T and transfer
function g may be constructed such that for any δ > 0, ‖g‖∞ < ‖f ‖∞ + δ.

3.3. Proof of the main positive result. Now we are ready to proceed with the proof of
Theorem 3.1.

Proof. Without loss of generality, we prove this theorem for the case X = [0, 1) and μ
equal to Lebesgue measure. Also, we may assume f /∈ L∞, since this case was handled
previously in [2], Proposition 3.6, and also by Ber et al. [6]. If f does not take on essentially
infinitely many bounded values on a compact set, then first apply Lemma 3.3 to generate
countable towers and transformation such that the sums are bounded, that is, less than
εi for the ith tower. Let k be the minimum positive integer such that μ({x : 0 < f (x) ≤
k}) > 0, and similarly let � be the minimum positive integer such that μ({x : 0 > f (x) ≥
−�}) > 0. If no such k and no such � exist, then f must equal zero almost everywhere,
which contradicts our assumption. Let X1 = {x : k − 1 < f (x) ≤ k} and Y1 = {x : 1 −
� > f (x) ≥ −�}. If

∫
X1
f dμ+ ∫

Y1
f dμ ≤ 0, define Y ′

1 ⊆ Y1 such that∫
X1

f dμ+
∫
Y ′

1

f dμ = 0.

In this case, let X′
1 = X1. Otherwise, choose X′

1 ⊂ X1 such that∫
X′

1

f dμ+
∫
Y1

f dμ = 0.

In this case, set Y ′
1 = Y1. Also, define k1 = k, �1 = �, and X0 = {x : f (x) = 0}. We may

continue this procedure inductively to choose disjoint sets X′
n, Y ′

n for n = 1, 2, . . . , and
sequences of positive integers kn, �n such that:
(1) kn − 1 < f (x) ≤ kn for x ∈ X′

n;
(2) 1 − �n > f (x) ≥ −�n for x ∈ Y ′

n;
(3) kn+1 ≥ kn, �n+1 ≥ �n;
(4) limn→∞ kn + �n = ∞;
(5)

∫
X′
n
f dμ+ ∫

Y ′
n
f dμ = 0;

(6) μ(
⋃∞
n=1(X

′
n ∪ Y ′

n)) = μ(X \X0).
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Item (4) above is true, since f /∈ L∞. Either kn → ∞ or �n → ∞. Assume without
loss of generality that kn → ∞ and kn > �n for infinitely many n ∈ IN. If �n = 1 for all
n ∈ IN, then we need to be careful about the choice of Y ′

n. Let γ0 = 0. We can choose a
sequence of non-decreasing real numbers γn, n ∈ IN such that 0 < γn ≤ 1 and

Y ′
n ⊆ {x : −γn ≤ f (x) ≤ −γn−1}.

If �n is eventually greater than 1, then we can set γn = �n for n ∈ IN. In either case, for
x ∈ Y ′

n,

|f (x)| ≤ γn.

Let ε > 0. For each n ∈ IN, apply Lemma 3.5 to f defined on Zn = X′
n ∪ Y ′

n to obtain
a decomposition into potentially infinitely many towers satisfying the conditions of
Lemma 3.5. Thus, there exists an invertible measure-preserving Tn defined on a subset
of Zn such that

Zn =
∞⋃
i=1

hn,i−1⋃
j=0

T
j
n In,i .

Using Lemma 3.5, we can require

∣∣∣∣
hn,i−1∑
j=0

f (T
j
n x)

∣∣∣∣ < ε,

and for 0 ≤ k < hn,i ,

∣∣∣∣
k∑
j=0

f (T
j
n x)

∣∣∣∣ < ‖f|Zn‖∞ + ε.

Since Zn are disjoint, we can use T to represent the ensemble of Tn. Let

A =
∞⋃
n=1

∞⋃
i=1

In,i

and define the function fA by

fA(x) =
hn,i−1∑
j=0

f (T jx) for x ∈ In,i .

Thus, |fA(x)| < ε for x ∈ A. Apply Proposition 3.6 to construct an ergodic invertible
measure-preserving transformation τ : A → A along with a bounded measurable function
gA such that fA is a coboundary for τ with transfer function gA. Moreover, we can
require that |gA(x)| < ‖fA‖∞ + ε < 2ε for x ∈ A. Then apply Lemma 3.2 to show that
the ergodic measure-preserving transformation T on X satisfying TA = τ has coboundary
f with a measurable transfer function g. By Lemma 3.2, g may be bounded such that for
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z ∈ Zn,

|g(z)| ≤ |gA(T −jzz)| +
∣∣∣∣
jz−1∑
i=0

f (T i−jzz)
∣∣∣∣ (3.23)

< 2ε + ‖f|Zn‖∞ + ε (3.24)

< max{kn, �n} + 3ε. (3.25)

There exists j such that kj ≥ �j , and for n > j , kn + 3ε ≤ 2(kn − 1), and also for x ∈ Y ′
n,

−γn ≤ f (x) ≤ −γn−1 < 0.

Thus, ∫
X

|g|p−1 dμ =
∞∑
n=1

∫
Zn

|g|p−1 dμ (3.26)

=
j∑
n=1

∫
Zn

|g|p−1 dμ+
∞∑

n=j+1

∫
Zn

|g|p−1 dμ. (3.27)

Since |g|p−1 is bounded on Zn for n ≤ j , then
∑j

n=1
∫
Zn

|g|p−1 dμ < ∞. For each
n ∈ IN, let mn = max{kn, γn}. If mn = kn, let Vn = X′

n and Wn = Y ′
n. Otherwise, let

Vn = Y ′
n and Wn = X′

n. Thus, for n > j ,∫
Vn

|f | dμ ≤
∫
Vn

(mn) dμ (3.28)

= (mn)μ(Vn) (3.29)

= (mn)μ(Vn)

(γj )μ(Wn)
(γj )μ(Wn) (3.30)

≤ (mn)μ(Vn)

(γj )μ(Wn)

∫
Wn

|f | dμ. (3.31)

This implies
μ(Wn)

mn
≤ μ(Vn)

γj
.

Thus,

∞∑
n=j+1

∫
Zn

|g|p−1 dμ =
∞∑

n=j+1

∫
Vn

|g|p−1 dμ+
∞∑

n=j+1

∫
Wn

|g|p−1 dμ

≤
∞∑

n=j+1

∫
Vn

(mn + 3ε)p−1 dμ+
∞∑

n=j+1

∫
Wn

(mn + 3ε)p−1 dμ

≤
∞∑

n=j+1

∫
Vn

(mn + 3ε)p−1 dμ+
∞∑

n=j+1

∫
Vn

(mn + 3ε)p
1
γj
dμ

=
∞∑

n=j+1

∫
Vn

(mn − 1)p−1 (mn + 3ε)p−1

(mn − 1)p−1 dμ
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+ 1
γj

∞∑
n=j+1

∫
Vn

(mn − 1)p
(mn + 3ε)p

(mn − 1)p
dμ

≤ 2p−1
∞∑

n=j+1

∫
Vn

(mn − 1)p−1 dμ+ 2p

γj

∞∑
n=j+1

∫
Vn

(mn − 1)p dμ

≤ 2p−1
∞∑

n=j+1

∫
Vn

|f |p−1 dμ+ 2p

γj

∞∑
n=j+1

∫
Vn

|f |p dμ

≤ 2p−1‖f ‖p−1
p−1 + 2p

γj
‖f ‖pp < ∞.

This completes the proof that g ∈ Lp−1(X).

4. Non-existence of Lq -coboundaries
In [30], Kornfeld shows that given T ∈ E, which is a homeomorphism on a compact space
X, there exists a continuous and bounded coboundary f such that its associated transfer
function is measurable, but not integrable. Also, it is pointed out that given T, f may be
constructed such that the transfer function g is in Lp for specified p ≥ 1, but not contained
in Lq for q > p. However, if the function f ∈ Lp0 is specified first, Kornfeld conjectured
that there always exist an ergodic invertible measure-preserving transformation T and
g ∈ Lp such that f = g − g ◦ T almost everywhere. (Kornfeld conveyed this conjecture
to the second author verbally or through email.) In this section, we disprove this conjecture.
Furthermore, we prove a strong non-existence result showing that for generic f ∈ Lp0 , there
are no T ∈ E and g ∈ Lq for q > p − 1 such that f = g − g ◦ T almost everywhere. This
is the statement of Theorem 1.2, and shows that genericLp0 functions lead to ‘wild’ transfer
functions (as termed in [30]), universally for all T ∈ E. Remark 2 in [32] provides an
argument for the existence of Lp0 functions f for p ≥ 2 which are not coboundaries for any
ergodic measure-preserving transformation T with transfer function g ∈ Lp. The argument
in [32] can be extended to show there are functions f ∈ Lp0 which are not coboundaries
for any ergodic measure-preserving transformation T with transfer function g ∈ Lq for
q > p − 1. This is proved in the following section. Then, in §4.2, we show this situation
is generic for f ∈ Lp0 .

4.1. Extension of the Kwapień argument for the non-existence of Lq -coboundaries. The
following proposition establishes the existence of Lp functions f with no transfer function
in Lq for q > p − 1. The argument is due to Kwapień [32].

PROPOSITION 4.1. (Remark 2 in [32]) Given p ∈ IR such that p ≥ 2, there exists f ∈ Lp
such that for any solution pair T and g to the equation f = g − g ◦ T , where T is an
ergodic invertible measure-preserving transformation, then g /∈ Lq for q > p − 1.

Proof. Let f ∈ Lp be such that
∫
f dμ = 0, f (x) ≥ −1 for a.e. x, and for r > p − 1,

lim sup
n→∞

(
n

∫
f>n

|f − n|r
)
dμ = ∞.
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We refer to this as the Kwapień condition. To obtain examples f that satisfy the Kwapień
condition, suppose p ≥ 2, r > p − 1, and let Nk ∈ IN be such that

∞∑
k=1

N
−(1+r−p)/2(r+1)
k <

1
2p+1 . (4.1)

Let

δ = 1 + r − p

2(r + 1)
.

By (4.1),

lim
k→∞ N

(1+r−p)/2
k = lim

k→∞ N
δ(r+1)
k = ∞.

Let Ek be disjoint sets for k ∈ IN such that μ(Ek) = 1/Np
k . Thus,

∞∑
k=1

N
−p(1+r−p)/2(r+1)
k < 1/2p+1.

Define f+ such that

f+ =
∞∑
k=1

2N1−δ
k IEk .

We have shown that
∫
f+ dμ < 1/2. Let E0 be a subset disjoint from

⋃∞
k=1 Ek such that

μ(E0) = ∫
f+ dμ. Define f = f+ − IE0 . Thus,

∫
f dμ = 0 and ‖f ‖p < ∞.

Let Lk = nk
∫
f>nk

(f − nk)
r dμ, where nk = N1−δ

k . This nk is not a whole number

probably, but we are going to ignore that. Then Lk ≥ N1−δ
k

∫
Ek
(N1−δ

ko
)r dμ. We get

Lk ≥ N
(r+1)(1−δ)
k /N

p
ko

= N
(1+r+p)/2
k /N

p
k = N

(r+1−p)/2
k .

Since limk→∞ Lk = ∞ and f satisfies the Kwapień condition.
Now we prove that f is not a coboundary with a transfer function in Lr for any r >

p − 1. Since f ≥ −1 almost everywhere, then for a.e. x,∣∣∣∣
n∑
i=0

f (T ix)

∣∣∣∣ ≥
n∑
i=0

(f (T ix)− n)I{f (T ix) > n}.

Each term in the sum on the right-hand side of the inequality is non-negative and therefore,

∥∥∥∥
n∑
i=0

f (T ix)

∥∥∥∥
r

r

≥
n∑
i=0

∫
f ◦T i>n

(f (T ix)− n)r dμ (4.2)

= (n+ 1)
∫
f>n

(f − n)r dμ. (4.3)

Therefore,
∑n
i=0 f (T

ix) = g(x)− g(T n+1x) is unbounded in Lr .
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4.2. Genericity of the strong non-existence result. A principal obstacle to solving the
coboundary equation is imbalance between the positive and negative parts of a typical
function f ∈ Lp0 . Suppose ai ∈ IR for i ∈ IN is an increasing sequence of real numbers
such that limi→∞ ai = ∞, and for all real α > 0,

lim
i→∞

ai

aαi+1
= 0. (4.4)

An example of ai satisfying (4.4) is

ai = 2i
i

.

Given f ∈ Lp and i ∈ IN, let

ui(f ) = {x ∈ X : f (x) < −ai} and vi(f ) = {x ∈ X : f (x) > ai}.
We are ready to define our generic class of Lp0 functions. Given n ∈ IN, define

Gpn =
{
f ∈ Lp0 : there exists i > n | μ(vi(f )) > 1

a
p
i i

2
and μ(ui−1(f )) <

1
a
p

i+1i
2

}
.

Below we prove that Gpn is both open and dense, and f ∈ ⋂∞
n=1 G

p
n satisfies the required

property. The key property of the sequence an is the fast growth rate. The following lemma
will be used to guarantee that coboundaries f ∈ ⋂∞

n=1 G
p
n do not have transfer functions

in Lq for q > p − 1.

LEMMA 4.2. For any α > 0,

lim
n→∞

aαn+1

ann2 = ∞.

Proof. Let α > 0. Define β = min {α/2, 1/2}. By condition (4.4), for sufficiently large n,
a
β

n+1 > 2an > 2aβn . Thus, aβn+k > 2k for sufficiently large n and k ∈ IN. Hence,

lim
n→∞

a
α/2
n+1

n2 = ∞.

Therefore,

lim
n→∞

aαn+1

n2an
= lim
n→∞

(
a
α/2
n+1

n2

)(
a
α/2
n+1

an

)
= ∞.

Now we prove that Gpn is dense in Lp for each p ≥ 1 and n ∈ IN.

LEMMA 4.3. For each n ∈ IN, the set Gpn is dense in Lp0 .

Proof. Let f ∈ Lp0 , ε > 0, and n ∈ IN. Since bounded measurable functions are dense in
L
p

0 , we can choose a bounded mean zero f0 ∈ Lp such that

‖f − f0‖p < ε

3
.
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Choose i1 ≥ n such that ai1 > ‖f0‖∞ and

4 · 21/p

i
2/p
1

<
ε

3
.

Choose a subset Y ⊂ X such that

μ(Y ) = 2
a
p
i1
i21

+ 4

ai1−1a
p−1
i1

i21

and
∫
Y
f0 dμ = 0. To see that Y exists, note that our measure space (X, μ) is isomorphic to

the unit circle S1 with normalized Lebesgue measure. Let μ0 = 2/api1 i
2
1 + 4/ai1−1a

p−1
i1

i21 .
By Fubini’s theorem,

∫ 1

0

( ∫ μ0

0
f0(e

2πi(t+x)) dt
)
dx =

∫ μ0

0

( ∫ 1

0
f0(e

2πi(t+x)) dx
)
dt = 0.

Thus, by a change of variable and the intermediate value theorem applied to the continuous
function x �→ ∫ x+μ0

x
f0(e

2πit ) dt , there exists x0 ∈ [0, 1] such that

∫ x0+μ0

x0

f0(e
2πit ) dt =

∫ μ0

0
f0(e

2πi(t+x0)) dt = 0.

Since a set Y with measure μ0 exists in this case, by using a measure-space isomorphism,
it exists for a general Lebesgue space.

Let V ⊂ Y be such that μ(V ) = 2(api1 i
2
1)

−1 and define U = Y \ V . Define f1 as a
modification of f0 in the following manner:

f1(x) =

⎧⎪⎪⎨
⎪⎪⎩

2ai1 if x ∈ V ,

−ai1−1 if x ∈ U ,

f0(x) if x ∈ X \ Y .

Thus,

‖f − f1‖p ≤ ‖f − f0‖p + ‖f0 − f1‖p
<
ε

3
+ 3ai1μ(V )

1/p + 2ai1−1μ(U)
1/p

≤ ε

3
+ 3 · 21/p

i
2/p
1

+ 2 · 41/p

i
2/p
1

< ε.

Also, f1 ∈ Gpn , which completes the proof.

LEMMA 4.4. For each n ∈ IN, the set Gpn is open in Lp0 .

https://doi.org/10.1017/etds.2022.29 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2022.29


Coboundary existence 2155

Proof. Suppose f ∈ Gpn . Then there exists i ≥ n such that

μi = μ(vi(f )) >
1
a
p
i i

2
,

νi = μ(ui−1(f )) <
1

a
p

i+1i
2

.

Thus, by right continuity of f > t , there exist a′ > ai and a′′ > ai−1, and μ′, ν′ such that

μ({x : f (x) > a′}) > μ′ > 1
a
p
i i

2
,

μ({x : f (x) < −a′′}) < ν′ < 1
a
p

i+1i
2

.

Define ε > 0 as

ε = min
{(
μ′ − 1

a
p
i i

2

)1/p

(a′ − ai),
(

1
a
p

i+1i
2

− ν′
)1/p

(a′′ − ai−1)

}
.

It is not difficult to see that the ε-ball centered at f ∈ Lp0 is contained in Gpn .

Let

Gp =
∞⋂
n=1

Gpn .

Note, for f ∈ Gpn , also f ◦ T ∈ Gpn for any T measure preserving. The same principle
applies to Gp; f ∈ Gp implies f ◦ T ∈ Gp.

We have the following core result of this paper.

PROPOSITION 4.5. Suppose f ∈ Gp, T ∈ E, and g is a measurable function. If the
coboundary equation f = g − g ◦ T is satisfied almost everywhere, then g /∈ Lq for
q > p − 1.

Prior to proving Proposition 4.5, we prove the following basic lemma used in the
proposition.

LEMMA 4.6. Let T be an ergodic invertible measure-preserving transformation on a
standard probability space (X, B, μ). Suppose B ⊂ X is a set of positive measure and
K ∈ IN. Let � : B → IN be a measurable map such that �(x) ≤ K for x ∈ B. Define

B(x) = {T ix : 0 ≤ i < �(x)}.
There exists a measurable set J such that for x 	= y, x, y ∈ J ,

B(x) ∩ B(y) = ∅
and

μ

(
B ∩

⋃
x∈J

B(x)

)
>

1
2
μ(B).
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Proof. Choose H ∈ IN such that

K

H
<

1
4
μ(B).

Let B be a set of positive measure, and B, T B, T 2B, . . . , T H−1B a Rokhlin tower of
height H such that

μ

( H−1⋃
i=0

T iB

)
> 1 − K

H
.

Partition B into finitely many sets of positive measure such that B = ⋃H ′
j=0 Bj and for

each i, 0 ≤ i < H , either T iBj ⊂ B or T iBj ⊂ Bc. These are B-pure subcolumns (T iBj ,
0 ≤ i < H − 1). For each j, let ij be the minimum i such that T iBj ⊂ B. If there is
no minimum, we can discard that subcolumn. Partition T ij Bj into finitely many sets of
positive measure with equal values of �(x). Call these sets Bj ,�. Insert Bj ,� in J. Consider
T �Bj ,� and let ij ,� be the minimum i such that T �+iBj ,� ⊂ B. Then partition T �+ij ,�Bj ,�

into subsets with the same value �(x). Continue this process until each subcolumn is swept
out up to at least H −K levels of the Rokhlin tower. Each time, a disjoint set is inserted
into J. Since B is covered except for a subset of the top K levels, then

μ

(
B ∩

⋃
x∈J

B(x)

)
>

1
2
μ(B).

Proof of Proposition 4.5. Let p ≥ 1, f ∈ Gp and q > p − 1. Choose integer k > 1 such
that kq > p and N ∈ IN such that for n ≥ N ,

a
p

n+1

a
k+p
n

> 4.

Let sgn be the standard sign function defined as sgn(i) = −1 if i < 0, sgn(i) = 0 if i = 0,
and sgn(i) = 1 if i > 0. For i ∈ Z, let [i] = {j ∈ Z : i ≤ j < 0} if i < 0, and [i] = {j ∈
Z : 0 ≤ j < i} if i ≥ 0. Note, for i ∈ Z, the coboundary equation expands to the following:

g(T ix) = g(x)− sgn(i)
∑
j∈[i]

f (T jx).

Define our specialized sign function ρn : X → {−1, 1} based on the following:
(1) if g(x) ≤ an/2, let ρn(x) = 1;
(2) otherwise if g(x) > an/2, then let ρn(x) = −1.

For n ∈ IN, let cn = an/an−1. Let An = un−1(f ) and Bn = vn(f ). For x ∈ Bn, let

�x = min
{
� : �(cn)h� ≤ � < �(cn)h+1�, 1 ≤ h < k, |g(T ρn(x)�x)| < an

4
(cn)

h−1
}

,
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if the min exists, otherwise let �x = �(cn)k�. Given x ∈ X, define the set Ln(x) =
[ρn(x)�x]. Thus, for infinitely many n ≥ N ,

μ

( ckn⋃
j=−ckn

T j (An)

)
<

2akn
a
p

n+1n
2
<

1
2

1
a
p
n n

2
<

1
2
μ(Bn).

Let

B ′
n = Bn \

( ckn⋃
j=−ckn

T j (An)

)
.

Hence, μ(B ′
n) >

1
2μ(Bn) for n ≥ N . We break the proof down into four separate cases and

handle each separately.
(1) Bn,1 = {x ∈ B ′

n : g(x) < an/2, �x < �(cn)k�}.
(2) Bn,2 = {x ∈ B ′

n : g(x) < an/2, �x ≥ �(cn)k�}.
(3) Bn,3 = {x ∈ B ′

n : g(x) ≥ an/2, �x < �(cn)k�}.
(4) Bn,4 = {x ∈ B ′

n : g(x) ≥ an/2, �x ≥ �(cn)k�}.
At least one of the Bn,m satisfies μ(Bn,m) ≥ (1/8)μ(Bn) for m = 1, 2, 3, 4. We handle

the case μ(Bn,1) ≥ (1/8)μ(Bn) first. We create tiles in the following way. For x ∈ Bn,1,
let

Bn,1(x) = {T ix : i ∈ Ln(x)}.
By Lemma 4.6 with K = �(cn)k�, there exists J = Jn,1 such that for x 	= y, x, y ∈ J ,

Bn,1(x) ∩ Bn,1(y) = ∅
and

μ

(
Bn,1 ∩

⋃
x∈J

Bn,1(x)

)
>

1
2
μ(Bn,1).

The Lq -norm of the transfer function g will blow up on the set J. Before completing the
general proof, it is helpful to see how the argument goes in a special case. Suppose �x =
an/an−1 for x ∈ J . This implies for x ∈ J , T i(x) /∈ Bn of the order of an/an−1 times.
Also, for this special case, T i(x) cannot fall in Bn for 0 < i < �x . Note that T ix, 0 ≤
i < �x , does not fall in An by the previous choice of J. However, for x ∈ J , the transfer
function at T ix will be of the order of the sum, so that g(T ix) will be of the order of an
(or an/4). This implies ∫

X

|g(x)|q dμ ≈
(
an

4

)q(
an

an−1

)
μ(Bn) (4.5)

= 1
4q

a
q+1
n

an−1a
p
n n

2
(4.6)

= 1
4q
a
q+1−p
n

an−1n2 . (4.7)

However, the last term tends to infinity as n → ∞ by the definition of an and Lemma 4.2.
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General proof for case 1: First we prove the following lemma.

LEMMA 4.7. Let 1 ≤ h < k, given in the definition of �x , satisfy �(cn)h� ≤ �x <

�(cn)h+1�. If

�0 = #{i ∈ Ln(x) : T ix ∈ Bn},
then

�x >
1
2cn�0.

Proof of lemma. Suppose the lemma is not true. Then∣∣∣∣g(x)− sgn(ρn(x))
∑

i∈Ln(x)
f (T ix)

∣∣∣∣ ≥
( ∑
i∈Ln(x)

f (T ix)− g(x)

)
(4.8)

≥ �0an − (�x − �0)an−1 − an

2
(4.9)

= (
�0 − 1

2

)
an − �xan−1 + �0an−1 (4.10)

≥ �0

2
an − �xan−1 + �0an−1 (4.11)

≥ an−1�x + 2a2
n−1

an
�x (4.12)

≥ ahn

ah−1
n−1

+ 2
ah−1
n

ah−2
n−1

> an(cn)
h−1. (4.13)

This contradicts the definition of �x .

Resume proof of proposition: The measurable set J was constructed such that
truncated orbits of points in J are disjoint. In particular, for x, y ∈ J , x 	= y, then
{x, T x, . . . , T �x−1x} ∩ {y, Ty, . . . , T �y−1y} = ∅. Thus,∫

X

∣∣∣∣g(x)|q dμ ≥
∫
J

∑
i∈Ln(x)

∣∣∣∣g(T ix)|q dμ. (4.14)

Also, since x ∈ B ′
n, then f (x) > an. As noted previously, T ix /∈ An for 0 ≤ i < ckn. Thus,

by the definition of �x ,

|g(T ix)| ≥ an

4
for i ∈ Ln(x).

Hence, we have the following:∫
X

|g(x)|q dμ ≥
∫
J

∑
i∈Ln(x)

|g(T ix)|q dμ (4.15)

=
∫
J

∑
i∈Ln(x)

∣∣∣∣g(x)−
∑
j∈[i]

f (T jx)

∣∣∣∣
q

dμ (4.16)

≥
∫
J

∑
i∈Ln(x)

∣∣∣∣an4
∣∣∣∣
q

dμ (4.17)
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=
∣∣∣∣an4

∣∣∣∣
q ∫

J

�x dμ (4.18)

>

∣∣∣∣an4
∣∣∣∣
q ∫

J

1
2

(
an

an−1

) ∑
i∈Ln(x)

IBn(T
ix) dμ (4.19)

>

∣∣∣∣an4
∣∣∣∣
q 1

2

(
an

an−1

)(
1
2
μ(Bn,1)

)
(4.20)

>

(
1
32

)∣∣∣∣an4
∣∣∣∣
q(

an

an−1

)
μ(Bn) (4.21)

≥ a
q+1
n

32(4q)an−1a
p
n n

2
(4.22)

= a
q+1−p
n

32(4q)an−1n2 . (4.23)

The proof for this case is complete, since, by Lemma 4.2,

lim
n→∞

a
q+1−p
n

32(4q)an−1n2 = ∞.

Proof for case 2:∫
Bn

|g(x)|q dμ ≥
∫
J

∑
i∈Ln(x)

|g(T ix)|qIBn(T ix) dμ (4.24)

=
∫
J

∑
i∈Ln(x)

∣∣∣∣g(x)− sgn(x)
∑
j∈[−i]

f (T jx)

∣∣∣∣
q

IBn(T
ix) dμ (4.25)

≥
∫
J

ckn∑
i=ck−1

n

∣∣∣∣g(x)− sgn(x)
∑
j∈[−i]

f (T jx)

∣∣∣∣
q

IBn(T
−ix) dμ (4.26)

≥
ckn∑

i=ck−1
n

∫
J

((
an

4

)(
an

an−1

)k−1)q
IBn(T

ix) dμ (4.27)

≥
(
ckn − ck−1

n

ckn

)(
1
16

)
μ(Bn)

((
an

4

)(
an

an−1

)k−1)q
(4.28)

>

(
1

32

)(
a
kq
n

a
p
n n

24qaq(k−1)
n−1

)
(4.29)

=
(

1
32

)(
a
kq−p
n

n24qaq(k−1)
n−1

)
. (4.30)

Since

lim
n→∞

(
1

32

)(
a
kq−p
n

n24qaq(k−1)
n−1

)
= ∞,

then our result follows for case 2.
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Case 3 would be handled in a similar manner as case 1, except we would base our
estimate of g(x) on the inverse of T. Thus, we have the following:∫

X

|g(x)|q dμ ≥
∫
J

∑
i∈Ln(x)

|g(T ix)|q dμ (4.31)

=
∫
J

∑
i∈Ln(x)

∣∣∣∣g(x)+
∑
j∈[i]

f (T jx)

∣∣∣∣
q

dμ (4.32)

≥
∫
J

∑
i∈Ln(x)

∣∣∣∣an4
∣∣∣∣
q

dμ. (4.33)

The next steps continue in a similar manner as case 1. Also, case 4 follows in a similar
manner as case 2, except by using T −1 instead of T.

Proof of Theorem 1.2. Define

Gp =
∞⋂
n=1

Gpn .

By Lemmas 4.3 and 4.4, the set Gp is a dense Gδ subset of Lp0 . Also, by Proposition 4.5,
f ∈ Gp satisfies the conditions of Theorem 1.2.

4.3. Not a moment. Let φ : IR → IR be a measurable function such that

lim
x→∞ φ(x) = ∞.

For i ∈ IN, let A, Bi be disjoint sets in X, and bi > 0. Define f as

f = IA −
∞∑
i=1

biIBi .

We will give conditions on the fast growth rate of bi as well as conditions on the sets A, Bi
to guarantee that f is contained in L1, but such that φ ◦ |g| is not in L1 for any transfer
function g of an ergodic invertible measure-preserving transformation T. Let A ⊂ X have
measure μ(A) = 1/2. Choose bi > 0 for i ∈ IN such that limi→∞ bi = ∞, and such that
for all real α > 0,

lim
i→∞

bi

bαi+1
= 0, (4.34)

and also for y ≥ bi/4,

φ(y)

2i
≥ i. (4.35)

It is possible to satisfy condition (4.35) by taking a faster growing subsequence for bi .
Choose disjoint sets Bi ⊂ Ac such that

μ(Bi) = 1
bi2i+1 . (4.36)

Observe that f ∈ L1 is mean zero.
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PROPOSITION 4.8. Let φ : IR → IR be a measurable function satisfying limx→∞ φ(x) =
∞. Suppose the mean-zero function f = IA − ∑∞

i=1 biIBi satisfies the conditions above,
including (4.34), (4.35), and (4.36). If T is an ergodic invertible measure-preserving
transformation T : X → X and g is a transfer function satisfying f (x) = g(T x)− g(x)

for a.e. x ∈ X, then ∫
X

φ(|g|) dμ = ∞.

Proof. Let sgn be the standard sign function defined as sgn(i) = −1 if i < 0, sgn(i) = 0
if i = 0, and sgn(i) = 1 if i > 0. For i ∈ Z, let [i] = {j ∈ Z : i ≤ j < 0} if i < 0, and
[i] = {j ∈ Z : 0 ≤ j < i} if i ≥ 0. Note, for i ∈ Z, the coboundary equation expands to
the following:

g(T ix) = g(x)+ sgn(i)
∑
j∈[i]

f (T jx).

Define our specialized sign function ρ : X → {−1, 1} based on the following:
(1) if g(x) ≤ bn/2, let ρ(x) = 1;
(2) otherwise if g(x) > bn/2, then let ρ(x) = −1.

Assume f ∈ L1. For x ∈ Bn, let

�x = min
{
� : � > 0, |g(T ρ(x)�x)| < bn

4
(bn)

h−1, �(bn)h� ≤ � < �(bn)h+1�
}

.

Note, �x < ∞ for a.e. x ∈ X, otherwise our result follows directly. Thus, exclude points
x ∈ X where �x = ∞. Choose kn ∈ IN such that

μ({x ∈ Bn : �x < bkn+1
n }) > 1

2μ(Bn).

Given x ∈ X, define the set Kn(x) = [ 1
2ρ(x)�x]. We do not need to consider all of the

cases as in Proposition 4.5, due to the special nature of the counterexamples f in this
result. We create tiles in the following way. For x ∈ Bn, let

Bn(x) = {T ix : i ∈ Kn(x)}.
There exists Jn such that for x 	= y, x, y ∈ Jn,

Bn(x) ∩ Bn(y) = ∅
and

μ

(
Bn ∩

⋃
x∈Jn

Bn(x)

)
>

1
4
μ(Bn).

First we prove the following lemma.

LEMMA 4.9. Suppose �(bn)h� ≤ �x < �(bn)h+1� for 1 ≤ h < kn + 1. If

�0 = #{i ∈ [ρ(x)�x] : T ix ∈ Bn},
then

�x >
1
2bn�0.
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Proof of lemma. Suppose the lemma is not true. Then∣∣∣∣g(x)+ sgn(x)
∑

i∈[ρ(x)�x ]

f (T ix)

∣∣∣∣ ≥ �0bn − (�x − �0) = �0bn − �x + �0 (4.37)

≥ �x + 2
bn
�x (4.38)

≥ bhn + 2bh−1
n > bhn . (4.39)

This contradicts the definition of �x .

Resume proof of proposition: Thus, we have the following:∫
X

φ(|g(x)|) dμ ≥
∫
Jn

∑
i∈Kn(x)

φ(|g(T ix)|) dμ (4.40)

=
∫
Jn

∑
i∈Kn(x)

φ

(∣∣∣∣g(x)+
∑
j∈[i]

f (T jx)

∣∣∣∣
)
dμ (4.41)

≥
∫
Jn

n2n�x dμ (4.42)

> n2n
∫
Jn

1
2
(bn)

∑
i∈Kn(x)

IBn(T
ix) dμ (4.43)

> n2n 1
2 (bn)(

1
4μ(Bn)) (4.44)

> ( 1
8 )n2n(bn)μ(Bn) (4.45)

= n2n

8(2n+1)
→ ∞ as n → ∞. (4.46)

5. Category of transformation solutions
This section contains two propositions. The first proposition gives a general condition for
the existence of solutions to the coboundary equation when f is not integrable. The second
proposition shows the class of transformations with a measurable solution is meager for
any measurable function f.

PROPOSITION 5.1. Suppose f : X → IR is a measurable function. The coboundary
equation f = g − g ◦ T has solutions T ∈ E, g ∈ L0, if and only if,∫

f>0
f dμ =

∫
f<0

(−f ) dμ (∞ or finite).

Proof. The case where both
∫
f>0 f dμ and

∫
f<0(−f ) dμ are finite and unequal is

already covered by Anosov’s result [4]. If the integrals are finite and equal, it follows from
Theorem 1.1.

Next, we prove the case where one integral is finite and the other is infinite. Without
loss of generality, assume

∫
f>0 f dμ = ∞ and

∫
f<0(−f ) dμ < ∞. Choose a measurable
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subset A ⊂ {f > 0} such that ∫
A

f dμ+
∫
f<0

f dμ = 1.

Let

f0(x) =
{
f (x) if x ∈ A ∪ {f < 0},
0 if x ∈ {f > 0} \ A.

Thus, f0 ∈ L1 and
∫
X
f0 dμ = 1. Given T ∈ E, by the mean ergodic theorem,

lim
n→∞

∫
X

∣∣∣∣1
n

n−1∑
i=0

f0(T
ix)−

∫
X

f0 dμ

∣∣∣∣ dμ = 0.

Let δ > 0. Then μ{x ∈ X : |1/n∑n−1
i=0 f0(T

ix)− 1| < δ} → 1 as n → ∞. Hence,

lim
n→∞ μ

{
x ∈ X :

n−1∑
i=0

f0(T
ix) > n(1 − δ)

}
= 1.

Since
∑n−1
i=0 f (T

ix) ≥ ∑n−1
i=0 f0(T

ix) for a.e. x ∈ X, then

lim
n→∞ μ

{
x ∈ X :

n−1∑
i=0

f (T ix) > n(1 − δ)

}
= 1.

Since the Halász–Schmidt condition (2.1) does not hold, there is no measurable solution g.
The final case to prove is where

∫
f>0 f dμ = ∫

f<0(−f ) dμ = ∞. It is proved using
a construction similar to the one used in Theorem 1.1. Choose disjoint measurable sets
Xn ⊂ X for n ∈ IN such that f is bounded on Xn,

∫
Xn
f dμ = 0, and

μ

( ∞⋃
i=0

Xi

)
= 1.

Let εn,i > 0 for n, i ∈ IN be such that
∑∞
n=1

∑∞
i=1 εn,i < ∞. By Lemma 3.5, for each

n ∈ IN, there exist invertible measure-preserving Tn, disjoint In,i ⊂ Xn, and hn,i ∈ IN, such
that:
• Xn = ⋃∞

i=1
⋃hn,i−1
j=0 T

j
n In,i is a disjoint union;

• | ∑hn,i−1
j=0 f (T

j
n x)| < εn,i ;

• | ∑hn,i−1
j=0 f (T

j
n x)| < ‖f ‖∞ + εn,i .

Note each Tn is defined on Xn except for the top levels of each tower. Let T be the join of
all Tn:

T x = Tnx for x ∈ Xn \
( ∞⋃
i=1

T
hn,i−1
n In,i

)
.
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Define the set A ⊂ X as

A =
∞⋃
n=1

∞⋃
i=1

In,i .

Define fA(x) = ∑hn,i−1
j=0 f (T jx) for x ∈ In,i . Note that fA is mean zero, since

∫
A

fA dμ =
∞∑
n=1

∞∑
i=1

∫
In,i

hn,i−1∑
j=0

f (T jx) dμ =
∞∑
n=1

∫
Xn

f dμ = 0. (5.1)

Since fA is bounded and mean zero, by Proposition 3.6, there exist τ : A → A and gA
such that fA = gA ◦ τ − gA almost everywhere. There exists a unique extension of T :
X → X (up to a set of measure zero) such that the induced transformation TA = τ almost
everywhere. By Lemma 3.2,

f (x) = g(T x)− g(x) for a.e. x ∈ X.

Also, the explicit transfer function g, defined by Lemma 3.2, is measurable, since gA is
measurable.

Now we are ready to prove the class of transformations with a measurable solution is a
first category set (meager).

PROPOSITION 5.2. Let f be a measurable function such that μ({x : f (x) 	= 0}) > 0. Let
T be the set of ergodic invertible measure-preserving transformations T such that f =
g − g ◦ T has a measurable solution g. The set T is a set of first category (meager).

Proof. Let η ∈ IR such that 0 < η < 1/10. For each n ∈ IN, define

Dn =
{
T ∈ E : there exists k > n such that μ

({
x :

∣∣∣∣
k−1∑
i=0

f (T ix)

∣∣∣∣ > n

})
> η

}
.

For each n ∈ IN, the set Dn is both open and dense. Establishing open-ness is straightfor-
ward. Let T ∈ Dn. There exists δ0 > 0 such that

μ

({
x :

∣∣∣∣
k−1∑
i=0

f (T ix)

∣∣∣∣ > n+ δ0

})
> η.

Thus, if η0 = μ({x : | ∑k−1
i=0 f (T

ix)| > n+ δ0}), then{
S ∈ E :

∫
X

|f ◦ Si − f ◦ T i | dμ < δ0(η0 − η)

k

}

is an open neighborhood containing T and contained in Dn.
To establish that Dn is dense, it can be accomplished by an application of the ergodic

theorem. Let S ∈ E and ε ∈ IR be such that 1/20 > ε > 0. If S ∈ Dn, then we set T = S.
Otherwise, assume S /∈ Dn. Choose α > 0 such that the set A = {x ∈ X : f (x) > α} has
positive measure. Similarly, choose β > 0 such that the set B = {x ∈ X : f (x) < −β} has
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positive measure. Let γ ∈ IN be such that

γ ≥ max
{

2n
α

,
2n
β

}
.

Choose �0 > n such that for � ≥ �0,

μ

({
x ∈ X :

�−1∑
i=0

IA(S
ix) > γ

})
> 1 − ε

and

μ

(
{x ∈ X :

�−1∑
i=0

IB(S
ix) > γ }

)
> 1 − ε.

Choose h > �0 such that

�0

h
<
ε

4
.

There is a Rohklin tower of height 4h with base I such that

μ

( 4h−1⋃
i=0

SiI

)
> 1 − ε

4h
.

There exist disjoint sets I1, I2 ⊂ I such that for each x ∈ I1 and y ∈ I2, there exist
j (x), j (y) such that h ≤ j (x) < 2h, h ≤ j (y) < 2h, and

�0−1∑
i=0

IA(S
i+j (x)x) > γ

and
�0−1∑
i=0

IB(S
i+j (y)y) > γ .

By the choice of ε < 1/20, then I1, I2 may be chosen such that

μ(I1) = μ(I2) >
1
4μ(I).

For each x ∈ I1, let i1(x), i2(x), . . . iγ (x), be increasing such that

Sij (x)(x) ∈ A
and similarly, for each y ∈ I2, let i1(y), i2(y), . . . iγ (y), be such that

Sij (y)(y) ∈ B
and h ≤ ij (x) < 2h− 1, iγ (x) < i1(x)+ �0, and h ≤ ij (y) < 2h− 1, iγ (y) < i1(y)+
�0. Let φ : I1 → I2 be an invertible measure-preserving map. The transformation T will
be defined in the following manner: for x ∈ I1, let y = φ(x) ∈ I2,

T ij (x)(x) = Sij (y)(y)
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and

T ij (y)(y) = Sij (x)(x).

Otherwise, define T to be identical to S everywhere else on X. Consider

3h−1∑
i=0

f (T ix)

for x ∈ ⋃h−1
i=0 T

i(I1 ∪ I2). Note for such x,∣∣∣∣
3h−1∑
i=0

f (T ix)−
3h−1∑
i=0

f (Six)

∣∣∣∣ > 2n.

Since

μ

( h−1⋃
i=0

T i(I1 ∪ I2)

)
>

1
5

,

then

μ

({
x ∈ X :

∣∣∣∣
3h−1∑
i=0

f (T ix)

∣∣∣∣ > n

})
> η.

This implies T ∈ Dn and ‖T − S‖ < ε. Thus, T = ⋂∞
n=1 Dn is a dense Gδ set. If T ∈ T,

then the Halász–Schmidt condition (2.1) for a measurable transfer function does not hold,
and our result follows.

Acknowledgments. We thank Cesar Silva for feedback on this paper, and in particular for
pointing out applications of coboundaries to invariant σ -finite measures of non-singular
transformations. Also, we thank El Houcein El Abdalaoui and Matthijs Borst for providing
feedback on a previous version. Finally, we thank the referees for providing changes which
improved the exposition of this paper.

A. Appendix. Coboundary existence for bounded measurable functions
In this section, we prove Proposition 3.6 which is our main tool used in §3. Also, we prove
Lemma A.2 which is used in §3 as well.

A.1. Balanced partitions. Let A be a measurable subset of X and f : A → IR in
L1(A, μA). Let ε > 0. We say a finite partition � of A is ε-balanced and uniform, if there
exists E ∈ � such that:
(1) μ(E) < εμ(A);
(2)

∫
A\E f dμ = μ(A \ E)/μ(A) ∫

A
f dμ;

(3) |f (x)− f (y)| < ε for x, y ∈ a and a ∈ � \ {E};
(4) μ(c) = μ(d) for c, d ∈ � \ {E}.

We refer to this type of partition as a PUB(ε) partition for f|A. The set E is referred to
as the exceptional set of the PUB.
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LEMMA A.1. Suppose A ⊂ X is measurable and f : A → IR is integrable with mean
zero and takes on essentially infinitely many values. Given ε > 0, there exists a
PUB(ε) partition such that f takes on essentially infinitely many values on both its
exceptional set E and its complement A \ E.

Proof. Without loss of generality, it is sufficient to prove the lemma where 0 < ‖f ‖∞ < 1
and ε < 1. Let N ∈ IN. Choose m ∈ IN such that

2
m
< ε. (A.1)

For i = 0, 1, 2, . . . , 2m− 1, let

Ai =
{
x ∈ A : −1 + i

m
≤ f (x) < −1 + i + 1

m

}
. (A.2)

Let α = min {μ(Ai) : μ(Ai) > 0}. There exists i0 such that f takes on infinitely many
values on Ai0 . By the definition of Ai0 , there exist disjoint subsets E0 and E1 of Ai0 with
equal measure and such that

1
μ(E0)

∫
E0

f dμ <
1

μ(Ai0)

∫
Ai0

f dμ, (A.3)

1
μ(E1)

∫
E1

f dμ >
1

μ(Ai0)

∫
Ai0

f dμ, (A.4)

and f takes on infinitely many values on the set Ai0 \ (E0 ∪ E1) and on the set E0 ∪ E1.
Let

d = min
{∣∣∣∣ 1
μ(Ei)

∫
Ei

f dμ− 1
μ(Ai0)

∫
Ai0

f dμ

∣∣∣∣ : i = 0, 1
}

.

By simultaneous Diophantine approximation [9, p. 14, Theorem VII], there exist q ∈ IN
and pi ∈ IN such that

q > max
{

2N
(1 − ε)μ(A)

,
2μ(A)
dμ(E1)

}
, (A.5)

and for i = 0, 1, . . . , 2m− 1,

|qμ(Ai)− pi | < q−1/2m, (A.6)

2mq−1/2m < ε, (A.7)

2mq−1/2m < d

(
2α
3

− q−1/2m
)

. (A.8)

Let n = q + 1. Thus,∣∣∣∣μ(Ai)−
(
pi

n
+ μ(Ai)

n

)∣∣∣∣ < n−1q−1/2m. (A.9)
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For i = 0, 1, . . . , 2m− 1, we can choose subsets Bi ⊂ Ai such that

μ(Bi) = μ(Ai)− pi

n
, (A.10)

1
μ(Bi)

∫
Bi

f dμ = 1
μ(Ai)

∫
Ai

f dμ. (A.11)

Thus,∣∣∣∣
2m−1∑
i=0

∫
Bi

f dμ

∣∣∣∣ =
∣∣∣∣

2m−1∑
i=0

μ(Bi)

μ(Ai)

∫
Ai

f dμ

∣∣∣∣ =
∣∣∣∣

2m−1∑
i=0

(
μ(Bi)

μ(Ai)
− 1
n

) ∫
Ai

f dμ

∣∣∣∣
(A.12)

≤
2m−1∑
i=0

∣∣∣∣μ(Bi)− μ(Ai)

n

∣∣∣∣ =
2m−1∑
i=0

∣∣∣∣μ(Ai)− pi + μ(Ai)

n

∣∣∣∣ (A.13)

< 2mn−1q−1/2m <
d

n

(
2α
3

− q−1/2m
)

. (A.14)

This implies we can choose Bi such that

2m−1∑
i=0

∫
Bi

f dμ = 0. (A.15)

Let E = ⋃2m−1
i=0 Bi and partition each set Ai \ Bi into pi subsets of measure 1/n to form

�. Therefore, μ(E) < εμ(A) and our lemma is proven.

A.2. Balanced uniform towers. Let A be a measurable subset of X and f : A → IR
a bounded, mean-zero function. Given finite measurable partition Q, h ∈ IN and ε > 0,
an ε-balanced and uniform tower for f is a set of disjoint measurable sets Ii ⊂ A

for i = 1, 2, . . . , h and an invertible measure-preserving map T : Ii → Ii+1 for i =
1, 2, . . . , h− 1, such that:

μ

( h⋃
i=1

Ii

)
> μ(A)− ε, (A.16)

|f (x)− f (y)| < ε for x, y ∈ Ii , 1 ≤ i < h, (A.17)
∣∣∣∣

k∑
i=0

f (T ix)

∣∣∣∣ < ‖f ‖∞ + ε for x ∈ I1, k < h, (A.18)

h∑
i=1

∫
Ii

f dμ =
∫
A

f dμ = 0, (A.19)

∣∣∣∣
h−1∑
i=0

f (T ix)

∣∣∣∣ < ε for x ∈ I1, (A.20)

for each q ∈ Q, there exists I ⊂ {1, . . . , h} such that μ
(
q�

( ⋃
i∈I

Ii

))
< ε. (A.21)

https://doi.org/10.1017/etds.2022.29 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2022.29


Coboundary existence 2169

We refer to this type of tower as a TUB (ε, h, Q) tower for f|A.

LEMMA A.2. Let (X, B, μ) be a standard probability space and A a measurable subset
of X. Suppose f : A → IR, f ∈ L∞

0 , takes on essentially infinitely many values. Given
N ∈ IN, ε > 0 and finite measurable partition Q, there exists h > N such that f has a TUB
(ε, h, Q) tower.

Proof. From the construction of PUB(ε/3) in the previous lemma, partitionAi \ Bi into
a disjoint union of sets Ai(j) for j = 1, 2, . . . , pi , such that

μ(Ai(j)) = 1
n

. (A.22)

A.2.1. Greedy stacking. Now we give an inductive procedure for stacking the setsAi(j).
Choose arbitrary Ai(j) and label the set I1. Given I1, I2, . . . , Ik−1, let

σk−1 =
k−1∑
i=1

∫
Ii

f dμ. (A.23)

If k = h, then we are done. If σk−1 ≤ 0, choose

Ik = Ai(j) 	⊂
k−1⋃
i=1

Ii

such that
∫
Ik
f dμ ≥ 0. This is possible, since k < h and σh = ∑2m−1

i=0
∫
Ai\Bi f dμ = 0.

Otherwise, if σk > 0, then by the construction of Ai(j), there exists Ik 	⊂ ⋃k−1
i=1 Ii such

that
∫
Ik
f dμ < 0. This procedure produces a sequence of sets Ii for i = 1, 2, . . . , h with

the property:

h∑
i=1

∫
Ii

f dμ =
2m−1∑
i=0

∫
Ai\Bi

f dμ (A.24)

=
2m−1∑
i=0

∫
Bi

f dμ = 0. (A.25)

A.2.2. Level refinement. Our transformation τ will map Ii onto Ii+1 for i =
1, 2, . . . , h− 1. Choose k such that k > 3h/ε. Partition the range such that for
� = −k, −k + 1, . . . , −1, 0, 1, . . . , k − 1,

Bi,� =
{
x ∈ Ii :

�

k
≤ f (x) <

�+ 1
k

}
.

Via a measure-space isomorphism, we can take X = [0, 1] (that is, an ordered
set). Let τ0 be any invertible measure-preserving map such that τ0 : Ii → Ii+1 for
i ∈ {1, 2, . . . , h− 1}. Define the quantized function fi(x) = �/k if x ∈ Bi,�. Define
an invertible measure-preserving map ψi : Ii → Ii such that fi ◦ ψi is non-decreasing
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for i ≥ 2. Let ψ1 be the identity map on I1. Define an invertible measure-preserving map
φ1 : I1 → I1 such that f1 ◦ φ1 is non-increasing. The map g2 = f1 ◦ φ1 + f2 ◦ ψ2 ◦ τ0 is a
step function on I1. Thus, there exists φ2 : I1 → I1 such that g2 ◦ φ2 is non-increasing. Let
g3 = g2 ◦ φ2 + f3 ◦ ψ3 ◦ τ 2

0 . Continue this process until we have defined gh. In particular,
by induction, gh−1 will be a step function on I1. Thus, we can define φh−1 : I1 → I1 such
that gh−1 ◦ φh−1 is non-increasing. Let gh = gh−1 ◦ φh−1 + fh ◦ ψh ◦ τh−1

0 . A formula
for gh is

gh =
h∑
�=1

f�ψ�τ
�−1
0 �h−1

j=�φj .

For 2 ≤ � ≤ h, define

τ� = ψ�τ
�−1
0 �h−1

j=�φj .

Let τ1 be the identity map. Each τ� is an invertible measure-preserving mapping from
I1 → I�. Define the final mapping τ as τ(x) = τ�+1 ◦ τ−1

� (x) for x ∈ I�. Because of the
greedy algorithm of sorting at each stage and re-ordering so that the next level has f�
monotonic in the opposite direction, then the quantized functions f� do not exhibit much
variation as points are iterated through the TUB under τ .

CLAIM A.3. For m ∈ IN, m < h and a.e. x, y ∈ I1,∣∣∣∣
m∑
�=1

f�(τ
�−1x)−

m∑
�=1

f�(τ
�−1y)

∣∣∣∣ < ε

3
,

that is, there does not exist disjoint subsets D1, D2 of I1 with equal positive measure such
that for x ∈ D1 and y ∈ D2,∣∣∣∣

m∑
�=1

f�(τ
�−1x)−

m∑
�=1

f�(τ
�−1y)

∣∣∣∣ ≥ ε

3
.

Proof. It is sufficient to prove that for m ∈ IN, m < h and a.e. x, y ∈ I1,( m∑
�=1

f�(τ
�−1x)−

m∑
�=1

f�(τ
�−1y)

)
<
ε

3
.

By applying the invertible measure-preserving isomorphism, φ−1
h−1φ

−1
h−2 . . . φ

−1
m , it is

sufficient to prove for m ∈ IN, m < h and a.e. x, y ∈ I1,( m∑
�=1

f�ψ�τ
�−1
0 �m−1

i=� φi(x)−
m∑
�=1

f�ψ�τ
�−1
0 �m−1

i=� φi(y)
)
<
ε

3
.

We can prove the claim inductively on m. Clearly, it is true for m = 1 (by applying the
PUB condition on I1). Suppose it is true for m < h. Let x0 and y0 be distinct points in I1.
Let x1 = φm(x0) and y1 = φm(y0). Consider first the case:

0 <
m∑
�=1

f�ψ�τ
�−1
0 �m−1

i=� φi(x1)−
m∑
�=1

f�ψ�τ
�−1
0 �m−1

i=� φi(y1) <
ε

3
.
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By the construction of φm, x0 < y0. This is because the following function is
non-increasing in x:

m∑
�=1

f�ψ�τ
�−1
0 �mi=�φi(x).

Since the function

fm+1ψm+1τ
m
0 (x)

is non-decreasing in x, then

fm+1ψm+1τ
m
0 (x0) ≤ fm+1ψm+1τ

m
0 (y0).

By combining terms,

m+1∑
�=1

f�ψ�τ
�−1
0 �mi=�φi(x0)−

m+1∑
�=1

f�ψ�τ
�−1
0 �mi=�φi(y0) <

ε

3
.

The case where

0 <
m∑
�=1

f�ψ�τ
�−1
0 �m−1

i=� φi(y1)−
m∑
�=1

f�ψ�τ
�−1
0 �m−1

i=� φi(x1) <
ε

3

may be handled in a similar fashion. This completes the proof of the claim.
Now we complete the proof of the lemma. The function f was quantized to f� in such a

way that for x ∈ I1 and m ∈ {1, 2, . . . , h},
∣∣∣∣
m∑
�=1

f (τ�−1x)−
m∑
�=1

f�(τ
�−1x)

∣∣∣∣ ≤
m∑
�=1

|f (τ�−1x)− f�(τ
�−1x)| (A.26)

< h

(
ε

3h

)
= ε

3
. (A.27)

Hence,

∣∣∣∣
m∑
�=1

f (τ�−1x)−
m∑
�=1

f (τ�−1y)

∣∣∣∣ ≤
∣∣∣∣
m∑
�=1

f (τ�−1x)−
m∑
�=1

f�(τ
�−1x)

∣∣∣∣ (A.28)

+
∣∣∣∣
m∑
�=1

f�(τ
�−1x)−

m∑
�=1

f�(τ
�−1y)

∣∣∣∣ (A.29)

+
∣∣∣∣
m∑
�=1

f�(τ
�−1y)−

m∑
�=1

f�(τ
�−1y)

∣∣∣∣ (A.30)

<
ε

3
+ ε

3
+ ε

3
= ε. (A.31)

Therefore, this proves (A.20) of our lemma. Claim (A.18) follows in a similar manner.
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Proof of Proposition 3.6. If f = ∑m
i=1 ai1Ai is a finite step function, a solution is given

in [2]. The transfer function g is bounded, since, by [33],

g(x) = lim
n→∞

1
n

n∑
k=1

k−1∑
i=0

f (T ix) ≤
m∑
i=1

|ai |.

Otherwise, f takes on essentially infinitely many values. Let δi > 0 be such that
∑∞
i=1 δi <

∞ andQi for i ∈ IN a refining sequence of partitions which generate the sigma algebra B.
Let ε1 = δ1. Use Lemma A.2 to construct a TUB (ε1, h1, Q1) tower with decomposition
into sets A1, B1, and measure-preserving map T1. Also, assume A1 is made of levels I1,i

for 1 ≤ i ≤ h1. Let S1 = T1. Define f1 : B1 ∪ I1,1 → IR by

f1(x) =

⎧⎪⎪⎨
⎪⎪⎩
h1−1∑
i=0

f (Si1x) if x ∈ I1,1,

f (x) if x ∈ B1.

Let ε2 = δ2μ(I1,1). Since
∫
B1∪I1,1

f1 dμ = 0, then we can apply Lemma A.2 to f1 to

obtain a TUB (ε2, h2, Q2) tower and decompose B1 ∪ I1,1 into A2 = ⋃h2
i=1 I2,i and B2

such that there exists measure-preserving T2 : I2,i → I2,i+1 for i = 1, . . . , h2 − 1. Define
S2 as

S2(x) =

⎧⎪⎪⎨
⎪⎪⎩
S1(x) if x ∈ Si1I2,j ⊂ Si1I1,1, for 0 ≤ i ≤ h1 − 1 and 1 ≤ j ≤ h2,

T2(S
1−h1
1 (x)) if x ∈ Sh1−1

1 I2,j ⊂ S
h1−1
1 I1,1, for 1 ≤ j < h2,

T2(x) if x ∈ B1 ∩ A2 \ I2,h2 .

Suppose Tn and Sn have been defined. Proceed in a similar manner to define Sn+1. In
particular, for a.e. y ∈ X \ Bn, there exist a unique x ∈ In,1 and jy ≥ 0 such that y =
S
jy
n x. For a.e. x ∈ In,1, there exists a minimum kn,x ≥ 0 such that Skn,x

n x ∈ In,hn . Define
fn : Bn ∪ In,1 → IR such that

fn(x) =

⎧⎪⎪⎨
⎪⎪⎩
kn,x∑
i=0

f (Sinx) if x ∈ In,1,

f (x) if x ∈ Bn.

Let εn+1 = δn+1μ(In,1). Since
∫
Bn∪In,1

fn dμ = 0, then we can apply Lemma A.2 to
fn to obtain a TUB (εn+1, hn+1, Qn+1) tower and decompose Bn ∪ In,1 into An+1 =⋃hn+1
i=1 In+1,i and Bn+1 such that there exists measure-preserving Tn+1 : In+1,i → In+1,i+1

for i = 1, . . . , hn+1 − 1. Define Sn+1 as

Sn+1(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Sn(x) if x ∈ SinIn+1,j ⊂ SinIn,1,

for 0 ≤ i ≤ hn − 1 and 1 ≤ j ≤ hn+1,

Tn+1(S
1−hn
n (x)) if x ∈ Shn−1

n In+1,j ⊂ S
hn−1
n In,1, for 1 ≤ j < hn+1,

Tn+1(x) if x ∈ Bn ∩ An+1 \ In+1,hn+1 .
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Note that Sn+1(x) = Sn(x) except for x in a set of measure less than or equal to

βn = μ({Skn,x
n (ω) : ω ∈ In,1} ∪ {Skn+1,x

n+1 (ω) : ω ∈ In+1,1} ∪ Bn ∪ Bn+1).

Since
∑∞
n=1 βn < ∞, then S(x) = limn→∞ Sn(x) exists almost everywhere. In particular,

Sn(x) is eventually constant for a.e. x ∈ X. Thus, since each Sn is invertible and measure
preserving, then S is invertible and measure preserving. By a careful choice of Qi , S will
be ergodic.

B. Appendix. Universal moving averages
Below we prove that if f is a coboundary with an L1-transfer function g, then all moving
averages converge pointwise.

THEOREM B.1. Suppose T is an ergodic invertible measure-preserving transformation on
(X, B, μ). If f is a coboundary with integrable transfer function g, then for all strictly
increasing Ln ∈ IN, vn ∈ Z, and a.e. x ∈ X,

lim
n→∞

1
Ln

Ln∑
i=1

f (T vn+ix) = 0.

Proof. Suppose f (x) = g(x)− g(T x) for a.e. x ∈ X. Then

Ln∑
i=1

f (T vn+ix) = g(T vn+1x)− g(T vn+Ln+1x).

Since Ln ≥ n is strictly increasing, it is sufficient to show each of the following:
• for a.e. x, limn→∞ g(T vn+1x)/n = 0;
• for a.e. x, limn→∞ g(T vn+Ln+1x)/n = 0.
Here, we show the first term converges to zero. A similar argument will show the second
term converges.

For n, k ∈ IN, define

En,k = {x ∈ X : n− 1 ≤ |g(T vk+1x)| < n}.
Since g ∈ L1(μ), then

∞∑
n=1

(n− 1)μ(En,1) ≤
∫
X

|g(T v1+1x)| dμ < ∞.

There exists non-decreasing Kn ∈ IN such that limn→∞ n/Kn = 0 and
∞∑
n=1

Knμ(En,1) < ∞.

Define

E =
∞⋂
m=1

∞⋃
n=m

Kn⋃
k=1

En,k .
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First, since T is measure preserving, we have

μ(E) ≤
∞∑
n=m

Kn∑
k=1

μ(En,k) =
∞∑
n=m

Kn∑
k=1

μ(En,1)

=
∞∑
n=m

Knμ(En,1) → 0 as m → ∞.

Thus, μ(E) = 0. Second, we show for x /∈ E, we have almost everywhere convergence. If
x /∈ E, there exists m sufficiently large such that

x /∈
Kn⋃
k=1

En,k for n ≥ m.

Hence, if n > |g(T vk+1x)| ≥ n− 1, then k > Kn. Therefore,

|g(T vk+1x)|
k

<
n

Kn
→ 0 as n → ∞.

COROLLARY B.2. Suppose (X, B, μ) is a standard probability space and f ∈ L2
0(μ).

There exists an ergodic invertible measure-preserving transformation T on (X, B, μ) such
that all moving averages converge for f. In particular, for all strictly increasing Ln ∈ IN,
vn ∈ Z, and a.e. x ∈ X,

lim
n→∞

1
Ln

Ln∑
i=1

f (T vn+ix) = 0.

Proof. By Theorem 1.1, there exists a solution pair T and g ∈ L1(μ) such that f = g −
g ◦ T almost everywhere. Therefore, by Theorem B.1, all moving averages converge to
zero for f and T.
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