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Abstract

In this paper, we prove that the set of all F -pure thresholds on a fixed germ of a
strongly F -regular pair satisfies the ascending chain condition. As a corollary, we verify
the ascending chain condition for the set of all F -pure thresholds on smooth varieties
or, more generally, on varieties with tame quotient singularities, which is an affirmative
answer to a conjecture given by Blickle, Mustaţǎ and Smith.

1. Introduction

In characteristic zero, Shokurov [Sho92] conjectured that the set of all log canonical thresholds
on varieties of any fixed dimension satisfies the ascending chain condition. This conjecture was
partially solved by de Fernex et al. in [dFEM10] and [dFEM11] using generic limit, and finally
settled by Hacon et al. in [HMX14] using global geometry.

In this paper, we deal a positive characteristic analogue of this problem. Let (R,m) be a
Noetherian normal local ring of characteristic p > 0 and ∆ be an effective Q-Weil divisor on
SpecR. We further assume that R is F -finite, that is, the Frobenius morphism F : R −→ R is a
finite ring homomorphism. For a proper ideal a ( R and a real number t > 0, we consider the
test ideal τ(R,∆, at), which is defined in terms of the Frobenius morphism (see Definition 2.3
below). Since we have τ(R,∆, at) ⊆ τ(R,∆, as) for every real numbers 0 6 s 6 t, for a given
m-primary ideal I ⊆ R, we define the F -jumping number of (R,∆; a) with respect to I as

fjnI(R,∆; a) := inf{t > 0 | τ(R,∆, at) ⊆ I} ∈ R.

When I = m and (R,∆) is strongly F -regular, that is, τ(R,∆) = R, we denote it by fpt(R,∆; a)
and call it the F -pure threshold of (R,∆; a).

Since test ideals in positive characteristic enjoy several important properties which hold for
multiplier ideals in characteristic zero, it is natural to ask whether or not the set of F -pure
thresholds satisfies the ascending chain condition. Blickle, Mustaţă, and Smith conjectured the
following.

Conjecture 1.1 [BMS09, Conjecture 4.4]. Fix an integer n > 1, a prime number p > 0 and a
set Dreg

n,p such that every element of Dreg
n,p is an n-dimensional F -finite Noetherian regular local

ring of characteristic p. The set

T reg
n,p,pr := {fpt(A; a) | A ∈ Dreg

n,p, a ( A is a principal ideal}

satisfies the ascending chain condition.
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Ascending chain condition for F -pure thresholds on a fixed germ

This problem has been considered by several authors [BMS09, HNWZ16], and [HNW17]. We
give an affirmative answer to this conjecture.

Theorem 1.2 (Corollary 5.10). With the notation above, the set

T reg
n,p := {fpt(A; a) | A ∈ Dreg

n,p, a ( A is an ideal}

satisfies the ascending chain condition.

Employing the strategy in [dFEM10], we can also verify the ascending chain condition for
F -pure thresholds on tame quotient singularities.

Theorem 1.3 (Proposition 5.12). Fix an integer n > 1, a prime number p > 0 and a set Dquot
n,p

such that every element of Dquot
n,p is an n-dimensional F -finite Noetherian normal local ring of

characteristic p with tame quotient singularities. The set

T quot
n,p := {fpt(R; a) | R ∈ Dquot

n,p , a ( R is an ideal}

satisfies the ascending chain condition.

Since the F -pure threshold on the ring of the formal power series does not change by any
field extension (Lemma 2.11), in order to prove Theorem 1.2, it is enough to show that the set
of all F -pure thresholds on a fixed F -finite Noetherian regular local ring satisfies the ascending
chain condition. We consider this problem in a more general setting. Let (R,∆) be a pair, that
is, (R,m) is an F -finite Noetherian normal local ring of characteristic p > 0 and ∆ is an effective
Q-Weil divisor on SpecR. For a given m-primary ideal I ⊆ R, we define

FJNI(R,∆) := {fjnI(R,∆; a) | a ( R is an ideal} ⊆ R>0.

We note that if (R,∆) is strongly F -regular and I = m, then the set FJNI(R,∆) coincides with
the set of all F -pure thresholds

FPT(R,∆) := {fpt(R,∆; a) | a ( R is an ideal}.

Main Theorem (Theorem 5.9). Let (R,∆) be a pair such that KX + ∆ is Q-Cartier with
index not divisible by p, where KX is a canonical divisor of X = SpecR, and I ⊆ R be an m-
primary ideal. Assume that τ(R,∆) is m-primary or trivial. Then the set FJNI(R,∆) satisfies the
ascending chain condition. In particular, if (R,∆) is strongly F -regular, then the set FPT(R,∆)
satisfies the ascending chain condition.

For a real number t > 0 and a power q of p, we consider the ascending sequence {〈t〉n,q}n∈N,
where 〈t〉n,q := dtqn − 1e/qn is the nth truncation of t in base q. It is not so hard to prove that
the set FJNI(R,∆) satisfies the ascending chain condition if and only if for every real number
t > 0, there exists an integer n1 > 0 with the following property: for every ideal a ⊆ R and every
integer n > n1, τ(R,∆, a〈t〉n,q) ⊆ I if and only if τ(R,∆, a〈t〉n1,q) ⊆ I.

In this paper, we define a new ideal τn,ue (R,∆, at) ⊆ R for every integers u, n > 0 in terms of
the trace map for the Frobenius morphism so that for every n, the sequence {τn,ue (R,∆, at)}u∈N
is an ascending chain which converges to τ(R,∆, a〈t〉n,q). We investigate the behavior of the ideals
{τn,ue (R,∆, at)}n∈N for some fixed u > 0 instead of the ideals {τ(R,∆, a〈t〉n,q)}n∈N. In particular,
we prove the following theorem, which plays a crucial role in the proof of the main theorem.
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Theorem 1.4 (Corollary 5.7). Let (X = SpecR,∆) be a pair such that (pe − 1)(KX + ∆) is
Cartier for some integer e > 0, let I ⊆ R be an m-primary ideal, let l, n0 > 0 and u > 2 be
integers, and let t > 0 be a rational number such that t = (s/pe) + (l/pe(pe − 1)) for some
integers s > 0 and 0 < l < pe. We set t0 := p2e/(pe−1) and M0 = (pe(n0+6)−1) ·emb(R)/(pe−1),
where emb(R) is the embedding dimension of R. Then there exists an integer n1 > 0 with the
following property. For any ideal a ⊆ R such that:

(i) pe > µR(a) + ``R(R/I) + emb(R), where µR(a) is the number of a minimal generator of a
and ``R(R/I) := max{m > 0 | mm ⊆ I}; and

(ii) τn0+1,u
e (R,∆, alt0) + mM0 · τ(R,∆) ⊇ τn0,u

e (R,∆, alt0),

we have
τn,ue (R,∆, at) ⊆ I if and only if τn1,u

e (R,∆, at) ⊆ I
for every integer n > n1.

Another key ingredient of the proof of the main theorem is the rationality of accumulation
points of FJNI(R,∆). Blickle, Mustaţă, and Smith proved in [BMS09] that the set T reg

n,p,pr is a
closed set of rational numbers using ultraproduct. Their proof relies on the fact that for any
local ring A ∈ Dreg

n,p, any principal ideal a ( A, and any integer e > 0, the test ideal τ(A, a1/pe)
can be computed by the trace map Tre : F e∗A −→ A for the eth Frobenius morphism F e, that is,
we have τ(A, a1/pe) = Tre(F e∗ a), which fails if a is not principal. In order to extend the result to
the non-principal case, we introduce the notion of stabilization exponent for a triple (R,∆, at),
which indicates how many times we should compose the trace map for the Frobenius morphism
to compute the test ideal τ(R,∆, at) (see Definition 3.6).

By combining the method used in [BMS09] and some argument about the stabilization
exponents, we prove the following theorem.

Theorem 1.5 (Theorem 4.7). Let (X = SpecR,∆) be a pair such that KX + ∆ is Q-Cartier
with index not divisible by p, and let I ⊆ R be an m-primary ideal. Then the limit of any
sequence in FJNI(R,∆) is a rational number.

As the consequence of Theorems 1.4 and 1.5, we obtain the main theorem.

2. Preliminaries

2.1 Test ideals
In this subsection, we recall the definition and some basic properties of test ideals.

A ring R of characteristic p > 0 is said to be F -finite if the Frobenius morphism F : R −→ R
is a finite ring homomorphism. Throughout this paper, all rings will be assumed to be F -finite
and of characteristic p > 0. If R is an F -finite Noetherian normal ring, then R is excellent [Kun76]
and X = Spec(R) has a canonical divisor KX (see, for example, [ST18, p. 4]).

Definition 2.1. A pair (R,∆) consists of an F -finite Noetherian normal local ring (R,m) and an
effective Q-Weil divisor ∆ on SpecR. A triple (R,∆, at•• =

∏m
i=1 a

ti
i ), consists of a pair (R,∆) and

a symbol at•• =
∏m
i=1 a

ti
i , where m > 0 is an integer, a1, . . . , am ⊆ R are ideals, and t1, . . . , tm > 0

are real numbers.

Definition 2.2. Let (R,∆, at•• =
∏m
i=1 a

ti
i ) be a triple. An ideal J ⊆ R is said to be uniformly

(∆, at•• , F )-compatible if ϕ(F e∗ (a
dt1(pe−1)e
1 · · · adtm(pe−1)e

m J)) ⊆ J for every e > 0 and every ϕ ∈
HomR(F e∗R(d(pe − 1)∆e), R).
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Ascending chain condition for F -pure thresholds on a fixed germ

Definition 2.3. Let (R,∆, at•• =
∏m
i=1 a

ti
i ) be a triple. Assume that a1, . . . , am are non-zero

ideals. Then we define the test ideal

τ(R,∆, at•• ) = τ

(
R,∆,

m∏
i=1

atii

)
= τ(R,∆, at11 · · · a

tm
m )

to be an unique minimal non-zero uniformly (∆, at•• , F )-compatible ideal. The test ideal always
exists (see [Sch10, Theorem 6.3]).

When ai = R and ti = 0 for every i, then we denote the ideal τ(R,∆, at•• ) by τ(R,∆). If
ai = 0 for some i, then we define τ(R,∆, at•• ) = (0).

Lemma 2.4. Let (X = SpecR,∆, at) be a triple. Then the following hold.

(i) If t 6 t′ and a′ ⊆ a, then τ(R,∆, (a′)t
′
) ⊆ τ(R,∆, at).

(ii) [ST14, Lemma 6.1] Assume that KX + ∆ is Q-Cartier. Then there exists a real number
ε > 0 such that if t 6 t′ 6 t+ ε, then τ(R,∆, at

′
) = τ(R,∆, at).

Definition 2.5. Let (R,∆) be a pair and a ⊆ R be an ideal. A real number t > 0 is called a
F -jumping number of (R,∆; a) if

τ(R,∆, at−ε) 6= τ(R,∆, at),

for all ε > 0.

Proposition 2.6 [ST14, Theorem B]. Let (X = SpecR,∆, a) be a triple such that KX + ∆
is Q-Cartier. Then the set of all F -jumping numbers of (R,∆; a) is a discrete set of rational
numbers.

Definition 2.7. Let (R,∆, a) be a triple such that a 6= R, and let I ⊆ R be an m-primary ideal.
We define the F -jumping number of (R,∆; a) with respect to I as

fjnI(R,∆; a) := inf{t ∈ R>0 | τ(R,∆, at) ⊆ I} ∈ R>0.

When τ(R,∆) = R and I = m, we denote it by fpt(R,∆; a) and call it the F -pure threshold
of (R,∆; a). If ∆ = 0, then we denote it by fpt(R; a).

Definition 2.8. Let (X = SpecR,∆) be a pair and e > 0 be an integer. Assume that (pe −
1)(KX + ∆) is Cartier. Then there exists an isomorphism

HomR(F e∗ (R((pe − 1)∆)), R) ∼= F e∗R

as F e∗R-modules [Sch09, Lemma 3.1]. We denote by ϕe∆ a generator of HomR(F e∗ (R((pe−1)∆)), R)
as an F e∗R-module.

Remark 2.9. Although a map ϕe∆ : F e∗R −→ R is not uniquely determined, it is unique up to
multiplication by F e∗R

×. When we consider this map, we only need the information about the
image of this map. Hence we ignore the multiplication by F e∗R

×.

Let R be a Noetherian ring of characteristic p > 0, let e be a positive integer, and let a ⊆ R
be an ideal. Then we denote by a[pe] the ideal generated by {fpe ∈ R | f ∈ a}. The following
proposition seems to be well known to experts, but difficult to find a proof in the literature.
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Proposition 2.10. Let (R,m, k) and (S, n, l) be F -finite Noetherian normal local rings. Let
R −→ S be a flat local homomorphism, ∆X be an effective Q-Weil divisor on X = SpecR
and ∆Y be the flat pullback of ∆X to Y = SpecS. Assume that mS = n and that the relative
Frobenius morphism F el/k : F e∗ k⊗k l −→ F e∗ l is an isomorphism for every e> 0. Then the following
hold.

(i) The morphism R −→ S is a regular morphism, that is, every fiber is geometrically regular.

(ii) The relative Frobenius morphism F eS/R : F e∗R ⊗R S −→ F e∗S is an isomorphism for every
e > 0.

(iii) For every e > 0, we have

HomR(F e∗R(d(pe − 1)∆Xe), R)⊗R S ∼= HomS(F e∗S(d(pe − 1)∆Y e), S).

(iv) Let (R,∆X , a
t•
• =

∏m
i=1 a

ti
i ) be a triple. We write (a• · S)t• :=

∏
i(aiS)ti . Then we have

τ(R,∆X , a
t•
• ) · S = τ(S,∆Y , (a• · S)t•).

(v) If (pe − 1)(KX + ∆X) is Cartier for some e > 0, then (pe − 1)(KY + ∆Y ) is also Cartier
and ϕe∆Y

: F e∗S −→ S coincides with the morphism ϕe∆X
⊗R S : F e∗R ⊗R S −→ S via the

isomorphism F eS/R : F e∗R⊗R S −→ F e∗S.

Proof. Since the relative Frobenius morphism Fl/k : F∗k ⊗k l −→ F∗l is injective, the field
extension k ⊆ l is separable by [Mat89, Theorem 26.4]. Then (i) follows from [Mat89, Theorem
28.10] and [And74].

We will prove the assertion in (ii). Fix an integer e > 0. By (i), the morphism R −→ S
is generically separable. It follows from [Mat89, Theorem 26.4] that the relative Frobenius
morphism F eS/R : F e∗R⊗R S −→ F e∗S is injective.

We next consider the surjectivity of the map F eS/R. We denote the ring F e∗R⊗R S by R′. We
consider the following commutative diagram.

F e∗S

S //

F e
S

==

R′

F e
S/R

OO

R
F e
R

//

OO

F e∗R

OO

Since the morphisms F eR : R −→ F e∗R and S −→ R′ are both finite and n ∩ R = m, every
maximal ideal of R′ contains the maximal ideal F e∗m of F e∗R. Therefore, I := (F e∗m) · R′ ⊆ R′

is contained in the Jacobson radical of R′. On the other hand, since the finite morphism F eS :
F e∗S −→ S factors through F eS/R, the morphism F eS/R is also finite. Then the morphism

F eS/R ⊗R′ (R
′/I) : R′/I −→ (F e∗S)⊗R′ (R′/I)

coincides with the relative Frobenius morphism F el/k : F e∗ k ⊗k l −→ F e∗ l, and hence it is surjective.
Therefore, the map F eS/R is surjective by Nakayama.

We next prove the assertion in (iii). Since S is flat over R and F e∗R(d(pe− 1)∆Xe) is a finite
R-module, we have

HomR(F e∗R(d(pe − 1)∆Xe), R)⊗R S ∼= HomS(F e∗R(d(pe − 1)∆Xe)⊗R S, S).
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By (i), the flat pullback of a prime divisor on X to Y is a reduced divisor. Therefore, the Weil
divisor d(pe − 1)∆Y e coincides with the flat pullback of d(pe − 1)∆Xe. It follows from (ii) that
F e∗R(d(pe − 1)∆Xe)⊗R S ∼= F e∗S(dpe − 1e∆Y ), which completes the proof of (iii).

For (iv), it follows from (iii) that the test ideal τ(R,∆X , a
t•
• ) · S is uniformly (∆Y , (a• · S)t• ,

F )-compatible and τ(S,∆Y , (a• · S)t•) ∩ R is uniformly (∆X , a
t•
• , F )-compatible. Therefore, we

have

τ(S,∆Y , (a• · S)t•) ⊆ τ(R,∆X , a
t•
• ) · S

and

τ(S,∆Y , (a• · S)t•) ∩R ⊇ τ(R,∆X , a
t•
• ),

which complete the proof of (iv).
For (v), we assume that (pe−1)(KX+∆X) is Cartier. Since the canonical divisor KY coincides

with the flat pullback of KX ([Aoy83, Proposition 4.1], see also [Sta18, Lemma 45.22.1]), the
Weil divisor (pe−1)(KY + ∆Y ) is also Cartier. The second assertion in (v) follows from (iii). 2

Lemma 2.11. Let k ⊆ l be an extension of F -finite fields and d > 1 be an integer. Assume that
(Ak,mk) and (Al,ml) are the rings of the formal power series of dimension d with coefficients k
and l, respectively. Then, for any ideal a ⊆ Ak, we have

fpt(Ak; a) = fpt(Al; (aAl)).

Proof. The proof is similar to the case where a is principal [BMS09, Theorem 3.5(i)]. For every

integer e > 0, set νa(p
e) := max{r ∈ N>0 | ar 6⊆ m

[pe]
k } and ν(aAl)(p

e) := max{r ∈ N>0 | (aAl)r 6⊆
m

[pe]
l }. Then, it follows from the proof of [BMS08, Corollary 2.30] that fpt(Ak; a) = lime νa(p

e)/pe

and fpt(Al; (aAl)) = lime(ν(aAl)(p
e))/pe.

On the other hand, since m
[pe]
k Al = m

[pe]
l for every e and the extension Ak ⊆ Al is faithfully

flat, we have νa(p
e) = ν(aAl)(p

e) for every e, which completes the proof. 2

Example 2.12. With the notation above, it follows from the previous lemma that we have

τ(Ak, a
t) = Ak if and only if τ(Al, (aAl)

t) = Al

for every t > 0. However, in general, we have

τ(Ak, a
t) ·Al 6= τ(Al, (aAl)

t).

For example, suppose that k = Fp(t), l = Fp(t1/p) and d = 2. Set f := xp + typ ∈ Ak and
a := (f). It follows from [BMS08, Proposition 2.5], [BMS09, Lemma 2.1] and the decomposition
Ak =

⊕
06a,b,c<pA

p
k · t

axbyc that we have τ(Ak, a
1/p) = (x, y).

On the other hand, if we set g := x+ t1/py ∈ Al, then we have

τ(Al, (aAl)
1/p) = τ(Al, (g)1) = (g).

Therefore, we have τ(Ak, a
t) ·Al 6= τ(Al, (aAl)

t).

Let (R,m) be a Noetherian local ring. For a finitely generated R-module M , we denote by
µR(M) the minimal number of generators of M as an R-module. We denote by emb(R) the
embedding dimension µR(m). If M has finite length, then we denote by `R(M) the length of M
as an R-module and define

``R(M) := min{n > 0 | mnM = 0}.

The following lemma is well known to experts, but we prove it for convenience.
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Lemma 2.13. Suppose that R is a Noetherian ring of characteristic p > 0, c1, . . . , cm ⊆ R are
ideals, and M1, . . . ,Mm are positive integers. Set l :=

∑
i µR(ci) and c := cM1

1 + · · · + cMm
m . Let

a, b, e be non-negative integers and set q := pe. If b > q(l − 1), then we have

caq+b = (ca)[q] · cb.

In particular, for any ideal q ⊆ R and R-homomorphism ϕ : F e∗R −→ R, we have

ϕ(F e∗ (caq+bq)) = ca · ϕ(F e∗ (cbq)).

Proof. The second assertion follows from the first one because if caq+b = (ca)[q] · cb, then one has

ca · ϕ(F e∗ (cbq)) = ϕ(F e∗ ((ca)[q]cbq)) = ϕ(F e∗ (caq+bq)).

Therefore, it is enough to prove the first assertion.
We first consider the case m = 1. If m = M1 = 1, then the assertion follows straightforwardly

by taking a minimal generator of c = c1. If m = 1 and M1 > 1 is arbitrary, then it follows from
the case m = M1 = 1 that

caq+b = c
M1(aq+b)
1 = c

(aM1)q+(bM1)
1

= (caM1
1 )[q]cbM1

1

= (ca)[q]cb.

We next consider the case m > 2. Set bi := cMi
i and li := µR(ci). Then we have

caq+b =
∑

n1,...,nm

m∏
i=1

bni
i ,

where ni runs through all non-negative integers such that
∑

i ni = aq+b. Fix such integers (ni)
m
i=1

and set ai := max{0, dni/qe − li} and bi := ni − qai. Then ai and bi are non-negative integers
such that ni = qai + bi. If ai > 1, then we have ai = dni/qe − li, which implies bi > q(li − 1). In

this case, it follows from the case m = 1 that bni
i = (baii )[q]bbii . On the other hand, if ai = 0, then

bi = ni and the equation bni
i = (baii )[q]bbii holds too. Therefore, we have

∏
i

bni
i =

(∏
i

baii

)[q]

·
∏
i

bbii

⊆
(
c
∑

i ai
)[q] · c∑i bi .

On the other hand, since ai > (ni/q)− li for every i, we have∑
i

ai >

(∑
i

ni

)/
q − l = (aq + b)/q − l > a− 1.

Combining with (
∑

i ai)q + (
∑

i bi) = aq + b, we have(
c
∑

i ai
)[q] · c∑i bi ⊆ (ca)[q] · cb,

which implies the assertion. 2
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2.2 Ultraproduct
In this subsection, we define the ultraproduct of a family of sets and recall some properties. We
also define the catapower of a Noetherian local ring and prove some properties. The reader is
referred to [Sch10] for details.

Definition 2.14. Let U be a collection of subsets of N. Then U is called an ultrafilter if the
following properties hold.

(i) We have ∅ 6∈ U.

(ii) For every pair of subsets A,B ⊆ N, if A ∈ U and A ⊆ B, then B ∈ U.

(iii) For every pair of subsets A,B ⊆ N, if A,B ∈ U, then A ∩B ∈ U.

(iv) For every subset A ⊆ N, if A 6∈ U, then N \A ∈ U.

An ultrafilter U is called non-principal if the following holds.

(v) If A is a finite subset of N, then A 6∈ U.

By Zorn’s lemma, there exists a non-principal ultrafilter. From now on, we fix a non-principal
ultrafilter U.

Definition 2.15. Let {Tm}m∈N be a family of sets. We define the equivalence relation ∼ on the
set
∏
m∈N Tm by

(am)m ∼ (bm)m if and only if {m ∈ N | am = bm} ∈ U.

We define the ultraproduct of {Tm}m∈N as

ulimm∈N Tm :=

(∏
m∈N

Tm

)/
∼ .

If T is a set and Tm = T for all m, then we denote ulimm Tm by ∗T and call it the ultrapower
of T .

Let {Tm}m∈N be a family of sets and am ∈ Tm for every m. We denote by ulimm am the class
of (am)m in ulimm Tm. Let {Sm}m be another family of sets and fm : Tm −→ Sm be a map for
every m. We can define the map

ulimm fm : ulimm Tm −→ ulimm Sm

by sending ulimm am ∈ ulimm Tm to ulimm fm(am) ∈ ulimm Sm. If Tm = T , Sm = S, and fm = f
for every m ∈ N, then we denote the map ulimm fm by ∗f : ∗T −→ ∗S.

Let {Rm}m∈N be a family of rings and Mm be an Rm-module for every m. Then ulimmRm
has the ring structure induced by that of

∏
mRm and ulimmMm has the structure of a ulimRm-

module induced by its structure as a
∏
mRm-module on

∏
mMm. Moreover, if km is a field for

every m, then ulimm km is a field.

Proposition 2.16. We have the following properties.

(i) Let R be a Noetherian ring and M be a finitely generated R-module. Then we have
∗M ∼= M ⊗R ∗R.
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(ii) Let k be an F -finite field of positive characteristic. Then the relative Frobenius morphism
F e∗ (k)⊗k ∗k −→ F e∗ (∗k) is an isomorphism. In particular, ∗k is an F -finite field.

Proof. For (i), we consider the natural homomorphism M ⊗R ∗R −→ ∗M . Since the functors
∗(−) and (−) ⊗R ∗R are both right exact, we may assume that M is a free R-module of finite
rank. In this case, the assertion is obvious.

For (ii), we consider the natural bijection ∗(F e∗ k) ∼= F e∗ (∗k). Combining with (i), the relative
Frobenius morphism F e∗ (k)⊗k ∗k −→ F e∗ (∗k) is an isomorphism. 2

Let am ⊆ Rm be an ideal for every m. Then the natural map ulimm am −→ ulimmRm is
injective, and hence we can consider ulimm am as an ideal of the ring ulimmRm. Let bm ⊆ Rm
be other ideals. Then ulimm bm ⊆ ulimm am if and only if

{m ∈ N | bm ⊆ am} ∈ U.

Moreover, we have the equation

(ulimm am) + (ulimm bm) = ulimm(am + bm).

Lemma 2.17. Let {Rm}m∈N be a family of rings and am, bm ⊆ Rm be ideals for every m. Assume
that there exists an integer l > 0 such that µ(am) 6 l for every m. Then we have

(ulimm am) · (ulimm bm) = ulimm(am · bm).

Proof. Let α = ulimm am ∈ ulimm am and β = ulimm bm ∈ ulimm b. Then we have
α · β = ulimm(ambm) ∈ ulimm(am · bm). This shows the inclusion (ulimm am) · (ulimm bm) ⊆
ulimm(am · bm).

We consider the converse inclusion. By the assumption, there exist fm,1, . . . , fm,l ∈ am such
that am = (fm,1, . . . , fm,l). Then we have am · bm =

∑
i fm,i · bm, and hence we have

ulimm(am · bm) =
∑
i

f∞,i · (ulimm bm),

where f∞,i := ulimm fm,i ∈ ulimm am for every i, which complete the proof of the lemma. 2

Proposition-Definition 2.18 [Gol98, Theorem 5.6.1]. Let {am}m∈N be a sequence of real
numbers such that there exist real numbers M1,M2 which satisfies M1 < am < M2 for every
m ∈ N. Then there exists an unique real number w ∈ R such that for every real number ε > 0,
we have

{m ∈ N | |w − am| < ε} ∈ U.

We denote this number w by sh(ulimm am) and call it the shadow of ulimm am ∈ ∗R.

Let (R,m, k) be a local ring. Then, one can show that (∗R, ∗m, ∗k) is a local ring. However,
even if R is Noetherian, the ultrapower ∗R may not be Noetherian because we do not have the
equation

⋂
n∈N(∗m)n = 0 in general.

Definition 2.19 [Sch10]. Let (R,m) be a Noetherian local ring and (∗R, ∗m) be the ultrapower.
We define the catapower R# as the quotient ring

R# := ∗R

/(⋂
n

(∗m)n
)
.
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Proposition 2.20 [Sch10, Theorem 8.1.19]. Let (R,m, k) be a Noetherian local ring of
equicharacteristic and R̂ be the m-adic completion of R. We fix a coefficient field k ⊆ R̂.
Then we have

R#
∼= R̂ ⊗̂k (∗k).

In particular, if (R,m) is an F -finite Noetherian normal local ring, then so is R#.

Let (R,m) be a Noetherian local ring, R# be the catapower and am ∈ R for every m. We
denote by [am]m ∈ R# the image of ulimm am ∈ ∗R by the natural projection ∗R −→ R#.
Let am ⊆ R be an ideal for every m ∈ N. We denote by [am]m ⊆ R# the image of the ideal
ulimm am ⊆ ∗R by the projection ∗R −→ R#.

Lemma 2.21. Let (R,m) be a Noetherian local ring, and am, bm ⊆ R be ideals for every m ∈ N.
If [am]m ⊆ [bm]m, then for every m-primary ideal q ⊆ R, we have

{m ∈ N | am ⊆ bm + q} ∈ U.

Proof. By the definition of the catapower, if [am]m ⊆ [bm]m, then we have

ulimm am ⊆ ulimm bm + (∗m)n

for every n.
On the other hand, it follows from Lemma 2.17 that (∗m)n = ∗(mn). Therefore we have

ulim am ⊆ (ulim bm) + ∗(mn)

= ulim(bm + mn),

which is equivalent to
{m ∈ N | am ⊆ b + mn} ∈ U.

This implies the assertion in the lemma. 2

3. Variants of test ideals

In this section, we introduce some variants of test ideals by using the trace maps for the
Frobenius morphisms and the q-adic expansion of a real number (Definitions 3.3 and 3.11).
We also introduce the stabilization exponent (Definition 3.6).

Definition 3.1 (Cf. [HNWZ16, Definitions 2.1, 2.2]). Let q > 2 be an integer, t > 0 be a real
number and n ∈ Z be an integer. We define the nth digit of t in base q by

t(n) := dtqn − 1e − qdtqn−1 − 1e ∈ Z.

We define the nth round up and the nth truncation of t in base q by

〈t〉n,q := dtqne/qn ∈ Q,

and

〈t〉n,q := dtqn − 1e/qn ∈ Q,

respectively.
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Lemma 3.2. Let q > 2 be an integer, t > 0 be a real number and n ∈ Z be an integer. Then the
following hold:

(i) 0 6 t(n) < q;

(ii) t(n) is eventually zero for n� 0 and is not eventually zero for n� 0;

(iii) t =
∑

m∈Z t
(m) · q−m;

(iv) 〈t〉n,q =
∑

m6n t
(m) · q−m;

(v) the sequence {〈t〉n,q}n∈Z is a descending chain which converges to t;

(vi) the sequence {〈t〉n,q}n∈Z is an ascending chain which converges to t.

Proof. These all follow easily from the definitions. For the assertion in (ii), we note that if
t = s/qm for some integers s and m, then we have t(n) = q − 1 for all n > m. 2

Definition 3.3. Let (X = SpecR,∆, at•• =
∏
i a
ti
i ) be a triple such that ti > 0 for all i, and let

e > 0 be an integer such that (pe − 1)(KX + ∆) is Cartier. For every integer n > 0, we define

τ en+ (R,∆, at•• ) := ϕen∆ (F en∗ (a
dt1pene
1 · · · adtmpenem · τ(R,∆))) ⊆ R

and

τ en− (R,∆, at•• ) := ϕen∆ (F en∗ (a
dt1pen−1e
1 · · · adtmpen−1e

m · τ(R,∆))) ⊆ R.

Example 3.4. Let (X = SpecR,∆, at) be a triple such that t > 0 and that a is a principal ideal,
and let e be a positive integer such that (pe − 1)(KX + ∆) is Cartier. Then it follows from
[BSTZ10, Lemma 5.4] that

τ en+ (R,∆, at) = τ(R,∆, a〈t〉
n,q

),

and

τ en− (R,∆, at) = τ(R,∆, a〈t〉n,q).

Therefore, in this case, it follows from Proposition 2.6 that the sequence {τ en+ (R,∆, at)}n is an
ascending chain of ideals which converges to τ(R,∆, at) and the sequence {τ en− (R,∆, at)}n is a
descending chain of ideals which eventually stabilizes.

Proposition 3.5 (Basic properties). Let (R,∆, at•• ) and e be as in Definition 3.3. Then the
following hold.

(i) [BSTZ10, Lemma 3.21] The sequence {τ en+ (R,∆, at•• )}n>0 is an ascending chain which
converges to the test ideal τ(R,∆, at•• ).

(ii) If t1 > 1, then we have

τ en+ (R,∆, at11 · · · a
tm
m ) ⊇ a1 · τ en+ (R,∆, at1−1

1 · · · atmm ).

Moreover, if t1 > µR(a1), then we have

τ en+ (R,∆, at11 · · · a
tm
m ) = a1 · τ en+ (R,∆, at1−1

1 · · · atmm ).

(iii) We have ϕe∆(F e∗ (τ en+ (R,∆, ap
e·t•
• ))) = τ

e(n+1)
+ (R,∆, at•• ), where we set ap

e·t•
• :=

∏
i a
peti
i .
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Proof. The proof of (i) follows as in the case when m = 1, see [BSTZ10, Lemma 3.21]. The
assertion in (ii) follows from Lemma 2.13 by setting c = c1 := a1, a := 1 and b := d(ti−1)qne. The

assertion in (iii) follows from the fact that ϕ
e(n+1)
∆ = ϕe∆ ◦ F e∗ϕen∆ [Sch09, Theorem 3.11(e)]. 2

Definition 3.6. Let (R,∆, at•• ) and e be as in Definition 3.3. We define the stabilization exponent
of (R,∆, at•• ; e) by

stab(R,∆, at•• ; e) := min{n > 0 | τ en+ (R,∆, at•• ) = τ(R,∆, at•• )}.

Proposition 3.7 (Basic properties). Let (R,∆, at•• =
∏m
i=1 a

ti
i ) and e be as in Definition 3.3.

Then the following hold.

(i) If t1 > µR(a1), then we have

stab(R,∆, at11 · · · a
tm
m ; e) 6 stab(R,∆, at1−1

1 · · · atmm ; e).

(ii) We have
stab(R,∆, at•• ; e) 6 stab(R,∆, ap

e·t•
• ; e) + 1.

Proof. The assertions in (i) and (ii) follow from Proposition 3.5(ii) and (iii), respectively. 2

The following proposition is also basic, but it may be useful for studies of test ideals.

Proposition 3.8. Let (R,∆, at•• =
∏m
i=1 a

ti
i ) and e be as in Definition 3.3. Moreover, assume

that ti > µR(ai) and (pe − 1)ti ∈ N for every i. If

τ en+ (R,∆, at•• ) = τ
e(n+1)
+ (R,∆, at•• )

for some integer n, then we have

τ en+ (R,∆, at•• ) = τ(R,∆, at•• ).

In particular, we have n > stab(R,∆, at•• ; e).

Proof. It follows from Proposition 3.5(ii) and (iii) that

τ
e(n+1)
+ (R,∆, at•• ) = ϕe∆(F e∗ (τ en+ (R,∆, ap

et1
1 · · · apetmm )))

= ϕe∆(F e∗ (a
(pe−1)t1
1 · · · a(pe−1)tm

m · τ en+ (R,∆, at•• ))).

Therefore, if τ en+ (R,∆, at•• ) = τ
e(n+1)
+ (R,∆, at•• ), then one has τ

e(n+1)
+ (R,∆, at•• ) = τ

e(n+2)
+ (R,∆,

at•• ), which completes the proof. 2

Proposition 3.9. Let (X = SpecR,∆, a• =
∏
i ai) be a triple, and let e be a positive integer

such that (pe − 1)(KX + ∆) is Cartier. We define

s̃tab(R,∆, a•; e) := sup
t1,...,tm

{stab(R,∆, at•• ; e)},

where every ti runs through all positive rational numbers such that (pe−1)ti ∈ N. Then we have

s̃tab(R,∆, a•; e) <∞. Moreover, for every integer l > 0 and rational numbers t1, . . . , tm > 0 such
that pel(pe − 1)ti ∈ N, we have

stab(R,∆, at•• ; e) 6 s̃tab(R,∆, a•; e) + l.
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Proof. By Proposition 3.7(i), we have

s̃tab(R,∆, a•; e) = sup
t1,...,tm

{stab(R,∆, at•• ; e)},

where every ti runs through all positive rational numbers such that (pe−1)ti ∈ N and ti 6 µR(ai).

Hence we have s̃tab(R,∆, a•; e) <∞.
The second statement follows from Proposition 3.7(ii). 2

Example 3.10. Set R := F3[[x, y]], ∆ := 0, a := (x, y2) ⊆ R. Then, for every integer n > 0 and
every number t > 0, it follows from [BSTZ10, Proposition 3.10] and [BMS08, Proposition 2.5]
that

τn+(R, at) = (ad3
nte)[1/3n] =

(
xba/3

ncyb2b/3
nc | a, b ∈ N>0, a+ b = d3nte

)
.

Therefore, we have

τ1
+(R, a3/2) = a, τ2

+(R, a3/2) = m, and τ3
+(R, a3/2) = m,

which implies stab(R, a3/2) = 2 by Proposition 3.8. Similarly, we have

stab(R, a1/2) = 1, stab(R, a1) = 1, and stab(R, a2) = 1,

which shows s̃tab(R, a; 1) = 2.

We next consider the sequence of ideals {τ en− (R,∆, at•• )}n. In general, {τ en− (R,∆, at•• )}n may
not be a descending chain. In order to make a descending chain, we mix the definitions of τ+ and
τ−, and define the new variants of test ideals as below. In fact, we later see that we can make a
descending chain by using these ideals under some mild assumptions (Proposition 3.14).

Definition 3.11. Let (R,∆, at•• =
∏
i a
ti
i ) and e be as in Definition 3.3, q ⊆ R be an ideal, and

n, u > 0 be integers. We define

τn,ue,q (R,∆, at•• ) := ϕ
e(n+u)
∆ (F

e(n+u)
∗ (a

peudt1pen−1e
1 · · · apeudtmpen−1e

m · q)).

When q = τ(R,∆), we denote it by τn,ue (R,∆, at•• ).

Proposition 3.12 (Basic properties). Let (X = SpecR,∆, at•• =
∏m
i=1 a

ti
i ) be a triple such that

ti > 0 for every i and (q − 1)(KX + ∆) is Cartier for some q = pe, let q ⊆ R be an ideal, and let
n, u > 0 be integers. Then the following hold.

(i) For real numbers 0< si 6 ti, we have τn,ue,q (R,∆, as•• )⊇ τn,ue,q (R,∆, at•• ).Moreover, if 〈ti〉n,q <
si 6 ti for every i, then we have τn,ue,q (R,∆, as•• ) = τn,ue,q (R,∆, at•• ).

(ii) For ideals bi ⊆ ai and q′ ⊆ q, we have τn,ue,q′ (R,∆, b
t•
• ) ⊆ τn,ue,q (R,∆, at•• ).

(iii) If a1 ≡ b1 mod J for some ideal J and ai = bi for every i > 2, then we have

τn,ue,q (R,∆, at•• ) ≡ τn,ue,q (R,∆, bt•• ) mod τn,ue,J ·q

(
R,∆,

m∏
i=2

atii

)
.

If q ≡ q′mod J for some ideals q′ and J , then we have

τn,ue,q (R,∆, at•• ) ≡ τn,ue,q′ (R,∆, a
t•
• ) mod τn,ue,J (R,∆, at•• ).
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(iv) If q = a
qudtm+1qn−1e
m+1 τ(R,∆), then we have τn,ue,q (R,∆, at•• ) = τn,ue (R,∆,

∏m+1
i=1 atii ).

(v) If t1 > 1, then we have τn,ue,q (R,∆, at•• ) ⊇ a1 · τn,ue,q (R,∆, at1−1
1 · · · atmm ). Moreover, if t1 >

µR(a1) + (1/qn), then we have

τn,ue,q (R,∆, at•• ) = a1 · τn,ue,q (R,∆, at1−1
1 · · · atmm ).

(vi) We have ϕe∆(F e∗ (τn,ue,q (R,∆, ap
e·t•
• ))) = τn+1,u

e,q (R,∆, at•• ).

(vii) The sequence {τn,ue (R,∆, at•• )}u∈N is an ascending chain of ideals which converges to the

ideal τ(R,∆,
∏
i a
〈ti〉n,q

i ).

(viii) If u > s̃tab(R,∆, a•; e), then we have

τn,ue (R,∆, at•• ) = τ

(
R,∆,

∏
i

a
〈ti〉n,q

i

)
for every n.

(ix) Assume that qu−1 > µR(ai) and the nth digit ti
(n) of ti in base q is non-zero for every i.

Then we have τn,ue,q (R,∆, at•• ) = τn−1,u
e,q′ (R,∆, at•• ), where q′ := ϕe∆(F e∗ (

∏
i a
qu·ti(n)

i q)).

Proof. The assertions in (i), (ii), (iii), (iv) and (viii) follow easily from the definitions. The proves
of (v), (vi) and (vii) are similar to those of Proposition 3.5. For (ix), set ai := qudtiqn−1 − 1e for
every i. Then for every i, it follows from Lemma 2.13 by setting c = c1 := ai that we have

a
qudtiqn−1e
i = a

qu(qdtiqn−1−1e+t(n)
i )

i = (aaii )[q] · aq
u·t(n)

i
i .

Therefore, we have

τn,ue,q (R,∆, at•• ) = ϕ
e(n+u)
∆

(
F
e(n+u)
∗

(∏
i

a
qudtiqn−1e
i

)
· q
)

= ϕ
e(n+u−1)
∆

(
F
e(n+u−1)
∗ ϕe∆

(
F e∗

(∏
i

(aaii )[q] · aq
u·t(n)

i
i

)
· q
))

= ϕ
e(n+u−1)
∆

(
F
e(n+u−1)
∗

(∏
i

aaii

)
·
(
ϕe∆

(
F e∗

(∏
i

a
qu·t(n)

i
i

)
· q
)))

= ϕ
e(n+u−1)
∆

(
F
e(n+u−1)
∗

(∏
i

aaii

)
· q′
)

= τn−1,u
e,q′ (R,∆, at•• ). 2

We consider variants of Proposition 3.12(v) and (ix).

Proposition 3.13. Let (X = SpecR,∆, at•• ) be a triple such that ti > 0 for every i and
(q − 1)(KX + ∆) is Cartier for some q = pe, let q ⊆ R be an ideal, and let n, u > 0 be integers.
Assume that for every j, there exist ideals bj,1, . . . , bj,mj ⊆ R and integers Mj,1, . . . ,Mj,mj > 0

such that aj =
∑mj

i=1 b
Mj,i

j,i . Set lj :=
∑

i µR(bj,i). Then, the following hold.

(i) If t1 > l1 + (1/qn), then we have

τn,ue,q (R,∆, at•• ) = a1 · τn,ue,q (R,∆, at1−1
1 · · · atmm ).
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(ii) Assume that qu−1 > lj and the nth digit tj
(n) of tj in base q is non-zero for every j. Then

we have τn,ue,q (R,∆, at•• ) = τn−1,u
e,q′ (R,∆, at•• ), where q′ := ϕe∆(F e∗ (

∏
i a
qu·ti(n)

i q)).

Proof. The assertion in (i) follows as in the proof of Proposition 3.12(v) by applying Lemma 2.13
for c := a1 and ci := b1,i. For (ii), as in the proof of Proposition 3.12(ix), it follows from
Lemma 2.13 by setting c := aj and ci := bj,i that we have

a
qudtjqn−1e
j = a

qu(qdtjqn−1−1e+t(n)
j )

j = (a
aj
j )[q] · a

qu·t(n)
j

j ,

for every j, which proves (ii). 2

Proposition 3.14. With the above notation, we further assume that u > 0, qu−1 > maxi li and
q(q−1)ti ∈ N for every i. Then the sequence {τn,ue (R,∆, at•• )}n>1 is a descending chain of ideals.

Proof. Since q(q−1)ti ∈ N, the nth digit t
(n)
i of ti in base q is constant for n> 2. By Lemma 3.2(ii),

it is non-zero. Therefore, the assertion follows from Propositions 3.12(ii) and 3.13(ii). 2

Definition 3.15. Let (X = SpecR,∆, at) be a triple with t > 0, let I be an m-primary ideal,
let b ⊆ R be a proper ideal, and let e be a positive integer such that (pe−1)(KX +∆) is Cartier.
Then we define

fjnI,n,ue (R,∆, at; b) := inf{s > 0 | τn,ue (R,∆, atbs) ⊆ I} ∈ R>0.

Proposition 3.16. With the above notation, the following hold:

(i) 0 6 fjnI,n,ue (R,∆, at; b) 6 ``R(R/I) + µR(b);

(ii) pen · fjnI,n,ue (R,∆, at; b) ∈ Z.

Proof. By Proposition 3.12(v), we have

τn,ue (R,∆, atb``R(R/I)+µR(b)) = b``R(R/I) · τn,ue (R,∆, atbµR(b))

⊆ b``R(R/I) ⊆ I,

which proves the assertion in (i).
For (ii), set Σ := {s ∈ R>0 | τn,ue (R,∆, atbs) ⊆ I} ⊆ R>0. It follows from Proposition 3.12(i)

that if s ∈ Σ and 〈s〉n,q < s′, then s′ ∈ Σ. Therefore

fjnI,n,ue (R,∆, at; b) = inf Σ = min
s∈Σ
〈s〉n,q,

which proves (ii). 2

Proposition 3.17. Let (X = SpecR,∆) be a pair such that (pe − 1)(KX + ∆) is Cartier for
some positive integer e, let t > 0 be a rational number, and let M,µ > 0 and u > 2 be positive
integers. Assume that:

(i) q > µ+ emb(R); and

(ii) qm(q − 1)t ∈ N for some integer m.

Then, there exists a positive integer n1 with the following property. For every ideal a with
µR(a) 6 µ, if we set b := a+mM , then we have τn,ue (R,∆, bt) = τn1,u

e (R,∆, bt) for every n > n1.
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Proof. By Proposition 3.12(vi), it is enough to show the assertion in the case when t > µ+emb(R)
and (pe − 1)t ∈ N. Set n1 := `R(τ(R,∆)/(mMdte · τ(R,∆))). We will prove that the assertion
holds for this constant n1.

Let a ⊆ R be an ideal such that µR(a) 6 µ, and set b := a + mM . We consider the sequence
of ideals {τn,ue (R,∆, bt)}n>1. By Proposition 3.14, the sequence {τn,ue (R,∆, bt)}n is a descending
chain. Moreover, since b ⊇ mM , we have

τn,ue (R,∆, bt) ⊇ τn,ue (R,∆, (mM )t)

⊇ τn,ue (R,∆, (mM )t)

⊇ τn,0e (R,∆, (mM )t)

⊇ mMdte · τ(R,∆).

Since we have

τ(R,∆) ⊇ τ1,u
e (R,∆, bt) ⊇ τ2,u

e (R,∆, bt) ⊇ · · · ⊇ mMdte · τ(R,∆),

there exists an integer 1 6 m 6 n1 such that

τm,ue (R,∆, bt) = τm+1,u
e (R,∆, bt).

On the other hand, by Proposition 3.13(i), we have

τm+1,u
e (R,∆, bt

′+1) = b · τm,ue (R,∆, bt
′
)

for any real number t′ > µ+ emb(R). Then, as in the proof of Proposition 3.8, we have τm+1,u
e

(R,∆, at) = τm+2,u
e (R,∆, at), which completes the proof. 2

4. Rationality of the limit of F -pure thresholds

In this section, we give uniform bounds for the denominators of F -jumping numbers
(Proposition 4.1) and for the stabilization exponents (Proposition 4.3) of m-primary ideals
with fixed colength. By using these bounds, we will prove Theorem 1.5.

Proposition 4.1. Let (X = SpecR,∆) be a pair such that (pe−1)(KX +∆) is Cartier for some
integer e > 0, and let M > 0 be an integer. Then there exists an integer N > 0 such that for any
ideal a ⊆ R, if a ⊇ mM , then any F -jumping number of (R,∆; a) is contained in (1/N) · Z.

Proof. Set l := `R(R/mM ) + µR(mM ) and n := `R(τ(R,∆)/τ(R,∆,mMl)). We note that the
module τ(R,∆)/τ(R,∆,mMl) has finite length because the test ideals commute with localization
[HT04, Proposition 3.1]. Let a ⊆ R be an ideal such that mM ⊆ a and let B ⊆ R>0 be the set of
all F -jumping numbers of (R,∆; a).

Since we have µ(a) 6 l, it follows from [BSTZ10, Corollary 3.27] that for every element
b ∈ B ∩ R>l, we have b − 1 ∈ B. It also follows from [BSTZ10, Lemma 3.25] that for every
element b ∈ B, we have peb ∈ B. Moreover, since τ(R,∆) ⊇ τ(R,∆, at) ⊇ τ(R,∆,mMl) for every
t 6 l, the number of the set B ∩ [0, l] is at most n. Then the assertion follows from the lemma
below. 2

Lemma 4.2. Let l, n > 0 and q > 2 be integers. Then there exists an integer N > 0 with the
following property: if B ⊆ R>0 is a subset such that:
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(i) for every element b ∈ B, if b > l, then b− 1 ∈ B;

(ii) if b ∈ B, then q · b ∈ B; and

(iii) the number of the set B ∩ [0, l] is at most n,

then we have B ⊆ (1/N) · Z.

Proof. The proof is essentially the same as that of [BMS08, Proposition 3.8]. Set N := qn(qn!−1),
where n! is the factorial of n.

For every element b ∈ B and every integer m > 0, we define bm ∈ B ∩ [0, l] by

bm := (qmb− bqmbc) + min{l − 1, bqmbc}.

If b 6∈ (1/N) · Z, then b0, b1, . . . , bn are all distinct and hence contradiction. 2

Proposition 4.3. Let (X = SpecR,∆) be a pair such that (pe−1)(KX +∆) is Cartier for some
integer e > 0, and let M > 0 be an integer. Then there exists u0 > 0 such that for every ideal
a ⊇ mM , we have

s̃tab(R,∆, a; e) 6 u0.

Proof. Set l := `R(R/mM ) + µR(mM ) and take an integer n0 > 0 such that pe(n0−1) > l. Let
a ⊆ R be an ideal such that a ⊇ mM , and let t > 0 be a rational number such that (pe− 1)t ∈ N.

We first consider the case when l < t 6 lpen0 . In this case, by Proposition 3.5(i), the sequence
{τ en+ (R,∆, at)}n>0 is an ascending chain such that

τ(R,∆) ⊇ τ en+ (R,∆, at) ⊇ τ0
+(R,∆, at) = adte · τ(R,∆) ⊇ mlMpen0 · τ(R,∆)

for every n. Therefore, there exists an integer 0 6 n < `R(τ(R,∆)/(mlMpen0 · τ(R,∆))) such that

τ en+ (R,∆, at) = τ
e(n+1)
+ (R,∆, at).

By Proposition 3.8, we have

stab(R,∆, at; e) 6 n 6 `R(τ(R,∆)/(mlMpen0 · τ(R,∆))).

We next consider the case when t 6 l. Since l < tpen0 6 lpen0 , it follows from
Proposition 3.7(ii) that

stab(R,∆, at; e) 6 stab(R,∆, atp
en0

; e) + n0

6 `R(τ(R,∆)/(mlMpen0 · τ(R,∆))) + n0.

Therefore, u0 := `R(τ(R,∆)/(mlMpen0 · τ(R,∆))) + n0 satisfies the property. 2

Proposition 4.4. Let (X = SpecR,∆) be a pair such that (pe − 1)(KX + ∆) is Cartier for
some integer e > 0, let {am}m∈N be a family of ideals of R, and let t > 0 be a real number. Fix
a non-principal ultrafilter U. Let (R#,m#) be the catapower of the local ring (R,m), let ∆# be
the flat pullback of ∆ to SpecR#, and a∞ := [am]m ⊆ R#. If there exists a positive integer M
such that am ⊇ mM for every m, then we have

τ(R#,∆#, a
t
∞) = [τ(R,∆, atm)]m ⊆ R#.
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Proof. We first consider the case when t is a rational number. By enlarging e, we may assume
that pen(pe − 1)t ∈ Z for some integer n > 0. Take a positive integer u as in Proposition 4.3.
Then we have

τ(R,∆, atm) = τ
e(n+u)
+ (R,∆, atm),

for every m. By enlarging u, we may assume that

τ(R#,∆#, a
t
∞) = τ

e(n+u)
+ (R#,∆#, a

t
∞).

Since µR(am) 6 `R(R/mM ) + µR(mM ) for every m, it follows from Lemma 2.17 that

(a∞)s = [(am)s]m

for every integer s > 0. Combining with Propositions 2.10(v) and 2.16(ii), we have

τ el+ (R#,∆#, a
t
∞) = ϕel∆#

(F el∗ (adtp
ele

∞ · τ(R#,∆#)))

= ϕel∆#
(F el∗ [adtp

ele
m · τ(R,∆)]m)

= [ϕel∆(F el∗ (adtp
ele

m · τ(R,∆)))]m

= [τ el+ (R,∆, atm)]m ⊆ R#

for every integer l. Therefore, we have

τ(R#,∆#, a
t
∞) = [τ(R,∆, atm)]m ⊆ R#.

We next consider the case when t is not a rational number. For sufficiently large integer n,
we have

τ(R#,∆#, a
t
∞) = τ en+ (R#,∆#, a

t
∞)

= [τ en+ (R,∆, atm)]m

⊆ [τ(R,∆, atm)]m ⊆ R#.

For the converse inclusion, by Proposition 2.6, we can take a rational number t′ such that t′ < t
and τ(R#,∆#, a

t
∞) = τ(R#,∆#, a

t′
∞). Then, we have

τ(R#,∆#, a
t
∞) = τ(R#,∆#, a

t′
∞)

= [τ(R,∆, at
′
m)]m

⊇ [τ(R,∆, atm)]m,

which completes the proof. 2

Proposition 4.5. With the notation above, let I ⊆ R be an m-primary ideal. Assume that
mM ⊆ am ⊆ m for every m. Then there exists T ∈ U such that for all m ∈ T , we have

fjnI(R,∆; am) = fjnI·R#(R#,∆#, a∞).

Proof. Set t := fjnI·R#(R#,∆#; a∞) ∈ R>0. If τ(R,∆) ⊆ I, then we have fjnI(R,∆; am) = 0 for
every m ∈ N and fjnI·R#(R#,∆#, a∞) = 0. Therefore, we may assume that τ(R,∆) 6⊆ I. Since
a∞ 6= (0), it follows from Lemma 2.4(ii) that t > 0.

It follows from Proposition 4.4 that we have

[τ(R,∆, atm)]m = τ(R#,∆#, a
t
∞) ⊆ I ·R#.
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Since I is m-primary, it follows from Lemma 2.21 that there exists S1 ∈ U such that τ(R,∆,
atm) ⊆ I for every m ∈ S1. Therefore fjnI(R,∆; am) 6 fjnI·R#(R#,∆#, a∞) for every m ∈ S1.

On the other hand, by Proposition 4.1, there exists 0 < t′ < t such that for every ideal
b ⊇ mM , if t′ < fjnI(R,∆; b), then t 6 fjnI(R,∆; b). Since t′ < t, we have

[τ(R,∆, at
′
m)]m = τ(R#,∆#, a

t′
∞) 6⊆ I ·R#.

Hence, we have
ulimm τ(R,∆, at

′
m) 6⊆ ∗I.

Therefore, there exists S2 ∈ U such that τ(R,∆, at
′
m) 6⊆ I for every m ∈ S2. Then T := S1 ∩ S2

satisfies the assertion. 2

Lemma 4.6 (Cf. [BMS09, Lemma 3.3]). Let (X = SpecR,∆) be a pair such that KX + ∆ is
Q-Carter, let I be an m-primary ideal, and let a, b ⊆ R be proper ideals. Then we have

fjnI(R,∆; a + b) 6 fjnI(R,∆; a) + fjnI(R,∆; b).

Proof. As in the proof of [Tak06, Theorem 3.1], for every real number c > 0, we can show that

τ(R,∆, (a + b)c) =
∑

u,v>0,u+v=c

τ(R,∆, aubv).

Set t := fjnI(R,∆; a) and s := fjnI(R,∆; b). Then we have

τ(R,∆, (a + b)t+s) =
∑

u,v>0,u+v=s+t

τ(R,∆, aubv) ⊆ τ(R,∆, at) + τ(R,∆, bs) ⊆ I. 2

Theorem 4.7 (Theorem 1.5, cf. [BMS09, Theorem 1.2]). Let (X = SpecR,∆) be a pair such
that (pe−1)(KX +∆) is Cartier for some integer e > 0, let (R#,m#) be the catapower of (R,m),
and let ∆# be the flat pullback of ∆ to SpecR#, I ⊆ R be an m-primary ideal, {am}m∈N be a
family of proper ideals and a∞ := [am]m ⊆ R#. Then we have

sh(ulimm fjnI(R,∆; am)) = fjnI·R#(R#,∆#, a∞) ∈ Q.

In particular, if the limit limm−→∞ fjnI(R,∆; am) exists, then we have

lim
m−→∞

fjnI(R,∆; am) = fjnI·R#(R#,∆#, a∞).

Proof. The proof is essentially the same as the proof of [BMS09, Theorem 1.2]. If τ(R,∆) ⊆ I,
then the assertion in the theorem is trivial. Therefore, we may assume that τ(R,∆) 6⊆ I.

For every integer M > 0, we set b∞,M := a∞ + (m#)M and bm,M := am + mM for every
integer m. We write s := fjnI·R#(R#,∆#;m#).

By Lemma 4.6, we have

|fjnI·R#(R#,∆#; a∞)− fjnI·R#(R#,∆#; b∞,M )| 6 s/M (1)

for every M .
By Proposition 2.10(iv), we have s = fjnI(R,∆;m). Therefore, it follows from Lemma 4.6

that
|fjnI(R,∆; am)− fjnI(R,∆; bm,M )| 6 s/M (2)

for every m and M .
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On the other hand, since b∞,M = [bm,M ]m, it follows from Proposition 4.5 that there exists
TM ∈ U such that

fjnI·R#(R#,∆#; b∞,M ) = fjnI(R,∆; bm,M ) (3)

for every m ∈ TM .
By combining the equations (1)–(3), we have

|fjnI·R#(R#,∆#; a∞)− fjnI(R,∆; am)| 6 2s/M

for every m ∈ TM .
It follows from the definition of the shadow that

sh(ulimm fjnI(R,∆; am)) = fjnI·R#(R#,∆#; a∞),

which completes the proof. 2

5. Proof of main theorem

In this section, we introduce Condition (?) (Definition 5.2) which plays the key role in the proof of
the main theorem and we prove some properties of Condition (?) (Propositions 5.4 and 5.6). By
combining them with Proposition 3.17 and Theorem 4.7, we give the proof of the main theorem
(Theorem 5.9).

Observation 5.1. Let X be a normal variety over a field k of characteristic zero, ∆ be an effective
Q-Weil divisor on X such that KX + ∆ is Q-Cartier, a ⊆ OX be a non-zero coherent ideal sheaf,
t > 0 be a rational number, x ∈ X be a closed point and mx ⊆ OX be the maximal ideal at x.
We consider the log canonical threshold

lctx(X,∆, at;m) := inf{s > 0 | (X,∆, atms) is not log canonical at x}.

By considering a log resolution of (X,∆), a and m, we can show that there exist a real
number t′ < t and rational numbers a, b such that

lctx(X,∆, as;m) = as+ b (4)

for every t′ < s < t.
Choose integers q > 2 and m > 0 such that qm(q − 1)t ∈ N. Then for every n > m, the nth

digit of t in base q satisfies t(n) = l for some constant l > 0. Set N := −al/q. Then we have

lctx(X,∆, a〈t〉n+1,q ;m) = lctx(X,∆, a〈t〉n,q ;m)−N/qn (5)

for sufficiently large n.

Motivated by the observation above, we define the following condition.

Definition 5.2. Let (X = SpecR,∆, at) be a triple such that t > 0 and (pe − 1)(KX + ∆) is
Cartier for some integer e > 0, let I ⊆ R be an m-primary ideal, and let u,N > 0 be integers.
We say that (R,∆, at, I, e, u,N) satisfies Condition (?) if for every n > 0 we have

fjnI,n+1,u
e (R,∆, at;m) > fjnI,n,ue (R,∆, at;m)−N/pen.
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Remark 5.3. If u > s̃tab(R,∆, a,m; e), then we have

fjnI,n,ue (R,∆, at;m) = 〈fjnI(R,∆, a〈t〉n,q ;m)〉n,q,

where we write q := pe. Therefore, Condition (?) can be regarded as an analogue of the equation
(5) in Observation 5.1. See also Corollary 5.5 below.

We also note that the equation (4) in Observation 5.1 may not hold for F -pure thresholds
(cf. [Pér13, Example 5.3]).

We first give a sufficient condition for Condition (?).

Proposition 5.4. Let (X = SpecR,∆, at) be a triple such that t > 0 and (pe − 1)(KX + ∆) is
Cartier for some e > 0, let I ⊆ R be an m-primary ideal, let 0 < l < pe be a positive integer and
let n0 > 0 and u > 2 be integers. Set

q = pe, N := qn0+3emb(R), t0 :=
q2

q − 1
, and M0 :=

(qn0+6 − 1)emb(R)

q − 1
.

Assume that:

(i) q > µR(a);

(ii) q > ``R(R/I);

(iii) the nth digit of t in base q satisfies t(n) = l for every n > 2; and

(iv) τn0+1,u
e (R,∆, alt0) + mM0 · τ(R,∆) ⊇ τn0,u

e (R,∆, alt0).

Then, (R,∆, at, I, e, u,N) satisfies Condition (?).

Proof. By induction on n > 0, we will show the inequality

fjnI,n+1,u
e (R,∆, at;m) > fjnI,n,ue (R,∆, at;m)−N/qn. (6)

Step 1. We consider the case when n 6 n0 + 2. In this case, we have

N/qn > q · emb(R) > ``R(R/I) + emb(R).

By Proposition 3.16(i), we have

fjnI,n,ue (R,∆, at;m) 6 ``R(R/I) + emb(R).

Hence we have
fjnI,n,ue (R,∆, at;m)−N/qn 6 0,

which implies the inequality (6).

Step 2. From now on, we assume n > n0 + 3. Set r := qn · fjnI,n,ue (R,∆, at;m). By
Proposition 3.16(ii), we have r ∈ Z. We first consider the case when

r 6 qn0 · emb(R).

In this case, we have

fjnI,n,ue (R,∆, at;m)−N/qn =
r − qn0+3emb(R)

qn

6 0,

which shows the inequality (6). Therefore, we may assume r > qn0 · emb(R).
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Step 3. Set s := dr/qn0e − emb(R) − 1 and s′ := d(s + M0)/q2e. In this step, we will show the
inclusion

τn,ue (R,∆, atmr/qn) ⊆ τn+1,u
e (R,∆, atms/qn−n0

) + τn−n0−2,2
e (R,∆, atms′/qn−n0+2

). (7)

By the assumption (iii), α := tqn−n0 − lt0 = q2dtqn−n0−2 − 1e is an integer. It follows from
Proposition 3.12(i), (v), and (vi) that

τn,ue (R,∆, atmr/qn) = ϕ
e(n−n0)
∆ (F e(n−n0)(τn0,u

e (R,∆, atq
n−n0

mr/qn0
)))

⊆ ϕe(n−n0)
∆ (F e(n−n0)(aαmsτn0,u

e (R,∆, alt0))).

Similarly, we have

τn+1,u
e (R,∆, atms/qn−n0

) = ϕ
e(n−n0)
∆ (F e(n−n0)(τn0+1,u

e (R,∆, atq
n−n0

ms)))

⊇ ϕe(n−n0)
∆ (F e(n−n0)(aαmsτn0+1,u

e (R,∆, alt0))).

On the other hand, it follows from the definitions that

τn−n0−2,2
e (R,∆, atms′/qn−n0−2

) = ϕ
e(n−n0)
∆ (F e(n−n0)(aαmq2(s′−1)τ(R,∆)))

⊇ ϕe(n−n0)
∆ (F e(n−n0)(aαms+M0τ(R,∆))).

By combining them with the assumption (iv), we have the inclusion (7).

Step 4. In this step, we will show the inclusion

τn−n0−2,2
e (R,∆, atms′/qn−n0−2

) ⊆ I. (8)

It follows from the induction hypothesis that

fjnI,n,ue (R,∆, at;m) > fjnI,n−n0−2,u
e (R,∆, at;m)−

( n−1∑
i=n−n0−2

N

qi

)
.

Therefore, we have the inequality

s′

qn−n0−2
>
s+M0

qn−n0
>
r/qn0 − emb(R)− 1 +M0

qn−n0

= fjnI,n,ue (R,∆, at;m) +
−emb(R)− 1 +M0

qn−n0

> fjnI,n−n0−2,u
e (R,∆, at;m)−

( n−1∑
i=n−n0−2

N

qi

)
+
−emb(R)− 1 +M0

qn−n0

> fjnI,n−n0−2,u
e (R,∆, at;m).

Since we have u > 2, It follows from Proposition 3.12(vii) that

τn−n0−2,2
e (R,∆, atms′/qn−n0−2

) ⊆ τn−n0−2,u
e (R,∆, atms′/qn−n0−2

) ⊆ I.

Step 5. It follows from Proposition 3.12(i) that

τn,ue (R,∆, atmr/qn) 6⊆ I.
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Combining it with the inclusions (7) and (8), we have

τn+1,u
e (R,∆, atms/qn−n0

) 6⊆ I.

Hence, we have

fjnI,n+1,u
e (R,∆, at;m) >

s

qn−n0

>
r/qn0 − emb(R)− 1

qn−n0

= fjnI,n,ue (R,∆, at;m)− emb(R) + 1

qn−n0

> fjnI,n,ue (R,∆, at;m)− N

qn
,

which completes the proof of the proposition. 2

Corollary 5.5. Suppose that (X = SpecR,∆, at) is a triple such that t > 0 is a rational
number and (pe−1)(KX +∆) is Cartier for some integer e > 0, and I ⊆ R is an m-primary ideal.
Then, there exist integers e′, u0, N > 0 such that for every u > u0, (R,∆, at, I, e′, u,N) satisfies
Condition (?). In particular, there exists an integer N ′ > 0 such that if we write q := pe

′
, then

fjnI(R,∆, a〈t〉n+1,q ;m) > fjnI(R,∆, a〈t〉n,q ;m)−N ′/qn

for every integer n > 0.

Proof. Take an integer m > 0 such that q := pem satisfies the assumptions (i), (ii), and (iii) in
Proposition 5.4. Set l = t(2) and t0 := q2/(q− 1). Then it follows from Proposition 2.6 that there
exists an integer n0 > 0 such that

τ(R,∆, a〈lt0〉n0,q) = τ(R,∆, a〈lt0〉(n0+1),q).

Set e′ := em, u0 := s̃tab(R,∆, a; e′) and N := qn0+3 · emb(R). Then the first assertion follows
from Proposition 5.4.

Set N ′ := N + 1. Then the second assertion follows from Remark 5.3. 2

Proposition 5.6. Suppose that (R,∆, at) is a triple, I ⊆ R is an m-primary ideal, and q = pe,
u and N are integers which satisfy all the conditions of Proposition 5.4. We further assume that
q > ``R(R/I) + µR(a) + emb(R). Then for every n > 1, we have

fjnI,n,ue (R,∆, at;m) = fjnI,n,ue (R,∆, bt;m),

where b := a + mqu+2·N . In particular, for every n, we have

τn,ue (R,∆, at) ⊆ I if and only if τn,ue (R,∆, bt) ⊆ I.

Proof. Set M := qu+2 · N , M ′ := qu+1 · N , sn := fjnI,n,ue (R,∆, at;m), and δn := qnsn for every
integer n. By Proposition 3.16(ii), we have δn ∈ N. It is enough to show the following claim.

Claim. For every n > 1 and every ideal q ⊆ mmax{0,qu·δn−M ′} · τ(R,∆), we have

τn,ue,q (R,∆, at) ≡ τn,ue,q (R,∆, bt) (mod I).
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In fact, if the claim holds, then it follows from Proposition 3.12(iv) that

τn,ue (R,∆, btmsn+ε) ≡ τn,ue (R,∆, atmsn+ε) (mod I)

≡ 0 (mod I)

for every real number 0 < ε 6 1/qn. Therefore we have

fjnI,n,ue (R,∆, at;m) > fjnI,n,ue (R,∆, bt;m).

Similarly, if sn > 0, then we have

τn,ue (R,∆, btmsn) ≡ τn,ue (R,∆, atmsn) (mod I)

6≡ 0 (mod I),

which shows fjnI,n,ue (R,∆, at;m) 6 fjnI,n,ue (R,∆, bt;m). Since this inequality also holds when
sn = 0, we complete the proof of the proposition. 2

Proof of Claim. We use induction on n.

Step 1. We first consider the case when n = 1. It follows from Proposition 3.12(iii) that

τn,ue,q (R,∆, at) ≡ τn,ue,q (R,∆, bt) (mod τn,u
e,q·mM (R,∆)).

Since we have q·mM ⊆ mqudq(``R(R/I)+emb(R))−1e ·τ(R,∆), it follows from Proposition 3.12(ii),
(iv) and (v) that

τn,u
e,q·mM (R,∆) ⊆ m``R(R/I) ⊆ I.

Therefore, the assertion holds when n = 1.

Step 2. From now on, we consider the case when n > 2. Set q′ := ϕe∆(F e∗ (at
(n)·quq)) and q′′ :=

ϕe∆(F e∗ (bt
(n)·quq)). Then it follows from Proposition 3.12(ix) that

τn,ue,q (R,∆, at) = τn−1,u
e,q′ (R,∆, at). (9)

Similarly, by Proposition 3.13(ii), we have

τn,ue,q (R,∆, bt) = τn−1,u
e,q′′ (R,∆, bt). (10)

Step 3. In this step, we will show the equation

τn−1,u
e,q′ (R,∆, at) ≡ τn−1,u

e,q′′ (R,∆, at) (mod I). (11)

Set J := ϕe∆(F e∗ (mMq)), then we have q′ ≡ q′′ (mod J). By Proposition 3.12(iii), it is enough to
show that

τn−1,u
e,J (R,∆, at) ⊆ I.

Since we have δn > qδn−1 − qN , it follows from Lemma 2.13 that

J ⊆ ϕe∆(mquδn+M−M ′ · τ(R,∆))

⊆ m(quδn+M−M ′)/q−emb(R) · τ(R,∆)

⊆ mquδn−1 · τ(R,∆).
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Therefore, it follows from Proposition 3.12(ii) and (iv) that

τn−1,u
e,J (R,∆, at) ⊆ τn−1,u

e (R,∆, atmsn−1+(1/qn−1)) ⊆ I,

which shows the equation (11).

Step 4. In this step, we will show the equation

τn−1,u
e,q′′ (R,∆, at) ≡ τn−1,u

e,q′′ (R,∆, bt) (mod I). (12)

As in Step 3, we have

q′′ ⊆ ϕe∆(F e∗ (mmax{0,quδn−M ′} · τ(R,∆)))

⊆ mmax{0,qu−1δn−(M ′/q)−emb(R)} · τ(R,∆)

⊆ mmax{0,quδn−1−M ′} · τ(R,∆).

By induction hypothesis, we get the equation (12).
By combining the equations (9)–(12), we complete the proof of the claim. 2

Corollary 5.7 (Theorem 1.4). Let (X = SpecR,∆) be a pair such that (pe − 1)(KX + ∆) is
Cartier for some integer e > 0, let I ⊆ R be an m-primary ideal, let l, n0 > 0 and u> 2 be integers,
and let t > 0 be a rational number such that pe(pe − 1)t ∈ N. We set l := t(2), t0 := p2e/(pe − 1)
and M0 = (pe(n0+6)−1) ·emb(R)/(pe−1). Then there exists an integer n1 > 0 with the following
property. For any ideal a ⊆ R such that:

(i) pe > µR(a) + ``R(R/I) + emb(R); and

(ii) τn0+1,u
e (R,∆, alt0) + mM0 · τ(R,∆) ⊇ τn0,u

e (R,∆, alt0),

we have
τn,ue (R,∆, at) ⊆ I if and only if τn1,u

e (R,∆, at) ⊆ I

for every integer n > n1.

Proof. By Propositions 5.4 and 5.6, b := a + mqu+n0+5emb(R) satisfies

τn,ue (R,∆, at) ⊆ I if and only if τn,ue (R,∆, bt) ⊆ I.

for every integer n.
On the other hand, it follows from Proposition 3.17 that there exists an integer n1 > 0 which

depends only on µ := q − emb(R) − 1, M := qu+n0+5emb(R), e, u, and t such that for every
integer n > n1, we have

τn,ue (R,∆, bt) ⊆ I if and only if τn1,u
e (R,∆, bt) ⊆ I,

which completes the proof. 2

By using the method of ultraproduct, we can apply Corollary 5.7 to infinitely many ideals
simultaneously.

Proposition 5.8. Let (X = SpecR,∆) be a pair such that (pe−1)(KX +∆) is Cartier for some
integer e > 0, let I ⊆ R be an m-primary ideal, let {am}m∈N be a family of ideals of R, let t > 0
be a rational number, and let U be a non-principal ultrafilter. Assume that:
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(i) τ(R,∆) is m-primary or trivial;

(ii) pe > µR(am) + ``R(R/I) + emb(R) for every m; and

(iii) pe(pe − 1)t ∈ N.

Then for any sufficiently large integer u > 0, there exist an integer n1 and T ∈ U such that

τn,ue (R,∆, atm) ⊆ I if and only if τn1,u
e (R,∆, atm) ⊆ I

for every integer n > n1 and m ∈ T .

Proof. Set t0 := p2e/(pe − 1). Since pe(pe − 1)t ∈ N, there exists an integer 0 < l < pe such that

t(n) = l for every n > 2. By Corollary 5.7, it is enough to show that for any sufficiently large

integer u > 0, there exist an integer n0 and T ∈ U such that for every m ∈ T , we have

τn0+1,u
e (R,∆, alt0) + mM0 · τ(R,∆) ⊇ τn0,u

e (R,∆, alt0),

where M0 := (pe(n0+6) − 1)emb(R)/(pe − 1).

Let (R#,m#) be the catapower of (R,m), ∆# be the flat pullback of ∆ to SpecR# and a∞
be the ideal [am]m ⊆ R#. It follows from Lemma 2.17 that for all integers u, n > 0 we have

τn,ue (R#,∆#, a
l·t0
∞ ) = [τn,ue (R,∆, al·t0m )]m.

By Proposition 2.6, there exists an integer n0 > 0 such that

τ(R#,∆#, a
〈l·t0〉n0,q∞ ) = τ(R#,∆#, a

〈l·t0〉(n0+1),q
∞ ).

On the other hand, by Proposition 3.12(viii), there exists an integer u0 such that for all

integers u > u0 and n > 0, we have

τn,ue (R#,∆#, a
l·t0
∞ ) = τ(R#,∆#, a

〈l·t0〉n,q
∞ ).

Therefore, we have

[τn0,u
e (R,∆, al·t0m )]m = [τn0+1,u

e (R,∆, al·t0m )]m ⊆ R#.

Since mM0 · τ(R,∆) ⊆ R is an m-primary ideal, it follows from Lemma 2.21 that there exists

T ∈ U such that for every m ∈ T , we have

τn0,u
e (R,∆, al·t0m ) ⊆ τn0+1,u

e (R,∆, al·t0m ) + mM0 · τ(R,∆),

which completes the proof. 2

Theorem 5.9 (Main theorem). Let (X = SpecR,∆) be a pair such that τ(R,∆) is m-primary

or trivial and that (pe − 1)(KX + ∆) is Cartier for some integer e > 0, and let I ⊆ R be an

m-primary ideal. Then, the set

FJNI(R,∆) := {fjnI(R,∆; a) | a ( R}

satisfies the ascending chain condition.
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Proof. We assume the contrary. Then there exists a family of ideals {am}m∈N such that the
sequence {fjnI(R,∆; am)}m∈N is a strictly ascending chain. Set t := limm−→∞ fjnI(R,∆; am). It
follows from Proposition 2.6 and Theorem 4.7 that t ∈ Q>0.

Let U be a non-principal ultrafilter, let R# be the catapower of R, let ∆# be the flat
pullback of ∆ to SpecR#, and a∞ := [am]m ⊆ R#. Take elements f1, . . . , fl ∈ R# such that
a∞ = (f1, . . . , fl). Since the natural map

∏
m∈N am −→ [am]m is surjective, there exists fm,i ∈ am

for every m ∈ N such that fi = [fm,i]m.
Set a′m := (fm,1, . . . , fm,l) ⊆ am. Since we have [a′m]m = a∞, it follows from Theorem 4.7

that sh(ulimm fjnI(R,∆; a′m)) = t. On the other hand, since we have fjnI(R,∆; a′m) 6
fjnI(R,∆; am) < t, by replacing by a subsequence, we may assume that the sequence
{fjnI(R,∆; a′m)} is a strictly ascending chain. By replacing am by a′m, we may assume µR(am) 6 l
for every m.

By enlarging e, we may assume that q = pe satisfies the following properties:

(i) q(q − 1)t ∈ N; and

(ii) q > ``R(R/I) + l + emb(R).

It follows from Proposition 5.8 that there exist integers u, n1 > 0 and T ∈ U such that

τn,ue (R,∆, atm) ⊆ I if and only if τn1,u
e (R,∆, atm) ⊆ I

for every integer n > n1 and m ∈ T . By enlarging u, we may further assume that u > s̃tab(R#,
∆#, a∞; e). For every m ∈ N and for every sufficiently large n� 0 we have

τn,ue (R,∆, atm) ⊆ τ(R,∆, a
〈t〉n,q
m ) ⊆ I.

Therefore we have τn1,u
e (R,∆, atm) ⊆ I for every m ∈ T .

On the other hand, since 〈t〉n1,q < t = fjnI·R#(R#,∆#; a∞), we have

[τn1,u
e (R,∆, atm)]m = τn1,u

e (R#,∆#, a
t
∞)

= τ(R#,∆#, a
〈t〉n1,q∞ )

6⊆ I ·R#.

Therefore, there exists a set S ∈ U such that

τn1,u
e (R,∆, atm) 6⊆ I

for every m ∈ S. Since S ∩ T 6= ∅, we have contradiction. 2

Corollary 5.10 (Theorem 1.2). Fix an integer n > 1, a prime number p > 0 and a set Dreg
n,p

such that every element of Dreg
n,p is an n-dimensional F -finite Noetherian regular local ring of

characteristic p. The set
T reg
n,p := {fpt(A; a) | A ∈ Dreg

n,p, a ( A},
satisfies the ascending chain condition.

Proof. We assume the contrary. Then there exists a sequence {Am}m∈N in T reg
n,p and ideals

am ( Am such that the sequence {fpt(Am; am)} is a strictly ascending chain.
Since test ideals commute with completion [HT04, Proposition 3.2], we may assume that

Am = km[[x1, . . . , xn]] for some F -finite field km. Take an F -finite field k such that km ⊆ k for
every m. Let (A,mA) be the local ring k[[x1, . . . , xn]]. Then we have fpt(A; (amA)) = fpt(Am; am)
by Lemma 2.11. Therefore, we have fpt(Am; am) ∈ FJNmA(A, 0) for every m, which contradicts
to Theorem 5.9. 2
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Let (R,m, k) be a Noetherian local ring of equicharacteristic. Then (R,m) is said to be a
quotient singularity if there exist a regular affine variety U = SpecA over k, a finite group G with
a group homomorphism G −→ Autk(U), and a point x of the quotient V = U/G := Spec(AG)

such that there exists an isomorphism R̂ ∼= ÔV,x as rings. Moreover, if |G| is coprime to char(k),
then we say that (R,m) is a tame quotient singularity.

Lemma 5.11. Let (R,m, k) be a tame quotient singularity of dimension n. Then, there exists a
finite group G ⊆ GLn(k) with the following properties.

(i) The number |G| is coprime to char(k).

(ii) The natural action of G on the affine space Ank has no fixed points in codimension 1.

(iii) Let V := Ank/G be the quotient and x ∈ V be the image of the origin of Ank . Then we have

R̂ ∼= ÔV,x.

Proof. The proof follows as in the case when char(k) = 0 (see [dFEM10, p. 15]), but for the
convenience of reader we sketch it here.

Since R is a tame quotient singularity, there exists a regular affine variety U , a finite group G

which acts on U such that |G| is coprime to char(k), and a point x ∈ V such that R̂ ∼= ÔV,x. Take
a point y ∈ U with image x. By replacing G by the stabilizer subgroup Gy ⊆ G, we may assume
that G acts on the regular local ring (A,mA) := (OU,y,my). Since |G| is coprime to char(k),
it follows from Maschke’s theorem that the natural projection mA −→ mA/m

2
A has a section as

k[G]-modules. This section induces k[G]-algebra homomorphism GrmA(A)−→ A, where GrmA(A)
is the associated graded ring of (A,mA). Therefore, by replacing U by Spec(GrmA(A)), we may
assume that U = Ank and G ⊆ GLn(k).

Let H ⊆ G be the subgroup generated by elements g ∈ G which fixes some codimension
one point of U . Since |G| is coprime to char(k), it follows from the Chevalley–Shephard–Todd
theorem (see for example [Ben93, Theorem 7.2.1]) that U/H ∼= Ank . By replacing U by U/H and
G by G/H, we complete the proof of the lemma. 2

Proposition 5.12 (Theorem 1.3). Fix an integer n > 1, a prime number p > 0 and a set Dquot
n,p

such that every element of Dquot
n,p is an n-dimensional F -finite Noetherian normal local ring of

characteristic p with tame quotient singularities. The set

T quot
n,p := {fpt(R; a) | R ∈ Dquot

n,p , a ( R is an ideal}

satisfies the ascending chain condition.

Proof. The proof is essentially the same as [dFEM10, Proposition 5.3]. Let (R,m, k) be a local
ring such that R ∈ Dquot

n,p , and let a ( R be an ideal of R. Let G, V , and x be as in Lemma 5.11.
Consider the natural morphism π : U := Ank −→ V . Since G is a finite group, the morphism π
is a finite surjective morphism with deg(π) coprime to char(k). Since G acts on U with no fixed
points in codimension one, the morphism π is étale in codimension one.

Set W := Spec(R̂) and U ′ := U ×V W . Since U is a regular scheme and W −→ V is a regular
morphism, each connected component of U ′ is a regular scheme. Fix a connected component
U ′′ ⊆ U ′. Since the morphism π̂ : U ′′ −→ W is finite surjective, étale in codimension 1 and deg π̂
is coprime to p, it follows from [HT04, Theorem 3.3] that

fpt(W ; aOW ) = fpt(U ′′; aOU ′′).
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On the other hand, since the test ideals commute with completion [HT04, Proposition 3.2],
we have

fpt(R; a) = fpt(W ; aOW ).

Therefore, it follows from Corollary 5.10 that the set T quot
n,p satisfies the ascending chain

condition. 2

We conclude with a natural question as below.

Question 5.13. Does Theorem 1.2 give an alternative proof of [dFEM10, Theorem 1.1]?
Moreover, does Theorem 5.9 imply that the set of all jumping numbers of multiplier ideals
with respect to a fixed m-primary ideal on a log Q-Gorenstein pair over C satisfies the ascending
chain condition?

We hope to consider this question at a later time.
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Mircea Mustaţă for his helpful comments and suggestions. He would like to thank Doctor Sho
Ejiri, Doctor Kentaro Ohno, Doctor Yohsuke Matsuzawa and Professor Hirom Tanaka for useful
comments. He is also indebted to the referee for careful reading of the manuscript and thoughtful
suggestions. A part of this work was carried out during his visit to University of Michigan with
financial support from the Program for Leading Graduate Schools, MEXT, Japan. He was also
supported by JSPS KAKENHI 17J04317.

References
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