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A colloidal motor driven by surface tension forces is theoretically designed by
encapsulating an active Janus particle in a liquid drop which is immiscible in the
suspending medium. The Janus particle produces an asymmetric flux of a solute species
which induces surface tension gradients along the liquid–liquid interface between the
drop and the surrounding fluid. The resulting Marangoni forces at the interface propel the
compound drop/Janus particle system. The propulsion speeds of the motor are evaluated
for a range of relative sizes and positions of the drop and the particle and across a
range of transport properties of the drop and the suspending medium. It is demonstrated
that the proposed design can produce higher propulsion velocities than the traditional
Janus-particle-based colloidal motors propelled by neutral diffusiophoresis.
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1. Introduction

Micron and submicron scale active particles have been investigated for decades. At these
length scales, the active media or ‘swimmers’ are typically in the low-Reynolds-number
regime where inertial effects of the encompassing fluid are negligible. Unlike most
simply periodic mechanical motions that are adopted by macroscopic active matter for
self-propulsion, the swimming mechanisms governing the propulsion of such swimmers
are often more complex due to the restrictions that arise with the absence of inertia
(Purcell’s ‘scallop theorem’ (Purcell 1977)). Apart from the natural mechanisms found
in small-scale living organisms, self-propulsion of artificially designed active matter
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or ‘colloidal motors’ is also of great interest (Sundararajan et al. 2008; Solovev
et al. 2012; Wang & Gao 2012; Abdelmohsen et al. 2014) and has been achieved
through mechanisms including ‘bubble propulsion’ (Gibbs & Zhao 2009), ‘neutral
diffusiophoresis’ (Golestanian, Liverpool & Ajdari 2005) and ‘self-electrophoresis’
(Wang et al. 2006). In particular, diffusiophoresis is a commonly cited mechanism wherein
a particle is placed in a gradient of another solute species which then interacts through
attractive or repulsive forces with the particle leading to a net imbalance in the forces
acting on the particle (Anderson 1989; Sharifi-Mood, Koplik & Maldarelli 2013). The
particle is thus forced to translate by this force which is then balanced by the hydrodynamic
drag from the surrounding fluid. Janus particles have been favoured in the past to design
motors based on this mechanism due to their non-homogeneous surface properties that
give them the ability to interact with the environment in an asymmetric manner. Janus
particles can be designed with varying surface properties so that a portion of the particle
(often labelled the ‘active side’) can itself produce or selectively catalyse the production of
the surrounding solute species thereby creating and maintaining the required asymmetric
concentration distribution of the solute which in turn drives the Janus particle (Golestanian
et al. 2005; Pawar & Kretzschmar 2010; Popescu, Uspal & Dietrich 2016). Realizations of
this mechanism have revealed that the resulting propulsion speeds are generally quite low
with magnitudes of the order of 1–10 body lengths per second which typically translates
to speeds of the order of 10 μm s−1 (Howse et al. 2007; Ebbens & Howse 2010; Wang &
Wu 2014). This is because the forces involved are mostly weak van der Waals forces (for
neutral solutes). This is one of the key limitations of this form of colloidal motor.

Surface tension forces can often play a dominant role in the dynamics of fluids
when liquid interfaces are involved. Self-propulsion using capillary forces has also been
studied. For example, Lord Rayleigh (Strutt 1890) attempted to experimentally quantify the
sensitivity of grease in arresting the spontaneous motion of camphor scrapings floating
atop a bath of water. He describes some of the earliest efforts that helped cement the
understanding of some of the relevant physics, including the importance of surface tension
differences in driving these scrapings.

The term ‘Marangoni surfer’ is commonly used to refer to particles located at or near
the junction of two fluids that are propelled along the fluid–fluid interface by generating
a gradient in the surface tension forces surrounding them. Camphor boats are a classic
example of such surfers where the boat is some particle partially immersed in a liquid
interface loaded with camphor (a surface-active agent). As the camphor dissolves, it
reduces the local tension at the fluid interface. The particle can generate a surface tension
imbalance around it by releasing the camphor asymmetrically which causes the propulsion
of the boat. This simple demonstration of the concept of Marangoni surfing using everyday
items has evoked much academic inquiry in the subject matter. There has been much work
devoted to understanding the single particle and collective dynamics of particles coated
with camphor or other such surfactants at a liquid interface (Nagayama et al. (2004) and
references therein).

Janus particles have also been used to design propulsion mechanisms involving surface
tension gradients or Marangoni forces. Metallic Janus particles can also be preferentially
heated to produce a temperature gradient around the particle (Würger 2014; Dietrich et al.
2020). This results in a similar reduction in the interfacial tension and the resulting
imbalance of forces (thermocapillary forces) is also a possible driving force for such
surfers. Such surface tension-based propulsion mechanisms have proved to be quite
effective with the resulting velocities reaching scales of ∼O(cm s−1) which translates to
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1000–10 000 body lengths per second for micron-scale colloidal motors (Sur, Masoud &
Rothstein 2019; Dietrich et al. 2020)!

Early modelling efforts used a mix of analytical and semiempirical methods in an
attempt to capture the interesting dynamics of the particles without fully resolving the
flow field surrounding them (Nakata et al. 1997; Nagayama et al. 2004; Heisler et al.
2012), etc. More recently, Lauga & Davis (2012) approached the problem by solving the
Stokes equations for the edgewise translation of a thin cylindrical disk with a prescribed,
asymmetric concentration of some surfactant along the circular edge of the disk. They
solved the surfactant transport equations at the diffusive limit with negligible surface
Péclet number (Pes → 0) while assuming that the surfactant is insoluble in the bulk
volume of the fluid. However, commonly studied Marangoni propulsion problems require
that the propelled body, such as the Janus particle, either be at or near a fluid–fluid interface
(Domínguez et al. 2016; Gidituri, Panchagnula & Pototsky 2019) which make it difficult
for this mechanism to be adapted for applications involving propulsion within the bulk of
the fluid.

Another well studied class of low-Reynolds-number propulsion problems involve the
motion of individual bubbles and drops or a collection of them in the bulk of the fluid.
Here the earlier issue is sidestepped as the species being propelled carries with it a
fluid interface. One of the earliest fully analytical solutions in this class of problems
is the well-known solution to a spherical drop translating with a constant velocity
under an applied temperature gradient (Young, Goldstein & Block 1959) where the
heat transfer is assumed to be purely diffusive (low Péclet number). The solutions also
assume a low capillary number regime to retain the spherical shape of the drop. Other
interesting developments include solutions to pairs of drops interacting with an externally
applied temperature gradient (Wang, Mauri & Acrivos 1994), drops translating under a
temperature/concentration gradient that are affected by the adsorption of surfactants at the
interface (Kim & Subramanian 1989; Chen & Stebe 1997) and more. While these types of
solutions have been put to practical use in various engineering applications, they have not
been used to design active particles.

In the above examples, it can be noted that the propulsion of the drop or particles
depends on its ability to sample a temperature or solute gradient around it. This is
because, in the quasistatic diffusion dominated regime of heat/mass transport, it would
not be possible to spontaneously generate thrust forces if the particle were to only interact
symmetrically with its surroundings. When considering particles and drops that are able to
generate a symmetric distribution of some interacting species such as surfactant molecules
or other solutes that can interact with the particle or drop surface via, for example, van
der Waals forces, the net forces generated from these interactions typically cancel and
the particle or drop remains quiescent. As mentioned above, a simple way to generate
a gradient around the motor is to use an active Janus particle or a similar anisotropic
active particle (Schnitzer & Yariv 2015). In fact, if the geometry around the active particle
is non-isotropic, it allows for asymmetric distributions of the solute or heat around the
particle due to diffusion. Thus, in such cases self-propulsion can still be achieved and even
guided by the boundaries around the active particle. (Popescu, Dietrich & Oshanin 2009;
Michelin & Lauga 2015; Domínguez et al. 2016; Mozaffari et al. 2016; Uspal et al. 2016;
Yariv 2016; Popescu et al. 2018).

However, spontaneous motion can be achieved if the Péclet number for the mass transfer
around the motor is sufficiently high. It is well known that camphor particles that are
symmetric in shape can also propel themselves at an interface under the appropriate
conditions (Kitahata et al. 2004; Nagayama et al. 2004). The mechanism behind this
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spontaneous propulsion has also been theoretically investigated in analogous systems such
as a particle or drop in the bulk of the fluid exhibiting spontaneous propulsion driven by
phoretic or Marangoni forces (Michelin, Lauga & Bartolo 2013; Izri et al. 2014; Michelin
& Lauga 2014). The advective coupling of the concentration field with the velocity field
implies that small perturbations to the velocity field can lead to a deviation from the
symmetric distribution of the concentration of interacting species along the surface of
the particle or drop. These perturbations in turn generate additional thrusts on the particle
or drop that are unbalanced leading to its propulsion. As a result, the system can either
restore itself to the earlier state of quiescence or deviate further from this state by further
propelling the particle. A stability analysis may help determine the right conditions to
potentially induce spontaneous propulsion in the system.

To retain the practical uses of a solid particle and to satisfy the need for an interface
at the vicinity of the particle, a suitable design combining drops with particles is then
sought. In particular, particles or drops encapsulated in liquid drops (‘compound drops
or particles’ (Johnson & Sadhal 1985; Chaithanya & Thampi 2019)) can be used as
an alternative to an isolated drop or particle. Their ability to carry the core particle
in the presence of gravitational forces is one of the earliest such analytical solutions
in the literature (Sadhal & Oguz 1985). This study was further extended to the case
of thermocapillary motion under an externally applied temperature gradient (Morton,
Subramanian & Balasubramaniam 1990). Other related literature can be found in the
book by Subramanian, Balasubramaniam & Clark (2002). However, the need for an
externally applied gradient falls short of our requirement that the motor be self-propelled.
For compound drops, the inner drop can be loaded with surfactants that are released
asymmetrically with respect to the outer drop (Tsemakh, Lavrenteva & Nir 2004). For
compound particles, it is necessary to incorporate one of the earlier mechanisms by which
the motor can produce and maintain its own temperature or surfactant gradient.

The focus of this article is then to design a novel active species using the familiar
Janus particle at its core and a liquid interface around the particle so that the combined
compound drop/Janus particle system can behave as an active motor which employs the
more significant Marangoni propulsion force to propel itself in the bulk of the fluid while
retaining any benefits of a solid colloidal motor. In recent literature, active compound
particles have been investigated where the drop is driven by the actuation of the fluid
inside using different mechanisms including for example an anisotropic distribution of
internal forces, for example an active encapsulated squirmer (Chaithanya & Thampi
2020; Sprenger et al. 2020; Kree, Rueckert & Zippelius 2021; Kree & Zippelius 2022)
Although these studies also involve the propulsion of a compound particle/drop, they
differ fundamentally from the current analysis in that the drop interface is not necessary
to generate the propulsion forces unlike in the case of our Marangoni-driven mechanism.

2. Problem statement

Consider a spherical Janus particle of radius R1 encapsulated by a spherical drop
of radius R2 of fluid 1 in an infinite medium of fluid 2 as depicted in figure 1.
The inert portion of the Janus particle is denoted by the surface Sp and the active
spherical cap is denoted by the surface Sc. The interface of the two fluids is labelled
SI . Subscripts 1 and 2 will be used to specify the individual variables in either the drop
phase or the infinite medium, respectively. The Janus cap is active in the sense that it
generates a flux of some solute species which exhibits surface activity at the interface
of the two fluids. This can be achieved by loading the cap with a surfactant, or by
allowing the cap to react with the surrounding fluid to produce the desired species as in
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Figure 1. Illustration of the compound drop/Janus motor generating a flux of a surface-active species.

catalytic active motors. Equivalently, the Janus particle can be preferentially heated using
laser-based mechanisms to produce a heat flux from the (typically metallic) conductive
cap. Since the surface tension forces are sensitive to the species concentration and
temperature gradients at the interface, it is necessary to solve the coupled scalar species or
energy and momentum conservation equation in both fluids to completely determine the
corresponding concentration (or) temperature and velocity fields.

2.1. Concentration field

2.1.1. Governing equations
Following the approach of (Lauga & Davis 2012; Masoud & Stone 2014), we neglect the
contributions of advection and restrict ourselves to a regime of purely diffusive transport
of surfactants in either fluid (Pei → 0). In doing so, the governing equations reduces to
the simple, linear Laplace equation for the species concentration in either fluid Ci(x) (or
analogously the temperature field for heat transport) (Leal 2007),

∇2Ci = 0. (2.1)

The fluid motion is still driven by the gradients of the surface tension γ across the drop
interface which requires a one-way coupling of the equations at the minimum.

2.1.2. Boundary conditions
We assume that the Janus particle produces a constant flux J of the surface-active species
from the active cap region to approximate the transfer of the solute species from the Janus
particle surface into the surrounding liquid. This assumption is valid if the variations
in the bulk concentration of the solute near the Janus particle surface have negligible
consequences on the solute efflux rate (i.e. when the diffusion of the solute from the
particle surface is faster than the rate of production of the solute (Córdova-Figueroa, Brady
& Shklyaev 2013; Shklyaev, Brady & Córdova-Figueroa 2014)). Similar assumptions can
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be found in the literature for Janus particles driven via diffusiophoresis (Sharifi-Mood
et al. 2013). It can sometimes be instructive to assume a constant value for the
concentration/temperature at the cap surface. The latter case is particularly useful in
analysing temperature gradients near hot Janus particles with highly conductive metallic
caps (Würger 2014).

Such a limit is not considered in this study. At the drop interface, we restrict the
analysis to solutes which exhibit faster adsorption and desorption kinetics relative to the
surface transport of the species. Therefore, the surface excess concentration Γ (x) of the
solute equilibrates with the bulk concentration instantaneously and the disturbance due to
surface transport is negligible. Under dilute conditions, this equilibrium value is linearly
proportional to the corresponding bulk concentrations in either fluid. Consequently, we
assume that the surface concentrations of the solute species are purely determined by the
instantaneous bulk concentration at every point along the interface via the use of partition
coefficients (k1, k2) (Berg 2010). For a heat-driven compound drop/Janus particle system,
the temperature field is continuous at the interface (k1 = k2 = 1).

The boundary conditions for the concentration field satisfying (2.1) are given as

−D1n̂ · ∇C1(x) = J{x ∈ Sc}, (2.2)

n̂ · ∇C1(x) = 0{x ∈ Sp}, (2.3)

Γ (x) = k1C1(x) = k2C2(x){x ∈ SI}, (2.4)

−D1n̂ · ∇C1(x) = −D2n̂ · ∇C2(x) {x ∈ SI}. (2.5)

Here n̂ refers to the normal pointing into the fluid 1 at the prescribed surface and Di is the
diffusion coefficient of the solute in the respective fluid i.

2.2. Velocity field
We shall limit the analysis to axisymmetric configurations of the compound drop/Janus
particle system wherein the instantaneous position and orientation of the Janus particle
relative to the drop is such that the axis of the spherical cap is along the line joining the
centres of the two spheres. In such configurations the entire compound drop/Janus particle
system can be described as a body of revolution. By arguments of symmetry, the motion
is purely translatory (parallel to the axis of revolution).

2.2.1. Governing equations
We neglect any effects of shear and dilatational surface viscosities due to surfactant at
the surface. The small length scale typical in problems involving microscale colloidal
motors means the governing equations for the velocity and pressure fields (ui, pi) are well
approximated by the Stokes equations (Rei ∼ 0) given by (assuming no external body
forces or other singularities)

−∇pi + μi∇2ui = 0, (2.6)

∇ · ui = 0, (2.7)

where μi is the dynamic viscosity in the fluid i.

2.2.2. Boundary conditions
Assuming the Janus particle and drop exhibit negligible inertia, the hydrodynamic drag
will have to balance out the propulsive forces on either body. Under these force-free
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conditions, the drop and the Janus particle translate with velocities U, V , respectively. The
boundary conditions for the fluid are no slip at the Janus particle surface and the continuity
of velocities at the fluid–fluid interface. As previously mentioned, the drop is assumed to
retain its spherical shape. This is a fair assumption if the surface tension forces dominate
over the viscous forces to restore the drop to the energetically favourable spherical shape
(Ca → 0). Thus the kinematic boundary condition reduces to the simpler no-penetration
condition which restrains the normal velocity at the drop surface. Finally, the tangential
stress jump at the interface is balanced by the additional stress generated due to the surface
tension gradients (Marangoni stresses) (Leal 2007),

u1(x) = V êz{x ∈ Sp, Sc}, (2.8)

u1(x) = u2(x){x ∈ SI}, (2.9)

u1(x) · n̂ = Uêz · n̂{x ∈ SI}, (2.10)

n̂ · (σ2(x)− σ1(x)) · t̂ = t̂ · ∇sγ (x){x ∈ SI}, (2.11)

where (∇s = ∇ − (n̂·∇)n̂) and (t̂) represents each of the pair of orthogonal tangential
unit vectors at any given point on the surface. Together (n̂, t̂) are a mutually orthogonal
set of unit vectors at the prescribed surface and σi is the Cauchy stress tensor for fluid i.

A linear relationship between the surface tension and the concentration field is adopted,
γ = γ0(1 − βΓ ), (2.12)

where γ0 is the clean interface surface tension and the coefficient β = −(1/γ0)(∂γ /∂Γ )
is assumed to have a prescribed constant value. This assumption has been shown to be
valid for sufficiently dilute concentrations of the surfactant (Manikantan & Squires 2020).

The forces on the drop and the Janus particle directed along the axis of symmetry (say
êz) are given by ∫∫

©
SI

êz · σ2 · n̂ ds = 0, (2.13)

∫∫
©

Sp∪Sc

êz · σ1 · n̂ ds = 0. (2.14)

For convenience, we can denote the relevant ratios of the solute partition and diffusion
coefficients and the fluid viscosities as k2/k1 = k, μ2/μ1 = μ,D2/D1 = D. Since the
governing equations for both the fluid mechanics and the concentration field are linear
and quasisteady, it is possible to solve the problem analytically for various realizations
of the compound drop/Janus particle system involving different relative sizes, positions,
cap sizes, etc. The relevant non-dimensional groups are defined as Pei = UR1/Di, Ca =
μ1U/γ0, Rei = ρiUR1/μi.

3. Analytical solutions

3.1. Concentric configuration
In this analysis, the drop and the particle are assumed to be concentric. It is convenient to
use spherical coordinates with the origin at the common centre as shown in figure 2. By
symmetry, both the Janus particle and the surrounding drop experience a translational
motion along the axis of revolution denoted as êz. To proceed with the solution, it
is convenient to make the governing equations dimensionless using the scaling factors
R1, (JR1/D1) and U for length, concentration and velocity.
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Fluid 2

Fluid 1

r

R1

êω

êz

R2

θ

φ

α

Figure 2. Spherical basis for concentric configuration depicting the active cap facing the êz direction.

3.1.1. Concentration field
The general axisymmetric solution to (2.1) in spherical coordinates is given as
(Subramanian et al. 2002)

C =
∞∑

n=0

(Xnrn + Ynr−(n+1))pn(ϑ), (3.1)

where ϑ = cos θ and pn(ϑ) are the nth-order Legendre polynomials. Since the
concentration decays to 0 far field, i.e. C2 → 0 as r → ∞, the outer and inner
concentration fields are given as

C1 =
∞∑

n=0

(Xnrn + Ynr−(n+1))pn(ϑ), (3.2)

C2 =
∞∑

n=0

(ynr−(n+1))pn(ϑ). (3.3)

The boundary conditions (2.2)–(2.5) can be written in spherical coordinates as follows:

∂C1

∂r
= D

∂C2

∂r
{r = χ−1}, (3.4)

C1 = kC2{r = χ−1}, (3.5)

∂C1

∂r
= −1{r = 1, 0 ≤ θ ≤ α}, (3.6)

∂C1

∂r
= 0{r = 1, α < θ ≤ π}, (3.7)

where χ = R1/R2 and α is the cap angle. Using orthogonality relations of Legendre
polynomials ∫ 1

−1
pn(ϑ)pm(ϑ) dϑ =

⎧⎨
⎩

2
2n + 1

{n = m}
0 {n /= m}

, (3.8)
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the boundary conditions can be converted into a system of equations for the coefficients
(X, Y). As the equations for individual orders of the Legendre polynomial are decoupled,
they allow for an explicit solution for each coefficient and this is given in the
Supplementary material available at https://doi.org/10.1017/jfm.2023.5.

3.1.2. Velocity field
It is convenient to solve the problem in the moving reference frame attached to the drop.
As the problem is completely axisymmetric, it is possible to simplify the vector equations
into a single equation for the Stokes stream function ψ . The corresponding equation for
the stream function for Stokes flow in spherical coordinate system is given by (Leal 2007)

E4(ψ) = 0, (3.9)

where E2 = ∂2/∂r2 + ((1 − ϑ2)/r2)(∂2/∂ϑ2). The velocity fields can be obtained from
the stream function using the relation u = ∇ × ((ψ/ω)êφ) where ω is the perpendicular
distance from the axis of rotation,

u · êr = − 1
r2
∂ψ

∂ϑ
, (3.10)

u · êθ = − 1

r
√

1 − ϑ2

∂ψ

∂r
. (3.11)

The stream function is scaled by UR1
2. The general solutions to the stream function are

given as

ψ =
∞∑

n=1

(Anrn+3 + Bnrn+1 + Cnr2−n + Dnr−n)gn(ϑ), (3.12)

where gn(ϑ) are the modified Gegenbauer polynomials of order n (Leal 2007). These
are related to the traditional Gegenbauer polynomials Cm

n as gn(ϑ) = −C
−1/2
n+1 (ϑ). The

derivative of these polynomials can also be related to the Legendre polynomials of
corresponding order,

dgn(ϑ)

dϑ
= pn(ϑ). (3.13)

The modified Gegenbauer polynomials obey the following orthogonality relations:

∫ 1

−1

gn(ϑ)gm(ϑ)

(1 − ϑ2)
dϑ =

⎧⎨
⎩

2
(n)(n + 1)(2n + 1)

{n = m}
0 {n /= m}

. (3.14)

As in the previous analysis, the stream functions cannot contain singular terms within the
domain of their applicability. Also, since the flow far from the drop is a uniform streaming
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flow −Uêz in the reference frame attached to the drop, the stream function tends to

u2 → −1êz or ψ2 → r2

2
(ϑ2 − 1){r → ∞}. (3.15)

Correspondingly, we seek general solutions to the stream function in each fluid of the form

ψ1 =
∞∑

n=1

(Anrn+3 + Bnrn+1 + Cnr2−n + Dnr−n)gn(ϑ), (3.16)

ψ2 = r2g1(ϑ)+
∞∑

n=1

(cnr2−n + dnr−n)gn(ϑ). (3.17)

Substituting (3.10), (3.11) in the boundary conditions (2.8)–(2.11), we get

ψ1 = ψ2 = 0{r = χ−1}, (3.18)

∂ψ1

∂r
= ∂ψ2

∂r
{r = χ−1}, (3.19)

1
r

(
μ
∂2ψ2

∂r2 − ∂2ψ1

∂r2

)
− 2

r2 (μ− 1)
∂ψ1

∂r

= −
(
βγ0k2

Uμ1

(
JR1

D1

)) ∞∑
n=0

n(n + 1)bn(
1
χ

)n+2 gn(ϑ){r = χ−1}, (3.20)

− 1
r2
∂ψ1

∂ϑ
=
(

V
U

− 1
)
ϑ{r = 1}, (3.21)

−1
r
∂ψ1

∂r
=
(

V
U

− 1
)
(ϑ2 − 1){r = 1}. (3.22)

Upon substituting (3.16) and (3.17) into the above equations, a set of linear equations is
obtained. These equations can be simultaneously solved to evaluate the coefficients and
thereby the stream function for either fluid (see Supplementary material). The solution for
the two velocities can then be evaluated by using the force-free conditions (2.13), (2.14)
which reduces to setting the coefficients of g1 linear in the radius for the two stream
functions to 0, i.e. (C1, c1 = 0) (see Leal 2007, p. 462). The explicit solutions for the
terminal velocity are thus obtained to be

U
βγ0k2JR1

μ1D1

= −3(−1 + χ−5)sin2α

4
(

2 − 2μ+ 3 + 2μ
χ5

)(
k − D − k + 2D

χ3

)
χ

, (3.23)

V =
(

1 + (−1 + χ−1)(2 + 4χ−1 + 6χ−2 + 3χ−3)

2(1 + χ−1 + χ−2 + χ−3 + χ−4)

)
U. (3.24)

Evidently, the natural scale for the Marangoni-driven motor velocity is βγ0k2JR1/μ1D1.

3.2. Eccentric configuration
Since both the drop and the Janus particle move along the common axis of revolution,
it is evident that the Janus particle will translate along the line joining the centres of
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the two spheres at least initially. Further, since such eccentric configurations are also
axisymmetric, there will be no torque on the Janus particle or the drop due to symmetry
arguments. Thus, we shall consider all eccentric configurations where the Janus particle is
displaced along the line joining their centres and the entire compound drop/Janus particle
system can be described as a body of revolution about the axis passing through both their
centres. However, it must be noted that the Janus particle and the drop need not remain
axisymmetric under the action of perturbations. A stability analysis must be conducted
to determine the operational regime wherein these eccentric configurations are stable to
outside disturbance. Such an analysis is left for a future study.

In order to solve this system, it is convenient to formulate the problem in bispherical
coordinates (ξ, η, φ) as the constant coordinate surfaces of ξ can be used to construct
the eccentric spheres making it convenient to satisfy the boundary conditions on either
surface (figure 3). The relevant conversions between the bispherical and the more familiar
cylindrical coordinates (ξ, η, φ) ↔ (z, ω, φ) and corresponding unit vectors are given as
(Subramanian et al. 2002)

z = p sinh ξ
cosh ξ − cos η

, ω = p sin η
cosh ξ − cos η

. (3.25a,b)

From Happel & Brenner (2012), the metric coefficients h (in our notation) corresponding
to the coordinates q are given as

h1 = h2 = (cosh ξ − cos η)
p

, h3 = (cosh ξ − cos η)
p sin η

, (3.26a,b)

where (q1, q2, q3) = (η, ξ, φ) and p = |R1 sinh ξ1|. The unit vector along the axis of
assumed motion then becomes

êz = êξ (h2)
δz
δξ

+ êη(h1)
δz
δη
. (3.27)

It is convenient to use p, Jp/D1,U,Up2 as the scaling factors for the length, concentration,
velocity and stream function and ζ = cos η. Thus,

êz = êξ
(1 − ζ cosh ξ)
(cosh ξ − ζ )

− êη
sinh ξ

√
(1 − ζ 2)

(cosh ξ − ζ )
. (3.28)

The range of relative positions of the two spheres can be classified into two cases
(see figure 3). Case 1 corresponds to the configurations where ξ1 > ξ2, {ξi > 0} and
case 2 refers to the remaining configurations ξ1 < ξ2, {ξi < 0}. Further discussion of
the bispherical coordinate system can be undertaken simultaneously for both cases by
choosing the upper sign for case 1 and the lower sign for case 2 wherever applicable. The
coordinate system is then completely defined by choosing χ = R1/R2, υ = d/(R2 − R1)
(where d is the centre-to-centre distance between the Janus particle and drop) and λ = ∓υ
which represents the non-dimensional position of the Janus particle relative to the drop
centre along the axis joining the two spheres (Subramanian et al. 2002):

ξ1 = ± arcosh
[
υ2(χ − 1)+ (1 + χ)

2υχ

]
, (3.29)

ξ2 = ± arcosh
[
υ2(χ − 1)− (1 + χ)

2υ

]
. (3.30)

As a convention, we shall take positive and negative values of λ to mean displacement
along and against the direction faced by the Janus cap.

958 A12-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

5 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2023.5


S. Chembai Ganesh, J. Koplik, J.F. Morris and C. Maldarelli

(z = –p,ξ = –∞)

(z = +p,ξ = +∞)

(z = 0,ξ = 0)

(a)

(b)

Case 1

(ξ = ξ2,ξ2 > 0)

(ξ = ξ1,ξ1 > 0)

R2

R1

η = π η = 0

(z = +p,ξ = +∞)

d

êω

(z = –p,ξ = –∞)

êω

êη

êξ

êηêξ

êz∅

(z = 0,ξ = 0)

η = πη = 0

êz∅

α

Case 2

(ξ = ξ2,ξ2 < 0)

(ξ = ξ1,ξ1 < 0)

R2

R1

d

α

Figure 3. Bispherical basis for eccentric configuration(s) when the position vector of the particle relative to
the drop centre is along (a) êz (case 1) or along (b) −êz (case 2).
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3.2.1. Concentration field
The Laplace equation for an axisymmetric scalar field can be written in bispherical
coordinates as (see Leal 2007, p. 448)

∇2 = (cosh ξ − ζ )3
(
∂

∂ξ

(
1

(cosh ξ − ζ )

∂

∂ξ

)
+ ∂

∂ζ

((
1 − ζ 2

cosh ξ − ζ

)
∂

∂ζ

))
, (3.31)

and the general axisymmetric solution to (2.1) is (Subramanian et al. 2002)

C =
√

cosh ξ − ζ

∞∑
n=0

[Xn e(n+1/2)ξ + Yn e−(n+1/2)ξ ]pn(ζ ). (3.32)

As shown in figure 3, the coordinate ξ tends to infinity at a finite distance from the drop
surface. To avoid the resulting singularities in the field variables, the general solution for
the concentration field in both fluids can be written in the following form convenient for
applying the appropriate boundary conditions:

C1 =
√

cosh ξ − ζ

∞∑
n=0

[Xn e(n+1/2)(ξ−ξ2) + Yn e−(n+1/2)(ξ−ξ2)]pn(ζ ), (3.33)

C2 =
√

cosh ξ − ζ

∞∑
n=0

[xn e±(n+1/2)(ξ−ξ2)]pn(ζ ), (3.34)

since ξ → ∓∞ is within the domain of the outer fluid. Applying (2.4), (2.5) at ξ = ξ2
gives

C1 = kC2, (3.35)

∂C1

∂ξ
= D

∂C2

∂ξ
. (3.36)

Applying (2.2), (2.3) at ξ = ξ1 we get

∂C1

∂ξ
= ± F

(cosh ξ1 − ζ )
,

{
F = 1, η ∈ {0, η∗}

0, η ∈ {η∗,π}
}
. (3.37)

Here F is the non-dimensional flux along n̂ = ∓ξ̂ and the range of values of η between
(0, η∗) depicts the active cap. Unlike the simpler case with the concentric configuration,
these equations do not easily yield a simple explicit solution, but upon substituting the
general solution for both the fluids into these equations, a coupled system of linear
equations for the coefficients of the general solution is obtained (see Supplementary
material). The corresponding matrix for the infinite system of linear equations can be
truncated as required to obtain a sufficiently converged solution to the coefficients of the
concentration field for the inner and outer fluid.

3.2.2. Velocity field
Due to the axisymmetric nature of the problem, we adopt a similar approach as used in the
earlier section for the concentric configuration and seek solutions for the velocity fields
using the Stokes stream functions. However, we shall solve for the velocity fields in the
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stationary reference frame as it proves to be more convenient while applying the far field
boundary conditions,

(uξ , uη) =
(

cosh ξ − ζ

sin η

)(
∂ψ

∂η
,−∂ψ

∂ξ

)
, (3.38)

where the stream function satisfies (3.9) (Subramanian et al. 2002) with E2 = (cosh ξ −
ζ )((∂/∂ξ)((cosh ξ − ζ )(∂/∂ξ))+ (1 − ζ 2)(∂/∂ζ )((cosh ξ − ζ )(∂/∂ζ ))). Based on similar
considerations as mentioned for the concentration field, the general solutions for the stream
functions of the two fluids are written as

ψ1 = (cosh ξ − ζ )−3/2
∞∑

n=1

[
An e(n−1/2)(ξ−ξ2) + Bn e−(n−1/2)(ξ−ξ2)

+ Cn e(n+3/2)(ξ−ξ2) + Dn e−(n+3/2)(ξ−ξ2)

]
gn(ζ ),

(3.39)

ψ2 = (cosh ξ − ζ )−3/2
∞∑

n=1

[an e±(n−1/2)(ξ−ξ2) + bn e±(n+3/2)(ξ−ξ2)]gn(ζ ). (3.40)

Applying (2.9)–(2.11) at ξ = ξ2 gives

u1 · êξ = u2 · êξ = 1êξ · êz, (3.41)

u1 · êη = u2 · êη, (3.42)

êξ · (σ1 − σ2) · êη = ∓ 1
μ1U

(∇sγ ) · êη, (3.43)

where

êξ · σi · êη = σiξη =
(
μi

μ1

)
(cosh ξ − ζ )3/2√

1 − ζ 2

⎡
⎢⎢⎢⎢⎢⎣
(1 − ζ 2)

[
(cosh ξ − ζ )

∂2ψi

∂ζ 2 − 3
∂ψi

∂ζ

]

−
[
(cosh ξ − ζ )

∂2ψi

∂ξ2 + 3 sinh ξ
∂ψi

∂ξ

]
⎤
⎥⎥⎥⎥⎥⎦ . (3.44)

Using the partition coefficient, the surface concentration can be related to either bulk
concentration (here for the outer fluid) Γ = k2C2. Thus

∇sγ = −
(
βγ0k2Jp

D1

)
(cosh ξ − ζ )

∂C2

∂η
. (3.45)

Similarly, applying boundary condition (2.8) at ξ = ξ1 gives

u1 · êξ =
(

V
U

)
êξ · êz, (3.46)

u1 · êη =
(

V
U

)
êη · êz. (3.47)

As in the case of the concentration field, the boundary conditions can be used to set up a
system of linear equations for the coefficients of the general solution (see Supplementary
material). We can then truncate the resulting matrix to obtain an approximate solution for
the unknown coefficients. Once the velocity fields are known, the terminal velocities U
and V can be found using the force-free relations (2.13), (2.14) on the drop and the Janus
particle, respectively.

958 A12-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

5 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2023.5


Dynamics of a surface tension driven colloidal motor

2.0

(a)

0.5

0.4

0.3

0.2

0.1

0 0.02 0.04

0.5

0.4

0.3

0.2

0.1

0 0.02 0.04

1.5

1.0

U
×

1
0

–
2

0.5

30

20

10

0

–10

–20

–30
–30 –20 –10 0 10 20 30 –30 –20 –10 0 10 20 30

30 1.0

0.8

0.6

0.4

0.2

0

20

10

0

–10

–20

–30

0

3.0

(ii)(i)

(b)

2.5

2.0

1.5

V
×

1
0

–
2

1.0

0.5

0

0 3 6
τ

9

α = Π/2 α = Π/3 α = 2Π/3

12 0 3 6
τ

9 12

Figure 4. (a) Plot of the (dimensionless) velocities of the a(i) drop and the a(ii) Janus particle as a function
of the thickness for different cap angles (α = π/3,π/2, 2π/3) keeping (k = D = μ = 1); (b) heat map of the
solute concentration for cap angles (α = π/2 ± π/6) keeping (k = D = μ = 1) and (τ = 1).

4. Results and discussion

4.1. Concentric configuration
The terminal velocities of the Janus particle and the drop as a function of the dimensionless
thickness of the annulus of liquid between the Janus particle and the drop interface
(τ = (R2 − R1)/R1) when they are concentrically placed is plotted in figure 4. These
and further results are computed using the first 20 terms of the series expansions for
both the stream function and the concentration field and the velocities of the particle and
the drop are reported as dimensionless quantities scaled by the Marangoni scaling factor
βγ0k2JR1/μ1D1 in all subsequent plots. The terminal velocities and the solutions for the
relevant concentration fields and stream functions are depicted using the solutions from
§ 2.1.

It is evident from the analytical solutions that the magnitude of the velocity of the
Janus particle relative to that of the drop is always greater than 0. Consequently, the drop
and the Janus particle cannot remain concentric. However, since the Stokes equations are
quasisteady, the solutions for the concentric case are correct in the instant that the Janus
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particle migrates to the drop centre. Another interesting feature of these solutions is that
the terminal velocities of both the drop and the particle are functions of sinα, where α
is the cap angle. Thus, the particles with cap angles (α = π/2 ± α0) behave identically.
Figure 4(a) depicts this phenomenon for α0 = π/6. This result can be understood by
comparing the gradients of the concentration field generated by these cap sizes. Figure 4(b)
is a heat map of the concentration field. The propulsion forces generated from the
concentration gradients can be similar for large and small cap sizes even though the larger
cap generates more solute and thereby can have a larger surfactant concentration near the
interface.

Finally, figure 4(a) also indicates that there exists an optimum drop size at which
the particle and drop velocities attain a maximum value. This can be understood as a
consequence of the competing effects of increasing the drop size. On one hand, a larger
drop has greater interfacial area and therefore can generate larger propulsion forces and on
the other, it can increase the hydrodynamic drag from the surrounding fluid.

4.2. Eccentric configuration
The motion of the Janus particle and the drop were analysed using the formulations in
§ 2 for various eccentric positions. In figure 5, the dimensionless velocities of the drop
and the Janus particle are plotted as a function of λ for three different Janus angles. The
points along the x = 0 axis correspond to the situation where the drop and the particle are
concentric and are the results derived from the analysis using the concentric configuration.
The remaining data points are computed using the eccentric analysis from § 2.2. We can
numerically verify that the bispherical solutions agree with the concentric solutions as
λ→ 0.

We can define two directions ‘forward’ and ‘backward’ to represent the direction along
the Janus particle/drop axis penetrating through the Janus cap and the reverse direction
(i.e. +êz and −êz, respectively, in our formulations). When the Janus particle is located in
the region 0 ≤ λ < 1, the Janus cap generates a region of higher concentration of surface
active solute in its immediate vicinity which in turn adsorbs onto the drop surface creating
a region of low surface tension. Since the location on the drop surface closest to the Janus
cap is the point of intersection of the drop surface and the axis of the Janus particle, this
region will have the lowest tension. From the symmetry in the problem, it is then obvious
that the surface tension monotonically increases until it reaches its highest value at the
point on the drop surface along the same axis in the backward direction. The gradients thus
created drive the Janus particle/drop in the forward direction. Therefore, it is conceivable
that the closer the particle is to the drop surface, the stronger these gradients get and the
stronger the resulting propulsive forces. On the other hand, when the Janus particle is
in the region −1 < λ < 0, the concentration field produced by the Janus cap exhibits a
maximum value along the drop interface at a location that is not necessarily along the
axis of the drop/Janus particle. Thus, the symmetry of the problem requires the setting
up of two opposing directions of concentration gradients (see figure 6a). The resulting
competing forces can propel the Janus particle and the drop either forward or backward
depending on various other factors.

The presence of positions where the drop and the Janus particle may move together is of
interest for practical applications. While the concentric concentration solutions explicitly
disallow equal velocities, the system of equations for the bispherical formulation (in
this case) have been numerically inverted and further analysis is necessary to make any
quantitative statements regarding the existence and prediction of such positions. However,
it is worth noting that any such position that lies in the second or third quadrants of
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Figure 5. Dimensionless velocities of the (a–c) drop and the (d–f ) Janus particle for different cap angles
(α = π/3,π/2, 2π/3) keeping (k = D = μ = 1).

the plots in figure 5 is inherently unstable in the sense that any slight displacement to
the position of the particle can lead to the system moving away from that configuration.
This also implies that the Janus particle and the drop do not naturally attain this position
unless artificially positioned that way. For example, figure 6(b) depicts one such stationary
position for a particular choice of the problem parameters. Figure 6(c) depicts the surface
concentration of the solute for the stationary position depicted in figure 6(b). It is evident
that the surface concentration has a maximum at an arbitrary location along the drop
surface and will therefore exhibit surface concentration gradients along two directions.
From (2.11) and (2.12), it is then evident that the surface concentration gradient will affect
the direction of the induced surface stresses along the drop surface leading to the stationary
position.

If the terminal velocity of the Janus particle always differs from that of the drop, the
Janus particle will approach the limiting eccentric positions of λ→ ±1 eventually. While
the bispherical solutions are valid for the entire range of λ, the solutions do not converge
sufficiently fast as the Janus particle comes close to the drop surface. This is due to the
inherent mathematical limitation of the bispherical coordinate system which is not well
defined in the limiting case of the Janus particle touching the drop surface. Furthermore,
as the Janus particle approaches the drop surface, the need to force fluid out of the thin
region between the drop and the particle will generate large restoring lubrication pressures
that reduce the velocity of the Janus particle. To study these limits, we would have to
employ numerical techniques or resort to an asymptotic matching of the velocity fields
using a lubrication model for the inner flow in the thin gap and a solution based on tangent
sphere basis (Moon & Spencer 2012) for the outer flow.
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Figure 6. (a) Illustration of the opposing directions of the excess surface concentration gradient generated due
to the location maximum in the surface excess being off the line of centres of the drop and the Janus particle
(θ = 0) for positions of the Janus particle λ ∈ (−1, 0); (b) illustration of a stationary position where the drop
and the Janus particle (dimensionless) velocities are equal for (τ = 1, α = 2π/3) keeping (k = D = μ = 1);
(c) surface excess concentration distribution for the configuration in panel (b) for the interpolated stationary
position of λ = −0.48 (from inset) with Γ0 = k2JR1/D1 (θ is defined anticlockwise about the drop centre from
the z axis as shown in panel (a)).

Even well within the drop, the trends displayed by the drop and Janus particle velocities
at different eccentric locations are widely different and we can attempt to explain this by
comparing these solutions to those from asymptotic formulations based on the plausible
dominant physics for different drop thicknesses. In particular, the reduced velocities of
the Janus particle and the drop for low values of τ can be a consequence of lubrication
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Figure 7. Validation of the lubrication analysis: comparison of the (dimensionless) velocities from the
lubrication solution (4.2) with the bispherical solutions for different cap angles (α = π/3,π/2, 2π/3) keeping
(k = D = μ = 1) and (τ = 0.01).

forces which would also explain why the terminal velocities are not nearly as monotonic
as the solutions for larger τ . Thus, a simplified model of the problem highlighting the
effects of lubrication should be capable of reproducing these trends and validating our
reasoning. Similarly, the limit of large τ produces nearly symmetric behaviour about
the two directions of eccentricity. As the particle becomes sufficiently small, its size
becomes increasingly negligible in determining the dynamics of the two spheres. It is
then conceivable that the dominant physics can be reproduced using an asymptotic model
that takes advantage of the existence of this small parameter (namely, the relative size of
the Janus particle to the drop). In the subsequent sections, the effects of the limiting values
of τ are reproduced using such simplified analytical models.

4.2.1. Lubrication limit (τ → 0)
When the Janus particle radius approaches that of the drop, it is more convenient to think
of the drop as a thin liquid layer on the spherical Janus particle. To avoid the issue of
multiple scales, we restrict ourselves to the configurations wherein the eccentricity in the
Janus particle location relative to the drop is also of the same order as the thickness of the
drop annulus. The problem then reduces to a lubrication analysis for the fluid dynamics
inside the drop along with a leading-order analysis of the flow in the unbounded outer
fluid. The velocities for the lubrication regime are

U ∼ V ∼ τU′ + O(τ 2), (4.1)

U′
k2γ0βJR1

μ1D1

= 1
8

(
6B′

(
(λ+ (λ2 − 1) arctanh λ)

λ3

)
− A′

)
. (4.2)

See Appendix A for the complete analysis. The coefficients A′ and B′ are defined in the
appendix and are not repeated here for the sake of brevity. The Marangoni scaling for
the terminal velocities(k2γ0βJR1/μ1D1) is retained in the lubrication limit. These results
can be validated by plotting them against the bispherical solutions for small values of τ
(figure 7).

From this analysis, we conclude that the drop and Janus particle velocities are equal
to leading order and that they scale as O(τ ). This result is unsurprising as the analytical

958 A12-19

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

5 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2023.5


S. Chembai Ganesh, J. Koplik, J.F. Morris and C. Maldarelli

0.25

0.20

0.15

U
 (

L
u
b
ri

ca
ti

o
n
) 

×
1
0

–
2

0.10

0.05

0

–0.6

π/6 π/4 π/3 π/2 2π/3 3π/4 5π/6

–0.3 0
λ

0.3 0.6

Figure 8. Leading-order (dimensionless) velocities of both drop and Janus particle in the lubrication limit
(τ = 0.01) for different cap angles (α = π/6,π/4,π/3,π/2, 2π/3, 3π/4, 5π/6) keeping (k = D = μ = 1).

solutions for the terminal velocity from the concentric configuration (which are a good
indicator for the scale of the velocity) can be expanded in τ to obtain the same information.
Nevertheless, having an analytical formula for all eccentric configurations gives us
further insights. In this limit, the velocities of the drop and the Janus particle are essentially
the same and can by plotted for different cap angles for comparison (figure 8). Interestingly,
there seems to exist an antisymmetry in the dynamics of the drop along the directions of
eccentricity for Janus particles with supplementary cap angles. Further, the maximum
velocity of the drop/Janus particle is achieved when the Janus particle is concentrically
located with its cap spanning exactly half its surface area (i.e. α = π/2). The fact that the
relative velocity between the drop and the Janus particle scales as at least O(τ 2) enables
us to design colloidal motors in this regime which can retain their relative configuration
for extended periods of time.

4.2.2. Point particle limit (τ → ∞)

(a) Point source formulation.

Due to the diffusive nature of the solute transport, the relative orientation of the
particle (direction of the Janus cap) becomes unimportant and when the Janus particle
is sufficiently small, its position with respect to the centre of the drop becomes the
dominating geometric factor in determining its dynamics. In this limit, we can consider
the particle to be represented as a point source of the solute. The symmetry of the point
source ensures that the system is still axisymmetric and can admit solutions in the spherical
coordinate system centred at the drop. Correspondingly, we can modify the governing
equation of the concentration field in the inner fluid to

D1∇2C1 = 4πNpδ(rêr − Rpêz), (4.3)

where the point source is located at Rpêz and has the strength Np = (1/4π)
∫

SI
J ds =

JR1
2((1 − cosα)/2).

It is evident from the force-free nature of the problem that the monopole hydrodynamic
contribution of the sphere (i.e. the point force contribution) to the velocity field is zero.
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Figure 9. Leading-order (dimensionless) velocities of both (a) drop and (b) Janus particle in the point source
limit (τ = 99) for different cap angles (α = π/6,π/4,π/3,π/2, 2π/3, 3π/4, 5π/6) keeping (k = D =
μ = 1).

Hence, in the point particle limit, the problem reduces to that of finding the velocity of
the drop translating under the gradient generated by a point source of the solute/heat at the
prescribed eccentric location of the Janus particle. Since the flow is governed by Stokes
equations, the force-free Janus particle in the point size limit naturally assumes the velocity
of the drop at the point.

The general solution to the homogeneous component (i.e. the Laplace equation) is a
series expansion in Legendre polynomials much like the solutions in § 3. We can simply
append a particular solution to account for the singular inhomogeneity. The dimensionless
inner solution to the concentration field then takes the form

C1 =
∞∑

n=0

Xnrnpn(ϑ)+ 1

4π(r2 + R2 − 2Rr cos θ)1/2
. (4.4)

Here R = Rp/R2 and the natural scales are R2 (length), U(velocity) and 4πNp/D1R2
(concentration). The outer concentration, boundary conditions at the interface, the stream
function formulations and the force-free conditions for the drop surface are identical to
those from § 3. The absence of the boundary conditions at the Janus particle surface is
compensated by the reduced number of permitted (non-singular) eigenfunctions from the
solutions to the field variables in the inner fluid. The point source concentration solution
(and thus the concentration gradient along the interface) are geometrically determined
by the size of the drop and the position of the point source. Therefore, as expected the
terminal velocity plots exhibit mirror symmetry about the concentric configuration and
are necessarily zero when the Janus particle and the drop become concentric due to the
lack of propulsion (figure 9).

(b) Method of reflections formulation.

While the point source formulation is able to capture the physics of the compound
drop/Janus particle system at the limit of τ → ∞, it is not an accurate representation
of the system as the eccentricity approaches the limiting cases of λ→ ±1 as the particle
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size becomes relatively important. Furthermore, the asymmetry in the concentration field
due to the oriented Janus cap is necessary to explain the velocity of the system when
the particle approaches the origin since the point source solutions invariably lead to a
symmetric concentration field which cannot propel the drop/Janus particle.

Assuming that the particle is sufficiently small relative to the drop, the distance from the
particle surface to the drop is of the scale of the drop radius in most regions except very
near the drop surface. Therefore, we use the method of reflections (Happel & Brenner
2012) to generate an expansion for the terminal velocities of the drop and the Janus
particle in increasing powers of χ (see Appendix B for full details including the number
of reflections required to obtain the first two terms of the expansion depicted here)

U(
k2βγ0JR1

μ1D1

) = 2
(9 + 6μ)

(χ f1(1)+ χ2f2(1)), (4.5)

V(
k2βγ0JR1

μ1D1

) = f1(1)
(9 + 6μ)

⎛
⎜⎜⎜⎝
⎛
⎜⎜⎜⎝

(
5 − 3

(
d

R2

)2
)(

χ +
(

f2(1)
f1(1)

)
χ2

)

+
∞∑

n=2

⎛
⎜⎜⎜⎜⎝

n (n + 1) (9 + 6μ)
2 (1 + 2n) (1 + μ)

(
f1(n)
f1(1)

)

×
((

d
R2

)n−1
−
(

d
R2

)n+1
)(

χ +
(

f2(n)
f1(n)

)
χ2

)
⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎠
⎞
⎟⎟⎟⎠, (4.6)

f1(n) = 2n + 1
2(nk + D(n + 1))

×
∫ 1

−1

(
R2(d2n + (1 + n)R2

2 − d(1 + 2n)R2x)(cosα − 1)

2(d2 + R2
2 − 2dR2x)

3/2

)
pn(x) dx, (4.7)

f2(n) = 2n+1
2(nk+D(n + 1))

∫ 1

−1

⎛
⎜⎜⎜⎜⎜⎜⎝

3R2
2

⎛
⎝ −d3n + d2(2 + 3n)R2x

+(2 + n)R2
3x

−dR2
2(3 + n + x2 + 2nx2)

⎞
⎠ sinα2

8(d2 + R2
2 − 2dR2x)

5/2

⎞
⎟⎟⎟⎟⎟⎟⎠

pn(x) dx.

(4.8)

From the above equations, it is evident that the leading velocities for the Janus particle
and the drop are both at most O(χ) due to the scaling. This can also be seen from the
plots of the bispherical solution which illustrate the similarity between the magnitude
of the velocities for low and high values of τ . We note that the leading-order solutions
from the method of reflections are numerically identical to the point source solutions. The
higher-order correction thus presents the leading-order effects of the size of the Janus
particle in the dynamics of the compound drop/Janus particle system. We validate these
solutions by comparing them with the bispherical solutions in figure 10.

These solutions also allow us to illustrate the importance of the size of the particle in
generating the competing asymmetry to the particle location. As shown in figure 10, the
method of reflections solutions presented above can predict the position where the drop
or the Janus particle becomes stationary due to the previously mentioned competition
between the contributions to the concentration gradient generated by the direction of the
Janus cap and the Janus particle position relative to the centre of the drop. The solutions
for the case of λ = 0 are derived to from the Taylor series expansion of the solutions to the
concentric configuration to O(χ2).
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Figure 10. Validation of the method of reflections: comparison of the (dimensionless) velocities from the
method of reflection solutions (4.5) and (4.6) with the bispherical solutions for different cap angles (a) α =
π/3, (b) α = π/2, (c) α = 2π/3 keeping (k = D = μ = 1) and (τ = 9).

4.2.3. Effect of transport properties
The effect of the various transport properties including the fluid viscosities, the diffusivity
of the solute in the two fluids and the partition coefficients of the concentration field at
the drop interface on the terminal velocities are illustrated in figure 11. These results
are plotted using the bispherical and spherical coordinate formulations. However, the
asymptotic formulations from the earlier discussion can also reproduce these results
when τ → (0,∞). The effect of varying τ has already been established in the previous
sections and is seen to be valid in all sampled combinations of (k,D, μ). While changing
the relative magnitude of the transport properties affects the magnitude of the terminal
velocities, the effect is seen to be consistent over the sampled values of τ . For example,
increasing μ reduces the terminal velocities irrespective of the value of τ . Thus, we can
discuss the effect of the transport properties independently. Although, the quantitative
effect of the different properties may not be fully discernible from the numerical results
plotted above, some qualitative features can be understood by examining the effect of
these properties on the explicit analytical solutions (3.23), (3.24) for the concentric
configuration. The equations show that the drop velocity can decrease monotonically when
any one of the ratios (k,D, μ) is increased while maintaining fixed values for the others
and τ . Correspondingly, this causes a monotonic variation in the velocity of the Janus
particle. Increasing μ increases the drag on the drop thereby decreasing the velocity of
the drop. On the other hand, increasing (k,D) decreases the propulsive Marangoni force
thereby also decreasing the velocity of the compound drop/Janus particle system. It can
be noted that increments in D reduce the amount of the solute at the interface at steady
state as the solute species diffuses more easily into the unbounded fluid. This reduces the
magnitude of the forces generated by the Marangoni tractions. However, upon increasing k,
it is likely that the surface active solute accumulates within the drop thereby reducing the
tangential gradients along the fluid interface and consequently decreases the propulsion
forces on the drop.

5. Conclusion

The compound drop/Janus particle design was studied with the explicit intention of
taking advantage of the dominant capillary forces at length scales where inertia and
advective forces are negligible. The terminal velocities achieved by the drop and the
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Figure 11. Dimensionless velocities of the drop and the Janus particle for low and high values of the ratio
(a–c) D, (d–f ) k and (g–i) μ for (τ = 0.01, 1, 99) keeping the other corresponding ratios as 1 and α = π/2.

Janus particle can be predicted by analysis of the coupled concentration (or) heat and
momentum transport equations using a bispherical coordinate system or using various
asymptotic models (where explicit analytical models are derivable) as explained in the
previous section. We showed that either limit of the relative thickness of the annulus
of liquid within the drop with respect to the size of the particle τ → (0,∞) produces
velocities of smaller magnitudes. In the limit when τ → 0 , the drop size is approximately
the Janus particle size and the resulting thin film dynamics within the drop create large
lubrication resistances. On the contrary, the latter limit of a small Janus particle (τ → ∞),
the compound motor faces large hydrodynamic resistances from the relatively large drop
size. Furthermore, the effects of the various transport properties and the idea of competing
asymmetries (between the effects of the orientation and the position of the Janus particle)
resulting in flipping the propulsion direction were also discussed.

If the Janus particle were undergoing neutral diffusiophoretic propulsion in fluid 1 in
the absence of an interface and a second fluid, the velocity scale would typically be given
by Ud ∼ bdJ/D1 where bd is the slip coefficient that relates the surface slip velocity us
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to the concentration gradient of the solute at the particle surface (us = bd∇sC). We can
compare the potency of the Marangoni mechanism prescribed in this paper with neutral
diffusiophoresis by analysing the magnitude of the ratio of the two velocities U/Ud ∼
k2βγ0R1/μ1bd. From Sharifi-Mood et al. (2013), the slip coefficient at a given temperature
T is given by

bd = kbT
μ1

�s
2
∫ ∞

0
y(eΦ1(y)/kbT − 1) dy, (5.1)

where kb is the Boltzmann constant and �S is the characteristic length scale of the inner
region where the effect of the interaction potential Φ1 is significant. Using the Gibb’s
formula for the surface excess of the solute (Peng et al. 2020), the partition coefficient as
defined in (2.4) can be written as

k2 = �I

∫ ∞

0
(eΦ2(y)/kbT − 1) dy, (5.2)

where �I is the characteristic length scale of the interfacial adsorption zone of the solute in
the fluid and Φ2 is the interaction potential between the solute and the interface. Finally,
we can assume a Langmuir-type adsorption isotherm for the surface pressure Π to get

∂Π

∂Γ
= βγ0 = kbT/(1 − Γ/Γ∞), (5.3)

where Γ∞ is the maximum surface excess due to steric considerations. Substituting (5.1),
(5.2) and (5.3) into the ratio of velocities gives

U
Ud

∼

⎛
⎜⎜⎝

(
R1�I

�s
2

)
(1 − Γ/Γ∞)

⎞
⎟⎟⎠
⎛
⎜⎜⎝

∫ ∞

0
(eΦ2(y)/kbT − 1) dy∫ ∞

0
y(eΦ1(y)/kbT − 1) dy

⎞
⎟⎟⎠ . (5.4)

Here �I and �S both have similar origins and are typically of the order of a few molecular
lengths (Anderson, Lowell & Prieve 1982). We restrain our analysis to the dilute limit of
the solute surface excess where Γ/Γ∞ → 0 which is in line with our earlier assumption
that the partition coefficient is independent of the bulk concentration. Further, Anderson
et al. (1982) showed that the ratio of the integrals in (5.4) is of O(1) if we assume
that the (typically attractive) potentials Φ1, Φ2 are similar in magnitude. The ratio of
velocities is then directly proportional to the ratio of the particle size ∼ O(10−6 m) and
the adsorption zone length scale which is typically ∼ O(10−9 m) giving U/Ud ∼ O(103).
Thus, it is evident that a Marangoni-based propulsion mechanism is a suitable alternative
to self-diffusiophoresis as a mechanism to drive a colloidal motor based on Janus particles.
It can be noted that while our calculations (see figures 4–11) do not suggest that the
velocities go as high as O(cm s−1), surface-tension-driven systems can indeed realize such
high velocities. In these cases, it is necessary to study the effect of the advection on the
solute transport as the corresponding Péclet numbers (here defined in § 2.2.2) have been
shown to exhibit non-negligible values. The inclusion of fluid inertia and/or advection can
significantly alter the dynamics of the self-propelled particle as demonstrated in recent
literature involving Marangoni surfers (Kang et al. 2020; Ender et al. 2021).
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Further research will be necessary to determine the dynamics of the system if the
particle and the drop come into contact. As the particle approaches the drop interface
(i.e. as λ→ ±1 ), a few different possibilities can occur. If the particle is strongly wet
by the drop phase, then the interactions between the particle surface and the interface in
the form of a disjoining pressure (De Gennes 1985) may become important impeding the
particle from breaching the interface. However, if the particle exhibits a finite contact angle
at the drop interface, the particle is likely to straddle the interface. In the latter case, the
solutions using the bispherical basis will no longer be valid and the analysis will need to be
conducted using tangent sphere and/or toroidal coordinates (Danov, Dimova & Pouligny
2000; Tsemakh et al. 2004). In addition, it may be worthwhile to analyse the stability of the
axisymmetric configuration studied here to non-axisymmetric perturbations. Further, the
stability might be easier to examine for the lubrication limit which can be more interesting
for applications as it can maintain its configuration for extended periods (due to the small
relative velocity of the particle with respect to the drop) and has simpler explicit formulae
for the leading-order compound drop/Janus particle velocity which allow for better control
and predictability of the system.

Finally, the kinetics of the solute exchange at the interface have been assumed to fast
relative to the diffusion in the bulk. (i.e. Equation (2.4)). For very small droplets, that is
when the diffusion length scale is sufficiently small, the kinetic transport from and to the
interface might exhibit time scales that are comparable to diffusion and hence might need
to also be considered (see for example Alvarez, Walker & Anna (2010)).
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Appendix A. Lubrication analysis in the limit of τ → 0

Consider the compound drop/Janus particle system in the limiting case wherein the drop
and the Janus particle are nearly identical in radius. In this limit, there exists a small
parameter; namely, the dimensionless thickness of the inner liquid layer. The Janus particle
can adopt eccentric positions such that the relative distance between the centres of the two
spheres is as depicted in figure 12(a). Adopting a similar terminology to the lubrication
analysis of concentric cylinders in Leal (2007), the eccentricity is given, with positive and
negative values for defined in the same way as in the bispherical solutions in the paper. The
problem is best solved using the spherical coordinate system with the origin at the centre
of the Janus particle and moving with the velocity of the drop as shown in figure 12(b)
(This is possible as the solutions are quasi steady.) The dimensional radial coordinate of
the liquid interface is then given by RI(θ) and the equation for the interface can be stated
simply as

H = r − RI(θ) = 0. (A1)
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Dynamics of a surface tension driven colloidal motor

o(τ)!

R1

R2 = (1 + τ) R2

V U

(n̂,t̂ ) (ê
r ,ê

θ )

d = τλR1

r

α

φ

θ

o(τ)!

êz

(b)(a)

Figure 12. (a) Graphical depiction of lubrication limit; (b) schematic diagram for lubrication analysis.

Using this, the normal and tangential unit vectors can be written as

n̂ = −∇H
|∇H| = −

⎛
⎜⎜⎜⎜⎝

1√
1 +

((
1

1 + h

)
∂h
∂θ

)2
êr −

((
1

1 + h

)
∂h
∂θ

)
√

1 +
((

1
1 + h

)
∂h
∂θ

)2
êθ

⎞
⎟⎟⎟⎟⎠ , (A2)

t̂ =

⎛
⎜⎜⎜⎜⎝

((
1

1 + h

)
∂h
∂θ

)
√

1 +
((

1
1 + h

)
∂h
∂θ

)2
êr + 1√

1 +
((

1
1 + h

)
∂h
∂θ

)2
êθ

⎞
⎟⎟⎟⎟⎠ . (A3)

Note that a negative sign is used to be consistent with our earlier definition of the unit
normal (pointing into fluid 1). Scaling length with R1, velocity by U and pressure by a
characteristic scale P0 (yet to be determined)

h = τ(1 − λ cos θ). (A4)

Here the drop is assumed to retain its spherical shape. If the drop were allowed to deform,
then we would have to solve the kinematic boundary conditions to determine h(θ). The
normal vectors have both O(1) and O(τ ) terms,

n̂ = −

⎛
⎜⎜⎜⎜⎝

1√
1 +

(
τλ sin θ

1 + τ(1 − λ cos θ)

)2
êr +

(
τλ sin θ

1 + τ(1 − λ cos θ)

)
√

1 +
(

τλ sin θ
1 + τ(1 − λ cos θ)

)2
êθ

⎞
⎟⎟⎟⎟⎠

= −êr + O(τ ), (A5)
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t̂ =

⎛
⎜⎜⎜⎜⎝−

(
τλ sin θ

1 + τ(1 − λ cos θ)

)
√

1 +
(

τλ sin θ
1 + τ(1 − λ cos θ)

)2
êr + 1√

1 +
(

τλ sin θ
1 + τ(1 − λ cos θ)

)2
êθ

⎞
⎟⎟⎟⎟⎠

= êθ + O(τ ), (A6)

taking the scaled velocities ui = uriêr + uθ iêθ , {i ∈ 1, 2}. The governing equations of the
continuity equation and the individual components of the momentum balance equations
for either fluid are given by

1
r2
∂

∂r
(r2uri)+ 1

r sin θ
∂

∂θ
(sin θuθ i) = 0, (A7)

(
P0R1

μ1U

)(
−∂pi

∂r

)
+

⎛
⎜⎜⎝

1
r2
∂

∂r

(
r2 ∂uri

∂r

)
+ 1

r2 sin θ
∂

∂θ

(
sin θ

∂uri

∂θ

)

− 2uri

r2 − 2
r2
∂uθ i

∂θ
− 2uθ i cot θ

r2

⎞
⎟⎟⎠ = 0, (A8)

(
P0R1

μ1U

)(
−∂pi

∂r

)
+

⎛
⎜⎜⎝

1
r2
∂

∂r

(
r2 ∂uθ i

∂r

)
+ 1

r2 sin θ
∂

∂θ

(
sin θ

∂uθ i

∂θ

)

+ 2
r2
∂uri

∂θ
− uθ i

r2sin2θ

⎞
⎟⎟⎠ = 0. (A9)

The boundary conditions in this moving reference frame can be written as follows: at
r = 1,

ur1 =
(

V
U

− 1
)
(êz · êr), (A10)

uθ1 =
(

V
U

− 1
)
(êz · êθ ); (A11)

at r = 1 + h(θ),

ur1 = ur2, (A12)

uθ1 = uθ2, (A13)

u1 · n̂ = 0, (A14)

μ

(
r
∂

∂r

(uθ2

r

)
+ 1

r
∂ur2

∂θ

)
−
(

r
∂

∂r

(uθ1

r

)
+ 1

r
∂ur1

∂θ

)
=
(

k2γ0β

μ1U
JR1

D1

)(
1
r

)
∂C2

∂θ
.

(A15)

Following the approach in Kang, Nadim & Chugunova (2016) for a thin viscous coating
over a sphere, we define a secondary length scale y as r = 1 + τy for the inner fluid. This
length scale is the appropriate length scale for the radial direction in the inner fluid as
τ → 0. The effects of the lubrication forces as are dominant only in the inner fluid as it is
confined in between the spherical drop surface and the Janus particle. Further, to simplify
the problem analytically, we can restrict (k,D, μ) ∼ O(1). Therefore, the solutes are free
to traverse through the interface and does not accumulate in the inner fluid irrespective of
the drop thickness. Thus, the lubrication effects are only present in the fluid mechanics
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Dynamics of a surface tension driven colloidal motor

of the problem. In balancing the order of the terms in the continuity equation, we get
ur1 = O(τ ). Rewriting the velocity explicitly in terms of the thickness

ur1 = τu′
r1. (A16)

The θ component of the momentum balance also reveals that P0 = μ1U/R1τ
2. The

governing equations reduce to

du′
r1

dy
+ 1

sin θ
d

dθ
(uθ1 sin θ) = 0, (A17)

∂p1

∂θ
= d2uθ1

dy2 , (A18)

∂p1

∂y
= 0. (A19)

These are similar to those derived by Kang et al. (2016). Before discussing the boundary
conditions, it is necessary to establish the scaling in the outer fluid. In this region, the
fluid is not confined by the interface and will not exhibit lubrication effects. Thus, the
natural length scale for the radial and angular directions remains O(1). As dictated by
mass continuity condition, the velocity fields in these directions are also scaled by a
common uniform scaling which as of yet remains unknown. However, this also means
that the scaled equations are identical to the dimensionless Stokes equations. Thus, the
general solution for the axisymmetric stream function in spherical coordinates (3.17) can
be adopted to satisfy the boundary conditions. This is possible despite the origin of the
basis being located at the centre of the Janus particle as the drop surface is still a constant
coordinate surface to leading order.

The boundary conditions to leading order at the Janus particle surface are

u′
r1 = V ′ cos θ, (A20)

uθ1 = 0. (A21)

Here V ′ = (1/τ)(V/U − 1). At y = 1 − λ cos θ , the boundary conditions to leading order
along the aforementioned normal and tangential unit vectors (A5), (A6) are

u′
r1 = (λ sin θ)uθ1, (A22)

uθ1 = uθ2, (A23)

∂uθ1

∂y
= −

(
k2γ0βJR1

μ1U′D1

)(
∂C2

∂θ

)
= −T(θ). (A24)

The angular component of the velocity field in the outer fluid has the same scaling as that
of the inner fluid as necessitated by its continuity at the liquid interface. Since the velocity
components in the outer fluid were shown to have a uniform scale, the scaled boundary
condition at infinity remains u2 → −1ez as necessitated by the moving reference frame
adopted from the very beginning. Further, the pressure is scaled by the natural scaling
(μ2U/R1). Notice that the tangential stress balance contains only the derivative of the
velocity field from the inner fluid. This comes out naturally from the earlier ideas of
scaling. Intuitively, this is expected as the gradients of the velocity field normal to the
interface in the inner fluid must be balanced by the surface tension forces as the absence
of a confining surface disallows such strong gradients in the outer fluid. The equations
derived here are like those derived in an earlier study (Kang, Nadim & Chugunova 2017)

958 A12-29

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

5 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2023.5


S. Chembai Ganesh, J. Koplik, J.F. Morris and C. Maldarelli

with an additional one way coupling between the angular component of the outer and
inner fluid velocities. However, since the inner fluid is completely defined even without
this condition, the solution procedure is fairly straightforward. Integrating the governing
equation(s) along with the mass continuity equation and applying the appropriate
boundary conditions give

uθ1 = dp1

dθ

(
y2

2
− (1 − λ cos θ)y

)
− T(θ)y, (A25)

u′
r1 =

∫
− 1

sin θ
d

dθ
(uθ1 sin θ) dy

=
(

− 1
sin θ

d
dθ

(
sin θ

(
dp1

dθ

(
y3

6
− (1 − λ cos θ)

y2

2

)
− T(θ)

y2

2

)))
+ V ′ cos θ.

(A26)

It is convenient to define the following functions: (1 − ϑ2)(dp1dϑ) = K, (1 −
ϑ2)1/2T(θ) = Q, where ϑ = cos θ as defined in the earlier analysis of the concentric
configuration. It follows from the axisymmetric nature of the problem that (K,Q =
0), ϑ = (−1, 1). Applying the remaining boundary conditions, we get

(1 − λϑ)3
3

dK
dϑ

− λK(1 − λϑ)2 + V ′ϑ = d
dϑ

(
Q(1 − λϑ)2

2

)
. (A27)

The complete solution for the coefficients of the stream function for the outer fluid is
straightforward once the boundary conditions are written in terms of the stream function
(see (3.18)–(3.20)). However, for the purposes of our calculation, it turns out that only
the coefficients proportional to the first modified Gegenbauer polynomial are necessary.
Applying (3.14) and the force-free condition (2.13) we can eliminate the coefficients in
the continuity of the angular component of velocity boundary condition to get (to leading
order)

∫ 1

−1

(
dp1

dϑ
(1 − λϑ)2

2
(1 − ϑ2)− T(1 − λϑ)(1 − ϑ2)

1/2
)

dϑ

=
∫ 1

−1

(
K
(1 − λϑ)2

2
− Q(1 − λϑ)

)
dϑ = 2. (A28)

Finally, the force-free condition for the Janus particle reduces to

F · êz =
∫ 2π

0

∫ π

0
(êr · (−p1I + σ1) · êz) sin θ dθ dφ = 0, (A29)

where I is the identity tensor. Here upon scaling, the force assumes a natural scale from the
product of the pressure scaling and length squared (μ1UR1/τ

2) and the viscous stress does
not contribute to the leading order in τ . The force-free condition can be simplified using
the axisymmetry conditions to the integral

∫ 1
−1 K dϑ = 0. Integrating and simplifying
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Dynamics of a surface tension driven colloidal motor

(A29), we get the following relations for the terminal velocity after a bit of algebra:

U′
k2γ0βJR1

μ1D1

= 1
8

(
6B′

(
(λ+ (λ2 − 1) arctanh λ)

λ3

)
− A′

)
, (A30)

V ′ =
(

k2γ0βJR1

μ1D1U′

)
B′. (A31)

With the constants defined as

A′ = −
( ∞∑

n=1

((
n (2n + 1)

2

(
1
D

)∫ cosα

1
pn(ϑ) dϑ

)∫ 1

−1
gn(η)(1 − λη) dη

))
, (A32)

B′ = −

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎝ λ3

2
(

λ

−1 + λ2 + Tanh−1λ

)
⎞
⎟⎟⎠

×
∞∑

n=1

((
n(2n + 1)

2

(
1
D

)∫ cosα

1
pn(ϑ) dϑ

)∫ 1

−1

gn(η)

(1 − λη) dη

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (A33)

where have used the Legendre polynomial expansion for the outer fluid concentration
to leading order. Since (V/U − 1) ∼ O(τ 2) from definition of V ′, the dimensional
leading-order solution to the terminal velocities for both the Janus particle and the drop is
given by

U ∼ V ∼ τU′ + O(τ 2). (A34)

Thus the Janus particle and the drop can move together with a common terminal velocity
to leading order.

Appendix B. Method of reflection analysis for the limit of τ → ∞ while retaining the
leading-order effect of the size of the Janus particle

Since the problems of species transport and the momentum transport are completely linear,
the solutions can be written as a sum of infinitely many reflections (iMj), (M ∈ {C, ψ},
i ∈ {0,∞}, j ∈ {1, 2}) where the M represents the field variable, the superscript represents
the index of the reflection and the subscript represents the fluid. The expression nC1is the
nth reflection of the concentration field in the inner fluid. In this notation, the complete
solutions to the concentration and stream functions can be written as

Ci =
∞∑

j=0

jCi, (B1)

ψi =
∞∑

j=0

jψi, (B2)

where each successive reflection is solved in spherical coordinates with the same êφ
and the origin alternatingly at the Janus particle (rp, θp) or the drop centres (rd, θd).
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The conversion between the two can be done using the following relations:

rd =
√
(τR1λ)

2 + 2rp(τR1λ) cos θp + rp2, cos θd = (τR1λ)+ rp cos θp√
(τR1λ)

2 + 2rp(τR1λ) cos θp + rp2

rp =
√
(τR1λ)

2 − 2rd(τR1λ) cos θd + rd2, cos θp = rd cos θd − (τR1λ)√
(τR1λ)

2 − 2rd(τR1λ) cos θd + rd2

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
.

(B3)

We reiterate that the eccentric location of the Janus particle is given by the expression
(τR1λ), but with the majority of the configurations, the centre-to-centre distance scales
with the drop radius. Thus, we can define a scaled variable dp = (τλχ) which remains
finite in the limits of τ → ∞, χ → 0. Therefore, it is convenient to work with (R2dp)
instead of (τR1λ). The goal of this calculation is to determine the leading-order correction
to the earlier computed terminal velocities from the point source formulation.

B.1. Concentration field
The linearity of the equations governing the concentration field and their boundary
conditions enables us to independently satisfy the governing equation with each reflection,

∇2(iC1) = 0, i ∈ {0,∞}. (B4)

It is convenient to begin with the unbounded particle problem which is scaled with the
length scale with the following boundary condition(s):

at rp = 1,

− ∂(0C1)

∂rp
=
{

1, (θp ≤ α)

0, (θp > α)
(B5)

The concentration field is scaled as JR1/D1. Solving this system using an expansion in
Legendre polynomials, we get the solution

0C1 =
∞∑

n=0

( 0Yn

rpn+1

)
pn(cos θp), (B6)

where the solutions to the coefficients can be obtained using the orthogonality properties
of the Legendre polynomials (3.8). Clearly, the reflections emanating from the Janus
particle surface do not have a corollary in the outer fluid and are defined only for the
inner fluid. However, they do contribute to the concentration field in the outer fluid as
the inhomogeneity from these reflections enable nontrivial solutions to the corresponding
reflections from the drop surface which are indeed defined in both the outer and inner
fluids.

The first reflection is evaluated at the drop surface with the aid of the general solutions
as defined in § 3 by satisfying the necessary boundary conditions in the presence of the
contributions from the original solution. The corresponding boundary conditions for the
reflection from the drop surface without the particle are as follows:
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at rd = 1,

(1C1 + 0C1) = k(1C2), (B7)

∂(1C1 + 0C1)

∂rd
= D

∂(1C2)

∂rd
, (B8)

where we need to rescale the problem with the length scale R2 in order to apply the
boundary conditions at the drop surface. The concentration field retains the earlier scale.
The solutions from 0C1 for the inner fluid can be expanded in the small parameter ε = χ

as

0C1 =
∞∑

n=0

(εn+1)

(
0Y1

(rd2+dp
2+2rddp cos θd)

(n+1)/2

)
pn

⎛
⎝ rd cos θd−dp√

dp
2−2rddp cos θd + rd2

⎞
⎠ .

(B9)
The corresponding solutions for the concentration field are given by

1C1 =
∞∑

n=0

(1Xnrd
n)pn(cos θd), (B10)

1C2 =
∞∑

n=0

( 1yn

rdn+1

)
pn(cos θd). (B11)

It is convenient to further expand the coefficients of the concentration field into a power
series in the small parameter, i.e. ( jMn) = ∑∞

k=0 (ε
k)( jMn

k), (M ∈ {X, Y, x, y}). The
solutions to the equations are then calculable using the above equations by matching orders
of ε (note, the subscript for the coefficient denotes the order of the Legendre polynomial
to which it is a coefficient and is not an index representing the inner/outer fluid like in the
case of the other field variables).

It is evident that the solution from the particle surface is at least an order of magnitude
smaller at the surface of the drop. Since 0C1 is the only inhomogeneity in the equations for
the first reflection, the solutions to 1C1,

1C2 are to leading order at most O(ε). Similarly,
it can by shown that the contributions from the further reflections onto the drop surface
are either constant at the surface or at most O(ε3). Since the velocity fields are driven by
the tangential gradients of the concentration field at the drop surface, it can be shown that
no further reflections need to be computed to get the required first-order correction to the
terminal velocities. The coefficients of the concentration field at the drop surface for the
outer fluid can then be calculated to within a constant to the order of O(ε2),

C2(θd)|rd=1 =
∞∑

n=0

((ε)(1yn
1)+ (ε2)(1yn

2))pn(cos θd)+ O(ε3)+ const. (B12)

B.2. Velocity field
The problem is solved in a stationary reference frame. The velocity field is then calculated
using the axisymmetric stream functions in the same manner as in the concentric case
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solutions discussed in the paper,

ui = ∇ ×
⎛
⎝ 1
ω

∞∑
j=0

jψiêφ

⎞
⎠ , (B13)

with ω = rd sin θd = rp sin θp. To allow for successive corrections to the terminal
velocities, the unknown velocities must be expanded in the small parameter,

U
U0

=
(

1 +
∞∑

k=1

εkUk

)
, (B14)

V
U0

=
( ∞∑

k=0

εkVk

)
. (B15)

The natural scale for the velocity in all reflections is taken to be U0 which automatically
implies the varying scales (U0R1

2,U0R2
2) for the stream functions in reflections

originating from the Janus particle and the drop surface, respectively. It is convenient to
begin the calculations with an original solution for either fluid (0ψi) from the drop surface
and then to take successive reflections from the Janus particle and the drop alternatingly.
It is to be noted that when taking the reflection from the surface of the Janus particle, the
inhomogeneity from the drop surface gets rescaled from R2 to R1. In this process, it is
convenient to expand out the coordinates in the small parameter as follows:

rd

R2
= ε

rd

R1
=
√

dp
2 + 2ε

(
rp

R1

)
dp cos θp + ε2

(
rp

R1

)2

≈ dp + ε

(
rp

R1

)
cos θp + O(ε2),

(B16)

cos θd =
dp + ε

(
rp
R1

)
cos θp√

dp
2 + 2ε

(
rp
R1

)
dp cos θp + ε2

(
rp
R1

)2
≈ 1 − ε2

2
(sin2θp)

dp
2

(
rp

R1

)2

+ O(ε3).

(B17)

Since the inhomogeneity is a stream function (or a concentration field), it will be
convenient to express the Gegenbauer polynomials as a Taylor series about zero in the
small parameter ε, as follows:

gn(cos θd) = g1(cos θp)

(
rp

dpR1

)2

(ε2)− 2g1(cos θp)

(
rp

dpR1

)3

(ε3)+ O(ε4), (B18)

where we have used gn(1) = 0, pn(1) = 1 along with (3.13).
As usual, the tangential stress balance at the drop surface couples the velocity field

to the earlier evaluated concentration field. Since the concentration field is at most of
O(ε) (see (B12)), the scale of the velocity must be in itself O(ε), i.e. U0 = εU′

0 with
U′

0 ∼ (k2βγ0JR1/μ1D1) ∼ O(1).
The general solutions to the stream functions assume the form (3.12). The coefficients

corresponding to the nth Gegenbauer polynomials of the eigenfunction expansions for the
stream function ( jAk

n,
jBk

n,
jCk

n,
jDk

n,
jak

n,
jbk

n,
jck

n,
jdk

n) are further expanded in terms of
the small parameter like in the case of the concentration field and they can be evaluated by
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satisfying the boundary conditions pertinent to each reflection. The force-free conditions
can be employed at each order of the small parameter to obtain the corresponding
correction to the terminal velocities. In particular, we can show that the force-free
conditions reduce to the following conditions:

O(1) : 1C0
1 = 0c0

1 = 0, (B19)

O(ε) : 1C1
1 = 0c1

1 = 0. (B20)

Using these conditions, we can estimate the dimensional terminal velocities to within the
first correction for the particle size giving

U = εU′
0 + ε2U′

0U1, (B21)

V = εU′
0V0 + ε2U′

0V1. (B22)

The calculations reveal that under force-free conditions, the contributions of the
reflections (0ψ1,

0ψ2,
1ψ1) are sufficient to evaluate the required O(ε) correction to

the terminal velocities of the drop and the Janus particle. Further reflections of the
concentration field and the stream function need to be evaluated to get higher-order
corrections to the terminal velocities. The actual steps of the calculation are identical in
spirit to that of the concentration field and are being omitted herewith in the interest of
brevity.
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