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The Moment-SOS hierarchy, first introduced in optimization in 2000, is based on
the theory of the (-moment problem and its dual counterpart: polynomials that
are positive on (. It turns out that this methodology can also be used to solve
problems with positivity constraints ‘ 5 (x) ≥ 0 for all x ∈ (’ or linear constraints
on Borel measures. Such problems can be viewed as specific instances of the
generalized moment problem (GMP), whose list of important applications in various
domains of science and engineering is almost endless. We describe this methodology
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1. Introduction
The Moment-SOS hierarchy was initially designed to help solve polynomial op-
timization problems (POPs), that is, optimization problems of the form

P : 5 ∗ = inf
x
{ 5 (x) : x ∈ (}, (1.1)

where 5 is a polynomial and ( ⊂ R3 is a basic semi-algebraic set, that is,

( ≔ {x ∈ R3 : 6 9(x) ≥ 0, 9 = 1, . . . , <}, (1.2)

for some polynomials 6 9 , 9 = 1, . . . , <. Crucially, the description of P is entirely
algebraic via its polynomial data 5 , 6 9 , 9 = 1, . . . , <. (However, semi-algebraic
functions can also be tolerated to a certain extent.)
As P is a particular case of non-linear programming (NLP), what is so specific

about P in (1.1)? The answer depends on the meaning of 5 ∗ in (1.1). If we are only
interested in a local minimum, then the whole arsenal of efficient methods of NLP
can be used to solve P and its algebraic features are not really exploited.

On the other hand, if 5 ∗ in (1.1) is understood as the global minimum of P, then
the situation is totally different. Why? First, to eliminate any ambiguity in the
meaning of 5 ∗, rewrite (1.1) as

P : 5 ∗ = sup{_ : 5 (x) − _ ≥ 0, ∀x ∈ (}, (1.3)

because then indeed 5 ∗ is necessarily the global minimum of P. In full generality
P is very difficult to solve as it is NP-hard. The reason is:

Given _ ∈ R, checking whether ‘ 5 (x) − _ ≥ 0 for all x ∈ (’ is difficult.

Indeed, by its very nature this positivity constraint is global and therefore cannot be
handled by standardNLPoptimization algorithms, which use only local information
around a current iterate x ∈ (. Therefore, to compute 5 ∗ in (1.3) it is necessary
to handle the positivity constraint ‘ 5 (x) − _ ≥ 0 for all x ∈ (’ in some efficient
manner. Fortunately, if the data are algebraic, then the following hold.

(1) Powerful positivity certificates from real algebraic geometry (Positivstellen-
sätze in German) are available.

(2) Some of these positivity certificates have an efficient practical implementation
via linear programming (LP) or semidefinite programming (SDP). In particular,
and crucially, testing whether a given polynomial is a sum of squares (SOS)
simply reduces to solving a single semidefinite program (which can be done
in time polynomial in the input size of the polynomial, up to arbitrary fixed
precision1).

After the pioneering works of Shor (1987) and Nesterov (2000), Lasserre (2000,
2001) and Parrilo (2000, 2003) were the first to provide a systematic use of these

1 In fact see O’Donnell (2017) for an update and more details.
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two key ingredients in optimization and control, with convergence guarantees.
It is also worth mentioning another closely related pioneering work, namely the
celebrated SDP relaxation of Goemans and Williamson (1995), which provides
a 0.878 approximation guarantee for Max-Cut, a famous problem in non-convex
combinatorial optimization (and probably the simplest one). In fact it is perhaps the
first famous example of such a successful application of the powerful SDP convex
optimization technique to provide guaranteed good approximations to a notoriously
difficult non-convex optimization problem. It turns out that this SDP relaxation is
precisely the first semidefinite relaxation in the Moment-SOS hierarchy (a.k.a. the
Lasserre hierarchy) when applied to theMax-Cut problem. The spectacular success
story of SDP relaxations has been at the origin of a flourishing research activity in
combinatorial optimization and computational complexity. In particular, the study
of LP and SDP relaxation techniques in hardness of approximation is at the core
of a central topic in combinatorial optimization and computational complexity,
namely proving/disproving Khot’s famous Unique Games Conjecture2 (UGC) in
theoretical computer science (TCS).
Another (and equivalent) ‘definition’ of the global optimum 5 ∗ of P reads

5 ∗ = inf
q∈ℳ(()+

{∫
(

5 dq : q(() = 1
}
, (1.4)

where the ‘inf’ is over the setℳ(()+ of (positive) Borel measures q on (. Indeed,
as 5 ≥ 5 ∗ on ( and q is a probability measure on (,∫

(

5 dq ≥
∫
(

5 ∗ dq = 5 ∗,

so the infimum in (1.4) is not smaller than 5 ∗. On the other hand, for an arbitrary
x ∈ (, its value 5 (x) is also obtained via

∫
(
5 dq, where q is the Dirac probability

measure X{x} at x ∈ (, and hence the infimum in (1.4) is not larger than 5 ∗. In
particular, if x∗ ∈ ( is a global minimizer of P, then the Dirac measure q∗ ≔ X{x∗ }
at x∗ is an optimal solution of (1.4).

In fact (1.3) is the LP dual of (1.4), where _ is the dual variable associated with
the constraint q(() = 1 in (1.4). In other words, standard LP duality between the
two conic programs (1.3) and (1.4) nicely captures a convex duality between the
‘(-moment problem’ in real and functional analysis, and ‘polynomials positive on
(’ in real algebraic geometry (more details are given later).
Moreover, problem (1.4) is a very particular instance (and even the simplest

instance) of the more general generalized moment problem (GMP) defined by

inf
q 9 ∈ℳ(( 9 )+

{ ?∑
9=1

∫
( 9

5 9 dq 9 :
?∑
9=1

58 9 dq 9 ≥ 18 , 8 = 1, . . . , B
}
, (1.5)

2 For this conjecture and its theoretical and practical implications, Subhash Khot was awarded the
prestigious Nevanlinna prize at ICM 2014 in Seoul (Khot 2010, 2014).
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for some given functions 5 9 , 58 9 : R3 9 → R, 8 = 1, . . . , B, and sets ( 9 ⊂ R3 9 ,
9 = 1, . . . , ?. The GMP (1.5) is an infinite-dimensional LP with dual

sup
_1,...,_B≥0

{ B∑
8=1

_8 18 : 5 9 −
B∑
8=1

_8 58 9 ≥ 0 on ( 9 , 9 = 1, . . . , ?
}
. (1.6)

Therefore it should be no surprise that the Moment-SOS hierarchy, initially de-
veloped for global optimization, also applies to solving theGMP. This is particularly
interesting as moments and positive polynomials are at the intersection of several
areas of mathematics (Landau 1987), and the list of important applications of the
GMP is almost endless; see e.g. Landau (1987), Lasserre (2009b) and references
therein, and see also Section 6, where for illustration we describe two particular
applications.
Finally, since its birth in 2000 and in view of its many potential applications, the

Moment-SOS hierarchy has gained attention from various research communities,
with many different contributions, as follows.

(i) Its basic application in many (and diverse) areas after modelling the problem
as an instance of the GMP. For illustration, two examples are described in
Section 6; see also Henrion, Korda and Lasserre (2021), Korda, Henrion and
Lasserre (2022) and references therein.

(ii) Its adaptation and extension to other domains, e.g. operations research (Parekh
2023), and entanglement, i.e. violation of Bell inequalities in quantum inform-
ation, where its non-commutative version (the NPA hierarchy described in
Navascués, Pironio and Acín (2012)) is also attracting a lot of attention; see
also Burgdorf, Klep and Povh (2016), Parekh and Thompson (2021) and
references therein.

(iii) Its detailed analysis by the TCS research community for hardness of approx-
imation in combinatorial optimization (e.g. in relation to issues around the
Unique Games Conjecture). See e.g. Barak and Steurer (2014), Raghavendra,
Schramm and Steurer (2018) and Bafna et al. (2021).

(iv) The analysis of its rate of convergence with very interesting recent results on
specific sets; see e.g. Slot and Laurent (2021), Slot (2022), Bach and Rudi
(2023) and references therein.

(v) The development of algorithmic improvements to improve scalability of the
standard Moment-SOS hierarchy. One direction is to take into account sev-
eral types of sparsity or symmetries often present in large-scale optimization
problems, as explained in Section 3.8. Another is to promote alternatives
(e.g. first-order methods, second-order cone programming) to the costly in-
terior point algorithm for semidefinite programming; see e.g. Ahmadi and
Majumdar (2019), Yurtsever et al. (2021) and Ngoc Hoang Anh Mai et al.
(2022).
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Structure of the paper. For ease of exposition and clarity, we have not provided
the proof of most results in the form of theorems and lemmas. However, at the end
of each section we have included a subsection entitled ‘Notes and sources’, with
pointers to articles for detailed proofs, and sometimes a discussion and comments
on the results.
After introducing some notation and definitions, in Section 3 we describe the

Moment-SOS hierarchy of lower boundswhich converge to the global minimum in
polynomial optimization. In Section 4 we provide a brief description of an alternat-
ive, the Moment-LP hierarchy. Section 5 describes the (less known) Moment-SOS
hierarchy of upper bounds which also converge to the global minimum. Section 6
is devoted to other applications of the Moment-SOS hierarchy. For illustration, we
describe how to apply the Moment-SOS hierarchy in two such applications and
provide a (non-exhaustive) list of references to other applications in various fields.
Finally, Section 7 is devoted to the Christoffel function (a classical tool from the
theory of orthogonal polynomials and approximation) to reveal its connections to
optimization and the Moment-SOS hierarchy.

2. Notation, definitions and some preliminaries
2.1. Notation and definitions

Let R[x] denote the ring of polynomials in the variables x = (G1, . . . , G3) and let
R[x]= be the vector space of polynomials of degree at most = (whose dimension
is B(3) ≔

(
3+=
3

)
). For every = ∈ N, let N3= ≔ {" ∈ N3 : |" | (= ∑

8 U8) ≤ =}, and
let v=(x) = (x"), " ∈ N3= , be the vector of monomials of the canonical basis (x")
of R[x]=. Given a closed set X ⊆ R=, let P(X ) ⊂ R[x] (resp. P=(X ) ⊂ R[x]=)
be the convex cone of polynomials (resp. polynomials of degree at most =) that are
non-negative on X . A polynomial 5 ∈ R[x]= is written

x ↦→ 5 (x) =
∑
U∈N3

5" x" = 〈f, v=(x)〉,

with vector of coefficients f = ( 5") ∈ RB(=) in the canonical basis of monomials
(x")"∈N3 . For real symmetric matrices, let 〈B,C〉 ≔ trace (B C). We write B � 0
when B is positive semidefinite and B � 0 when B is positive definite. Let S=
denote the space of real = × = symmetric matrices and let S=+ denote its subset of
positive semidefinite matrices.
For a closed set ( ⊂ R3 , let ℳ(() denote the space of finite signed Borel

measures on (, and let ℳ(()+ ⊂ ℳ(() (resp. �(()) denote the convex cone of
finite non-negative Borel measures (resp. probability measures) on (. The support
supp(`) of a Borel measure ` on R3 is the smallest closed set Ω ⊂ R3 such that
`(R3 \Ω) = 0.
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Riesz linear functional. Given a sequence 5 = (q")"∈N3 (in bold), its associated
Riesz linear functional is the linear mapping q : R[x] → R (not in bold) defined by

5

(
=

∑
"

5" xU
)
↦→ q( 5 ) =

∑
"∈N3

5" q" = 〈f, 5〉. (2.1)

A sequence 5 has a representing measure if its associated Riesz linear functional
q is a (positive) Borel measure on R3 , in which case

q" =

∫
R3

x" dq for all " ∈ N3 .

Given a sequence 5 = (q")"∈N3 and a polynomial 6 ∈ R[x], x ↦→ 6(x) =
∑

$ 6$ x$,
define the new sequence 6 · 5 by

(6 · 5)" ≔ q(x" 6) =
∑
$∈N3

6$ q"+$ for all " ∈ N3 .

Therefore its associated Riesz linear functional, denoted by 6 · q, satisfies

6 · q( 5 ) = q(6 5 ) for all 5 ∈ R[x] .

In particular, if 5 has a representing measure q and 6 is non-negative, then the
Riesz linear functional 6 · q is a representing measure, that is,

6 · q( 5 ) = q(6 5 ) =
∫
R3
5 6 dq for all 5 ∈ R[x] .

Moment matrix. The (degree-=) moment matrix associated with a sequence 5 =

(q")"∈N3 (or equivalently with the Riesz linear functional q) is the real symmetric
matrix M=(5) (or M=(q)) with rows and columns indexed by N3= , and whose entry
(", #) is just q"+# , for every ", # ∈ N3= . Thus M=(5) depends only on moments
q" of degree at most 2=. Alternatively, if we introduce the real symmetric matrices
(B1

") ⊂ SB(=) defined by

v=(x) v=(x)> =
∑

"∈N3
2=

B1
" x" for all x ∈ R3 , (2.2)

then M=(5) =
∑

"∈N3
2=
q" B1

". Moreover, if 5 has a representing measure q, then
M=(5) � 0 because 〈f,M=(5) f〉 =

∫
5 2dq ≥ 0 for all 5 ∈ R[x]=.

A measure whose moments are all finite is moment determinate if there is no
other measure with the same moments.

Localizing matrix. With 5 as above and 6 ∈ R[x] (with 6(x) =
∑
W 6WxW), the

localizingmatrix associated with 5 and 6 is themomentmatrixM=(6 ·5) associated
with the sequence 6 · 5. That is, M=(6 · 5) is the real symmetric matrix with rows
and columns indexed by N3= , and whose entry (", #) is just (6 · q)"+# , that is,
M=(6 · 5)(", #) =

∑
W 6$q"+#+$, for every ", # ∈ N3= .
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Alternatively, letting 36 ≔ ddeg(6)/2e, and introducing the real symmetric
matrices B6" ∈ SB(=), " ∈ N3 , defined by

6(x) v=(x) v=(x)> =
∑

"∈N3
2(=+36 )

B6" x" for all x ∈ R3 , (2.3)

we obtain
M=(6 · 5) =

∑
"∈N3

2(=+36 )

q" B6" .

If 5 has a representingmeasure qwhose support is contained in the set {x : 6(x) ≥
0}, then M=(6 · 5) � 0 for all =, because

〈f,M=(6 · 5) f〉 = 6 · q( 5 2) = q( 5 26) =
∫

5 2 6 dq ≥ 0 for all 5 ∈ R[x]=.

2.2. SOS polynomials and quadratic modules

A polynomial 5 ∈ R[x] is a sum of squares (SOS) if there exist B ∈ N, and
51, . . . , 5B ∈ R[x], such that 5 (x) =

∑B
:=1 5:(x)2, for all x ∈ R3 . Let Σ[x] (resp.

Σ[x]=) denote the set of SOS polynomials (resp. SOS polynomials of degree at most
2=). Of course, every SOS polynomial is non-negative. However, the converse is
not true.

Membership in Σ[x]=. Checking whether a given polynomial 5 is non-negative
on R3 is difficult, whereas – and this is crucial for the Moment-SOS hierarchy –
checking whether 5 is SOS is much easier and can be done efficiently. Indeed,
since the degree of 5 must be even for 5 to be SOS, we let 5 ∈ R[x]2= be defined
by

x ↦→ 5 (x) =
∑
U∈N3

2=

5" xU.

Then 5 ∈ R[x]2= is SOS if and only if there exists a real symmetric matrix X> = X
of size B(=) =

(
3+=
3

)
, such that

X � 0 and 5" = 〈X,B1
"〉 for all " ∈ N32=, (2.4)

where the matrices B1
" were introduced in (2.2). It turns out that (2.4) defines the

feasible set of what is called a semidefinite program.3

3 A semidefinite program is a convex and conic optimization problem which can be solved (up to
fixed arbitrary precision) in time polynomial in its input size; see e.g. Anjos and Lasserre (2012)
and also O’Donnell (2017).
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Quadratic module. Introduce the constant polynomial x ↦→ 60(x) ≔ 1 for all
x ∈ R3 (also denoted 60 = 1). Given a family (61, . . . , 6<) ⊂ R[x], we associate
the quadratic module &(6) (= &(61, . . . , 6<)) ⊂ R[x] defined by

&(6) ≔
{ <∑
9=0
f9 6 9 : f9 ∈ Σ[x], 9 = 0, . . . , <

}
, (2.5)

and its degree-2= truncated version

&=(6) ≔
{ <∑
9=0
f9 6 9 : f9 ∈ Σ[x]=−3 9

, 9 = 0, . . . , <
}
, (2.6)

where 3 9 ≔ ddeg(6 9)/2e, 9 = 0, . . . , <. Observe that &=(6) ⊂ R[x]2=, because
indeed in (2.6), deg(f9 6 9) ≤ 2=, for all 9 = 0, . . . , <. Obviously both&(6) and its
truncated version &=(6) are convex cones of R[x].

Definition 2.1. The quadratic module &(6) is said to be Archimedean if there
exists " > 0 such that the quadratic polynomial x ↦→ " − ‖x‖2 belongs to &(6)
(i.e. belongs to &=(6) for some =).

If &(6) is Archimedean, then necessarily the set

( ≔ {x ∈ R3 : 6 9(x) ≥ 0, 9 = 1, . . . , <} (2.7)

is compact but the reverse is not true. The Archimedean condition depends on the
representation of ( and can be seen as an algebraic certificate that ( is compact.

Dual cone. The dual cone &∗=(6) of &=(6) is the convex cone of RB(2=) defined by

&∗=(6) = {5 ∈ RB(2=) : M=−3 9
(6 9 · 5) � 0, 9 = 0, . . . , <}, (2.8)

where M=(6 9 · 5) is the localizing matrix associated with the polynomial 6 9 and
the sequence 5, defined in Section 2.1.
For more details on the above notions of moment and localizing matrix and the

quadratic module, as well as their use in potential applications, the interested reader
is referred to Laurent (2008) and Lasserre (2009b). As we will see, both convex
cones &=(6) and &∗=(6) play a crucial role in the Moment-SOS hierarchy of lower
bounds.

2.3. Certificates of positivity (Positivstellensätze)

Below we describe particular certificates of positivity that are important because
they provide a theoretical justification (or rationale) for convergence of the so-called
SDP and LP relaxations for global optimization. In particular, the one below in
(2.9) is at the core of the Moment-SOS hierarchy of lower bounds.
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Theorem 2.2 (Putinar 1993). Let ( ⊂ R3 be as in (2.7) and assume that &(6) is
Archimedean.

(i) If a polynomial 5 ∈ R[x] is (strictly) positive on (, then 5 ∈ &(6), that is,

5 =

<∑
9=0
f9 6 9 , (2.9)

for some SOS polynomials f9 ∈ Σ[x], 9 = 0, . . . , < (and thus 5 ∈ &=(6) for
some 2= ≥ deg( 5 )).

(ii) A sequence 5 = (q")"∈N3 ⊂ R has a representing Borel measure on ( if and
only if q( 5 2 6 9) ≥ 0 for all 5 ∈ R[x], and all 9 = 0, . . . , <, or equivalently if
and only if M=(6 9 · 5) � 0 for all 9 = 0, . . . , <, and all = ∈ N.

In fact Theorem 2.2 is a refinement of a theorem by Schmüdgen from two years
earlier.

Theorem 2.3 (Schmüdgen 1991). Let the basic semi-algebraic set ( ⊂ R3 in
(2.7) be compact.

(i) If a polynomial 5 ∈ R[x] is (strictly) positive on (, then

5 =
∑

"∈{0,1}<
f" 6

U1
1 · · · 6

U<
< , (2.10)

for some SOS polynomials f" ∈ Σ[x], " ∈ {0, 1}<.
(ii) A sequence 5 = (q")"∈N3 ⊂ R has a representing Borel measure on ( if

and only if q( 5 2 6U1
1 · · · 6

U<
< ) ≥ 0 for all 5 ∈ R[x], and all " ∈ {0, 1}<, or

equivalently if and only if M=(6U1
1 · · · 6

U<
< · 5) � 0 for all " ∈ {0, 1}<, and

all = ∈ N.

Observe that (2.9) is of the same flavour as (2.10) but much simpler, as it involves
only < + 1 SOS polynomials f9 ∈ Σ[x] (as opposed to 2< SOS f" in (2.10)). On
the other hand, in Theorem 2.3 the only condition is that the set ( is compact,
whereas in Theorem 2.2 the quadratic module &(6) should also be Archimedean
(an additional condition on the representation of ().

The reader may have noticed that Theorems 2.2 and 2.3 have two facets, (i) and
(ii): the former is the algebraic facet (certificate of positivity), while the latter with
a real analysis flavour is related to the (-moment problem. Both facets are a nice
illustration of the duality between moments and positive polynomials.
We next provide a Nichtnegativstellensatz (a theorem of non-negativity) of the

author (Lasserre 2011), which is instrumental in proving convergence of the hier-
archy of upper bounds in Section 5.

Theorem 2.4. Let ( ⊂ R3 be a compact set (not necessarily basic semi-algebraic),
and let q be a Borel measure with supp(q) = (, and with moment sequence
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5 = (q")"∈N3 . If 5 ∈ R[x], then

5 ≥ 0 on ( ⇔ M=( 5 · 5) � 0 for all = ∈ N. (2.11)

Theorem 2.4 states that to decide whether 5 is non-negative on (, one must check
whether countably many linear matrix inequalities (LMIs) M=( 5 · 5) � 0, = ∈ N,
hold. Each constraint M=( 5 · 5) � 0 is indeed an LMI on the coefficients of the
polynomial 5 because each entry of M=( 5 · 5) is linear in the coefficients f of 5 .
Therefore, identifying 5 ∈ R[x]: with its vector f ∈ RB(:) of coefficients, for each
= ∈ N, the convex cone Ω= ⊂ R[x]: , defined by

Ω= ≔ {f ∈ RB(:) : M=( 5 · 5) � 0},

is a spectrahedron that contains the convex cone P:(() of polynomials of degree
at most : that are non-negative on (. In addition, Ω=+1 ⊂ Ω= for all =, so that the
sequence (Ω=)=∈N of outer approximations of P:(() is monotone non-increasing.
Moreover, it converges to P:((), i.e.

⋂
=∈NΩ= = P:(().

So in contrast to Theorems 2.2 and 2.3, Theorem2.4 is valid for arbitrary compact
sets ( ⊂ R3 and non-negative (as opposed to positive) polynomials on (. On the
other hand, its practical use in over-approximating the convex cone P:(() by Ω=
requires knowledge of moments 5 = (q")"∈N3 of a measure q with supp(q) = (.
This is only possible for specific sets and measures. Examples of such special sets
include the unit box, unit Euclidean ball, unit sphere, canonical simplex, discrete
cube {−1, 1}3 , and their image by an affine transformation.

LP-based certificate. We next introduce another certificate of positivity which
does not use SOS. Given 61, . . . , 6< ∈ R[x], introduce the notation g" ∈ R[x],
and (1 − g") ∈ R[x], with

x ↦→ g"(x) ≔ 61(x)U1 · · · 6<(x)U< for all x ∈ R3 ,
x ↦→ (1 − g)"(x) ≔ (1 − 61(x))U1 · · · (1 − 6<(x))U< for all x ∈ R3 ,

and the convex cone L=(6) ⊂ R[x] defined by

L=(6) ≔
{ ∑

(",#)∈N2<
=

2"# g" (1 − g)# : c = (2"#) ≥ 0
}
. (2.12)

Theorem 2.5 (Krivine 1964a,b, Vasilescu 2003). Let ( ⊂ R3 as in (2.7) be com-
pact and such that (possibly after scaling) 0 ≤ 6 9(x) ≤ 1 for all x ∈ (, 9 = 1, . . . , <.
Assume also that [1, 61, . . . , 6<] generates R[x].

(i) If a polynomial 5 ∈ R[x] is (strictly) positive on (, then 5 ∈ L=(6) for some
=, that is,

5 =
∑

(",#)∈N2<

2"# g" (1 − g)# (2.13)

for some non-negative vector c = (2"#)(",#)∈N2<
=
.
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(ii) A sequence 5 = (q$)$∈N3 ⊂ R has a representing Borel measure on ( if and
only if q(g" (1 − g)#) ≥ 0 for all ", # ∈ N<.

Remark 2.6. Interestingly, as for Theorems 2.2 and 2.3, Theorem 2.5 also has
two facets. The algebraic facet (i) is concerned with representation of polynomials
that are positive on (, while facet (ii) is concerned with the (-moment problem
in real analysis. Hence Theorem 2.5 is another illustration of the duality between
polynomials positive on ( and the (-moment problem.

2.4. Practical implementation of Positivstellensätze via SDP or LP

In addition to being interesting in their own right, Theorems 2.2(i) and 2.5(i) have
another distinguishing feature. Both have a practical implementation that allows
us to perform interesting computations. Indeed:

• testing membership in &=(6) is just solving a single semidefinite program,
whereas

• testing membership in L=(6) is just solving a single linear program.

Testing membership in &=(6). This is crucial for a practical and efficient imple-
mentation of the Moment-SOS hierarchy. Fortunately it can be done by solving a
semidefinite program. Namely, let 5 ∈ R[x]: and recall that 3 9 = ddeg(6 9)/2e,
9 = 0, . . . , <. Then testing whether 5 ∈ &=(6) (where necessarily 2= ≥ :) reduces
to solving

5" =

<∑
9=0
〈X 9 ,B

6 9

" 〉 for all " ∈ N32=, X 9 ∈ S=−3 9 , (2.14)

X 9 � 0, 9 = 0, . . . , <, (2.15)

where the real symmetric matrices B6 9

" ∈ SB(=−3 9 ) are defined in (2.3) (here with
= − 3 9 instead of =). Each real symmetric matrix X 9 is a Gram matrix of a
polynomial f9 , 9 = 0, . . . , <. Next, (2.14) are linear equality constraints on the
unknown entries of X 9 , while (2.15) is a positive semidefinite constraint on (X 9)<9=0
to ensure that everyf9 is an SOS. (In (2.14), 5" = 0whenever : < |" | ≤ 2= because
5 ∈ R[x]: .) Observe that multiplying (2.14) by x" and summing up yields

5 (x) =
∑

"∈N3
2=

5" x"

=

<∑
9=0

〈
X 9 ,

∑
"∈B3

2=

B6 9

" x"
〉
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=

<∑
9=0
〈X 9 , v=−3 9

(x)v=−3 9
(x)>〉 6 9(x) (see (2.3))

=

<∑
9=0

v=−3 9
(x)>X 9v=−3 9

(x)︸                     ︷︷                     ︸
f 9 (x)

6 9(x).

Hence checking whether (2.14)–(2.15) has a solution reduces to solving a semidef-
inite program.

Testing membership in L=(6). Obviously testing whether some polynomial 5 ∈
R[x]: is in L=(6) reduces to solving an LP problem. Indeed, with = such that
B ≔ (max 9 deg(6 9))= ≥ : , it amounts to finding a non-negative vector c = (2",#),
(", #) ∈ N2<

= , such that

5$ =

( ∑
(",#)∈N2<

=

2"#

<∏
9=1
6 9(x)U9 (1 − 6 9(x))V 9

)
$

for all $ ∈ N3B ,

and with 5$ = 0 whenever |$ | > : . Clearly, the above constraints are linear in the
unknown coefficients 2"# ≥ 0, so checking the existence of such a vector c ≥ 0
reduces to solving an LP problem.

2.5. Notes and sources

Most of thematerial is fromLasserre (2009b, 2015). Good references for exhaustive
results on positive polynomials andmoment problems are Laurent (2008), Marshall
(2008), Prestel and Denzel (2001), Schmüdgen (2017), Nie (2023) and Kočvara,
Mourrain and Riener (2023); see also Blekherman, Parrilo and Thomas (2012) for
related material on convex algebraic geometry.

Section 2.3. Theorem 2.4 is from Lasserre (2011, 2013). Interestingly, it is also
valid for some non-compact sets, such as the positive orthant R3+ or even the whole
space R3 . For the former, the measure q can be chosen to be the exponential
measure dq = exp(−∑

8 G8) dx, while for the latter we may choose the Gaussian
measure dq = exp(−‖x‖2/2) dx. In both cases we obtain a monotone sequence
(
=)=∈N of outer approximations, which converge toP(R3+ ) andP(R3) respectively.

Section 2.4. It is worth mentioning that other certificates of positivity (via convex
cones of positive polynomials) have also been defined to overcome (or at least
mitigate) the computational burden associated with testing membership in &=(6)
in (2.14)–(2.15) (via semidefinite programming). For instance, membership in
corresponding alternative convex cones can be checked by linear programming for
DSOS and second-order cone programming for SDSOS (Ahmadi and Majumdar
2019); see also Majumdar, Hall and Ahmadi (2020). An alternative described
in Section 3.8 is to consider a sparse version of Theorem 2.2 when P exhibits
some sparsity pattern. As we will see, it yields a sparsity-adapted version of the
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Moment-SOS hierarchy which can handle non-convex POPs with more than a
thousand variables; see also Magron and Wang (2023).

3. The Moment-SOS hierarchy in optimization
Consider the polynomial optimization problem (POP) P in (1.1), and assume that
its associated feasible set ( ⊂ R3 is compact.

3.1. The Moment-SOS hierarchy

The underlying principle behind the Moment-SOS hierarchy is quite simple and
proceeds in two steps.

Viewing P in its equivalent formulation (1.3) (real algebraic glasses).

Step 1. We replace the hard constraint ‘ 5 − _ ≥ 0 on (’ with the equivalent
constraint 5 ∈ &(6) (where&(6) is the quadratic module defined in (2.5)). Indeed,

5 ∗ = sup
_

{_ : 5 − _ ≥ 0 on (}

= sup
_

{_ : 5 − _ > 0 on (}

= sup
_

{_ : 5 − _ ∈ &(6)}, (3.1)

where the second equality follows from Theorem 2.2(i) if the quadratic module
&(6) is Archimedean. However, (3.1) is still an infinite-dimensional problem.

Step 2. Next, with =0 ≔ max[ddeg( 5 )/2e,max 9 ddeg(6 9)/2e], and = ≥ =0, we
replace (3.1) with the more restrictive constraint

g∗= = sup
_

{_ : 5 − _ ∈ &=(6)} (= ≥ =0) (3.2)

= sup
_,f 9

{
_ : 5 − _ =

<∑
9=0
f9 6 9 ; f9 ∈ Σ[x]=−3 9

, ∀ 9
}
, (3.3)

so that 5 ∗ ≥ g∗= for all = ≥ =0. A crucial feature of (3.3) is that it is a finite-
dimensional convex optimization problem, and more precisely a semidefinite pro-
gram. Therefore (3.3) can be solved (up to arbitrary fixed precision) in time
polynomial in its input size.

So, solving (3.2) for increasing values of = ∈ N, we obtain a monotone non-
decreasing sequence (g∗=)=≥=0 of lower bounds on the global minimum of 5 ∗ of P.

Viewing P in its equivalent formulation (1.4) (real analysis glasses). First observe
that since 5 ∈ R[x],∫

(

5 dq =
∑
"∈N3

5"

∫
(

x" dq =
∑
"∈N3

5" q" .
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Therefore

5 ∗ = inf
q∈ℳ(()+

{∫
5 dq : q(() = 1

}
= inf

5=(q")"∈N3
{〈f, 5〉 : q0 = 1; 5 has a representing measure supported on (}.

Again we proceed in two steps.

Step 1. If&(6) is Archimedean, then by invoking Theorem 2.2(ii), we may replace
the constraint ‘5 has a representing measure supported on (’ with the equivalent
constraint ‘M=(6 9 · 5) � 0 for all 9 = 0, . . . , <, and all = ∈ N’. However, the
optimization problem

5 ∗ = inf
5=(q")

{〈f, 5〉 : q0 = 1; M=(6 9 · 5) � 0, 9 = 0, . . . , <, = ∈ N} (3.4)

is still infinite-dimensional.

Step 2. Next we replace (3.4) with its truncated versions

g= = inf
5=(q")

{〈f, 5〉 : q0 = 1; M=−3 9
(6 9 · 5) � 0, 9 = 0, . . . , <}, (3.5)

where = ≥ =0 with =0 ≔ max[ddeg( 5 )/2e,max 9 ddeg(6 9)/2e]. For each fixed =,
(3.5) is a finite-dimensional semidefinite program.

Clearly, g= ≤ g=+1 ≤ 5 ∗ for all = ≥ =0, and therefore, solving (3.5) for increasing
values of = ∈ N, we obtain a monotone non-decreasing sequence (g=)=≥=0 of lower
bounds on the global minimum of 5 ∗ of P.

In fact the semidefinite program (3.3) is the dual of the semidefinite program
(3.5), and by weak duality in convex optimization,

g∗= ≤ g= ≤ 5 ∗ for all = ≥ =0. (3.6)

As is clear from its formulation, (3.5) is a semidefinite relaxation of P as its
constraints are only necessary conditions for 5 to have a representing measure q
on (. We call (3.5) a Moment-relaxation of P.
On the other hand, its dual (3.3) is a reinforcement (or strengthening) ofP (viewed

as the maximization problem (1.3)) as we have replaced ‘ 5 − _ ≥ 0 on (’ with the
sufficient condition ‘ 5 − _ ∈ &=(6)’. We call (3.3) an SOS-reinforcement (or SOS-
strengthening) of P, whence the name ‘Moment-SOS hierarchy’ for (3.3)–(3.5). In
both cases we obtain a lower bound g= (resp. g∗=) on 5 ∗.

When g= = 5 ∗ (resp. g∗= = 5 ∗) for some =, we say that the degree-= Moment-
relaxation (3.5) (resp. the degree-= SOS-reinforcement (3.3)) of P is exact. In
addition, if g= = 5 ∗ and an optimal solution 5∗ of (3.5) satisfies rank(M=(5∗)) = 1,
then 5∗ is simply the vector of moments up to degree 2= of the Dirac measure
X{x∗ } at a global minimizer x∗ ∈ (. In particular, the subvector q∗(G8)8=1,...,3 of
first-order moments is just the vector x∗.
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In summary, the ultimate goal of the Moment-relaxation (3.5) is to obtain, at
some step =, an optimal solution 5∗ ∈ RB(2=) which is the vector of moments (up
to degree 2=) of the Dirac measure X{x∗ } at a minimizer x∗ ∈ (.
When P has a unique global minimizer x∗ ∈ (, this happens generically; in the

case of finitely many global minimizers it will happen generically that at some step
=, 5∗ is the vector of moments of a convex combination of Dirac measures at such
global minimizers; see Theorem 3.3 and Lemma 3.4 below.

Remark 3.1.

(a) As explained above, it is more appropriate to call (3.3) an SOS-reinforcement
of P instead of an SOS-relaxation of P, as is sometimes written in the literature.
Of course, it is also the dual of the Moment-relaxation (3.5) of P. (Relaxing in
the primal is equivalent to reinforcing in the dual.)

(b) We call (1.3) (resp. (3.5)) a primal formulation (resp. a primal semidefinite
relaxation) of P because in solving P we are mainly interested in an optimal
solution x∗ ∈ ( (a global minimizer of P), so the primary variable of interest
is x ∈ ( ⊂ R3 . If x∗ ∈ ( is an optimal solution of P then 5∗ = ((x∗)")"∈N3 is
an optimal solution of (3.4).

Then (3.2) is the dual of the semidefinite relaxation (3.5), and we will see that
indeed, when g∗= = 5 ∗ for some = and (3.2) has an optimal solution f∗

9
∈ Σ[x]=−3 9

,
9 = 0, . . . , <, then f∗

9
(x∗) = _∗

9
≥ 0 for all 9 = 1, . . . , <, where the _∗

9
are

optimalKarush–Kahn–Tucker (KKT)Lagrangemultipliers associatedwith a global
minimizer x∗ ∈ (.

Computational considerations. TheMoment-relaxation (3.5) is a semidefinite pro-
gram with

•
(
3+2=
3

)
variables q",

• < + 1 moment-localizing matrices of size
(
3+=−3 9

3

)
, 9 = 0, . . . , <,

while the SOS-strengthening (3.3) is a semidefinite program with

• 1 +∑<
9=0

(
3+2=−23 9

3

)
variables (_, (f0)", . . . , (f<)"),

• < + 1 semidefinite constraints for matrices of size
(
3+=−3 9

3

)
, 9 = 0, . . . , <,

•
(
3+2=
3

)
equality constraints.

For fixed dimension 3, the size of matrices and the number of variables in the
primal and dual semidefinite programs are polynomial in =. Therefore in principle
they can be solved efficiently (up to arbitrary fixed precision) in time polynomial in
their input size.4 However, in view of their non-modest size and the current status
of semidefinite solvers, such semidefinite programs can be solved only for POPs

4 More details can be found in O’Donnell (2017), for example.
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of modest dimension 3 and small degree-= relaxation. So in its canonical form
(3.3)–(3.5), the Moment-SOS hierarchy is limited to POPs of modest dimension.
However, fortunately we find the following.

• Practice reveals that finite convergence often occurs at low degree =.
• As is often the case for many POPs of large dimension 3, some sparsity
pattern or symmetries are present. It turns out that they can be exploited
to define appropriate Moment-relaxations (resp. SOS-strengthenings) of P
whose size is still compatible with current SDP solvers; see Section 3.8 for
more details.
• Another possibility is to neglect the costly interior-point methods of SDP
solvers and solve the semidefinite programs (3.3) and (3.5) by first-order
methods; see e.g. Yurtsever et al. (2021) and Ngoc Hoang Anh Mai, Lasserre
and Magron (2023).

More details are provided in Section 3.8.

3.2. Convergence of the Moment-SOS hierarchy

Observe that if ( ⊂ R3 is compact then ( is contained in the Euclidean ball of
radius " for some " > 0, and in many applications " is known. Therefore the
quadratic constraint "2 − ‖x‖2 ≥ 0 is redundant when x ∈ (.

For a practical implementation of theMoment-SOS hierarchy, it is indeed always
recommended to add the redundant constraint 61(x) ≔ "2 − ‖x‖2 ≥ 0 in the
definition (2.7) of (. Moreover, to avoid possible numerical ill-conditioning if
" is large, it is even recommended to scale problem P in such a manner that
( ⊂ B1 ≔ {x : ‖x‖ ≤ 1} so that 61(x) = 1 − ‖x‖2. Hence we state this formally.

Assumption 3.2. ( ⊂ R3 defined in (2.7) is compact with x ↦→ 61(x) = 1 − ‖x‖2
(so that ( ⊂ B1).

The reason for doing this is because under Assumption 3.2, the quadratic module
&(6) in (2.5) is guaranteed to be Archimedean, a crucial property for convergence
of the Moment-SOS hierarchy. (In general, proving that&(6) is Archimedean may
not be trivial.)

Theorem 3.3. With ( ⊂ R3 as in (2.7), let Assumption 3.2 hold and let g= (resp.
g∗=) be as in (3.5) (resp. (3.3)) for all = ≥ =0. Then the following hold.

(a) We have g∗= = g= for all = ≥ =0, and for every = ≥ =0, the semidefinite
relaxation (3.5) has an optimal solution 5= = (q=")"∈N3

2=
. Moreover, both

sequences (g∗=)=≥=0 and (g=)=≥=0 are monotone non-decreasing, and

lim
=→∞

g∗= = lim
=→∞

g= = 5 ∗. (3.7)

(b) If 5= is an optimal solution of (3.5), let E ≔ max 9=1,...,<ddeg(6 9)/2e. If
rank MC (5=) = rank MC−E (5=) (≕ B), (3.8)
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for some E ≤ C ≤ =, then g∗= = g= = 5 ∗ and from the vector 5= one may extract
x∗(ℓ) ∈ (, ℓ = 1, . . . , B, where each x∗(ℓ) ∈ ( is a global minimizer of P, that
is, 5 (x∗(ℓ)) = 5 ∗, ℓ = 1, . . . , B.

(c) If int(() ≠ ∅, then for every = ≥ =0, the SOS-strengthening (3.3) of P has an
optimal solution (g∗=, f∗0 , . . . , f

∗
<).

Convergence of minimizers. Theorem 3.3 states that the sequence (g=)=≥=0 of
optimal values converges to the global minimum 5 ∗ of P as the degree = increases,
and moreover extraction of minimizers is also obtained if the degree-= Moment-
relaxation is exact (g= = 5 ∗) and the flat extension condition (3.8) holds. But
what about the sequence of minimizers (5=)=≥=0 when the convergence is only
asymptotic (as opposed to finite)?

Lemma 3.4. Let the sequence (5=)=≥=0 with 5= = (q=")"∈N3
2=

be as in The-
orem 3.3(a). If x∗ ∈ ( is the unique global minimizer of P, then

lim
=→∞

q="

(
= lim
=→∞

q=(x")
)
= (x∗)" for all " ∈ N3 . (3.9)

In particular, lim=→∞ q=(G8) = G∗8 for every 8 = 1, . . . , 3.

So when P has a unique global minimizer and convergence of the Moment-
relaxation (3.5) is only asymptotic (as opposed to finite), Lemma 3.4 states that
the vector of degree-1 moments (q=(G8))8=1,...,3 converges to the unique global
minimizer x∗ ∈ ( as = increases.

Notice that (3.9) is also interesting even if finite convergence takes place at
some =, because we may already obtain a good approximation of x∗ ∈ ( from the
degree-1 moments of 5C for C < =.

Equality constraints. Of course, in (2.7) we may tolerate equality constraints
6 9(x) ≥ 0 and 6 9+1(x) ≥ 0with 6 9+1 = −6 9 , 9 ∈ �, for some subset � ⊂ {1, . . . , <},
in which case we simply write 6 9(x) = 0, 9 ∈ � (and remove the constraint
6 9+1 ≥ 0). The resulting modifications are as follows.

• In (3.3) the unknown SOS weight f9 ∈ Σ[x]=−3 9
is now a polynomial in

R[x]2(=−3 9 ) and no longer an SOS.

• In (3.5) the positive semidefinite constraint M=−3 9
(6 9 · 5) � 0 now reads as

the equality constraints M=−3 9
(6 9 · 5) = 0 on the variables (q").

• Theorem 3.3(a,b) remains valid, whereas Theorem 3.3(c) needs some adjust-
ment since int(() = ∅. For instance, if the ideal 〈6 9〉 9∈� ⊂ R[x] generated
by the polynomials 6 9 associated with the equality constraints is real radical,
then for = sufficiently large, the SOS-strengthening (3.3) of P has an optimal
solution (g∗=, f∗0 , . . . , f

∗
<).
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Pseudo-Boolean case. An important case is when ( ⊂ {−1, 1}3 (or equivalently
{0, 1}3 after a simple linear transformation), that is, � = {1, . . . , 3} and

( =
{
x ∈ R3 : G2

9 − 1 = 0, 9 ∈ �; 6 9(x) ≥ 0, 9 ∉ �
}
, (3.10)

of which the celebrated Max-Cut problem is a particular case (no inequality con-
straint). Then the ideal 〈

G2
9 − 1

〉
9∈� =

〈
G2

1 − 1, . . . , G2
3 − 1

〉
is indeed real radical and Theorem 3.3 applies. Of course, in this case it follows that
g= = 5 ∗ whenever = ≥ 3 +max 9 3 9 , and therefore the semidefinite relaxation (3.5)
is not interesting as it contains 23 variables q". But the interest of Theorem 3.3
is that (3.8) may take place for = � 3. For instance, in most random instances of
Max-Cut problems with 3 = 11, we observe 5 ∗ = g2 (and even 5 ∗ = g1 in several
cases).

3.3. A global optimality condition for polynomial optimization

Theorem 3.3(a) guarantees that asymptotically as = increases, we recover the global
optimum 5 ∗, and moreover, by Theorem 3.3(b), finite convergence takes place
whenever the so-called flatness condition (3.8) holds at some degree =. In the
latter case we can say more. Indeed, and remarkably, one can provide a global
optimality condition for non-convex POPs, of the same flavour as the celebrated
KKT optimality conditions for convex optimization, and under the same second-
order sufficiency condition.
We first recall the well-known standard first-order necessary and second-order

sufficient KKT optimality conditions in non-linear programming (NLP).

First-order necessary KKT optimality conditions. With ( as in (2.7), let x∗ ∈ ( be
a local minimizer of P, and let �(x∗) ≔ { 9 ∈ {1, . . . , <} : 6 9(x∗) = 0} be the set of
active constraints at x∗ ∈ (. With S3−1 ≔ {x ∈ R3 : ‖x‖ = 1}, let

(x∗)⊥ ≔ {u ∈ S3−1 : 〈u,∇6 9(x∗)〉 = 0, ∀ 9 ∈ �(x∗)}.

If the gradients∇6 9(x∗), 9 ∈ �(x∗), are linearly independent, there exists ,∗ ∈ R<+
such that

∇ 5 (x∗) −
<∑
9=1
_∗9 ∇6 9(x∗) = 0, _∗9 6 9(x

∗) = 0, 9 = 1, . . . , <. (3.11)

Moreover, strict complementarity holds if _∗
9
> 0 whenever 6 9(x∗) = 0. Next,

observe that if in addition 5 and −6 9 are convex, then the Lagrangian

x ↦→ !(x) ≔ 5 (x) − 5 ∗ −
<∑
9=1
_∗9 6 9(x) for all x ∈ R3

is convex, non-negative, and satisfies ∇!(x∗) = 0. Hence x∗ is also a global
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minimizer of ! on the whole space R3 , and !(x) ≥ !(x∗) = 0 for all x ∈ R3 . This
is a very strong property of the convex case.

Second-order sufficient KKT optimality condition holds at a local minimizer x∗ ∈ (
of P. If (i) (3.11) and strict complementarity hold at (x∗, ,∗), and (ii) in addition,〈

u,
(
∇2 5 (x∗) −

<∑
9=1
_∗9 ∇26 9(x∗)

)
u
〉
> 0 for all u ∈ (x∗)⊥. (3.12)

If (3.11), strict complementarity and (3.12) hold at a global minimizer x∗ ∈ ( of
P, then we obtain a remarkable certificate of global optimality.

Theorem 3.5 (certificate of global optimality). With ( as in (2.7), let x∗ ∈ ( be
a global minimizer of P, and assume the following.

(i) The gradients ∇6 9(x∗), 9 ∈ �(x∗), are linearly independent (so that (3.11)
holds for some ,∗ ∈ R<+ ) and strict complementarity holds at (x∗, ,∗).

(ii) Second-order sufficient condition (3.12) holds at (x∗, ,∗).

Then there exists = ∈ N such that the SOS-strengthening (3.3) is exact, that is,

5 (x) − 5 ∗ =
<∑
9=0
f∗9 (x) 6 9(x) for all x ∈ R3 , (3.13)

f∗9 (x
∗) 6 9(x∗) = 0, 9 = 0, . . . , <, (3.14)

for some SOS polynomials f∗
9
∈ Σ[x]=−3 9

. Moreover, let ,̂ = (_̂ 9) ∈ R<+ with
_̂ 9 ≔ f∗

9
(x∗), 9 = 1, . . . , <. Then the pair (x∗, ,̂) ∈ ( × R<+ satisfies (3.11) and

(3.12).

As an immediate consequence ofTheorem3.5, finite convergence of theMoment-
SOS hierarchy takes place at degree =, i.e. g∗= = g= = 5 ∗.

Remark 3.6. We claim that Theorem 3.5, which provides an algebraic certificate
of global optimality, is the perfect analogue for non-convex polynomial optimization
of the KKT optimality conditions for convex optimization. Indeed, if 5 and −6 9 are
all convex, then any local optimizer x∗ ∈ ( is a global minimizer and then (3.11)
implies

x ↦→ !(x) = 5 (x) − 5 ∗ −
<∑
9=1
_∗9 6 9(x) ≥ 0 for all x ∈ R3 , (3.15)

!(x∗) = 0. (3.16)

But this of course is valid because 5 and −6 9 are convex, a very specific case. In
general a global minimizer x∗ ∈ ( is not a global minimizer of the Lagrangian !
on R3 .

https://doi.org/10.1017/S0962492923000053 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492923000053


860 J. B. Lasserre

On the other hand, Theorem 3.5 states that if x∗ ∈ ( is a global minimizer, then
under the standard second-order sufficient KKT optimality condition in NLP, x∗ is
also a global minimizer of the extended Lagrangian

!̂ ≔ 5 − 5 ∗ −
<∑
9=1
f∗9 6 9

over the whole space R3 . Indeed,

!̂(x) = 5 (x) − 5 ∗ −
<∑
9=1
f∗9 (x) 6 9(x) = f∗0 (x) (≥ 0) for all x ∈ R3 , (3.17)

!̂(x∗) = 0. (3.18)

So in (3.17) the extended Lagrangian !̂ looks like the standard Lagrangian ! in
(3.15) except that the scalar weight _∗

9
is now replaced by the SOS polynomial

weight f∗
9
. Moreover, the scalar _̂ 9 = f∗9 (x

∗) is a standard Lagrange–KKT multi-
plier associated with the constraint 6 9 ≥ 0 (like _∗

9
in (3.15)).

Interestingly, if the constraint 6 9 ≥ 0 is not active at x∗ ∈ ( (i.e. 6 9(x∗) > 0),
then _̂ 9 = f∗

9
(x∗) = 0, but in general the SOS polynomial f∗

9
is not the trivial

polynomial equal to zero. In fact, suppose that the constraint 6 9 ≥ 0 is important
even if it is not active at a global minimizer x∗, meaning that if we remove that
constraint in the definition (2.7) of (, then the new global minimum of the modified
problem P is strictly smaller than 5 ∗. Then, quite remarkably, f∗

9
≠ 0. In other

words, a non-trivial SOS multiplier f∗
9
in Putinar’s certificate of global optimality

(3.13) identifies 6 9 ≥ 0 as an important constraint, even if it is not active at global
minimizers.

3.4. Genericity

In view of the remarkable form of Theorem 3.5, we may wonder how ‘generic’ the
results of Theorem 3.5 might be. It turns out that Theorem 3.5 holds generically in
a rigorous sense.

More precisely, let < ∈ N and A 9 ∈ N, 9 = 0, . . . , <, be fixed, and consider the
family of POPs whose (possibly empty) feasible set ( ⊂ R3 is as in (2.7) for some
polynomials 6 9 ∈ R[x]A 9 , and its criterion is some polynomial 5 ∈ R[x]A0 .
Recall that B(C) ≔

(
3+C
C

)
. So a vector ) ∈ R0 with 0 ≔

∑<
9=0 B(A 9) completely

specifies an instance P()) of such a problem P. The next result is due to Nie (2014).

Theorem 3.7. There exists an integer ! and finitely many real polynomials
i1, . . . , i! ∈ R[)] in the coefficients ) of the polynomials 5 , 61, . . . , 6<, such
that if iℓ()) ≠ 0 for all ℓ = 1, . . . , !, then (3.11), strict complementarity and
second-order sufficient KKT optimality condition (3.12) hold at any global min-
imizer of problem P()).
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As a result, there exists = ∈ N such that (3.13) and (3.14) hold at every global
minimizer x∗ ∈ ( of P()), that is, finite convergence of the Moment-SOS hierarchy
is generic.

3.5. The convex case

In this section we consider the particular case when P is a convex program,5 that is,
when the polynomials 5 and−6 9 are all convex, and thus the set ( in (2.7) is convex.
This class of problems is very important as they are considered ‘easy’ or at least
‘easier’ than non-convex problems. Indeed, as any local optimum of P is a global
optimum, then P can be solved by several powerful local optimization algorithms.

So as the Moment-SOS hierarchy is able to solve difficult non-convex problems
P, a natural question is: How does the Moment-SOS hierarchy behave when P is a
convex program?
The reason why such a question is relevant is because if the Moment-SOS

hierarchy were not efficient in solving a convex problem, then one might raise
reasonable doubts as to its efficiency in solving more difficult problems!

SOS-convex programs. Let us first consider the class of SOS-convex polynomials.

Definition 3.8. A polynomial 5 ∈ R[x] is SOS-convex if its Hessian ∇2 5 is an
SOS-matrix polynomial, that is, ∇2 5 = ! !> for some real matrix polynomial
! ∈ R[x]3×B (for some integer B). In particular, every SOS-convex polynomial is
convex and all quadratic convex polynomials are SOS-convex.

We have the following characterizations of SOS-convexity.

Theorem 3.9. Let 5 ∈ R[x]. The following four propositions are equivalent:

(i) 5 is SOS-convex,

(ii) ∇2 5 is SOS,

(iii) (x, y) ↦→ 5 (x)/2 + 5 (y)/2 − 5 ((x + y)/2) is SOS,

(iv) (x, y) ↦→ 5 (x) − 5 (y) − 〈∇ 5 (y), (x − y〉 is SOS.

Notice that if 5 and −6 9 are convex, then necessarily their degree is either one
or even. Importantly, SOS-convexity can be checked numerically by solving a
semidefinite program (e.g. following Theorem 3.9(iii) and Section 2.2). The next
result states that the Moment-SOS hierarchy somehow ‘recognizes’ easy SOS-
convex problems.

5 The set ( in (2.7) may be convex even if the −6 9 are not convex (e.g. they can be quasi-convex).
Convex programming usually refers to the case where 5 and the −6 9 are all convex.
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Theorem 3.10. Let ( be as in (2.7) and let Slater’s condition hold (i.e. there exists
x0 ∈ ( such that 6 9(x0) > 0 for all 9). If 5 and −6 9 are all SOS-convex, then with
=′ ≔ max[deg( 5 )/2,max 9 [deg(6 9)/2]],

5 − 5 ∗ = f∗0 +
<∑
9=1
_∗9 6 9 (3.19)

for some scalars _∗
9
≥ 0 and some f∗0 ∈ Σ[x]=′. In addition,

5 ∗ = min
5
{q( 5 ) : q(1) = 1; M=′(5) � 0; q(6 9) ≥ 0, 9 = 1, . . . , <}. (3.20)

Moreover, q∗(G8) = G∗
8
, for all 8 = 1, . . . , 3, where 5∗ is an optimal solution of

(3.20), and x∗ ∈ ( is a local (hence global) minimizer of P.

It is also fairly straightforward to check that in (3.19), ,∗ = (_∗
9
)1≤ 9≤< are

Lagrange–KKT multipliers at an optimal solution x∗ ∈ ( of P.
Next, observe that the semidefinite Moment-relaxation (3.20) is a particular case

of (3.5) where the constraints M=−3 9
(6 9 · 5) � 0 are replaced by the simpler

M0(6 9 · 5) � 0 (i.e. the scalar linear inequality constraint q(6 9) ≥ 0).
However, if we were unaware that 5 and −6 9 were SOS-convex and we solved

(3.5) as a general POP, then we would still obtain 5 ∗ = g=0 , that is, the first
Moment-relaxation of the hierarchy would be exact. In other words, the Moment-
SOS hierarchy has recognized that P was a convex (easy) problem.
The reason why the Moment-relaxation (3.5) can be replaced by the simpler

(3.20) is because linear functionals q ∈ R[x]∗2= such that M=(5) � 0 have a nice
property when acting on SOS-convex polynomials.

Lemma 3.11 (Jensen’s inequality for linear functionals). Let q ∈ R[x]∗2= be
such that M=(5) � 0, q(1) = 1, and let x∗ ≔ (q(G1), . . . , q(G3)) ∈ R3 . Then

q( 5 ) ≥ 5 (x∗) for every SOS-convex polynomial 5 ∈ R[x]2=. (3.21)

So let 5∗ be an optimal solution of

g′= = min
5
{q( 5 ) : q(1) = 1; M=′(5) � 0; q(6 9) ≥ 0, 9 = 1, . . . , <}.

Of course, g′= ≤ 5 ∗, as g′= is the optimal value of a relaxation of P. As 5 and −6 9
are SOS-convex, and with x∗ ≔ (q∗(G1), . . . , q∗(G3)) ∈ R3 ,

g′= = q
∗( 5 ) ≥ 5 (x∗), 0 ≤ q∗(6 9) ≤ 6 9(x∗), 9 = 1, . . . , <,

which implies x∗ ∈ ( and 5 (x∗) ≤ g′= ≤ 5 ∗, so that x∗ is a global minimizer of P.

General convex POPs. In the more general case of convex POPs, we also obtain fi-
nite convergence under some strict convexity assumption at every global minimizer
x∗ ∈ (.
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Theorem 3.12. With ( ⊂ R3 as in (2.7), assume that &(6) is Archimedean,
Slater’s condition holds, and 5 and −6 9 are convex, 9 = 1, . . . , <. If ∇2 5 (x∗) �
0 at every global minimizer x∗ ∈ ( (assumed to be finitely many), then finite
convergence takes place, that is, the Moment-relaxation (3.5) of P is exact at some
degree =. Moreover, the SOS-strengthening (3.3) of P is also exact, and both (3.5)
and (3.3) have an optimal solution 5= and (_∗, f∗0 , . . . , f

∗
<), respectively.

So again without specifying that P is convex, the Moment-SOS hierarchy will
converge in finitely many steps. However, in contrast to Theorem 3.9, in The-
orem 3.12 we do not specify at which step = finite convergence takes place.

3.6. General versus ad hoc

We would like to emphasize that Theorem 3.5 is a fairly general global optimality
condition that holds generically for POPs, hence with non-convex criterion and
non-convex (and possibly disconnected) feasible sets (, and even with mixed-
integer variables. The only requirement is to be able to translate all constraints of
the problem into polynomial inequality and equality constraints.
Usually generality is at the price of reduced efficiency, and the usual algorithmic

practice of optimization suggests using ad hoc algorithms, i.e. algorithms tailored
to the type of problem to be solved. Indeed, for instance, if G8 ∈ {0, 1}, 8 ∈ �, for
some �, it is not a good idea to model this constraint with the equality constraints
G2
8
− G8 = 0, 8 ∈ �, and then use standard first-order or second-order methods to

obtain an (only local) optimum. We typically use Branch and Bound (or Branch
and Cut) methods.
Remarkably, the Moment-SOS hierarchy does not suffer from its generality in

just describing any POP by a set of polynomial inequality and equality constraints.
(Of course, some descriptions may be more interesting than others.) Indeed, for in-
stance, for SOS-convex programs and in particular convex quadratically constrained
quadratic programs (convex QCQPs), Theorem 3.9 ensures that finite convergence
takes place at the first step of the hierarchy, without the need to specify that the
POP is SOS-convex. Similarly, if 5 and −6 9 are all convex, and ∇2 5 (x) � 0 at all
global minimizers x ∈ (, then finite convergence also takes place.
Of course, again, we do not claim that the Moment-SOS hierarchy is the most

efficient algorithm for solving such convex problems, and indeed other efficient al-
gorithms exist. But this remark simply emphasizes that, in some way, the Moment-
SOS hierarchy recognizes easy problems (convex programs are usually considered
easier to solve) as finite convergence takes place quickly. On the other hand,
the Moment-SOS hierarchy has also been recognized by the theoretical computer
science research community as a meta-algorithm which provides the best lower
bounds for many combinatorial optimization problems, and in particular problems
with {0, 1} (or {−1, 1}) variables such as Max-Cut and its variants, which are
notoriously difficult NP-hard problems. It is now considered an important tool for
proving/disproving Khot’s celebrated Unique Games Conjecture.
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Table 3.1. Rates of convergence for the hierarchy of lower bounds (Slot 2022).

( Error 5 ∗ − g= Certificate Reference

Archimedean $(1/=2) Putinar Baldi and Mourrain (2022)
Compact $(1/=2) Schmüdgen Schweighofer (2005)
S3−1 $(1/=2) Putinar Fang and Fawzi (2021)
B3 $(1/=2) Putinar Slot (2022)
[−1, 1]3 $(1/=2) Schmüdgen Laurent and Slot (2023)
Δ3 $(1/=2) Schmüdgen Slot (2022)

3.7. Rates of convergence

In this section we provide rates of convergence for the Moment-SOS hierarchy
of lower bounds on general compact basic semi-algebraic sets. Those rates have
been refined for specific sets like the unit sphere S3−1, the unit ball B3 = {x ∈
R3 : ‖x‖2 ≤ 1}, the box [−1, 1]3 , and the simplex Δ3 = {x ∈ R3+ : 1 − e>x ≥ 0}.
Table 3.1 is taken from Slot (2022). The first column is related to the set

( ⊂ R3 , and ‘Archimedean’ means that the quadratic module &(6) in (2.5) as-
sociated with (, is Archimedean (an algebraic certificate of its compactness used
in Putinar’s Positivstellensatz). The third column, ‘Certificate’, specifies whether
in the Moment-SOS hierarchy we use Putinar’s certificate (Theorem 2.2) or the
more costly Schmüdgen’s certificate (Theorem 2.3) for the semidefinite relaxation
(3.3). In the notation $(1/=2), = is the order (or degree) of the semidefinite re-
laxations (3.3)–(3.5), and 2 is some positive constant. The rate $(1/=2) means
that 5 ∗ − g= ≤ " /=2 for some constant " > 0, where 5 ∗ is the global minimum
and g= (≤ 5 ∗) is as in (3.5). Finally, for optimization of trigonometric polyno-
mials (and hence for POPs on the box [0, 1]3 as well) and under some condition
on global minimizers (isolated and with positive definite Hessian), an exponential
rate of convergence has been provided in Bach and Rudi (2023). This shows that
beyond general results such as those in Table 3.1, there is hope for even faster rate
convergence, at the price of some additional conditions on the minimizers or the
set (.

3.8. Handling sparsity

As alreadymentioned, in its canonical form (3.3)–(3.5), theMoment-SOShierarchy
is limited to problems P of modest dimension, even though for fixed dimension 3
the size parameters of eachMoment-relaxation (3.5) are polynomial in the degree =.
This is because, (3.5) being a semidefinite program, efficient algorithms based on
interior-point methods are still very time-consuming. Fortunately, practice reveals
that Moment-relaxations (3.5) of low degree = already provide tight lower bounds

https://doi.org/10.1017/S0962492923000053 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492923000053


The Moment-SOS hierarchy 865

on 5 ∗, and are sometimes exact. In addition, large-scale problems P usually exhibit
some sparsity pattern or symmetries. For instance, as is typical for applications in
large dimension 3, (i) each constraint 6 9 ≥ 0 in (2.7) sees only some small subset
of variables {G8 : 8 ∈ �: } with �: ⊂ {1, . . . , 3}, and (ii) the criterion 5 of P is very
often a sum

∑
: 5: of (low degree) polynomials 5: , where each polynomial 5: only

sees variables {G8 : 8 ∈ �: }. This type of sparsity is called correlative sparsity.
Also, another type of sparsity called term sparsity occurs when all polynomials 5
and 6 9 in the description (2.7) of P contain a few monomials only. It turns out
that correlative and term sparsity can be exploited so as to yield a new sparsity-
adapted Moment-SOS hierarchy of semidefinite relaxations of P. These two types
of sparsity can even be combined for further efficiency; see e.g. Wang, Magron,
Lasserre and Ngoc Hoang Anh Mai (2022) and Magron and Wang (2023).
For the sake of completeness, we now briefly describe how correlative sparsity

allows us to define an appropriate sparsity-adapted Moment-SOS hierarchy that
can handle large-scale POPs.

Assumption 3.13. With P as in (1.1) with ( ⊂ R3 as in (2.7):

• �0 ≔ {1, . . . , 3} =
⋃?

:=1 �: (with possible overlaps),

• R[x; �:] is the ring of polynomials in the variables {G8 : 8 ∈ �: },

• 5 =
∑?

:=1 5: with 5: ∈ R[x; �:], : = 1, . . . , ?,

• for each 9 = 1, . . . , <, 6 9 ∈ R[x; �:] for some : ∈ {1, . . . , ?}, so let

�: ≔ { 9 : 6 9 ∈ R[x; �:]}, : = 1, . . . , ?.

Of course, as we will see next, Assumption 3.13 is interesting when the cardinal
#�: of �: is small for every : = 1, . . . , ?.
Observe that if 6 ∈ R[x; �:], then in the expansion 6(x) =

∑
"∈N3 6" x", U8 = 0

if 8 ∉ �: , whenever 6" ≠ 0. So let

N(:) ≔ {" ∈ N3 : U8 = 0, ∀ 8 ∉ �: }, : = 1, . . . , ?,

N(:)
= ≔

{
" ∈ N(:) :

∑
8

U8 ≤ =
}
, : = 1, . . . , ?.

Next, given 5 = (q")"∈N3 , define M=(5; �:) to be the submatrix of M=(5) whose
rows and columns are associated with monomials (x"), " ∈ N(:)

= . Similarly, when
9 ∈ �: , the localizing matrix M=(6 9 · 5; �:) is the submatrix of M=(6 9 · 5) whose
rows and columns are associated with monomials (x"), " ∈ N(:)

=−3 9
.

https://doi.org/10.1017/S0962492923000053 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492923000053


866 J. B. Lasserre

When Assumption 3.13 holds, it is quite natural to define Moment-relaxations

g
sparse
= = inf

5=(q")

{ ?∑
:=1

q( 5:) : q0 = 1;

M=(5; �:) � 0, : = 1, . . . , ?;

M=−3 9
(6 9 · 5; �:) � 0, ∀ 9 ∈ �: ; : = 1, . . . , ?

}
. (3.22)

The reason why (3.22) is appealing is because the size of the matrix M=(5; �:) is
B:(=) ≔

(#�:+=
=

)
while that ofM=−3 9

(6 9 ·5) is B(=−3 9). Therefore, if #�: � 3, then
B:(=) � B(=) and B:(= − 3 9) � B(= − 3 9). So for a semidefinite solver it is always
definitely better to have several (and perhaps even many) small-size matrices rather
than a single large-size matrix constrained to be positive semidefinite.
It is quite straightforward to obtain that gsparse= ≤ 5 ∗ for all = ≥ =0. Indeed,

g
sparse
= ≤ g= ≤ 5 ∗ (where g= is the optimal value of the degree-=Moment-relaxation
(3.5)). Moreover, the sequence (gsparse= )=≥:0 is monotone non-decreasing and, being
bounded above, converges to some W ≤ 5 ∗.
Again assume (possibly after scaling) that the quadratic polynomial 1 − ‖x‖2 is

in the quadratic module &1(6), and therefore we can and do add the ? redundant
constraints

1 −
∑
8∈�:

G2
8 ≥ 0, : = 1, . . . , ?, (3.23)

to the definition of (.

Theorem 3.14 (Lasserre 2006). Let ( ⊂ R3 be as in (2.7) with constraints (3.23)
in its definition (2.7), and consider the hierarchy of semidefinite relaxations (3.22)
with optimal value gsparse= . Then gsparse= ↑ W ≤ 5 ∗, as = increases. Moreover, if for
every : = 2, . . . , ?,

�: ∩
(:−1⋃
9=1
� 9

)
⊆ �ℓ , (3.24)

for some ℓ ∈ {1, . . . , : − 1}, then W = 5 ∗.

The condition (3.24) is called the running intersection property. It has the
following important property: suppose that we are given ? probability measures
q 9 on R#� 9 , 9 = 1, . . . , ?, which are compatible, that is, such that for all pairs (8, 9)
with �8 ∩ � 9 ≠ ∅,∫

x" dq8(x ∈ �8 ∩ � 9) =
∫

x" dq 9(x ∈ �8 ∩ � 9) for all " ∈ N#�8∩� 9 .

If (3.24) holds then there exists a probability measure q on R3 such that∫
x" dq =

∫
x" dq 9 for all " ∈ N#� 9 , 9 = 1, . . . , ?.
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That is, given local measures q 9 on R#� 9 that are compatible, we can reconstruct
a global measure on R3 whose marginal on R#� 9 is q 9 , for all 9 = 1, . . . , ?.
Therefore the local information provided by the q 9 corresponds to partial (but
consistent) knowledge of global information that we do not necessarily need.
On the dual side of positive polynomials we have the following sparse version

of Putinar’s Positivstellensatz.

Theorem 3.15 (sparse Positivstellensatz (Lasserre 2006)). Let ( ⊂ R3 be as
in (2.7) with constraints (3.23) in its definition (2.7), and let 5 =

∑?

:=1 5: with
5: ∈ R[x; �:], : = 1, . . . , ?. If (3.24) holds and 5 > 0 on (, then

5 (x) =
?∑
:=1

(
f0,:(x) +

∑
9∈�:

f9 ,:(x) 6 9(x)
)

for all x ∈ R3 , (3.25)

for some SOS polynomials f0,: , f9 ,: ∈ Σ[x, �:], 9 ∈ �: , : = 1, . . . , ?.

Theorem 3.15 provides a sparsity-adapted certificate of positivity à la Putinar
where the SOS weight f9 associated with a constraint 6 9 ≥ 0, 9 ∈ �: , ‘sees’ only
the variables {G8 : 8 ∈ �: }.
To cite a few examples, such sparsity-adapted semidefinite relaxations have been

implemented for solving the optimal power flow (OPF) problem in the management
of large-scale electricity networks (Molzhan and Hiskens 2015, Molzahn and Josz
2018), in geometric perception (Yang and Carlone 2023), robotics (Rosen, Carlone,
Bandera and Leonard 2019) and sensor network localization (Nie 2009), as well as
in Nie and Demmel (2008).

3.9. Notes and sources

Section 3 is mainly based on Lasserre (2009b, 2015), where the reader can find all
proofs (or references to papers with proofs).

Section 3.1. The Moment-SOS hierarchy was first proposed in Lasserre (2000,
2001).

Sections 3.3–3.4. Theorems 3.5 and 3.7 are due to Nie (2014). Further, Nie (2013)
shows that the flatness condition (3.8) at an optimal solution of the Moment-
relaxation (3.5) also holds generically. A refinement of these results is provided
in Baldi and Mourrain (2022). Those results are important as they guarantee
that the Moment-SOS hierarchy has finite convergence, generically (in the sense of
Theorem 3.7), and that one may extract global minimizers from an optimal solution
of the semidefinite relaxation (3.5).

Sections 3.5–3.6. These are mainly taken from Lasserre (2015, Chapter 13). See
also Lasserre (2009a) and de Klerk and Laurent (2011).

Section 3.7. This is essentially based on Slot (2022).
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Section 3.8. Correlative sparsity was first proposed as a heuristic in Kojima, Kim
and Maramatsu (2005) and Waki, Kim, Kojima and Maramatsu (2006), while
its proof of convergence was provided in Lasserre (2006). Term sparsity was first
described inWang, Li and Xia (2019) and further exploited in the TSSOS hierarchy
of Wang, Magron and Lasserre (2021). Finally, the combination of correlative and
term sparsity which yields the CS-TSSOS hierarchy is described in Wang et al.
(2022). The interested reader is referred to the book by Magron and Wang (2023),
which, among other things, describes various forms of sparsity and associated
Moment-relaxations based on appropriate cones of positive polynomials.

Finally let us mention that a lower bound g= ≤ 5 ∗, obtained by the Moment-SOS
hierarchy even at low degree =, can also be useful to ‘gauge’ how far from 5 ∗ is
the value 5 (x̂) of a feasible solution x̂ ∈ ( obtained by some numerical (local)
optimization algorithm. Indeed, if 5 (x̂) − g= is not too large, then in some way
g= certifies that the local optimization algorithm has produced a good feasible
solution.

4. The Moment-LP hierarchy
As seen in Section 3, the Moment-SOS hierarchy is based on the use of Putinar’s
certificate of positivity (2.9) and its convergence relies on Theorem 2.2. We next
provide a hierarchy of LP relaxationswhose associated sequence of optimal values
also converges to the global optimum from below. Similarly as for the Moment-
SOS hierarchy, the Moment-LP hierarchy is also based on a positivity certificate,
namely that in (2.13), and its convergence relies on Theorem 2.5.

Assumption 4.1. With ( ⊂ R3 as in (2.7), assume that ( is compact, 0 ≤ 6 9 ≤ 1
on (, for every 9 = 1, . . . , <, and the polynomials {1, 61, . . . , 6<} generate R[x].

As ( is compact, one can always rescale the 6 9 (and possibly add redundant
constraints) to make the new definition of ( satisfy Assumption 4.1. For more
details the interested reader is referred to Lasserre (2009b).
Next, with the same notation g and 1 − g as in (2.13), and = ∈ N, introduce the

following linear program (LP):

d= = min
5
{q( 5 ) : q(1) = 1; q(g" (1 − g)#) ≥ 0, (", #) ∈ N2<

= }, (4.1)

where 5 = (q$)$∈N3
B=

with B= ≔ max(",#)∈N2<
=

deg(g"(1 − g)#).
By its very nature (4.1) is a linear program, and it is a relaxation of P because

the constraints in (4.1) are only necessary conditions on 5 to be moments of a
probability measure supported on (; see Theorem 2.5. The dual of (4.1) is the
linear program

d∗= = max
2"#≥0,_

{
_ : 5 − _ =

∑
(",#)∈N2<

=

2"# g" (1 − g)#
}
. (4.2)
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In a similar manner, just as (3.3) was an SOS-strengthening of P in (1.3), the LP
(4.2) is now an LP-strengthening of P in (1.3). Of course, from duality for linear
programs, d= = d∗= for all =.

Example 4.2. To better visualize the LP (4.1), consider the toy example where
( = [0, 1] = {G : G ≥ 0; (1 − G) ≥ 0} ⊂ R. Then, for = = 2, 5 = (q 9)0≤ 9≤2, and

q(1) = q0, q(G) = q1, q(1 − G) = q0 − q1, q(G2) = q2,

q(G(1 − G)) = q1 − q2, q((1 − G)2) = q0 − 2q1 + q2,

so that with 5 ∈ R[G]2, G ↦→ 5 (G) =
∑2
:=0 5: G

: ,

d2 = min
5

{ 2∑
:=0

q: 5: : q0 = 1; q1 ≥ 0; q0 − q1 ≥ 0;

q1 − q2 ≥ 0; q0 − 2q1 + q2 ≥ 0
}
.

Similarly,

d∗2 = max
c≥0,_
{_ : 5 (G) − _ = 200 + 210 G + 201(1 − G)

+ 220 G
2 + 211G(1 − G) + 202(1 − G)2, ∀ G ∈ R},

or equivalently

d∗2 = max
c≥0,_
{_ : 50 − _ = 200 + 201;

51 = 210 − 201 + 211 + 202; 52 = 220 − 211 + 202}.

Equality constraints are treated as for the Moment-SOS hierarchy. For instance,
in (4.1), a Boolean constraint G2

8
= G8 of P translates into the moment equality

constraints q(G:
8
) = q(G8) for all : ≤ =.

Theorem 4.3 (Lasserre 2009b). With ( as in (2.7), let Assumption 4.1 hold.
Then, as = increases, the sequences (d=)=∈N and (d∗=)=∈N are monotone non-
decreasing and converge to the global minimum 5 ∗ of P.

4.1. The case of a convex polytope

We now assume that ( ⊂ R3 is a convex polytope (with non-empty interior), that is,
for each 9 = 1, . . . , <, 6 9 ∈ R[x]1 (6 9 is a polynomial of degree 1). In this case
Theorem 2.5 takes the following specific form.

Theorem 4.4 (Handelman 1988). Let ( ⊂ R3 be as in (2.7) with non-empty
interior and with all 6 9 of degree 1, and assume that ( is compact (hence ( is a
convex polytope). If 5 ∈ R[x] is positive on (, then there exists = ∈ N and a
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non-negative vector c = (2")"∈N<
=
, such that

5 =
∑

"∈N<
=

2" g" . (4.3)

So the obvious analogue of (4.1) for a convex polytope now reads

d= = min
5
{q( 5 ) : q(1) = 1; q(g") ≥ 0, " ∈ N<= } (4.4)

where 5 = (q$)$∈N3
B=

with B= ≔ max"∈N<
=

deg(g"). The dual of (4.4) reads

d∗= = max
2"≥0,_

{
_ : 5 − _ =

∑
"∈N<

=

2" g"
}
. (4.5)

So an analogue of Theorem 4.3 reads as follows.

Theorem 4.5. Let ( ⊂ R3 be as in (2.7) with non-empty interior and with all 6 9
of degree 1, and assume that ( is compact (hence ( is a convex polytope). Let d=
(resp. d∗=) be as in (4.4) (resp. (4.5)). Then, as = increases, both sequences (d=)=∈N
and (d∗=)=∈N are monotone non-decreasing and converge to the global minimum 5 ∗

of P.

On 0/1 discrete problems and RLT. Consider discrete optimization problems P
min { 5 (x) : x ∈ (} for which the set of feasible solutions is of the form

( = {x ∈ {0, 1}3 : 6 9(x) ≥ 0, 9 = 1, . . . , <}
= {x ∈ R3 : 6 9(x) ≥ 0, 9 = 1, . . . , <; G2

8 − G8 = 0, 8 = 1, . . . , 3}.
This formulation includes many combinatorial optimization problems, including
the celebrated Max-Cut problem and its variants on {−1, 1}3 (after a simple linear
transformation). The so-called reformation–linearization technique (RLT) (Sherali
and Adams 1990, 1999) solves P when 5 and the 6 9 are all linear. In the RLT we
‘lift’ P to a space of higher dimension. Namely, with C ≤ 3 fixed, we proceed as
follows.

• We define order-C bound-factor constraints

��1,�2(x) ≔
∏
8∈�1

G8

∏
9∈�2

(1 − G 9) ≥ 0 for all (�1, �2),

where �1, �2 ⊆ {1, . . . , 3}, �1 ∩ �2 = ∅ and |�1 ∪ �2 | = C.
• For every 9 = 1, . . . , <, we use the additional constraint factor-based restric-
tions

��1,�2 6 9(x) ≥ 0 for all (�1, �2).

• Then, in each such constraint, we replace every occurrence of the power G:
8

with G8 , and ‘linearize’ the resulting polynomial constraint, that is, every
occurrence of the non-linear monomial

∏
8∈� G8 is replaced by a variable H�

constrained to be non-negative.
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We end up with a linear program in a space of higher dimension B(C + 1) which
is an LP relaxation of P. In the RLT construction of this LP relaxation (which
ignores constraints of the form g" ≥ 0), we recognize a particular case of the
Moment-LP relaxation (4.1) of P in the presence of Boolean constraints G2

8
= G8 ,

for all 8 = 1, . . . , 3. So it is fair to say that RLT, the first systematic construction of
a ‘hierarchy’ of LP relaxations for 0/1 programs, was implicitly based on positivity
certificates of the flavour (2.13), i.e. à la Krivine–Vasilescu.

4.2. Contrasting the Moment-SOS hierarchy with the Moment-LP hierarchy

At first glance we are tempted to favour the Moment-LP hierarchy because state-of-
the-art LP solvers are very efficient and can solve potentially very large-scale (even
huge) LPs, whereas in its canonical form (3.3)–(3.5) the Moment-SOS hierarchy
is limited to POPs of modest dimension and small degree of relaxation =, unless
some sparsity or symmetries can be exploited. Unfortunately the Moment-LP
hierarchy has some serious drawbacks that also limit its application to problems of
modest dimension. Indeed, except for discrete and linear POPs, finite convergence
is impossible in general, even for convex problems!
However, for discrete problems with 0/1 variables, the Moment-LP hierarchy

can be combined with ad hoc heuristics. For instance, we may try to solve such
0/1 problems with Branch and Bound methods where, at each node of the search
tree, a lower bound associated with the node is computed by solving an appropriate
Moment-LP relaxation of the discrete subproblem associated with the node in the
Branch and Bound strategy.

Finite convergence is not possible in general. For clarity and simplicity of exposi-
tion, we illustrate this claim in the case where ( is a convex polytope.

Proposition 4.6. Let ( ⊂ R3 be a convex polytope and consider the LP-strength-
ening (4.5) of P. If P has finitely many global minimizers and (4.5) is exact for
some degree =, then necessarily every global minimizer x∗ is a vertex of (.

Proof. Let 0 ≤ c∗ ≠ 0 be an optimal solution of the degree-= LP relaxation (4.5),
and assume that (4.5) is exact, i.e. d∗= = 5 ∗. Then

5 (x) − 5 ∗ =
∑

"∈N<
=

2∗" 61(x)U1 · · · 6<(x)U< for all x ∈ R3 . (4.6)

In particular, at every global minimizer x∗ ∈ (,

0 = 5 (x∗) − 5 ∗ =
∑

"∈N<
=

2∗" 61(x∗)U1 · · · 6<(x∗)U< for all x ∈ R3 . (4.7)

So assume that there exists a global minimizer x∗ ∈ ( which is not a vertex,
and let �(x∗) ≔ { 9 ∈ {1, . . . , <} : 6 9(x∗) = 0} be the set of active constraints at
x∗ ∈ (. Observe that �(x∗) ≠ ∅ because otherwise we would have 6 9(x∗) > 0 for all
9 = 1, . . . , <, which in turn by (4.7) implies c∗ = 0, in contradiction to c∗ ≠ 0. So
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(4.7) already rules out the possibility of having a global minimizer in int((). Next,
from (4.7) we may infer

2∗" > 0 ⇒ U 9 > 0 for some 9 ∈ �(x∗). (4.8)

As x∗ is not a vertex and P has only finitely many global minimizers, the set
{y ∈ ( : �(y) = �(x∗)} contains a point ŷ ∈ ( which is not a global minimizer, i.e.
5 (ŷ) > 5 ∗. But then (4.6) combined with (4.8) yields the contradiction

0 =
∑

"∈N<
=

2∗" 61(ŷ)U1 · · · 6<(ŷ)U< = 5 (y) − 5 ∗ > 0.

So Proposition 4.6 implies that for all problems P (on convex polytopes) with fi-
nitely many minimizers, a necessary condition for some degree-= LP-strengthening
(4.5) to be exact is that every global minimizer is a vertex of (. In particular, this
condition rules out most convex POPs on a polytope, with a non-linear criterion 5
as in general a local (hence global) minimizer is not a vertex of (. (However, if 5
is linear, i.e. if P is a linear program, then (4.5) is exact with = = 1.)

A similar conclusion is also valid for POPs on even more general basic semi-
algebraic sets ( and the LP-strengthening (4.2). Indeed, as in Proposition 4.6 and
for the same reasons, if such a POP has finitely many minimizers, then a necessary
condition for (4.2) to be exact at some degree =, is that for every global minimizer
x∗ ∈ (, the set {y ∈ ( : �(y) = �(x∗)} contains only global minimizers of P. Such
a condition is very restrictive and rules out most problems P, in particular convex
problems!

4.3. Notes and sources

Section 4 is mainly taken from Lasserre (2002b, 2015, Chapter 9). In Laurent
(2003) the Moment-SOS hierarchy for 0/1 variables is described with specific
notation proper to graph theory and is embedded in the family of lift-and-project
hierarchies, which include the Lovász–Schrijver and Sherali–Adams hierarchies.
In particular, Laurent (2003) shows that the Moment-SOS dominates the other
lift-and-project hierarchies.
If LP-hierarchies are not efficient when used alone to solve optimization prob-

lems, they can still be useful when associated with other techniques of discrete
optimization, for instance as in Aloise and Hansen (2011) when used in conjunc-
tion with Branch and Bound.

5. A Moment-SOS hierarchy of upper bounds
In this section we consider another (less known) Moment-SOS hierarchy which
provides a monotone non-increasing sequence (^=)=∈N of upper bounds on the
global minimum 5 ∗ of P defined in (1.3). For each ‘degree’ =, the upper bound
^= ≥ 5 ∗ is now computed by solving a very specific semidefinite program as it has
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only a single variable. In fact its dual reduces to computing the smallest generalized
eigenvalue of a pair of moment matrices.

5.1. A first multivariate formulation

Consider problem P in (1.3) with feasible set ( ⊂ R3 as in (2.7), and let ` be a
Borel (reference) measure on ( with supp(`) = (.

Assumption 5.1.

(i) The set ( ⊂ R3 is compact with non-empty interior.
(ii) The vector of moments - = (`")"∈N3 is available in closed form, or can be

computed efficiently.

Of course, in view of Assumption 5.1(ii), the set ( has to be rather specific,
and indeed typical sets of this type are the unit box [−1, 1]3 , the Euclidean unit
ball B(0, 1) = {x : ‖x‖ ≤ 1}, the unit sphere S3−1 = {x : ‖x‖ = 1}, the canonical
simplex Δ3 = {x ∈ R3+ : e>x ≤ 1}, the discrete hypercube {−1, 1}3 , and their
image by an affine transformation. Even though such sets ( are rather specific, the
associated problems P cover many interesting NP-hard optimization problems.

Theorem 5.2. Let Assumption 5.1 hold, and with = ∈ N fixed, consider the
semidefinite problems

^= = inf
f∈Σ[x]=

{∫
5 f d` :

∫
f d` = 1

}
, = ∈ N, (5.1)

^∗= = sup
_

{_ : _M=(`) � M=( 5 · `)}, = ∈ N. (5.2)

Then
^= = ^

∗
=, 5 ∗ ≤ ^=+1 ≤ ^= for all = ∈ N, lim

=→∞
^= = 5 ∗. (5.3)

Crucial to the proof of convergence, which can be found in Lasserre (2011,
Theorem 4.2), is the Nichtnegativstellensatz Theorem 2.4. It turns out that (5.2)
is just computing the smallest generalized eigenvalue associated with the pair of
symmetric matrices (M=( 5 · `),M=(`)), for which specialized software exists. If
both matrices are expressed in a polynomial basis of R[x]= formed by polynomials
that are orthonormal with respect to `, then M=(`) becomes the identity matrix I,
and g∗= is just the smallest eigenvalue of M=( 5 · `).

Computational consideration. It is straightforward to fill up entries of bothmatrices
M=(`) and M=( 5 · `), so the main effort is in computing the generalized eigenvalue
of the pair of (symmetric) matrices (M=( 5 · `),M=(`)), which can be done via
standard software for eigenvalue computation. However, and even if they are
symmetric, computing ^= is quite challenging because of the size $(=3) of the
matrices as = increases.
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Remark 5.3. A refinement of (5.1) is to consider polynomial densities f non-
negative on ( (instead of SOS). That is, we replace (5.1) with

ˆ̂= = inf
f∈&=(6)

{∫
5 f d` :

∫
f d` = 1

}
, = ∈ N, (5.4)

where &=(6) is the degree-2= truncated quadratic module associated with the
generators 6 that define (; see (2.6). For instance, if ( is the unit box,

&=(6) =
{
f0 +

3∑
9=1
f9 (1 − G2

9); f0 ∈ Σ[x]=; f9 ∈ Σ[x]=−1, 9 = 1, . . . , <
}
.

Of course, 5 ∗ ≤ ˆ̂= ≤ ^= for all = and therefore, in view of Theorem 5.2, ˆ̂= ↓ 5 ∗
as = increases.

5.2. An alternative univariate formulation

Let the (univariate) Borel measure #` be the pushforward of ` onR by the mapping
5 , that is,

#`(�) = `( 5 −1(�)) for all � ∈ B(R), (5.5)

where B(R) is the usual Borel f-algebra generated by the open sets of R. By
construction of #`, supp(#`) = 5 ((), and therefore

5 ∗ = min
I
{I : I ∈ supp(#`)}, (5.6)

Moreover, the moments (#` 9) 9∈N of #` satisfy

#` 9 =
∫
5 (()

I 9 d#`(I) =
∫
(

5 (x) 9 d`(x) for all 9 ∈ N. (5.7)

As all moments `" of ` are available, the #` 9 can be obtained exactly, for instance,
by expanding the polynomial 5 9 in the canonical basis (x"),

x ↦→ 5 (x) 9 =
∑
"∈N3

\
( 9)
" x", #` 9 =

∑
"

\
( 9)
" `" .

However, notice that even though the above expansion is always possible, it can
become very tedious if 9 is large, even for modest dimension 3.

Theorem 5.4. Let #` be the measure on R in (5.5) (the pushforward of ` by 5 ),
and let

d= ≔ inf
f∈Σ[I ]=

{∫
I f d#` :

∫
f d#` = 1

}
, = ∈ N, (5.8)

d∗= ≔ sup
_

{_ : _M=(#`) � M=(I · #`)}, = ∈ N. (5.9)

Then (d=)=∈N is a monotone non-increasing sequence such that d= ↓ 5 ∗ as =
increases. In addition, and letting 3 5 = deg( 5 ), we obtain d= ≥ ^=3 5

for every
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= ∈ N (where ^= is defined in (5.1)), because if f ∈ Σ[I]= is a feasible solution of
(5.8) then f ◦ 5 ∈ Σ[x]=3 5

is a feasible solution of (5.1) with the same value.

A detailed proof can be found in Lasserre (2021). There is a striking difference
between the hierarchies of upper bounds (^=)=∈N in (5.1) and (d=)=∈N in (5.8).
The latter involves univariate moment and localizing matrices. Both matrices are
Hankel matrices of size $(=) (in contrast to multivariate Hankel-type matrices of
size $(=3) for computing ^=). Therefore, computing the generalized eigenvalue
d= is much easier than computing ^=.
On the other hand, filling up all entries of the Hankel moment matrix M=(#`)

is in principle easy but tedious. Indeed, if 5 9 is expanded in the monomial basis
then its integration (5.7) with respect to ` is straightforward. However, as already
noted, such an expansion can be quite costly if 9 is not small (even for modest
dimension 3).

Rates of convergence. It is worth noting that, just as for the hierarchy of lower
bounds, $(1/=2) rates of convergence have also been obtained for the hierarchy
of upper bounds (5.1)–(5.2) on the sets S3−1, B(0, 1), [−1, 1]3 and Δ3; see Slot
(2022, Table 2, p. 2615).

5.3. Notes and sources

Section 5 is essentially based on Lasserre (2011, 2013); the univariate formulation
is from Lasserre (2021). In a series of papers, de Klerk, Laurent and collaborators
(e.g. de Klerk and Laurent 2011, Slot and Laurent 2021, Laurent and Slot 2023)
have obtained rates of convergence ^= ↓ 5 ∗ (multivariate) and d= ↓ 5 ∗ (univariate)
as = grows, by playing with various reference measures ` on ( and a clever
choice of appropriate families of densities. The approach is also interesting in its
own right as it is a mix of several sophisticated techniques, including polynomial
kernels and asymptotics for roots of some distinguished orthogonal polynomials.
Moreover, it turns out that such techniques have also been useful in obtaining rates
of convergence for the Moment-SOS hierarchy of lower bounds on specific sets
(; for more details the interested reader is referred to Slot (2022) and references
therein.

6. Some applications of the Moment-SOS hierarchy
In this section we briefly describe how the Moment-SOS hierarchy can be used to
help solve several problems in various fields of science and engineering. In brief,
problems where the Moment-SOS hierarchy is a relevant tool are those which
have an equivalent formulation as an instance of the so-called generalized moment
problem (GMP) whose description is only through polynomials and semi-algebraic
sets (i.e. GMPs with algebraic data). Indeed, the list of potential applications of the
GMP is almost endless, with polynomial optimization being its simplest instance.
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As is to be expected from what we have seen for optimization, the GMP can
be formulated in a primal form (via moments) or a dual form (via polynomials).
Its primal form is an infinite-dimensional and linear (hence convex) optimization
problem on measure spaces, which reads

GMP: inf
q1,...,qB

{ B∑
9=1

∫
5 9 dq 9 :

B∑
9=1

∫
ℎ: 9 dq 9 ≥ 1: , : ∈ Γ;

supp(q 9) ⊂ ( 9 , 9 = 1, . . . , B
}
, (6.1)

where all functions 5 9 , ℎ: 9 are polynomials, and the q 9 are Borel measures whose
supports ( 9 ⊂ RA 9 , 9 = 1, . . . , B, are all basic semi-algebraic sets.

The reader will note that all constraints are linear constraints linking moments of
the involved measures q 9 , 9 = 1, . . . , B (whence the name of generalized moment
problem). So the GMP is an infinite-dimensional LP on spaces of measures.
Of course, the GMP in (6.1) can be extended to more general functions and sets,

but for a practical application of the Moment-SOS hierarchy, we need algebraic
data (polynomials and basic semi-algebraic sets). Notice also that formulation
(1.4) of a polynomial optimization problem is the simplest instance of the GMP
in which there is only one unknown measure q and only one (equality) moment
constraint q(() =

∫
1dq = 1.

The dual GMP∗ of (6.1) is also an infinite-dimensional LP, and when ? ≔ #Γ <
∞, it reads

GMP∗: sup
,∈R?

+

{ ?∑
:=1

_: 1: :

5 9(x) −
?∑
:=1

_: ℎ: 9(x) ≥ 0, ∀x ∈ ( 9 , 9 = 1, . . . , B
}
. (6.2)

Moment equality constraints are also tolerated in (6.1), in which case the associated
dual variable _: in (6.2) is not constrained to be non-negative. As is the case in
some important applications, the set Γ is also allowed to be (countably) infinite.
Finally, the objective function of (6.1) can also be a convex function of finitelymany
moments of measures q 9 (e.g. − log det(M=(q 9)) of the moment matrix M=(q 9)),
though we do not discuss this further.
As we see next in two examples, in some applications the problem to solve is

already in the form of a GMP (or GMP∗), whereas in other applications, some
equivalent formulation of the problem is an instance of the GMP.

Strategy of the Moment-SOS hierarchy. Roughly speaking, to apply the Moment-
SOS hierarchy to the GMP (6.1), we proceed as follows.

• We replace the measures (q 9) 9=1,...,B with degree-2= truncated pseudo-mo-
ment vectors 5 9 = (q 9 ,"), " ∈ NA 92=, 9 = 1, . . . , B.
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• We impose semidefinite constraints on the moment and localizing matrices
associated with each 5 9 and each set ( 9 , which by Theorem 2.2(ii) are neces-
sary conditions for 5 9 to be moments of a measure on ( 9 .

Then, as the moment constraints and the criterion are just linear on the pseudo-
moment vectors 5 9 , for each fixed = we end up with a finite-dimensional semi-
definite relaxation that provides a lower bound on the optimal value of the GMP.
Similarly, to apply the Moment-SOS hierarchy to GMP∗ in (6.2), we proceed as
follows.

• For each 9 = 1, . . . , B, we replace the positivity constraint

5 9 −
?∑
:=1

_: ℎ: 9 ≥ 0 on ( 9

with a Putinar certificate of positivity of degree 2=; see Theorem 2.2(i). For
instance, if ( 9 = [−1, 1]3 then the above positivity constraint reads

5 9 −
?∑
:=1

_: ℎ: 9 =

3∑
9=0
f9 (1 − G2

9), f9 ∈ Σ[x]=−3 9
, 9 = 0, . . . , 3.

Then, as the criterion
∑
: _:1: is linear, we end up with a finite-dimensional

semidefinite program, which is the dual of the program on pseudo-moment vectors.
In fact, a primal–dual semidefinite solver will solve both of them at the same time.
For completeness, below are two illustrative applications of the above strategy. In

the first example, in computational geometry and probability, the problem itself is
described as a GMP, while in the second example, in optimal control, an alternative
and so-called ‘weak formulation’ of the optimal control problem is an instance of
the GMP.

6.1. Illustration in probability and computational geometry

Let ( ⊂ R3 be a compact set and suppose that ( ⊂ B ≔ [−1, 1]3 (possibly
after scaling). The goal is to approximate the Lebesgue volume vol(() of (, as
closely as desired. This is known to be a very hard problem. In fact, even if ( is
convex, approximating its volume is quite hard; see e.g. Dyer and Frieze (1988),
the discussion in Henrion, Lasserre and Savorgnan (2009) and references therein.
Let _ be the Lebesgue measure on [−1, 1]3 , so that its (infinite) vector of

moments , = (_")"∈N3 is available in closed form. Let 1 ∈ R[x] be the constant
polynomial (equal to 1 for all x), and for two measures `, a on R3 , the notation
a ≤ ` stands for a(�) ≤ `(�) for all � ∈ B(R3).

Proposition 6.1. We have

vol(() = max
q∈ℳ(()+,a∈ℳ(B)+

{q(1) : q + a = _},

and q∗ ≔ 1( _ is the unique optimal solution.
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Proof. As q+a = _, q ≤ _ and since supp(q) ⊆ (, we have q(1) = q(() ≤ _(() =
vol((). Next, with q∗ ≔ 1( _ ∈ ℳ(()+, and a∗ ≔ ` − q∗ ∈ ℳ(B)+, we obtain
q∗(1) = _(() = vol(().

The above formulation of vol(() as an optimization problem is not yet in the
form of the GMP (6.1). But notice that since B is compact,

q + a = _ ⇔ q" + a" = _" for all " ∈ N3 ,

and therefore

vol(() = max
q∈ℳ(()+,a∈ℳ(B)+

{q(1) : q" + a" = _", ∀" ∈ N3}, (6.3)

which is an instance of the GMP (6.1) with Γ = N3 (a countable set). We next see
how to implement the moment-SOS hierarchy. Let 60 = 1,

( = {x ∈ R3 : 6 9(x) ≥ 0, 9 = 1, . . . , <},

and recall that 3 9 = ddeg(6 9)/2e for all 9 = 0, . . . , <. For each = ∈ N, consider the
optimization problem

g= = max
5,.
{q0 : q" + a" = _", ∀" ∈ N32=;

M=−3 9
(6 9 · 5) � 0, 9 = 0, . . . , <; M=(.) � 0}. (6.4)

For each fixed =, (6.4) is a semidefinite program and an obvious relaxation of (6.3)
so that g= ≥ vol(() for all =.

Theorem 6.2 (Henrion et al. 2009). The sequence of optimal values (g=)=∈N is
monotone non-increasing, bounded below, and lim=→∞ g= = vol(().

So (6.4), indexed by = ∈ N, provides a hierarchy of semidefinite relaxations of
(6.3) such that (g=)=∈N converges (from above) to the desired value vol(() as =
increases. However, in its basic form (6.4), its convergence is quite slow. To see
why, consider the dual of (6.4), which is the semidefinite program

g∗= = min
?∈R[x]2=

{∫
B
? d_ : ? − 1 =

<∑
9=0
f9 6 9

? ∈ Σ[x]=; f9 ∈ Σ[x]=−3 9
; 9 = 0, . . . , <

}
. (6.5)

It turns out that if ( has non-empty interior then g= = g∗= for all =. Next observe
that

? ∈ Σ[x]= and ? − 1 =
<∑
9=0
f9 6 9 ⇒ ? ≥ 1( for all x ∈ B,

and since
∫
?d_ ↓ 1(d_ as = grows, in the dual (6.5) we search for a degree-2=

SOS polynomial ? that tries to approximate from above the indicator function of
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Figure 6.1. ( = [−0.5, 0.5] ⊂ [0, 1]; polynomial approximation (in red) of 1( on
[0, 1] with Gibbs phenomenon.

( for all x ∈ B. As is well known, for such polynomial approximations a typical
Gibbs phenomenon (oscillations) occurs at points of discontinuities, which makes
the convergence quite slow; see Figure 6.1.
Fortunately one can significantly attenuate (or even remedy) this problem. In-

deed, as we know in advance the (unique) optimal solution q∗ = 1(_ of (6.3), every
available additional information on q∗ in terms of linear constraints on its moments
can be added to (6.3) without changing its optimal value and solution. While such
additional redundant constraints do not change (6.3), they have a dramatic impact
on the relaxations (6.4) and yield a fairly significant acceleration of their conver-
gence. This is indeed the case if we add additional moment constraints (satisfied
by q∗) coming from Stokes’ theorem.

Stokes constraints. Let us see how it works for the case where ( = {x : 6(x) ≥ 0}
for some polynomial 6 ∈ R[x] with compact sublevel set (. As 6 vanishes on m(,
by Stokes’ theorem,∫

(

Div(x 6(x) x") dx =
∫
m(

〈®=x, x〉6(x)x" df(x) = 0 for all " ∈ N3 ,

where ®=x is the outward pointing normal at x ∈ m(. Hence each " ∈ N3 provides
us with the moment constraint

q∗(B") ≔ q∗(Div(x 6(x)x") = 0 on q∗,

because x ↦→ B"(x) ≔ Div(x 6(x) x") is a polynomial (of degree deg(6) + |" | + 1).
Hence, for every = ∈ N, the additional moment constraints

q(B") = 0 for all " : |" | ≤ 2= − 1 − deg(6) (6.6)

can be included in the semidefinite relaxation (6.4). The effect on the dual (6.5) is
to change the initial constraint ? − 1 = f0 + f1 6 to

? + @ − 1 = f0 + f1 6,
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where @ ≔
∑
|" | ≤2=−deg(6)−1 \" B" for the dual variables (\") associated with (6.6).

Hence, ? is no longer required to approximate 1( from above! For more details
on volume computation via the moment-SOS hierarchy, the interested reader is
referred to Henrion et al. (2009), Tacchi, Weisser, Lasserre and Henrion (2021)
and Tacchi, Lasserre and Henrion (2023). In particular, this technique has also
been implemented in Tacchi et al. (2021) to approximate the volume of certain
non-convex sets ( ⊂ R100 where the description of ( exhibits some structured
sparsity, as described in Section 3.8.

Remark 6.3. One can consider (6.3) with a measure _ that is not Lebesgue
measure on B. For example, if _ is the Gaussian measure exp(−‖x‖2) dx on R3 ,
or the exponential measure exp(−∑

9 G 9) dx on R3+ , one can approximate the value
_(() for non-compact semi-algebraic sets as closely as desired; see e.g. Lasserre
(2017).

Application in probability. Suppose that - is a R3-valued random vector whose
distribution is only partially known through a few of its moments m = (<")"∈Γ,
where Γ ⊂ N3 is a finite set (typically the index set of moments up to order 3, 4).
Next, let ( ⊂ R3 be a given compact basic semi-algebraic set with non-empty
interior. The goal is to provide the best upper bound on Prob(- ∈ (), under the
partial knowledge of m = (<")"∈Γ, that is, compute

d = max
`∈ℳ(R3)+

{
`(() :

∫
x" d` = <", ∀" ∈ Γ

}
. (6.7)

Observe that (6.7) is an instance of the GMP (6.1) but with non-polynomial data
because with ` ∈ ℳ(R3)+, `(() = `(1() and 1( is not a polynomial. We need to
consider that ` = q + a with q ∈ ℳ(()+ (in which case q(() = q(1) = q0), and
hence for every = ∈ N, consider the optimization problem

g= = max
5,.

{
q0 : q" + a" = <", ∀" ∈ Γ;

M=−3 9
(6 9 · 5) � 0, 9 = 0, . . . , <; M=(.) � 0

}
, (6.8)

which is a relaxation of (6.7) and a variant of (6.4) (in fact even easier because
now Γ is a finite set instead of the countable set N3). For instance, with Γ = N32C
for some fixed C, the dual of (6.8) reads

g∗= = min
?

{∑
"∈Γ

?" <" : ? − 1 =
<∑
9=0
f9 6 9

? ∈ Σ[x]C ; f9 ∈ Σ[x]=−3 9
; 9 = 0, . . . , <

}
. (6.9)

The difference from (6.5) is that now, even when = changes, we still search for
a degree-2C polynomial ? ≥ 1( (where the degree 2C is fixed by the number of
moments in Γ). In this case we do not have a Gibbs phenomenon because the
degree of ? is fixed.
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Next, let

Φ ≔

{
` ∈ℳ(R3)+ :

∫
x" d` = <", ∀" ∈ Γ

}
.

If there is some ` ∈ Φ with a strictly positive density with respect to Lebesgue
measure, and with all moments finite, then each relaxation (6.9) is solvable and
there is no duality gap, i.e. g= = g∗=, and there is an optimal solution ?∗ ∈ R[x]C
for all =. Moreover, g= ↓ g ≥ d as = → ∞. Finally, the bound g may be sharp,
i.e. g = d, if at some step =, the moment matrices of an optimal solution (5, .) of
(6.8) satisfy some ‘flatness’ property; for more details see e.g. Lasserre (2002a)
and Bertsimas and Popescu (2005).

6.2. Illustration in optimal control of dynamical systems

In this section we briefly describe how to apply the Moment-SOS hierarchy to help
solve optimal control problems (OCPs) with algebraic data, i.e. those problems
whose description is through polynomials and basic semi-algebraic sets. Consider
the optimal control problem

OCP: �(x0, 0) ≔ min
u

{∫ 1

0
ℎ(x(C), u(C)) dC + �(x(1)) :

¤x(C) = 5 (x(C), u(C)), ∀ C ∈ (0, 1),
x(C) ∈ -, u(C) ∈ *, ∀ C ∈ (0, 1),

x(0) = x0

}
, (6.10)

where ℎ, �, 5 are polynomials and - ⊂ R3 and * ⊂ R< are basic semi-algebraic
set, and x0 ∈ - is the initial condition.

Equation (6.10) describes a dynamical system whose evolution in the time inter-
val [0, 1] of its state x(C) ∈ R3 , C ∈ [0, 1], is governed by a controlled ODE with
vector field 5 : R3 × R< → R3 , and control u(C) ∈ * for all C ∈ (0, 1). The goal is
to approximate an optimal (or close to optimal) control trajectory C ↦→ u∗(C) ∈ R<,
C ∈ [0, 1], which minimizes the functional

∫ 1
0 ℎ(x(C), u(C)) dC + �(x(1)). Here we

will not discuss the appropriate function spaces in which we have to search the
state and control trajectories x(C), u(C). Instead we show:

(i) how to model (6.10) as a particular instance of the GMP (6.1), and
(ii) how to define an appropriate Moment-SOS hierarchy for solving (6.10).

Note that in contrast to POPs, where we search for a point x∗ ∈ ( ⊂ R3 , we now
search for maps (x∗, u∗) : [0, 1] → R3 × R<, a much more difficult problem which
is already infinite-dimensional in its description.

Strategy. As for (static) optimization problems (1.1), where in the Moment-SOS
hierarchy we search for a probability measure (the Dirac measure X{x∗ } at a global
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minimizer x∗ ∈ (), here we will also search for a measure `, now supported on an
optimal state-control trajectory {(x∗(C), u∗(C))} from time C = 0 up to time C = 1.

By integrating polynomial test functions along feasible trajectories, the ordin-
ary differential equation that governs the dynamical system will provide linear
constraints on moments of ` and moments of a terminal measure a on - at time
C = 1 (because the vector field 5 in (6.10) is a polynomial). The state and control
constraints in (6.10) translate into support constraints on ` and a.

Modelling (6.10) as a GMP via occupation measures. The idea is to look at (6.10)
via its impact on the evaluation of test functions all along feasible trajectories. Let
{(x(C), u(C)) : C ∈ [0, 1]} be an admissible trajectory, and let (x, C) ↦→ F(x, C) be an
arbitrary test function in �

1(- × [0, 1]). Then observe that

F(x(1), 1) − F(x(0), 0) =
∫ 1

0
dF(x(C), C) (6.11)

=

∫ 1

0

mF(x(C), C)
mC

+ 〈∇xF(x(C), C), 5 (x(C), u(C))〉 dC.

Introduce the measures ` on - ×* × [0, 1], and a0, a on - × [0, 1]:

`(� × � × �) =
∫
�∩[0,1]

1�∩- (x(C)) 1�∩* (u(C)) dC, (6.12)

a(� × �) = 1(�∩- )×(�∩{1})(x, C), (6.13)
a0(� × �) = 1(�∩- )×(�∩{0})(x, C), (6.14)

for all Borel sets � ∈ B(-), � ∈ B(*) and � ∈ B([0, 1]). The measure `
is called the occupation measure up to time 1, while a0 (resp. a) is called the
occupation measure at time C = 0 (resp. at time C = 1), all associated with the
trajectory {(x(C), u(C)) : C ∈ [0, 1]}. Another equivalent characterization of ` is via
its disintegration

d`(x, u, C) = X{(x(C),u(C))}(3(x, u)) 1[0,1](C) dC, (6.15)

into:

• its marginal 1[0,1](C) dC on [0, 1], and
• its conditional probability X{(x(C),u(C))}(3(x, u)) on - × *, given C ∈ [0, 1]
(which is the Dirac measure at the point (x(C), u(C)) ∈ - ×*).

It is important to observe that the support of ` is the graph {(C, x(C), u(C)) : C ∈
[0, 1]} of state-control trajectories (x(C), u(C)). Ideally we search for the measure

d`∗(x, u, C) = X{(x∗(C),u∗(C))}(3(x, u)) 1[0,1](C) dC,

whose support is exactly the graph of optimal state-control trajectories (x∗(C), u∗(C)),
C ∈ [0, 1], when the latter exist.
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One reason for introducing occupation measures is that the time integral (6.11)
reads as the spatial integral∫

F da −
∫

F da0 =

∫
mF

mC
(x, C) + 〈∇xF(x, C), 5 (x, u)〉 d`(x, u, C), (6.16)

where the variables (x, u, C) are now treated as independent variables. The respect-
ive dependence of (x, u) on C is implicit through the support of `.
Next, introduce the operator L : �1(- × [0, 1])→ �(- ×* × [0, 1]):

F ↦→ LF ≔ mF

mC
+ 〈∇xF, 5 〉,

and its adjoint L∗ : �(- ×* × [0, 1])∗ → �
1(- × [0, 1])∗ by

` ↦→ L∗` ≔ −m`
mC
−

3∑
8=1

m( 58`)
mG8

= −m`
mC
− div( 5 `),

where derivatives of measures are understood in a weak sense via their actions on
smooth test functions (and the change of signs comes from integration by parts).
Then (6.16) reads

〈F, a〉 − 〈F, a0〉 = 〈LF, `〉 = 〈F,L∗`〉,

and as it must be valid for all test functions F in a dense subsetD ⊂ �
1(- × [0, 1]),

we obtain the equation L∗` = a − a0, that is,

m`

mC
+ div( 5 `) + a = a0. (6.17)

Equation (6.17) is a linear transport equation (transporting a0 to a) which is clas-
sical in fluid mechanics, statistical physics and PDEs. It is known under several
names, including the equation of conservation of mass, the advection equation and
Liouville’s equation.
This observation allows us to define the so-called measure-valued weak formu-

lation of the OCP:

d = inf
`,a

{∫
ℎ d` +

∫
� da :∫

mF

mC
+ 〈∇xF, 5 〉 d` =

∫
F da −

∫
F da0, ∀F ∈ D;

` ∈ℳ(- ×* × [0, 1])+, a ∈ℳ(- × {1})+
}
, (6.18)

introduced by Vinter (1993).
Observe that if D is a countable set of polynomials, then (6.18) is an instance of

the GMP in (6.1) and of course a relaxation of (6.10) so that d ≤ � (x0, 0). The
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dual of (6.18) reads

d∗ = sup
F ∈�1(-×[0,1])

{∫
F da0 (= F(x0, 0)) :

ℎ + LF ≥ 0, ∀ (x, u, C) ∈ - ×* × [0, 1];

F(x, 1) ≤ �(x), ∀x ∈ -
}
. (6.19)

It turns out that under some convexity assumptions, d = �(x0, 0), that is, the
measure-valued weak formulation (6.18) is equivalent to the strong formulation
(6.10). In the dual (6.19)we approximate the optimal value function � : -×[0, 1] →
R all along an optimal trajectory {(x∗(C), C) : C ∈ [0, 1]; x∗(0) = x0} (but not for all
(x, C) ∈ - × [0, 1]). For more details see e.g. Lasserre, Henrion, Prieur and Trélat
(2008), Korda et al. (2022) and references therein.

Next, to implement the moment SOS hierarchy we first select a countable set of
test functions D, namely the set of monomials

D ≔ {(x" u# C:) : " ∈ N3 , # ∈ N<, : ∈ N},

which is dense in �
1(- × [0, 1]). Then, for every = ∈ N, let D= ≔ {(x" u# C:) ∈

D : |" + #| + : ≤ 2=}, and consider the optimization problem

d= = min
-,.

{
`(ℎ) + a(�) :

`

(
mF

mC
+ 〈∇xF, 5 〉

)
= a(F) − a0(F), ∀F ∈ D=;

M=(-), M=(.) � 0; M=((1 − C).) = 0;
M=−36 (6 · -), M=−36 (6 · .) � 0, ∀ 6 ∈ �;

M=−1(C(1 − C) · -) � 0, M=−3\ (\ · -) � 0, ∀ \ ∈ Θ
}
. (6.20)

where - = {x : 6(x) ≥ 0, 6 ∈ �}, * = {u : \(u) ≥ 0, \ ∈ Θ}, 36 = ddeg(6)/2e,
6 ∈ �, and 3\ = ddeg(\)/2e, \ ∈ Θ.
So the sequence of optimal values (d=)=∈N is monotone non-decreasing, and

under the convexity assumptions alluded to above, d= ↑ �(x0, 0) as =→∞.

Reconstruction of optimal trajectories from moments. So far, by solving the semi-
definite relaxations (6.20) we obtain a sequence (d=)=∈N of lower bounds on the
optimal value � (x0, 0) of the initial OCP (6.10). But from the vector of pseudo-
moments (-=, .=) optimal solution of (6.20) for some degree =, can we retrieve
or approximate optimal trajectories (x∗(C), u∗(C)) when they exist, or provide Y-
suboptimal trajectories otherwise?
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Again, and ideally, when = is sufficiently large, we expect (-=, .=) to provide
quite good approximations of the moments of the measures

d`(x, u, C) = X{x∗(C),u∗(C))}(3(x, u)) 1[0,1](C) dC

and a, supported respectively on the trajectories (x∗(C), u∗(C)) and on the point
(x∗(1), 1) ∈ - × {1}. In Section 7.3 we describe an efficient strategy via the
Christoffel function, a tool from approximation theory and orthogonal polynomi-
als, particularly well suited to identifying the support of a measure solely from
knowledge of its moments.

6.3. Other applications

Here we provide the reader with some references to other applications of the
Moment-SOS hierarchy. The purpose of this list, which is not exhaustive, is to
convince the reader that the Moment-SOS hierarchy is indeed a versatile tool,
widely applicable when the problem data are algebraic, and provided that some
sparsity or symmetries can be exploited when the problem size demands.

• Control and stochastic control: Pauwels, Henrion and Lasserre (2017), Hen-
rion and Garulli (2005), Parrilo (2000), Parrilo and Lall (2003), Aylward,
Parrilo and Slotine (2008), Parrilo (2003), Korda, Henrion and Jones (2014),
Fantuzzi, Goluskin, Huang and Chernyshenko (2016) and Goluskin and Fan-
tuzzi (2019).

• For convex computation of the region of attraction for dynamical systems, see
e.g. Henrion et al. (2021, Chapter 10), and for analysis and control of some
types on non-linear PDEs, see e.g. Marx, Weisser, Henrion and Lasserre
(2020), Henrion et al. (2021, Chapter 11) and Korda et al. (2022).

• Tensor computation: Nie (2023), Nie and Yang (2020), Fan, Nie and Zhou
(2018) and Nie (2017).

• Algorithmic game theory: Stein, Ozdaglar and Parrilo (2008), Laraki and
Lasserre (2012) and Nie and Tang (2023).

• Management of energy networks, and in particular for solving the optimal
power flow problem for (large) electricity networks. The Moment-SOS hier-
archy has been able to handle problems with thousands of variables by ex-
ploiting some inherent sparsity, in the spirit of Section 3.8; see e.g. Molzhan
and Hiskens (2015), Tian, Wei and Tan (2015), Molzahn and Josz (2018),
Cicconet and Almeida (2019) and Haussmann, Liers, Stingl and Vera (2018).

• Computer science, e.g. for coding and packing problems: Bachoc and Val-
lentin (2008), Bachoc, Passuello and Vallentin (2013), Dostert and Vallentin
(2020) and de Laat et al. (2022).
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• Computer vision, geometric perception and pattern recognition: Yang and
Carlone (2020), Yang, Shi and Carlone (2020), Yang and Pavone (2023) and
Probst, Paudel, Chhatkuli and Van Gool (2019).

• Mathematical finance, for portfolio optimization and option pricing: Lasserre,
Priéto-Rumeau and Zervos (2006) and Gepp, Harris and Vanstone (2020).
When the evolution in time is modelled by Itô’s stochastic differential equa-
tions, a weak formulation of the problem via occupation measures is almost
identical to that of OCPs, the only difference being that a second-order dif-
ferential operator appears in the infinitesimal generator. It is also the case
for computing exit-time distribution (of a given set) in stochastic models, as
described in Lasserre and Priéto-Rumeau (2004), for example.

• The Internet of Things (IoT): Sedighi, Mishra, Shankar and Ottersten (2021).

• Computer graphics and geometry processing: Marschner, Palmer, Zhang and
Solomon (2020, 2021).

• Signal processing: Marmin, Castella, Pesquet andDuval (2021) and deCastro,
Gamboa, Henrion and Lasserre (2017).

• Optimal design in statistics: de Castro et al. (2019).

• Physics, for bounding ground-state energy of interacting particle systems:
de Laat (2020).

• Chemistry, for deriving bounds on stochastic chemical kinetic systems:Dowdy
and Barton (2018).

• Traffic networks, for bounding travel time: Xiangfeng Ji, Xuegang (Jeff) Ban,
Jian Zhang and Bin Ran (2019).

• Engineering: Courtier et al. (2022).

• Machine learning, for certification of robustness for neural networks: Latorre,
Rolland and Cevher (2020) and Chen Tong, Lasserre, Magron and Pauwels
(2021).

• Quantum information (e.g. for several problems in entanglement theory):
Eisert, Hyllus, Gühne and Curty (2004), Bacari, Gogolin, Wittek and Acín
(2020), Parekh and Thompson (2021), Doherty, Parrilo and Spedalieri (2005)
and Selby et al. (2023).

• Data analysis of citation networks: e.g. Wittek, Darányi and Nelhans (2017).

• Radar and wireless communications: Jie Pan and Fu Jiang (2020).

• Medical applications of cancer treatment: Moussa, Fiacchini and Alamir
(2020).

• Truss topology design: Tyburec, Zeman, Kruzik and Henrion (2021).
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6.4. Notes and sources

Section 6.1 is based on Lasserre (2002a) and Henrion et al. (2009), while Sec-
tion 6.2 is based on Lasserre et al. (2008). Infinite-dimensional LP formulations
of optimal control problems can be traced back to works of L. C. Young, A. F.
Filippov, R. V. Gamkrelidze and J. Warga; see Fattorini (1999) for a historical sur-
vey. The novelty is the observation that such problems (with algebraic data) can be
approximated numerically by semidefinite relaxations. In particular, it should be
noted that while state constraints ‘x(C) ∈ - for all C’ are usually considered a source
of additional difficulties for classical numerical methods, they pose no problem for
the Moment-SOS hierarchy as they simply appear in the support of the occupation
measure.
The Moment-SOS hierarchy approach to analysis and control of some non-

linear PDEs in Korda et al. (2022) follows the same principles as for solving OCPs.
Namely, we consider a measure-valued weak formulation of the problem, similar to
that in (6.18) for OCPs, using test functions and occupation measures. Appropriate
conditions are required for the weak formulation to be equivalent to the initial
(strong) formulation. For instance, for the Burgers equation, additional entropy
constraints (due to Kruzkhov) on the occupation measures are needed; see Marx
et al. (2020) and Henrion et al. (2021, Chapter 11).

The reconstruction technique of state and control trajectories based on the Chris-
toffel function is detailed in Marx et al. (2021). In particular, this technique has
been used with success in Marx et al. (2020) to recover solutions to Burgers’ PDE
from moments of the measure supported on their graph. A (remarkably accur-
ate) approximation of such moments has been obtained by solving semidefinite
relaxations of the Moment-SOS hierarchy applied to the weak measure-valued
formulation of the Burgers equation (and in a spirit similar to (6.20) for optimal
control problems). The role of the Christoffel function is treated in more detail
in Section 7, including its remarkable ability to recover a function solely from
knowledge of the moments of the (degenerate) measure supported on its graph.

7. Positive polynomials and the Christoffel function
In this sectionwe introduce theChristoffel–Darboux (CD) kernel and theChristoffel
function (CF), which are classical tools from the fields of orthogonal polynomials
and approximation theory. In addition to being interesting in their own right,
they have proved to be useful in understanding and interpreting the Moment-SOS
hierarchy of lower bounds. Further, the CF also appears in a certain distinguished
representation of polynomials that are positive on a semi-algebraic set ( ⊂ R3 ,
as in (2.7), extensively used in the Moment-SOS hierarchy. In particular, every
SOS polynomial ? in the interior of the convex cone Σ[x]= of degree-2= SOS
polynomials is the reciprocal of the CF of some linear functional q in R[x]∗2=. If
= = 2, then q has a clear interpretation in terms of a Gaussian measure, but in the
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general case, the link between ? and q is only partially understood and remains to
be interpreted.

7.1. Christoffel–Darboux kernel and Christoffel function

The CF is usually defined for a measure ` with moments - = (`")"∈N3 , whose
support ( ⊂ R3 is compact and such that its momentmatrixM=(-) (or equivalently,
M=(`)) is positive definite for every degree = ∈ N. However, it can also be defined
for a Riesz linear functional q ∈ R[x]∗ (with 5 = (q")"∈N3 ) such that M=(5) � 0
for every = ∈ N, not necessarily coming from a measure `.

So after fixing some ordering of monomials in N3 , and since M=(5) � 0 for
every =, let (%")"∈N3 be a family of polynomials that are orthonormal with respect
to q, that is, such that

q(%" %#) = X"=# for all ", # ∈ N3 , (7.1)

where X ·=· is the usual Kronecker symbol (with value 1 if " = # and 0 otherwise).
For every = ∈ N, the Christoffel–Darboux (CD) kernel  q= : R3 × R3 → R is

then defined by

(x, y) ↦→  
q
= (x, y) ≔

∑
"∈N3

=

%"(x) %"(y) for all x, y ∈ R3 , = ∈ N, (7.2)

and the Christoffel function (CF) Λq= : R3 → R+ is defined by

x ↦→ Λ
q
= (x) ≔  

q
= (x, x)−1 for all x ∈ R3 , = ∈ N, (7.3)

that is, the CF is the reciprocal of the ‘diagonal’ of the CD kernel. Hence, by
construction, 1/Λq= is an SOS polynomial of degree 2=.

A reproducing property. Let ? ∈ R[x]=, and since (%")"∈N3
=
form a basis ofR[x]=,

write
x ↦→ ?(x) =

∑
"∈N3

=

?" %"(x) for all x ∈ R3 ,

for some vector of coefficients p = (?")"∈N3
=
in RB(=) (with B(=) =

(
=+3
3

)
).

With x ∈ R3 fixed, y ↦→  
q
= (x, y) ∈ R[y]=, and we have

q( q= (x, ·) ?) = q
(( ∑

"∈N3
=

%"(x) %"(y)
)
·
( ∑

#∈N3
=

?# %#(y)
))

=
∑
"∈N3

=

?" %"(x) = ?(x) for all ? ∈ R[x]=, (7.4)

where we have used that

q(?#%#(y) %"(x)%"(y)) = ?# %"(x) q(%# %") = ?# %"(x) X#=" .
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For this reason, if ` is a measure on ( ⊂ R3 , and !2(`) is the Hilbert space of
square-integrable functions with respect to `, with scalar product

〈 5 , 6〉 =
∫
(

5 6 d` for all 5 , 6 ∈ !2(`),

then (R[x]=, 〈·, ·〉) ⊂ !2(`) is called a reproducing kernel Hilbert space (RKHS)
with kernel  `= , because∫

(

 
`
= (x, y) ?(y) d`(y) = ?(x) for all ? ∈ R[x]=.

Alternative formulations of the CF. The CF can be defined by

Λ
q
= (/)−1 = v=(/)>M=(5)−1 v=(/) for all / ∈ R3 (7.5)

(the ABC theorem in Simon (2008)), and it also has the variational formulation

Λ
q
= (/) = min

?∈R[x]=
{q(?2) : ?(/) = 1} for all / ∈ R3 . (7.6)

In particular, observe that (7.6) can be rewritten as

Λ
q
= (/) = min

p∈RB(=)
{p>M=(5)p : 〈p, v=(/)〉 = 1} for all / ∈ R3 ,

which is a convex quadratic optimization problem that can be solved efficiently even
for large dimension 3. After some algebra, the unique optimal solution ?∗ ∈ R[x]=
of (7.6) reads

x ↦→ ?∗(x) =
 
q
= (/, x)

 
q
= (/, /)

for all x ∈ R3 .

7.2. Some useful properties of the CF

A crucial property of the CFs (Λ`= )=∈N associated with a measure ` on a compact
set ( ⊂ R3 is to identify the support of `. Indeed, its decay with the degree =
exhibits the following interesting dichotomy:

• for all / ∈ supp(`), Λ`= (/)−1 grows at most as a polynomial in =,
• for all / ∉ supp(`), Λ`= (/)−1 grows at least as an exponential in =.

This property has been exploited in data analysis to provide a simple and easy-to-
use tool (with no tuning of parameters), e.g. to detect outliers, with performance
similar to (and sometimes better than) state-of-the-art techniques; see Lasserre,
Pauwels and Putinar (2022) and Lasserre and Pauwels (2016).
Next, let ` have a density 5 with respect to Lebesgue measure on (. Under some

additional regularity properties of ` and its support (,

lim
=→∞

B(=)Λ`= (/) = 5 (/)/`� (/), (7.7)

uniformly on compact subsets of int((), where `� is the density of a so-called
equilibrium measure of (.
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Equilibrium measure. A Borel measure ` supported on a compact set ( ⊂ R3 sat-
isfies the Bernstein–Markov property if there exists a sequence of positive numbers
("=)=∈N such that for all = and ? ∈ R[x]=,

sup
x∈(
|?(x)| ≤ "= ·

(∫
(

?2 d`
)1/2

and lim
=→∞

log("=)/= = 0 (7.8)

(see e.g. Lasserre et al. (2022, Section 4.3.3)). The Bernstein–Markov property
allows a qualitative description of asymptotics of the Christoffel function as =
grows.
The notion of equilibrium measure, associated with a given set, originates from

logarithmic potential theory (working inC in the univariate case) to minimize some
energy functional. For instance, the (Chebyshev) measure d` ≔ dG/c

√
1 − G2 is

the equilibrium measure of the interval [−1, 1]. Some generalizations have been
obtained in the multivariate case via pluripotential theory in C3 . In particular, if
( ⊂ R3 ⊂ C3 is compact then its equilibrium measure (let us denote it by _()
is equivalent to Lebesgue measure on compact subsets of int((). It has an even
explicit expression if ( is convex and symmetric about the origin; see e.g. Baran
(1995) and Bedford and Taylor (1986, Theorems 1.1, 1.2). Moreover, if ` is a
Borel measure on ( and ((, `) has the Bernstein–Markov property (7.8), then the
sequence of measures

a= =
`

B(=)Λ`= (x)
,

= ∈ N, converges to _( for the weak-★ topology, and therefore in particular

lim
=→∞

∫
(

x" da= = lim
=→∞

∫
(

x" d`(x)
B(=)Λ`= (x)

=

∫
(

x" d_( for all " ∈ N3 . (7.9)

(See e.g. Lasserre et al. (2022, Theorem 4.4.4).) In addition, if the compact
( ⊂ R3 is regular, then ((, _() has the Bernstein–Markov property. For a brief
account of equilibriummeasures, see Baran (1995), Bedford and Taylor (1986) and
the discussion in Lasserre et al. (2022, Sections 4–5, pp. 56–60), while for more
detailed expositions see some of the references therein.

7.3. The CF for interpolation and approximation

In this section we briefly address the following issue, which is interesting in its
own right and also central to the recovery of an optimal (or Y-optimal) trajectory
{x(C) : C ∈ [0, 1]} in optimal control problems, solely from knowledge of the
moments of the occupation measure supported on the graph {(C, x(C)) : C ∈ [0, 1]};
see Section 6.2.
So with - ⊂ R, let ` be a measure on [0, 1] × - , defined by

d`(C, G) = X{ 5 (C)}(dG) 1[0,1](C) dC,

for some unknown measurable function 5 : [0, 1] → - , that is, ` is supported
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on the graph {(C, 5 (C)) : C ∈ [0, 1]} of 5 . The goal is to recover 5 solely from
knowledge of the moments - = (`8 9)(8, 9)∈N2 , where

`8 9 =

∫
C8G 9 d`(C, G) =

∫ 1

0
C8 5 (C) 9 dC, (8, 9) ∈ N2.

We propose using the Christoffel function Λ`= to recover 5 from - because, as
seen earlier, Λ`= is a good tool for identifying the support of `, and in this case
the support is precisely the graph of the unknown function 5 to recover. Here,
observe that ` is a degenerate measure on [0, 1] × - , that is, its support has
Lebesgue measure zero on [0, 1] × - . Therefore its moment matrix M=(`) can be
ill-conditioned and even singular if 5 is a polynomial (because then the vector of
coefficients of 5 ∈ R[C] is in the kernel of M=(`) when = is sufficiently large). So
we first ‘perturbate’ (or regularize) M=(`) to M=(`) + YI with I the identity matrix
and some small regularization parameter Y > 0, and we define a new perturbated
Christoffel function Λ̂`= by

(C, G) ↦→ Λ̂
`
= (C, G)−1 ≔ v=(C, G)>(M=(`)+YI)−1v=(C, G) for all (C, G) ∈ R2. (7.10)

We then define the following =-approximant 5= : [0, 1] → - of 5 by

C ↦→ 5=(C) ≔ arg min
G∈-

Λ̂
`
= (C, G)−1, C ∈ [0, 1] . (7.11)

(If there are several minimizers in (7.11) then just take the smallest one as a tie-
breaker rule.) For every fixed C ∈ [0, 1], 5=(C) can be computed efficiently as
G ↦→ Λ̂

`
= (C, G)−1 is a univariate SOS polynomial in G.

Next, as = increases, pointwise convergence (except at points of discontinuity)
and !1-norm convergence to 5 are proved inMarx et al. (2021). Observe that the 5=
approximant (7.11) is not a polynomial, and since it is semi-algebraic, it is able to
approximate some discontinuous functions quite well with no Gibbs phenomenon.
For instance, in Figure 7.1(a) we may observe a typical Gibbs phenomenon

(oscillations) when approximating the (discontinuous) step function C ↦→ 5 (C) = 0
if C ∈ [0, 1/2] and 5 (C) = 1 if C ∈ (1/2, 1] (in red) by a polynomial ?∗ ∈ R[C]= (in
black) that minimizes the integral of the mean squared error, that is,

?∗ = arg min
?∈R[C ]=

∫ 1

0
(? − 5 )2 dC

(even with degree = = 12). This !2-norm approximation of 5 is a standard
application of the CD kernel  a= associated with the univariate measure a = dC
on [0, 1]. On the other hand, with Y > 0 very small and 5= as in (7.11), the step
function is recovered almost exactly (in black) with no Gibbs phenomenon and
with small degree = = 4. This is what we may call a non-standard application of
the CD kernel, as we consider the degenerate bivariate measure ` on [0, 1] × -
instead of the univariate measure 5 (C) dC on [0, 1].
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(a) (b)

Figure 7.1. (a) Degree-12 polynomial approximation of step function with Gibbs
phenomenon. (b) Step function approximated by 54 in (7.11). © Springer Nature,
reproduced with permission from Marx et al. (2021).

(a) (b)

Figure 7.2. Two Eckhoff functions (Eckhoff 1993) approximated by 510 in (7.11).
© Springer Nature, reproduced with permission from Marx et al. (2021).

Similarly, in Figure 7.2, two discontinuous Eckhoff functions from Eckhoff
(1993) (in red) are also recovered (in black) with very good precision via 5= in
(7.11) with = = 10, and again with no Gibbs phenomenon; for more details the
reader is referred to Marx et al. (2021).

Application to optimal control. As already mentioned in Section 6.2, such an
approximation technique can be used to recover the graph of functions supported
on trajectories {(x∗(C), u∗(C)) : C ∈ [0, 1]}, i.e. the optimal solutions of optimal
control problems (6.10) described in Section 6.2. Indeed, when applying the
Moment-SOS hierarchy to solve (6.10), at an optimal solution of (6.20), we obtain
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approximate moments up to degree 2=, of the measure

d`∗(x, u, C) = X{(x∗(C),u∗(C))} 1[0,1](C) dC,

supported on the graph of the map (x∗, u∗) : [0, 1] → R3 × R<.
For instance, to recover the particular trajectory {G∗

8
(C) : C ∈ [0, 1]} for some

coordinate 8 ∈ {1, . . . , 3}, we proceed as follows.

• We extract the sub-matrix M(G8 ,C)
= of M=(`) obtained by restricting to rows

and columns indexed by monomials (G:
8
C 9), (:, 9) ∈ N2

= (i.e. M(G8 ,C)
= is the

degree-= moment matrix of the marginal `8 of ` on (G8 , C)).
• We compute the perturbed Christoffel function in (7.10) associated with `8 ,
that is,

Λ̂
`8
= (G8 , C)−1 = v=(G8 , C)>(M(G8 ,C)

= + Y I)−1v=(G8 , C),

and then the 5= approximant of the function G8(C) is obtained via (7.11).

The same procedure is repeated for all coordinates G∗
8
(C), 8 ∈ {1, . . . , 3}, of x∗(C),

and all coordinates D∗
9
(C), 9 ∈ {1, . . . , <}, of u∗(C), independently.

7.4. Christoffel function and positive polynomials

First notice that by construction, the reciprocal of a Christoffel function is an SOS
polynomial. Next, with ( ⊂ R3 as in (2.7), recall the convex cone

&=(6) ≔
{ <∑
9=0
f9 6 9 : f9 ∈ Σ[x]=−3 9

, 9 = 0, . . . , <
}
, (7.12)

which is a degree-2= truncated version of the quadratic module &(6) (with 3 9 =
ddeg(6 9)/2e and 60 = 1). For every polynomial ? =

∑
9 f96 9 ∈ &=(6), the SOS

weights f9 provide ? with an algebraic certificate of its positivity on (.
Recall that the dual of &=(6) is the convex cone

&∗=(6) = {5 ∈ RB(2=) : M=−3 9
(6 9 · 5) � 0, 9 = 0, . . . , <}, (7.13)

where M=(6 9 · 5) is the localizing matrix associated with the polynomial 6 9 and
the sequence 5 (or equivalently the moment matrix associated with the sequence
6 9 · 5), defined in Section 2.1. We saw in Section 3 that &=(6) and its dual &∗=(6)
are crucial to the construction of the Moment-SOS hierarchy of lower bounds. It
turns out that there is a nice one-to-one correspondence between the respective
interiors of &=(6) and &∗=(6), stated in terms of Christoffel functions.

Theorem 7.1. If ? ∈ int(&=(6)), then there exists 5 ∈ int(&∗=(6)) such that

?(x) =
<∑
9=0
Λ
6 9 ·5
=−3 9

(x)−1 6 9(x) for all x ∈ R3 , (7.14)
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or, equivalently,

int(&=(6)) =
{ <∑
9=0

(
Λ
6 9 ·5
=−3 9

)−1
6 9 : 5 ∈ int(&∗=(6))

}
. (7.15)

Theorem 7.1 is an interpretation from Lasserre (2022) of a duality result of
Nesterov (2000). Remarkably, it states that every ? in the interior of &=(6) has
a distinguished certificate of its positivity on (, with very specific SOS weights
f9 = (Λ6 9 ·5

=−3 9
)−1 in its Putinar’s representation (2.9). Indeed, those weights all come

from a unique element 5 ∈ int(&∗=(6)) and its Christoffel functions associated with
the Riesz linear functionals 6 9 ·5, 9 = 0, . . . , <. It also turns out that those weights
have an extremal property: consider the optimization problem

d= = inf
5∈RB(2=)

{
−
<∑
9=0

log det(M=−3 9
(6 9 · 5)) :

q(?) = 1, M=−3 9
(6 9 · 5) � 0, ∀ 9 = 0, . . . , <

}
. (7.16)

It is a convex optimization problem which has an explicit dual, namely

d∗= = sup
Q 9

{ <∑
9=0

log det(Q 9) : Q 9 � 0, ∀ 9 = 0, . . . , <

?(x)
<∑
9=0
B(= − 3 9) =

<∑
9=0
6 9(x) · v=−3 9

(x)>Q 9v=−3 9
(x), ∀x ∈ R3

}
,

(7.17)

where the supremum is taken over real symmetric matrices Q 9 of respective size
B(=−3 9), 9 = 0, . . . , <. The criterion to maximize in (7.17) is minus the log-barrier
of the convex cone &=(6).

Theorem 7.2. With = ∈ N fixed, problems (7.16) and (7.17) have the same finite
optimal value d= = d∗= if and only if ? ∈ int(&=(6)). Moreover, both have a
unique optimal solution 5∗2= ∈ RB(2=) and (Q∗

9
) 9=0,...,< respectively, which satisfy

Q∗
9
= M=−3 9

(6 9 · 5∗2=)−1 for all 9 = 0, . . . , <. As a consequence,

?(x) =
1∑<

9=0 B(= − 3 9)

<∑
9=0
6 9(x) v=−3 9

(x)>M=−3 9
(6 9 · 5∗2=)

−1v=−3 9
(x)

=
1∑<

9=0 B(= − 3 9)

<∑
9=0
6 9(x)Λ6 9 ·5∗2=

=−3 9
(x)−1 for all x ∈ R3 . (7.18)

Notice that 5 in (7.14) is just (
∑<
9=0 B(= − 3 9)) 5∗2= with 5∗2= as in (7.18).
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Of course, Theorem 7.1 immediately raises the following question: Given ? ∈
int(&=(6)), what is this linear functional q ∈ R[x]∗2= with associated moment
sequence 5 ∈ RB(2=) in Theorem 7.1? It turns out that there is a simple and
remarkable answer for special sets ( and the constant polynomial ? = 1.

Relating the constant polynomial and the equilibrium measure. Let ( ⊂ R3 in
(2.7) be a compact set with non-empty interior, generated by a finite set �̃ =

{61, . . . , 6<} ⊂ R[x] of polynomials. Let � ⊂ R[x] be a certain finite set of
polynomials formed with some products of polynomials in �̃. We provide three
examples.

• If ( ⊂ R3 is the Euclidean unit ball, then �̃ = {6}, � = {1, 6}, with
x ↦→ 6(x) = 1 − ‖x‖2. Then the equilibrium measure ` is proportional to

dx
(
1 − ‖x‖2

)−1/2
.

• If ( is the unit box [−1, 1]3 , then �̃ = {61, . . . , 63} with 6 9(x) = 1 − G2
9
,

9 = 1, . . . , 3, and � = {69 : 9 ∈ {0, 1}3}, where

x ↦→ 6Y(x) ≔
3∏
9=1
6 9(x)Y 9 for all x ∈ R3 .

The equilibrium measure ` of ( is proportional to

dx
3∏
9=1

(
1 − G2

9

)−1/2
.

• If ( ⊂ R3 is the canonical simplex, then �̃ = {61, . . . , 63+1} with 6 9(x) = G 9 ,
9 = 1, . . . , 3, 63+1(x) = 1 − ∑

9 G 9 and � = {69 : 9 ∈ {0, 1}3+1; |9 | ∈ 2N},
where

x ↦→ 6Y(x) ≔
3+1∏
9=1
6 9(x)Y 9 for all x ∈ R3 .

The equilibrium measure ` of ( is proportional to

dx
((

1 −
∑
9

G 9

) 3∏
9=1
G 9

)−1/2
.

For every 6 ∈ � let C6 ≔ ddeg(6)/2e. In addition, given = ∈ N, let

�= ≔ {6 ∈ � : deg(6) ≤ 2=}

so that �= = � if = ≥ d3/2e.

Theorem 7.3 (Lasserre 2023, Lasserre and Xu 2023). Let ( ⊂ R3 be the Euc-
lidean unit ball, the unit box or the simplex, and let ` be its equilibrium measure.
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Then, for all integer =,

1 =
1∑

6∈�=
B(C − C6)

∑
6∈�=

6(x)Λ6 ·`=−C6 (x)−1 for all x ∈ R3 . (7.19)

So, remarkably, the constant polynomial ? = 1 ∈ int(&=(6)), for all =, is
strongly related to the equilibrium measure ` of (. Its corresponding element
5 ∈ int(&∗=(6)), in Theorem 7.1, is the moment vector - ∈ RB(2=) of `.
In addition, for every =, the polynomials (6/Λ6 ·`=−C6 )6∈�=

(all non-negative on ()
provide ( with a polynomial partition of unity. We have called (7.19) a generalized
polynomial Pell’s equation solved by the Christoffel functions (Λ6 ·`=−C6 )6∈�=

(and
the polynomials 6 ∈ �=), because (7.19) is an exact multivariate generalization of
the polynomial Pell’s equation6

1 = )=(G)2 + (1 − G2)*=−1(G)2 for all G ∈ R, (7.20)

satisfied by the univariate Chebyshev polynomials of the first kind ()=)=∈N and
Chebyshev polynomials of the second kind (*=)=∈N, orthogonal with respect to the
measures dG/

√
1 − G2 and

√
1 − G2 dG, respectively. Indeed, after normalization to

orthonormal polynomials, and summing up (7.20) over =, we obtain

1 =
1

B(=) + B(= − 1)
(
Λ
`
= (G)−1 + 6(G)Λ6 ·`

=−1(G)−1) for all G ∈ R, = ∈ N, (7.21)

where 6(G) = 1 − G2, and d`(G) = dG/c
√

1 − G2 is the equilibrium measure of the
interval ( = [−1, 1]. The term ‘generalized’ is justified because in (7.19) we have
a sum of squares in R[x] and several generators 6 ∈ �=, instead of two single
squares in Z[G] and a single generator 6 in (7.20). But formally, (7.19) is of exactly
the same flavour as (7.21).

Remark 7.4. When ( = R3 , there is still a nice well-known and somewhat related
fact. Let ? ∈ R[x]2 be a quadratic polynomial which is strictly positive on R3 .
With v1(x) = (1, G1, . . . , G3), ? is written as

x ↦→ ?(x) ≔ v1(x)>Q v1(x) for all x ∈ R3 ,
for some (unique) Gram matrix Q � 0. It is well known that Q−1 is the moment
matrix M1(`) of a Gaussian measure ` on R3 , and therefore

?(x) = Λ`1 (x)−1 for all x ∈ R3 .
This is another particular case (but in a non-compact setting) where one can

identify the linear functional 5 in Theorem 7.1 (now with &1(6) = Σ[x]1 and
Σ1 [x]∗1 = {5 ∈ R

23+1 : M1(5) � 0}). For instance, the scaled Hermite polynomials
of degree at most 1,

�̂0(x) = (2c)−3/4, �̂ 9(x) = (2c)−3/4G 9 , 9 = 1, . . . , 3,

6 A triple (�, 6, �) of polynomials in Z[G] satisfies (polynomial) Pell’s equation if �2 + 6 �2 = 1.
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are orthonormal with respect to the Gaussian (product measure)

d`(x) = exp
(
−

∑
9

G2
9/2

)
dx,

and

Λ
`

1 (x)−1 =

3∑
9=0

�̂ 9(x)2 = (2c)−3/2(1 + ‖x‖2).

7.5. Comparing Moment-SOS hierarchies of upper and lower bounds

To compare the twoMoment-SOS hierarchies of upper and lower bounds for solving
the POP

P : 5 ∗ = min { 5 (x) : x ∈ (},

we express them in the same language of polynomial densities with respect to
a reference finite Borel probability measure ` whose support is exactly the set
( ⊂ R3 (assumed to be compact with non-empty interior). Let �(() be the space
of probability measures on (, and let (%")"∈N3 be a family of polynomials that are
orthonormal with respect to `.

Moment-SOS hierarchy of lower bounds. With q ∈ R[y]∗2= arbitrary, and from the
reproducing property (7.4) of  `2=, observe that

q( 5 ) = q
(∫

(

∑
"∈N3

2=

%"(y)%"(x) 5 (x) d`(x)
)

=
∑

"∈N3
2=

q(%")
∫
(

%"(x) 5 (x) d`(x)

=

∫
(

5 (x)
( ∑
"∈N3

2=

q(%") %"(x)
)

d`(x)

=

∫
(

5 (x)fq(x) d`(x),

where the degree-2= polynomial

x ↦→ f5(x) ≔
∑

"∈N3
2=

q(%") %"(x) (7.22)

is a signed density with respect to `.
Next, recall that in the semidefinite relaxation (3.5) of theMoment-SOShierarchy

of lower bounds on 5 ∗, we search for a linear functional q ∈ R[x]∗2= that satisfies

q(1) = 1, M=−3 9
(6 9 · 5) � 0 for all 9 = 0, . . . , <,

https://doi.org/10.1017/S0962492923000053 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492923000053


898 J. B. Lasserre

(a) (b) (c)

Figure 7.3. ( = [−1, 1], ` = dG/2; the signed density G ↦→ fq∗(G) =  
`

2=(G, H) with
(a) H = 0, (b) H = 0.5 and (c) H = 1. © Cambridge University Press, reproduced
with permission from Lasserre et al. (2022).

and that minimizes 〈f, 5〉 = q( 5 ) =
∫
(
5 f5 d`. Moreover, observe that

1 = q(1) =
∫
(

fq d`,

which means that fq is a signed probability density. Therefore we have proved the
following.

Theorem 7.5. Let ` be a finite Borel measure whose support is ( in (2.7), and
consider the Moment-SOS hierarchy of semidefinite relaxations (3.5) for solving
P. Then, with = fixed, (3.5) reads

min
5∈RB(2=)

{∫
(

5 fq d` : q(1) = 1; M=−3 9
(6 9 · 5) � 0, 9 = 0, . . . , <

}
, (7.23)

where fq is the signed probability density with respect to ` in (7.22).

So, again, solving the semidefinite relaxation (3.5) in theMoment-SOS hierarchy
is searching for a polynomial signed probability density fq ∈ R[x]2= of the form
(7.22), and as already mentioned, when the relaxation (3.5) is exact, q∗ = X{y},
where y ∈ ( is a global minimizer of 5 . Then the associated polynomial signed
probability density fq∗ ∈ R[x]2= reads

x ↦→ fq∗(x) =
∑

"∈N3
2=

%"(y) %"(x) =  `2=(y, x).

It is interesting to see fq∗ in Figure 7.3 for the toy example where ( = [−1, 1] and
` = dG/2. Indeed, fq∗ has a peak at G = H, and thus mimics the Dirac measure at
H (as far as moments up to degree 2= are concerned).
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Table 7.1. Hierarchies of upper and lower bounds interpreted as searching for
respective positive probability density

∑
" f"%" and signed density

∑
" q(%")%",

with respect to `.

Lower bounds Upper bounds

Primal Primal

g= = inf5
∫
(

(∑
"∈N3

2=
q(%U) %U

)
5 d` ˆ̂= = inf2,k9

∫
(

(∑
"∈N3

2=
fU %U

)
5 d`

s.t. q0 (= q(1)) = 1; s.t. f0 = 1;

M=(6 9 · 5) � 0, 0 ≤ 9 ≤ <. ∑
"∈N3

2=
fU %U =

∑<
9=0 k 9 6 9 .

k 9 ∈ Σ[x]=−3 9
, 0 ≤ 9 ≤ <

Dual Dual

g∗= = sup_,k9
_ ˆ̂∗= = sup_,5 _

s.t. 5 − _ = ∑<
9=0 k 9 6 9 s.t. 5 − _ = ∑

"∈N3
2=
q(%U) %U

k 9 ∈ Σ[x]=−3 9
, 0 ≤ 9 ≤ < M=(6 9 · 5) � 0, 0 ≤ 9 ≤ <

Comparing with the Moment-SOS hierarchy of upper bounds. Let ` be the same
(reference)measure on ( as inTheorem7.5. By construction, the (refined) hierarchy
of upper bounds ( ˆ̂=)=∈N in (5.4) is searching for a positive probability density
f ∈ &=(6). Hence x ↦→ f(x) =

∑
" f" %"(x), with

1 =
∫
(

f d` =
∑
"

f"

∫
(

%" d` = f0,

as %0 = 1 (because ` is a probability measure), and

f ∈ &=(6) ⇒
∑

"∈N3
2=

f" %" =

<∑
9=0
k 9 6 9 , k 9 ∈ Σ[x]=−3 9

, 9 = 0, . . . , <.

As we can see, Table 7.1 exhibits a complete symmetry between the primal and
dual formulations of the respective Moment-SOS hierarchies of lower bounds and
upper bounds, when the involved polynomials are expressed in the orthonormal
basis (%")"∈N3 .
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7.6. Notes and sources

Sections 7.1–7.2. For more details and historical background on the CD kernel and
the Christoffel function, the interested reader is referred to Simon (2008), Nevai
and Freud (1986), Lasserre et al. (2022) and references therein.

Section 7.3. This is based on Marx et al. (2021) and Henrion and Lasserre (2022).

Section 7.4. This is essentially from Lasserre (2022, 2023) and Lasserre and Xu
(2023). Remarkably, the generalized Pell’s equation establishes links between
seemingly unrelated fields such as optimization, positivity certificates, conic dual-
ity on one hand, and orthogonal polynomials and equilibriummeasures on the other
hand. It is likely that the generalized Pell’s equation is valid only for sets with spe-
cific geometries and with an appropriate set of generators. Indeed, from the proof
in Lasserre and Xu (2023), a property of Gegenbauer polynomials (in particular a
summation property) is crucial. However, for more general basic semi-algebraic
sets (, there is an even weaker result that links the constant polynomial 1 ∈ &=(6)
and moments 5 ∈ &∗=(6) of the equilibrium measure ` of (; see Lasserre and Xu
(2023).

Section 7.5. Here we interpret both Moment-SOS hierarchies of upper and lower
bounds in the common language of densities with respect to a reference measure `
whose support is (. In contrast to the hierarchy of upper bounds, finite convergence
for the hierarchy of lower bounds is possible (and in fact takes place generically)
because a signed density with respect to ` may have all its moments up to order
2= equal to those of the Dirac measure at a global minimizer, which is not possible
for a positive density with respect to ` on ( (with non-empty interior) as in the
hierarchy of upper bounds.

8. Conclusion
We have described the Moment-SOS hierarchy methodology for polynomial op-
timization (hierarchies of lower and upper bounds). We have also used it to solve
the generalized moment problem (GMP) with algebraic data, whose list of ap-
plications in many areas of science and engineering is almost endless. The basic
principle behind the Moment-SOS hierarchy is quite simple, and for illustration we
have described its application to two problems (viewed as instances of the GMP)
in computational geometry and optimal control.
It is a powerful methodology but the computational cost of its basic formulation

can be quite heavy, even for problems ofmodest dimension. Fortunately, large-scale
problems often exhibit sparsity or symmetries in their formulation, and we have
also described how such properties can be exploited to define a sparsity-adapted
Moment-SOS hierarchy whose associated computational burden can be drastically
reduced.
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Much remains to be done in several research directions, some of which have
been briefly mentioned. As it is at the intersection of several disciplines, it is very
likely that we will see even more contributions in the coming years.
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