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Settling velocity statistics for dilute, non-Brownian homogeneous suspensions of
polydisperse spheres having a log-normal size distribution are generated from Stokesian
dynamics simulations, as a function of the total volume fraction φ and normalised width α

of the particle size distribution. Several hundred instantaneous configurations are averaged
to obtain reliable statistics. The paper reports data for the average and fluctuating settling
velocity of each particle class in a suspension that is widely polydisperse – previous work
was limited to only two or three classes, and the average settling velocity of each particle
class was in most cases not reported – and provides an assessment of the accuracy of
the analytical models proposed by Batchelor, Richardson & Zaki, Davis & Gecol and
Masliyah–Lockett–Bassoon in predicting the simulation data. A limited comparison with
dynamic simulations in which the particle microstructure is allowed to evolve in time is
also included.
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1. Introduction

Prediction of the settling velocity of polydisperse suspensions is crucially important
in applications ranging from wastewater treatment (He et al. 2021) to nanoparticle
sorting (Bonaccorso et al. 2013), particle size characterisation (Papuga, Kaszubkiewicz
& Kawałko 2021) and sediment transport modelling (Dorrell & Hogg 2010). Despite
decades of research on the settling of polydispersed suspensions this field still offers
interesting scientific problems. A central challenge that this paper aims to address is
the quantification of the settling velocity of each particle class in a suspension that is
truly polydisperse, meaning that the number of classes exceeds the two or three classes
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that simulations (Revay & Higdon 1992; Cunha et al. 2002; Abbas et al. 2006; Wang
& Brady 2015) and experiments (Al-Naafa & Selim 1992; Davis & Gecol 1994; Chen
et al. 2023) have so far focused on. To quantify such velocity with high accuracy we
perform Stokesian dynamics simulations, in the relatively dilute regime (solid volume
fraction φ less than 0.1) for which phenomena of particle segregation and clustering
are not expected to be very important; for φ � 1, the theory of Batchelor (1982) for
polydispersed suspensions should be sufficiently accurate and can be used to provide a
framework for the analysis, hence the focus on the dilute regime. Furthermore, in addition
to validating Batchelor’s model for non-negligible volume fractions, this paper aims to
assess the accuracy of the three most used one-dimensional models for the settling velocity
of each class – the Davis & Gecol model, the Masliyah–Lockett–Bassoon (MLB) model
and the polydisperse Richardson–Zaki model – in predicting the simulated settling velocity
data as the particle concentration increases (these models are reviewed in § 2). There are
claims in the literature that semi-empirical models that do not take into account the full
particle size distribution, such as the MLB and the polydisperse Richardson–Zaki models,
are able to capture accurately the sedimentation of a suspension. However, these models
have not in fact been rigorously validated; only the ability to roughly capture concentration
profiles for selected parameters has been checked. Therefore it seems important to validate
these models which are routinely used in practical settings (Berres, Bürger & Tory 2005;
Dorrell & Hogg 2010). If such models do predict the settling velocity of some particle
classes, we would like to know for which particle range they provide accurate predictions
and with what error.

The particle size distribution is assumed to be a log-normal one. The log-normal particle
size distribution is ubiquitous in particulate systems, and the accurate prediction of the
class-averaged particle velocity for log-normally distributed particles has recently become
important because of the need for accurate size fractionation of micro- and nanoparticles
(Bonaccorso et al. 2013; Backes et al. 2016).

Despite recent interest in the modelling of suspensions of wide and continuous size
distributions (Pednekar, Chun & Morris 2018; Gonzalez, Aponte-Rivera & Zia 2021;
Howard, Maxey & Gallier 2022; Malbranche, Chakraborty & Morris 2023; Lavrenteva,
Smagin & Nir 2024), data on the settling of polydisperse suspensions with many size
classes are surprisingly scarce. Physical experiments have been mostly carried out for
bidisperse or tridisperse suspensions (Lockett & Bassoon 1979; Davis & Birdsell 1988;
Al-Naafa & Selim 1992; Davis & Gecol 1994; Chen et al. 2023). The largest size ratio
between two size classes considered in these experiments was about 4, and only the
velocity of the largest size class was, in some experiments, measured (strictly speaking,
in these experiments the velocity of the interface between different quasi-homogeneous
particulate regions was measured, not the actual particle velocity). Numerical simulations
have been carried out for bidisperse suspensions using Stokesian dynamics (Revay &
Higdon 1992; Cunha et al. 2002; Wang & Brady 2015) and the force coupling method
(Abbas et al. 2006), with size ratios up to 4. In these simulations the velocity of
each particle class was measured and compared with model predictions. Simulations
of sedimentation of suspensions with a continuous log-normal distribution have been
carried out by Vowinckel et al. (2019) in a domain bounded by top and bottom walls,
but in that study the velocity of each size class was not quantified. There is a wealth
of interesting data on sedimentation of polydisperse suspensions from the geophysical
literature (Cuthbertson et al. 2008; Spearman & Manning 2017). However, these data are
often difficult to interpret from a fluid mechanic perspective, as the particulate systems
considered in those references are usually heterogeneous in particle shape and material
properties, and the particle–particle interactions are not only hydrodynamic in nature.
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Hindered settling of a Stokesian suspension

Particle velocity statistics in the current paper are calculated for polydisperse
suspensions of non-Brownian, inertialess, low-Reynolds-number spheres of uniform mass
density, having discrete particle size classes that are fitted to continuous log-normal
distributions for different values of the polydispersity parameter α (see figure 4), defined
as the ratio between the standard deviation and the mean value of the particle size
distribution. The size distribution is chosen to be a log-normal one because of the
recurring presence of this distribution in polydispersed particle systems (Vowinckel et al.
2019; Di Vaira et al. 2022; Rettinger et al. 2022). The log-normal size distribution is
discretised into up to nine classes, with the largest size ratio between two classes being
5 (see figure 4). We vary the volume fraction φ from 0.01 to 0.1 and α in the range
0.1–0.4. As a base case we include in § 4 data for mono- and bidisperse suspensions,
for which some literature information is available. In addition to mean particle velocities,
the corresponding standard deviations and the shape of the particle velocity distributions
are reported. This information provides a quantitative characterisation of the spread of the
particle velocity around the mean as the polydispersity in particle size is increased.

To be able to compare against theoretical models, producing smooth data not affected
by large statistical error is essential. This constraint has required us to average the velocity
data over hundreds of simulations. To keep the simulation cost manageable while allowing
us to explore a range of relevant parameters of solid concentration and polydispersity,
following other authors (Revay & Higdon 1992; Cunha et al. 2002; Abbas et al. 2006;
Wang & Brady 2015), we produce converged particle velocity statistics by generating
a large number of random particle configurations inside a triply periodic box, and
ensemble-averaging over all such configurations. Despite limitations, which are discussed
in § 6, this established approach has in the past enabled fundamental insights into the
relation between particle concentration and settling rate (see e.g. Wang & Brady 2015). In
§ 6 we compare, for selected parameters, random array simulations to dynamic simulations
in which the particle microstructure is allowed to evolve in time. Differences between the
two simulation approaches have been found not so large to affect the main conclusions of
the paper.

2. Overview of one-dimensional models for the class-averaged settling velocity

For a Stokesian suspension of polydisperse spheres grouped into m distinct particle size
classes, the average settling velocity of the ith class can be written as 〈ui〉 = uSt,ihi(φ),
where uSt,i = (2/9μ)a2

i (ρp − ρf )g is the single-particle Stokes velocity of the ith class,
hi(φ) is the hindered settling function of that class and φ = (φ1, φ2, . . . , φm) is the vector
of volume fractions (Davis & Acrivos 1985); ai is the particle radius, μ is the fluid viscosity
and ρp − ρf is the density difference between the particles and the fluid.

The literature reports several models for hi(φ), as reviewed by Berres et al. (2005). The
only model that is completely based on first principles is the model of Batchelor (1982),
which was developed as an extension of the former theory of Batchelor for monodisperse
suspensions (Batchelor 1972). Batchelor’s formula reads

hi(φ) = 1 +
m∑

j=1

Sijφj, (2.1)

where Sij are scalar sedimentation coefficients that are functions of the size ratio ai/aj for
spheres of identical mass density (Batchelor & Wen 1982) (an explicit expression for Sij is
given in § 5.2). Batchelor’s model is accurate to first order in the total volume fraction
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φ = ∑
j φj and is, therefore, in principle only valid for negligibly small values of φ.

A semi-empirical extension of Batchelor’s formula was proposed by Davis & Gecol (1994)
to improve the predictive capability in the regime of relatively high volume fractions. Their
formula reads

hi(φ) = (1 − φ)−Sii

⎛
⎝1 +

m∑
j=1

(Sij − Sii)φj

⎞
⎠ , (2.2)

where the coefficients Sij are defined as in (2.1). The model is essentially an interpolation
formula between an exact result (for φ → 0, (2.2) recovers (2.1)) and an approximate
result (in the dense limit, for m = 1 equation (2.2) reduces to a power-law form,
where the exponent −Sii = 6.55 is numerically close to the exponent �5 of the
well-known Richardson–Zaki formula). The models of Batchelor and Davis & Gecol
have been tested in experiments and simulations of bidisperse suspensions (Davis &
Birdsell 1988; Al-Naafa & Selim 1992; Abbas et al. 2006; Wang & Brady 2015; Chen
et al. 2023). In experiments, the descending velocities of the interfaces separating
different regions were measured. In simulations, settling velocities of the two classes
were calculated. It was shown that Batchelor’s model works reasonably well for dilute
suspensions with φ within 5 %, and Davis & Gecol’s model can also be used for dense
suspensions.

Models (2.1) and (2.2) are rarely used in practice because they contain a large number of
coefficients. Simpler expressions have therefore been developed for practical predictions
of the hindered settling of polydisperse suspensions. The most popular is the MLB model
(Lockett & Bassoon 1979; Masliyah 1979). The MLB model has been partially validated
by comparison of predicted and experimentally measured concentration profiles following
settling, starting at the initial time from a homogeneous suspension with a Gaussian
particle size distribution (Xue & Sun 2003; Berres et al. 2005). This validation is not
complete because the particle concentration at a given point in space is the sum of
the concentrations of the different particle classes. Therefore, if a range of the particle
size distribution makes a dominant contribution to the concentration, then an acceptably
accurate prediction of the concentration profile may hide errors in the prediction of the
velocity of certain particle classes. Furthermore, validation of the settling rates predicted
by the MLB model for more than three size classes has not been published.

The MLB model reads

hi(φ) = (1 − φ)n−1

⎛
⎝1 −

m∑
j=1

(
aj

ai

)2

φj

⎞
⎠ , (2.3)

where aj/ai is the ratio of the radii of the jth and the ith species. Appendix A contains
details of the derivation of the MLB model, so that the model assumptions can be
evaluated. The function (1 − ∑m

j=1(aj/ai)
2φj) is the hindered settling function obtained by

including the effect of volume fraction on the fluid–solid slip velocity (a continuity effect),
and neglecting the effect of hydrodynamic interactions on the drag force experienced
by each particle. The prefactor (1 − φ)n−1 incorporates the effect of hydrodynamic
interactions.

An even simpler model, which has been adopted by some authors (Davis & Hassen
1988; Abeynaike et al. 2012; Vowinckel et al. 2019; Chen et al. 2023), is based on the
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Hindered settling of a Stokesian suspension

model of Richardson & Zaki (1954) for monodisperse suspensions. It reads

hi(φ) = (1 − φ)n, (2.4)

where n ≈ 5 (Brzinski & Durian 2018). This model predicts different velocities for
different particle radii ai, because hi contains the single-particle Stokes formula at
denominator. In the current paper, this hindered settling formula is referred to as the
Richardson–Zaki model for polydispersed suspensions.

3. Numerical approach and validation

Consider a polydisperse suspension of N spheres having the same density but different
radii. The N spheres are divided into m size classes. The radius of size class i is ai.
Each sphere in class i is subjected to a force F i = 4

3πa3
i (ρp − ρf )g, which includes the

particle weight and buoyancy; ρp and ρf are the densities of the spheres and the fluid,
respectively, and g is the gravitational acceleration. The single-particle Stokes velocity
corresponding to each class is uSt,i = 2/(9μ)a2

i (ρp − ρf )g, where μ is the dynamic
viscosity of the fluid. In the current work, the particle velocity statistics are calculated from
instantaneous random configuration of the spheres by first averaging over the particles
in the computational domain and then ensemble-averaging over statistically identical
configurations. Each configuration is generated by randomly placing the spheres one by
one inside the computational domain, ensuring that each placement gives no overlap
between the spheres (Revay & Higdon 1992; Wang & Brady 2015; Cheng & Wachs 2023a)
(we note that a simulation of settling under gravity of a random particle configuration is
different from a simulation of uniform flow past fixed random arrays, because in the former
case different particles have different velocities, while in the latter the relative velocity
between the particles and the undisturbed fluid is uniform). An example of a random
array configuration is shown in figure 1. In our coordinate system, gravity is aligned in
the z direction, also referred to as the vertical direction in the following. The horizontal
direction corresponds to the x and y coordinates.

To calculate the velocities of individual particles, a basic version of the Stokesian
dynamics method is adopted (Brady et al. 1988; Brady & Bossis 1988). While modern
grid-based particle-resolved methods could be used (Willen & Prosperetti 2019; Yao,
Criddle & Fringer 2021; Shajahan & Breugem 2023), the Stokesian dynamics method is
perfectly suitable for the objectives of the current paper: it is accurate in the relevant range
of particle concentrations, it allows fast simulations and (unlike grid-based methods) it
can simulate large ratios between the largest and smallest particle radii without numerical
difficulties – a feature we would like to maintain for future highly polydisperse simulations.
In the Stokesian dynamics method, the velocities of the spheres are calculated by solving
the mobility problem

U − 〈u〉 = MF , (3.1)

where U is the 3N vector containing the velocities of the spheres, F is the 3N vector
containing the gravitational forces acting on the spheres (these forces include the particle
weight and the buoyancy force) and M is the 3N × 3N mobility matrix (Kim & Karrila
2013). In (3.1), 〈u〉 is the average translational velocity of the suspension. In our
simulations 〈u〉 = 0 because of the zero volume flux condition of batch sedimentation
(Berres et al. 2005). Note that in the current work only velocity–force coupling is
considered, i.e. the stresslet and other force moments are not considered. Brady &
Durlofsky (1988) showed that in a sedimenting suspension the inclusion of the stresslet
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Figure 1. A configuration for volume fraction φ = 0.05 and polydispersity parameter α = 0.4. The spheres
are coloured according to their radii.

changes the settling rate negligibly. Because we work in the relatively dilute limit,
short-range lubrication forces are also neglected.

The mobility matrix M depends on the positions and radii of the spheres. We use the
Rotne–Prager approximation for this term (Rotne & Prager 1969; Zuk et al. 2014). This
approximation has been shown to give accurate predictions of the sedimentation velocities
of suspensions from dilute to relatively dense (Brady & Durlofsky 1988). Triply periodic
boundary conditions are applied to the simulation box. The mobility matrix is constructed
using the Ewald summation technique by splitting the mobility matrix into a real-space
part and a wave-space part (Beenakker 1986). Explicit formulae for the mobility matrix
for a polydisperse suspension can be found in Beenakker (1986) and Hase & Powell (2001).
As characteristic length and velocity scales, we choose the mean particle radius 〈a〉 and
the single-particle Stokes velocity corresponding to 〈a〉. To make forces non-dimensional
we use the effective weight of the mean particle, 4

3π〈a〉3(ρp − ρf )g.
In figure 2, numerical predictions for a single sphere in a triply periodic cubic box

are plotted against Hasimoto’s analytical solution (Hasimoto 1959) and the simulation
results of Brady et al. (1988). The volume fraction of the simple cubic array is varied
by varying the size of the box. Based on the point-force assumption, Hasimoto (1959)
derived u/uSt = 1 − 1.7601φ1/3 for φ � 1, where uSt is the Stokes velocity of the sphere.
Brady et al. (1988) used Stokesian dynamics with different approximations for the mobility
matrix. The results of Brady et al. (1988) shown in figure 2 correspond to simulations in
the Rotne–Prager approximation. As seen from figure 2, our results match exactly those of
Brady et al. (1988) and converge to Hasimoto’s solution for φ → 0. This test validates our
implementation of the Ewald summation for the periodic boundary conditions.

In figure 3, the normalised relative settling velocity is shown as a function of the
normalised centre-to-centre distance between two unequal spheres with size ratios 2 and 5,
respectively. In our simulations, the radius of the large sphere is fixed to al = 2. The radius
of the small sphere is as = 1 and 0.4 for size ratios 2 and 5, respectively (these values are
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Hasimoto (1959)

Current simulations

Brady et al. (1988)

Figure 2. Normalised settling velocity versus volume fraction for a simple cubic array of monodisperse
spheres. The line is the point-force solution of Hasimoto (1959). Upward triangles are the numerical results
of Brady et al. (1988).
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Figure 3. Normalised relative settling velocity for a pair of spheres as a function of the centre-to-centre
distance for (a) size ratio 2 and (b) size ratio 5. Results of current simulations are shown as symbols and
analytical results of Wacholder & Sather (1974) (WS) are shown as lines.

chosen because the largest radius is 2 and the largest size ratio is 5 in the polydisperse
simulations analysed in this paper). The relative settling velocity between the two spheres
is normalised by the Stokes velocity of the large sphere. The centre-to-centre distance
is normalised by the radius of the large sphere. In figure 3, symbols are results from our
simulations and lines correspond to the asymptotic solution of Wacholder & Sather (1974),
in which only far-field hydrodynamic interactions were considered. It can be seen that our
results match the analytical solution for both vertically and horizontally aligned pairs.

The current paper discusses results for bidisperse suspensions and polydisperse
suspensions with more than two classes, also comparing with the monodisperse case. For
the monodisperse case, the radius of the spheres is a = 1. For the bidisperse case, two size
ratios are considered: a2/a1 = 2 and 5. The radii of the small size classes are a1 = 0.8
and 0.4 for these two size ratios, respectively. The volume fraction of the small size class
is φ1 = 3

11φ for size ratio 2 and φ1 = 1
76φ for size ratio 5. These volume fraction ratios are

chosen so that the average radius of the spheres is equal to 1.0 for each system.
For the simulations with several size classes, the particle size distribution follows

p(a) = (1/aσ
√

2π) e−(ln a−μ)2/2σ 2
, where the mean value of the size distribution is
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Figure 4. Discrete frequency distributions of particle size for different values of the polydispersity parameter
(symbols). Lines indicate the continuous log-normal distributions that fit the discrete frequency histograms.
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Figure 5. Volume fraction distributions for different values of α.

〈a〉 = eμ+σ 2/2 and the standard deviation is �a =
√

(eσ 2 − 1) e2μ+σ 2 . We define the
polydispersity parameter as α = �a/〈a〉. Four size distributions are considered, with
〈a〉 = 1 and α = 0.1, 0.2, 0.3 or 0.4. Each distribution is cut at the two ends, resulting
in a range amin ≤ a ≤ amax, where amin and amax are chosen so that at least 95 % of the
original distribution falls within this range. The largest size ratio between two spheres is 5.
Each radius range is discretized into between four and nine size classes, with a difference
of 0.2 between the radii of two adjacent size classes.

The discrete number-frequency distributions are overlaid on the corresponding
continuous distributions in figure 4. The frequency of size class i is calculated as
p(ai)/

∑m
j=1 p(aj). The corresponding volume-fraction distributions are shown in figure 5.

For each value of α, the volume fraction φ ranges from 0.01 to 0.10. For each simulated
case, corresponding to a combination of α and φ, a fixed box size L = 80 is used and 500
random particle configurations are generated. The total number of spheres in each case
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0
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u S
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Figure 6. Normalised average settling velocity versus domain size for three selected size classes (φ = 0.03

and α = 0.4).

varies from 925 to 12 223. We have verified that increasing the size of the computational
domain beyond L = 80 does not change the magnitude of the results significantly. As an
example, in figure 6 we show the velocities of three size classes (for φ = 0.03 and α = 0.4)
as a function of L.

The average velocity of class i is calculated by ensemble-averaging over M
configurations as

〈ūξ,i〉 =

M∑
k=1

ūk
ξ,i

M
, (3.2)

where ξ = 1, 2, 3 correspond to the three Cartesian coordinates, ūξ,i is the intrinsic
volume average of the velocity component uξ,i within one configuration and 〈·〉 is
the ensemble-averaging operator. The intrinsic volume average within class i over
configuration k is ūk

ξ,i = ∑Ni
l=1 uk

ξ,i,l/Ni, where Ni is the number of particles in class i. The
standard deviation of a certain velocity component within one realisation is calculated

as (u′
ξ,i)

k =
√∑Ni

l=1(u
k
ξ,i,l − ūk

ξ,i)
2/(Ni − 1). Averaging over many realisations gives an

improved estimate of the class-averaged standard deviation. In the bulk of the paper we
indicate averages by the bracket symbol, distinguishing between volume and ensemble
average when necessary.

3.1. Relation between the mobility formulation and Batchelor’s formula
In this section we show the connection between the mobility formulation, equation (3.1),
and Batchelor’s formula, equation (2.1). For simplicity of notation, let us consider a
specific size class. Without loss of generality we consider class 1. According to (3.1) the
velocity of the αth sphere in the first size class is

uα,1 =
m∑

i=1

Ni∑
β=1

Mα1,βiF i, (3.3)

where Ni is the number of spheres in the ith class and Mα1,βi is the 3 × 3 mobility matrix
representing the hydrodynamic interaction between the αth sphere in the first class and the
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βth sphere in the ith class (Kim & Karrila 2013). Because Mα1,α1 = (6πμa1)
−1, (3.3) can

be written as

uα,1 = uSt,1 +
∑

β /=α

Mα1,β1F 1 +
∑
i /= 1

Ni∑
β=1

Mα1,βiF i. (3.4)

The average velocity of the first class in this configuration is

ū1 = uSt,1 + 1
N1

⎛
⎝∑

α

∑
β /=α

Mα1,β1F 1 +
∑
α

∑
i /= 1

Ni∑
β=1

Mα1,βiF i

⎞
⎠ , (3.5)

but because F i is constant within the same size class, we can also write

ū1 = uSt,1 + s11F 1 +
∑
i /= 1

s1iF i, (3.6)

where s11 and s1i describe the intra-class hydrodynamic interactions (within the first
class) and the inter-class hydrodynamic interactions (between the first and the ith
classes), respectively. These two matrices can be written as s11 = (N1 − 1)M̄11 and
s1i = NiM̄1i, where M̄11 and M̄1i are the average two-sphere mobility matrices. Upon
ensemble-averaging, the average velocity of the first size class can be written as

〈ū1〉 = uSt,1 + 〈s11〉F 1 +
∑
i /= 1

〈s1i〉F i. (3.7)

The average velocity component in the gravity direction can be written as

〈u1〉
uSt,1

= 1 + 9μ〈s11〉
2a2

1n1
φ1 +

∑
i /= 1

9μ〈s1i〉
2a2

1ni
φi, (3.8)

where the formula for the single-particle Stokes velocity is used and ni is the number
density of class i. The scalar 〈s1i〉 is the component of 〈s1i〉 for the velocity–force coupling
in the gravity direction.

Extending (3.8) to a generic class i yields

〈ui〉
uSt,i

= 1 + Bii(φ)φi +
∑
j /= i

Bij

(
φ,

aj

ai

)
φj. (3.9)

The dependence of Bii and Bij on the volume fraction vector φ comes from the fact that
〈sij〉 depends on the pair distribution functions, and the pair distribution functions in turn
depend on the volume fraction of each class. The dependence of Bij on aj/ai comes from
the dependence of the two-sphere mobility matrix on the size ratio. For φ → 0, Bii is a
constant and Bij = Sij is only a function of aj/ai. In this limit, (3.9) recovers Batchelor’s
expression (2.1).

4. Hindered settling of monodisperse and bidisperse suspensions

To build confidence in the ability of the numerical method to predict settling data in more
complex situations, we compare our simulations against settling models for monodisperse
and bidisperse suspensions. For the monodisperse case, the comparison also provides a
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Figure 7. Monodispese case: average settling velocity, normalised by the single-particle Stokes velocity,
versus volume fraction.

validation of our numerical approach. Indeed, the empirical or semi-analytical models are
well established in their regime of validity: the Richardson–Zaki correlation summarises
experimental data obtained by those authors, and its validity has been confirmed in
numerical simulations (Cunha et al. 2002; Abbas et al. 2006) and independent experiments
(Nicolai et al. 1995); the analytical model of Batchelor for monodispersed suspensions
is exact for φ � 1 (Davis & Acrivos 1985); and the Hayakawa–Ichiki model has been
favourably compared against monodisperse simulations for a wide range of volume
fractions (Padding & Louis 2004).

The normalised average settling velocity 〈uz〉/uSt for the monodisperse suspension
is plotted in figure 7 as a function of φ. We include in the plot the Richardson–Zaki
correlation (1 − φ)n (Richardson & Zaki 1954) for n = 5, the Batchelor model
1 + Sφ (Batchelor 1972) assuming S = −6.55 and the Hayakawa–Ichiki model
(1 − φ)3/(1 + 2φ + 1.429φ(1 − φ)3) (Hayakawa & Ichiki 1995). The values chosen
for the exponent n and the coefficient S here are typically for non-Brownian particles
interacting only hydrodynamically (Padding & Louis 2004; Moncho-Jordá, Louis &
Padding 2010).

Our simulation results agree with Batchelor’s model for φ approximately smaller
than 0.03. For larger volume fractions, the simulation gives larger values than
Batchelor’s model. A similar range of validity for Batchelor’s model was also found
by Abbas et al. (2006) using a force-coupling method. Our results also agree well
with the Hayakawa–Ichiki model for φ ≤ 0.05 and they lie between the predictions
of the Richardson–Zaki correlation and the Hayakawa–Ichiki model for φ ≥ 0.06. The
simulation data for φ = 0.01 are smaller than the values predicted by the three models.
This is expected because of the use of triply periodic boundary conditions in a domain of
finite size (Phillips, Brady & Bossis 1988).

Normalised average settling velocities for the small and the large particles in the
bidisperse case are plotted as symbols in figure 8 for two size ratios. The predictions
of Batchelor’s model (2.1), Davis & Gecol’s model (2.2) and the MLB model (2.3) are
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Figure 8. Bidisperse case: average settling velocity normalised by the single-particle Stokes velocities for the
small (a,c) and large (b,d) particles. (a,b) Size ratio 2. (c,d) Size ratio 5.

indicated by lines. It is seen from figure 8(a,c) that our results for the small particles agree
with the predictions of Batchelor’s model for φ ≤ 0.05, and lie between the predictions
from Batchelor’s model and Davis & Gecol’s model for φ ≥ 0.06. For the large particles,
our results agree with predictions from Batchelor’s model for φ ≤ 0.03 and lie between the
predictions from the Davis & Gecol and MLB models for φ ≥ 0.04. Stokesian dynamics
calculations by Wang & Brady (2015) that include stresslet and lubrication contributions
also predicted for φ larger than around 0.05 hindered settling velocities smaller and larger
than those of the Davis & Gecol model for the small and the large particles, respectively.
Our results of the bidisperse case are therefore in line in terms of trends with those of
Wang & Brady (2015).

5. Polydisperse suspensions

5.1. Velocity statistics
Before delving into the analysis of the mean settling velocity, we analyse the probability
distribution of particle velocities in the polydisperse particle simulations. This information
enables a characterisation of the statistical representativeness of the mean values. To
illustrate the spatial distribution of particle velocities, in figure 9 we show snapshots of the
simulations with each sphere coloured according to its settling velocity. Spheres coloured
in red have settling velocities in the direction of gravity whereas spheres coloured in blue
have settling velocities opposite to gravity. Figure 9(c) shows that the smaller particles can
move against gravity, and have negative velocities comparable in magnitude to the positive
settling velocity of the largest particles.

Probability distribution functions (PDFs) of horizontal and vertical velocities, shown
in figure 10 for different values of α, are approximately Gaussian, with a variance that
increases as α increases. These PDFs are constructed by considering all the particles
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Figure 9. Configuration for different polydispersity parameters and φ = 0.05, with the spheres coloured
according to their settling velocity, for (a) α = 0, (b) α = 0.2 and (c) α = 0.4.
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Figure 10. The PDFs of (a) horizontal and (b) vertical velocities for different polydispersity parameters and
φ = 0.05.
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Figure 11. The PDFs of (a) horizontal and (b) vertical velocities for α = 0.4 at φ = 0.05. In contrast to
figure 10, here the PDFs are calculated based on the distribution of velocities within each size class.

in the simulation domain. However, spheres belonging to the same size class also have
a distribution of settling velocities. Therefore, in figure 11, we show the PDFs of the
horizontal and the vertical velocities of spheres in each size class for α = 0.4. For
comparison, the PDFs of the velocities of all the spheres are included in this plot as
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Figure 12. Normalised average settling velocity of each size class for different polydispersity parameters and
φ = 0.05. The inset is a zoom in the range 0.8 ≤ ai ≤ 2. The lines are guides for the eye.

grey lines. Again, the PDFs are approximately Gaussian (simulations by Cheng & Wachs
(2023a) of uniform flow past fixed polydisperse random arrays indicate also a Gaussian
distribution for the hydrodynamic forces of a given size class). Surprisingly, the PDFs of
the horizontal velocities for different size classes collapse onto a single curve (figure 11a).
From the PDFs of the vertical velocities in figure 11(b), it is seen that the mean velocity
increases as the size of the particles increases, and different size classes have comparable
variances.

The average vertical settling velocity of each size class normalised by the corresponding
single-particle Stokes velocity is shown in figure 12 for different values of α. The inset
shows a zoom in the range 0.8 ≤ ai ≤ 2. Because now the settling velocity is normalised
by the single-particle settling velocity, the information in this plot complements the data
of figure 11(b). We see that for fixed α the normalised average settling velocity increases
as the particle size increases. This means that the velocities of small particles are more
hindered than the velocities of large particles. For a given size class, the normalised
average settling velocity decreases as α increases, and decreases faster for small particles
than for large particles. The standard deviation around the mean seems to decrease with ai,
except for values near ai = 1.4 (we have examined the velocity probability distributions
of several configurations and found no probability distributions with atypical behaviour of
the ai = 1.4 class; no simple explanation was found for this anomalous data point).

In the previous figures, the total volume fraction was fixed, and α was changed. In
figure 13, we instead change φ for fixed α = 0.4. This plot confirms the trend seen in
figure 12: for a given volume fraction, the normalised average settling velocity decreases
as the particle size decreases. The normalised average settling velocity decreases faster
with increasing φ for small-size particles.

To summarise, the smaller particles are more hindered and more affected by
polydispersity than the large ones.

Statistical deviations with respect to the mean particle velocity, as measured by the root
mean square of the velocity fluctuation, increase as α or φ increase (see figures 14 and
15). The normalised horizontal and vertical velocity fluctuations of each size class are
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Figure 13. Normalised average settling velocities of each size class, for α = 0.4 and different volume
fractions. The inset shows a zoom in the range 1 ≤ ai ≤ 2.
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Figure 14. Normalised (a) horizontal and (b) vertical velocity fluctuations for different α and φ = 0.05.

shown for α = 0.2 and 0.4 with fixed φ = 0.05 in figure 16. For a fixed α, the normalised
velocity fluctuations decrease as the particle size increases. Figure 11 seems to suggest that
the velocity fluctuations are approximately independent of the particle radius ai. Because
the Stokes velocity scales as a2

i , it is expected that the velocity fluctuations normalised by
the Stokes velocity scale as ∼a−2

i . Our data confirm this scaling (see lines in figure 16):
u′

i/uSt,i = ca−2
i fits the data for all the values of α and φ simulated, as shown in tables 1

and 2. This scaling is also observed in our simulations of bidisperse suspensions: the ratio
of velocity fluctuations between the two classes in these simulations is close to 1. Peysson
& Guazzelli (1999) measured experimentally the velocity fluctuations of small and large
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Figure 15. Normalised (a) horizontal and (b) vertical velocity fluctuations for different φ and α = 0.4.
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Figure 16. Normalised velocity fluctuations of each size class at φ = 0.05 for (a) α = 0.2 and (b) α = 0.4.

Horizontal Vertical
α direction direction

0.1 0.32 1.13
0.2 0.38 1.33
0.3 0.46 1.56
0.4 0.53 1.85

Table 1. Approximate values of the prefactor c in the scalings of the horizontal and the vertical normalised
velocity fluctuations for each α at φ = 0.05.

particles in a dilute bidisperse suspension with size ratio 2. They found that the ratios of
velocity fluctuations between the small and the large size classes were around 0.85 and
0.75 in the vertical and horizontal directions, respectively, yielding a ratio roughly close to
ours.

The anisotropy ratio between the vertical and the horizontal velocity fluctuations, plotted
in figure 17, is around 3.5 regardless of the values of α or φ. This value was also observed
in the monodisperse and bidisperse simulations.
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Horizontal Vertical
φ direction direction

0.01 0.28 0.95
0.03 0.45 1.54
0.05 0.53 1.85
0.08 0.61 2.08
0.10 0.62 2.15

Table 2. Same as table 1 but for different φ at α = 0.4.
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Figure 17. Ratio between vertical and horizontal velocity fluctuation magnitudes for ai = 1 and (a) different
α at φ = 0.05 and (b) different φ at α = 0.4.

5.2. Comparison with hindered settling models
In this subsection, current simulations are compared with predictions from Batchelor’s
(see (2.1)), Davis & Gecol’s (see (2.2)) and the MLB (see (2.3)) models. The accuracy of
the Richardson–Zaki correlation (see (2.4)) for polydisperse suspensions is also checked.
The values of the coefficients Sij in Batchelor’s and Davis & Gecol’s models are calculated
from Sij = −3.50 − 1.10λ− 1.02λ2 − 0.002λ3, where λ = aj/ai (Davis & Gecol 1994).
The value of the exponent n in the MLB model and the Richardson–Zaki correlation is 5.

Hindered settling functions corresponding to different size classes for fixed φ = 0.05
and different α are compared against different theoretical models in figure 18. The
Richardson–Zaki correlation largely overestimates the hindered settling functions of
smaller particles, whereas it gives reasonable values for larger particles. The discrepancy
between the Richardson–Zaki correlation and the computed hindered settling functions
of smaller particles increases as α increases. For each α, the predictions from the other
three models show a consistent trend for each size class. The MLB model gives the largest
settling velocities, Batchelor’s model gives the smallest settling velocities and Davis &
Gecol’s model gives intermediate values. The differences between the predictions from
these three models get smaller as the particle size increases.

Figure 19 shows the normalised relative differences between the computed and predicted
average settling velocities. The Batchelor model and the Davis & Gecol model predict
the average settling velocity of each size class quite well for all α considered here, with
relative errors smaller than 10 %, except for the smallest size class ai = 0.4 for α = 0.4
for which the simulation gives a very small settling velocity. From figure 19(c), it is seen
that the relative difference between the predictions from the MLB model and the current
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Figure 18. Comparison between the current simulation results and the predictions of hindered settling function
models for the average velocity of different size classes, for φ = 0.05 and different polydispersity parameters:
(a) α = 0.1, (b) α = 0.2, (c) α = 0.3 and (d) α = 0.4.

simulations decreases as ai increases, or α decreases. For ai ≥ 1, the MLB model predicts
the average settling velocities quite well, with the relative difference within 10 %. For
ai ≤ 0.8, the MLB model starts failing.

Hindered settling function data for fixed α = 0.4 and different φ are compared with
the predictions from different models in figure 20. Also, the Richardson–Zaki correlation
predicts the hindered settling functions of smaller particles poorly. For the other three
models, a trend in the predicted values is observed similar to that in the case of varying
α. The predictions from the MLB model and the Davis & Gecol model are quite close
to each other for all size classes at each volume fraction, and they are also quite close
to the values from current simulations for larger particles. However, the Davis & Gecol
model slightly underestimates the hindered settling functions of the larger particles when
φ > 0.06. For smaller particles, the predictions from the MLB model and the Davis &
Gecol model are larger than the values from the simulations, and the discrepancies between
the predictions from these two models and the values from current simulations get larger
as φ increases. The predictions of Batchelor’s model are close to the simulated values
for φ approximately less than 0.05. As φ increases, Batchelor’s model underestimates the
hindered settling functions of all size classes systematically compared with the results of
current simulations.

For fixed α = 0.4, the relative differences between the average settling velocities
predicted by different models and calculated by current simulations of each size class for
different volume fractions are shown in figure 21. For each size class, the relative difference
between the prediction from the Batchelor model and the current simulations increases as
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Figure 19. Relative differences between the average settling velocities from different models and from the
current simulations for fixed φ = 0.05: (a) the Batchelor model; (b) the Davis & Gecol model; (c) the MLB
model.

the volume fraction increases, and it is within 10 % when φ ≤ 0.05, except for the smallest
size class ai = 0.4. From figure 21(b,c), it is seen that the relative differences are quite
close for the Davis & Gecol and the MLB models, with those of the MLB model slightly
larger. For larger size classes (ai ≥ 1), both these models give quite accurate predictions
for all volume fractions considered, with the relative differences within 10 % compared
with the results of current simulations. For smaller size classes (ai ≤ 0.8), both these
models give predictions with large relative differences compared with the results of current
simulations, and in general the relative difference gets larger as volume fraction increases
or as size of the class decreases.

5.3. Velocity slip
We saw that the MLB model, despite its simplicity, gives relatively good agreement
for large particles. However, it fails for small particles. The MLB model is based
on a closure relation for the particle–fluid velocity difference (see Appendix A).
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Figure 20. Comparison between the current numerical results and the predictions of different models. The
comparison is here evaluated as a function of φ for fixed α = 0.4. (a–f ) Size classes a1, a2, a4, a6, a7 and a9,
respectively.

Therefore, to understand the limits of validity of the model, we compute the slip velocity
from the simulation data and compare against the MLB model prediction.

Slip velocities for each size class normalised by the corresponding Stokes velocities are
plotted in figure 22 for φ = 0.05 and different α. The slip velocity for size class i is defined
as the difference between the average settling velocity of class i and the average velocity
of the fluid phase:

uslip,i = 〈uz,i〉 − 〈uf 〉. (5.1)

The value of 〈uf 〉 is obtained from the zero-volume-flux condition
∑

φj〈uz,j〉 +
(1 − φ)〈uf 〉 = 0. The slip velocity predicted by the MLB model is calculated from (see
Appendix A)

uslip,i = uSt,i(1 − φ)n−1. (5.2)

It is seen that the MLB model does not predict accurately the slip velocities of the
smaller particles. The discrepancy between the MLB model prediction and the simulation
data increases as α increases. The slip velocities of relatively large particles are reasonably
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Figure 21. Same as in figure 19, but for different volume fractions and fixed α = 0.4.

well captured. As the particle size increases, the simulation data tend to converge to the
MLB model prediction.

The normalised slip velocities for each size class for fixed α = 0.4 and varying φ are
plotted in figure 23. It is seen that the prediction of the MLB model gets increasingly
worse as the volume fraction increases for the small size classes. Predictions for the largest
particles are instead acceptable regardless of the volume fraction.

6. Comparison with dynamic simulations

In our simulations, we ensemble-average over random particle configurations. This
approach has been used by several authors, leading to quantitative predictions such as
the average sedimentation velocities and velocity fluctuations of particles in monodisperse
and bidisperse suspensions (Revay & Higdon 1992; Cunha et al. 2002; Abbas et al. 2006;
Wang & Brady 2015). Phenomena of particle clustering or segregation could in principle
be important in our simulations. Regarding segregation, Batchelor & Janse Van Rensburg
(1986) have proven that in settling polydisperse suspensions of spheres having the same
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Figure 23. Normalised slip velocity for each size class for α = 0.4 and different values of φ. The dashed line
is the prediction of the MLB model.

density but different radii, particle class segregation (i.e. the tendency of particles of the
same class to accumulate in specific locations) in general does not occur (the polydisperse
suspension is practically homogeneous). Furthermore, in our range of parameters the
suspension is dilute and phenomena of particle clustering (regardless of the class to which
the particles belong) are expected not to be dominant features.

To assess the validity of our simulation approach, we have carried out selected dynamic
simulations. For these simulations, we chose a domain size L = 56, a volume fraction
of 0.05 and α = 0.4. Initially the particles are randomly distributed. In the dynamic
simulations, at each time step the particle velocities are calculated from (3.1) and the
particle positions are updated by a two-step, explicit method. The settling velocity of the
suspension is shown as a function of time in figure 24.
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Figure 24. Dynamic simulation: settling velocity of the suspension, averaged over all the particles, as a
function of time.
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Figure 25. Normalised average settling velocity of each size class comparing the dynamic and the ‘random
array’ simulations.

The normalised average settling velocities of each size class from dynamic simulations
and random arrays are plotted in figure 25 (instantaneous results from dynamic simulations
are time-averaged over 500 ≤ t ≤ 1000). Differences between the hindered setting
functions in the dynamic simulation and random arrays are visible. The particle velocity
is seen to be slightly smaller in dynamic simulations than that in the random array
simulations, except for the two size classes ai = 0.6 and ai = 0.8 where the reverse is
true. However, the differences are comparatively small and the trends of the dynamic
and static simulations are identical. The PDFs of the horizontal velocities of spheres in
each size class from the dynamic simulation are shown in figure 26. Most of the PDFs
collapse onto each other, as in the random array case, except the PDFs of larger size
classes which show some relatively minor deviations. In figure 27, the pair distribution
functions between the smallest and the largest size classes are plotted for both dynamic
simulations and the random array simulations. Despite the statistical noise (which is more
severe in polydisperse simulations than in monodisperse simulations due to the smaller
number of particles per size class), the two pair distributions appear quantitatively similar.
Strong clustering in the dynamic simulations would lead to pair distribution function
values significantly larger than 1 for close interparticle distances. Instead, the values of
the pair distribution functions at close separations are similar in range to those of the
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Figure 26. The PDFs of horizontal velocities of spheres in each size class from the dynamic simulations.
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Figure 27. Pair distribution functions of particle positions (between the smallest and the largest size classes)
for (a) ‘random array’ and (b) dynamic simulations.

static simulations, and do not exceed 1.05. The results of the current section suggest that
in our range of parameters phenomena of clustering, if present, are not sufficiently strong
to affect the results presented in the current paper. A movie of the dynamic simulation
for φ = 0.05 and α = 0.4 is provided as a supplementary movie available at https://doi.
org/10.1017/jfm.2024.1068. This visualisation further confirms that no evident clustering
effects are seen in our range of parameters.

7. Summary and discussion

The hindered settling function for non-Brownian, inertialess, dilute suspensions of
polydisperse spheres with a log-normal size distribution was quantified via Stokesian
dynamics simulations, considering the effects of the polydispersity parameter α and
the volume fraction φ. This is the first paper that reports the velocity of each particle
class for a log-normally distributed system with number of classes larger than three. The
class-averaged settling velocity 〈uz,i〉 of each particle size class was found to decrease for
increasing α. The strongest dependence on the parameters was found in the range of small
particles: 〈uz,i〉 decays, with increasing φ or increasing α, faster for the smaller particles
than for the largest particles, indicating a larger effect of hydrodynamic interactions on the
lower tail of the particle size distribution.
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Hindered settling of a Stokesian suspension

The probability distribution functions of horizontal and vertical velocities of each
size class tend to follow approximately a Gaussian distribution. The magnitude of
the horizontal and vertical velocity fluctuations for each size class increases as φ or
α increases, and appears to follow the approximate scaling u′

i ∼ uSt,i(ai/〈a〉)−2. Our
simulations for the log-normally dispersed system suggest a value of about 3.5 for
the anisotropy ratio between the vertical and the horizontal velocity fluctuations. This
value is comparable to that observed in our simulations for monodisperse or bidisperse
suspensions.

A detailed comparison with available theoretical models has been proposed. The
accuracy of the Richardson–Zaki correlation for polydispersed suspensions was found to
be unacceptable: for α = 0.4 and φ = 0.05, the value predicted by the Richardson–Zaki
formula for the smallest particles can be up to seven times larger than the simulated
value! On the other hand, the MLB model works surprisingly well for predicting the
settling velocity of the upper tail of the particle size distribution, but not the lower tail.
Our simulations confirm that Batchelor’s model gives quite accurate predictions for all
size classes when φ ≤ 0.05, yielding discrepancies of the settling velocities that are
within 10 % of the numerical results. The Davis & Gecol model and the MLB model
give comparable predictions in our range of volume fractions. Both these models tend
to overestimate the hindered settling function of the smaller particles. The discrepancy
between the models and the simulation data increases as α or φ increases, suggesting that
future studies should focus on moderately dense suspensions with a wide size ratio.

Although both models overestimate the settling velocity of the smaller particles, the
MLB model gives much more accurate predictions than the Richardson–Zaki correlation.
The MLB model is also based on the Richardson–Zaki formula, but in the MLB model
the Richardson–Zaki formula is used to estimate the particle–fluid slip velocity, not the
absolute settling velocity. For applications where the focus is predicting the sedimentation
of larger particles (e.g. separation of large particles from a polydisperse mixture), using the
MLB model could be sufficient. For applications where the stratification in different layers
needs to be predicted (e.g. in sedimentology; Dorrell & Hogg 2010), using the MLB model
will overestimate the fraction of the smaller particles in the sediment region. In particle
size fractionation by centrifugation or sedimentation (Bonaccorso et al. 2013; Backes et al.
2016), using the MLB model could give a wrong prediction of the region where most of
the small particles are located, jeopardising the entire size fractionation procedure.

Looking at the main assumptions of the MLB model, re-derived in Appendix A, we
can see that the model rests on the assumption that the Stokes drag correction for each
size class only depends on the total volume fraction of the suspension. This assumption
cannot hold in general, and thus this is the main area of model improvement. Despite our
efforts, we have not been able to propose, based on rigorous fluid mechanics arguments,
an improvement of the MLB model in which the effect of polydispersity is accounted
for in the closure of the fluid–particle velocity slip. Perhaps data for the drag force on
polydisperse fixed arrays subject to a uniform flow (van der Hoef, Beetstra & Kuipers
2005; Sarkar, van der Hoef & Kuipers 2009; Yin & Sundaresan 2009; Cheng & Wachs
2023a) could be used to suggest improved models. However, one should take into account
that uniform flow past a fixed polydisperse array and the average velocity of a polydisperse
array subject to known external forces are two different problems. Given the difficulty in
coming up with a closure relation valid for all particle sizes, machine learning techniques
such as symbolic regression (Zhang & Ma 2020; Cheng & Wachs 2023b; El Hasadi &
Padding 2023; Wu & Zhang 2023) could be used to incorporate into the MLB model
information about the moments of the particle size distribution.

1001 A30-25

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

10
68

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1068


H. Li and L. Botto

0.05

–0.05

–0.10

–0.15

0

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

(S
ij
 –

 S
ii)

φ
j

aj

ai = 0.4
ai = 2.0

Figure 28. Inter-class interaction term appearing on the right-hand side of (7.1) for ai = 0.4 (‘small’
particles) and ai = 2 (‘large’ particles). The particle size distribution corresponds to α = 0.4 and φ = 0.05.

The good comparison between Batchelor’s model and the simulation data for
sufficiently small φ enables us to use this analytical model to illustrate why the prediction
of the velocity of the small particles is highly dependent on the full particle size
distribution, while that of the large particles is not. Equation (2.1) can be rewritten as

hi = 1 + Siiφ +
m∑

j=1

(Sij − Sii)φj, (7.1)

where Sii = −6.55 and φ is the total volume fraction. The direct influence of the size of
particle class j on the hindered settling of particle class i is negligible if |(Sij − Sii)φj| �
|Siiφ|. For φ = 0.05, the magnitude of the intra-class interaction term is |Siiφ| = 0.33.
Let us compare this value with the inter-class interaction term for φ = 0.05. In figure 28
(Sij − Sii)φj is shown for ai = 0.4 (small particles) and ai = 2 (large particles), for α =
0.4. The maximum absolute value of the inter-class interaction term for the small particles
is 0.13, not negligible in comparison with 0.33. The maximum value of the inter-class
interaction term for the largest particles is instead 18 times smaller than the intra-class
interaction term. The question is: in the case of log-normally distributed particles, why is
the inter-class interaction term small for the large particles? Is this because the interaction
coefficients are small in magnitude? Or because of the distribution of volume fractions?

To reply to these questions, in figure 29(a,b) we show (Sij − Sii) and φ separately. For
completeness, in figure 29(a) (Sij − Sii) is shown also for aj/ai → 0 (even though the
smallest value we consider in our work is 0.2). It is seen that in our log-normal distribution
the volume fraction corresponding to the small particles is small in comparison with that
of the large particles, and tends to zero as the lower tail of the particle size distribution is
approached. The quantity (Sij − Sii) is on the other hand not diverging for aj/ai � 1, and
is O(1) in this limit. Therefore, specifically for a log-normal particle size distribution the
reason why the lower tail has a small influence on the upper tail is that the volume fraction
corresponding to the lower tail is comparatively small and is weighted by an interaction
term that is not large. For a more general particle size distribution, the situation is more
subtle. For example, if the particle size distribution was such that φ was comparatively
large in the small particle range, one would expect the settling velocity of the largest
particles to be more affected by the smallest particles than seen in our simulations. To test
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Figure 29. (a) Interaction coefficients Sij − Sii and (b) volume fraction distribution corresponding to the
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Figure 30. Number-frequency distribution of a polydisperse suspension where all size classes have the same
volume fraction.

this hypothesis, we simulated a case where there are five size classes and all size classes
have the same volume fraction. The corresponding number-frequency distribution is
shown in figure 30. The smallest size class occupies in terms of particle numbers more than
80 % of the total. The normalised average settling velocities from simulations and model
predictions are shown in figure 31 for a total volume fraction of 0.03. Batchelor’s model
gives quite accurate predictions, whereas other models overpredict the hindered settling
functions of smaller size classes. The large particles are still relatively uninfluenced by
the small particles, even if the volume fraction of the small particles is significantly larger
than in the simulations with the log-normal particle size distribution. The reason for this is
that while Sij − Sii ≈ 3 for aj/ai � 1, this O(1) value is still much smaller than the value
|Sij − Sii| ≈ 30 for aj/ai close to 5 (see figure 29). In other words, the settling velocity of
large particles is directly influenced by the size distribution of particles in neighbouring
size classes only. It seems that, from the point of view of the velocity of the large particles,
the specific size distribution of the small particles does not matter, only the total volume
fraction contribution due to the small particles matters, via the term Siiφ in (7.1).

The analysis above also gives insights into the condition for which models parametrised
on the total volume fraction can be used as a first, practical approximation for the
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Figure 31. Hindered settling function corresponding to the size distribution of figure 30.

prediction of the settling of a dilute polydisperse suspension. This approximation is
reasonable when the inter-class interaction term is comparatively small. This term is small
either when φj � 1 for finite Sij − Sii, the case discussed above, or when the particle size
distribution is narrow so that |Sij − Sii| → 0, the case discussed by Davis & Hassen (1988)
(see the value of Sij − Sii for aj/ai approaching 1 in figure 28a). If deviations of Sij from
Sii are small, then it can be seen from (3.9) that the hindered settling function for φ � 1
depends only on the total volume fraction. For a not too dense suspension with a narrow
size distribution, the use of the Richardson–Zaki correlation is for example partially
justified (note that the exponent n � 5 in the Richardson–Zaki correlation is numerically
close to |Sii| = 6.5; this ‘lucky coincidence’ was also noted by Davis & Hassen (1988)).

A challenge in the current investigation has been the lack of experimental data with
which to compare. Experimental techniques such as X-ray radiography (Dulanjalee et al.
2020), magnetic resonance imaging (Boyce et al. 2016) or optical experiments with
fluorescent particles (Snabre et al. 2009) could be used to measure the velocity of a given
small particle fraction in a widely polydisperse suspension.

Supplementary movie. Supplementary movie is available at https://doi.org/10.1017/jfm.2024.1068.
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Appendix A. Derivation of the slip velocity closure in the MLB model

A derivation of the MLB model is provided here to highlight the key assumptions
of the model, which was too concisely described in the original papers (Lockett &
Bassoon 1979; Masliyah 1979). Consider a homogeneous polydisperse suspension with m
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Hindered settling of a Stokesian suspension

particulate classes. The radius and density of the jth class are aj and ρj, respectively, with
j = 1, 2, . . . , m. The density and dynamic viscosity of the fluid are ρf and μ, respectively.
Gravity is in the negative z direction. Due to the differences between the particle and the
fluid densities, a macroscopic pressure gradient dp/dz along the height of the mixture is
needed to balance the excess weight of the particles. This pressure gradient drives the back
flow of the fluid during settling of the particles. Corresponding to this pressure gradient,
each particle experiences a buoyancy force F∇p = (−dp/dz)Vp, where Vp is the volume
of that particle. The total force exerted on each particle by the fluid is given by F∇p, by the
buoyancy force due to the undisturbed hydrostatic pressure gradient and by the drag force
due to the relative fluid–particle velocity difference.

The steady-state momentum equation for the fluid phase is

(
−dp

dz

)
(1 − φ) −

m∑
j=1

fd,j = 0, (A1)

where φ is the total volume fraction and fd,j is the volumetric drag force density (drag
per unit volume) exerted by the jth particle class. The steady-state particle momentum
equation for the jth particle class is

(
−dp

dz

)
φj + fd,j − (ρj − ρf )φjg = 0, (A2)

where φj is the volume fraction of the jth class. Using (A1) and (A2) gives

dp
dz

= −
m∑

j=1

(ρj − ρf )φjg (A3)

and

fd,j = (ρj − ρsusp)φjg, (A4)

where ρsusp = (1 − φ)ρf + ∑m
i=1 ρiφi is the density of the suspension (see e.g. Xia et al.

(2022) for the case m = 1). The predictive accuracy of (A4) for small particles immersed
in a suspension of larger particles has been put into question (Poletto & Joseph 1995;
Rotondi, Di Felice & Pagliai 2015).

To calculate the particle velocity, a constitutive equation relating relative velocity to
force must be postulated. The MLB model uses a linear law between the drag force and
the slip velocity uslip,j between the jth particle class and the average fluid velocity:

fd,j = −βjuslip,j, (A5)

where uslip,j is defined as in (5.1). The friction coefficient was calculated as βj =
9μφjC(φ)/2a2

j . The case C = 1 corresponds to no influence of neighbouring particles
on the drag force exerted on a test particle (the factor φj is due to the fact that fd,j is a
force per unit volume). To model hydrodynamic interactions on the drag force, the MLB
model assumes C(φ) = (1 − φ)2−n, as for a monodisperse case at the same total volume
fraction (from the Richardson–Zaki correlation, the slip velocity in the monodisperse case
is uslip = 〈up〉 − 〈uf 〉 = 〈up〉/(1 − φ) = uSt(1 − φ)n−1; equating (A4) and (A5) using this
slip velocity gives C(φ) = (1 − φ)2−n).
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From (A4) and (A5), the slip velocity for the polydispersed case is

uslip,j =
2a2

j

9μ
(1 − φ)n−2(ρj − ρsusp). (A6)

If all the particles have the same density, ρsusp = (1 − φ)ρf + φρp and ρj − ρsusp = (1 −
φ)(ρp − ρf ). In this case the slip velocity simplifies to

uslip,j = uSt,j(1 − φ)n−1, (A7)

where uSt,j is the Stokes velocity of the jth species. Using the definition of the slip velocity
and using mass continuity

∑
j φj〈uj〉 + (1 − φ)〈uf 〉 = 0 yields (2.3).

It can be seen from the derivation that the main assumptions in the MLB model are
embedded in (A4) and (A5).
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