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1. Introduction

1.1. Context

Quantum topology began in the 1980s with the Jones polynomial [29] and Witten’s

reinterpretation of it via Yang–Mills theory [59]. Witten’s work was at a physical level

of rigor, but Atiyah [3], Reshetikhin–Turaev [49] and others introduced mathematically
rigorous definitions of topological field theories and related them to both the Jones

polynomial and deep questions in representation theory.

Around the same time, topological field theories also began to appear in dimension
4, in the work of Donaldson [17], Floer [22] and others. Unlike the Jones polynomial,

these 4-dimensional invariants all required partial differential equations to define.

(Curiously, though Donaldson’s and Floer’s invariants were archetypal examples for what
Witten called topological field theories (TQFT) [58], they do not satisfy the axioms

mathematicians came to insist on for topological field theories.) The connection between

these invariants and representation theory was also less apparent.

In the 1990s, Crane–Frenkel proposed that the Jones polynomial and its siblings might
be extended to 4-dimensional topological field theories via ‘a categorical version of a Hopf

algebra’ [16]. Inspired by this suggestion, Khovanov categorified the Jones polynomial

[31]. Rasmussen showed that this categorification could be used to study smooth knot
concordance and even to deduce the existence of exotic smooth structures on R4 without

recourse to gauge theory [48].

Answering a question of Khovanov’s, Jacobsson proved that Khovanov homology
extends to a (3+1)-dimensional topological field theory [28]. His proof, which involved

explicitly checking the myriad movie moves relating different movie presentations of a

surface, was long and intricate. Khovanov [32, 33] and, independently, Bar-Natan [5]
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gave simpler proofs of functoriality of Khovanov homology, by extending it downwards,
to tangles (as Reshetikhin–Turaev had done for the Jones polynomial. Their tangle

invariants are different, and since then several more Khovanov homology invariants

of tangles have also been given [2, 11, 10, 50].) These tangle invariants also led to
categorifications of quantum groups [38, 34, 51] and tensor products of representations

[56] and many other interesting advances.

Returning to gauge theory and related invariants, in the 1990s, Cohen–Jones–Segal

proposed a program to give stable homotopy refinements of Floer homology groups, in
certain cases [15]. This program has yet to be carried out rigorously, but using other

techniques, stable homotopy refinements have been given for certain Floer homologies

[47, 36, 14, 35, 30]. The Cohen–Jones–Segal program is in two steps: first they use the
Floer data to build a framed flow category and then they use the framed flow category to

build a space; it is the first step for which technical difficulties have not yet been resolved.

In a previous paper, we built a framed flow category combinatorially and then used the
second step of the Cohen–Jones–Segal program to define a Khovanov stable homotopy

type [41]. Hu–Kriz–Kriz gave another construction of a Khovanov stable homotopy

type using the Elmendorf–Mandell infinite loop space machine [25]. In another previous

paper we were able to show that these two constructions give equivalent invariants [40].
Hu–Kriz–Kriz’s construction factors through the embedded cobordism category of

(R2,[0,1]×R2), a point that will be important in our construction of tangle invariants

below.
Computations show that this Khovanov stable homotopy type is strictly stronger than

Khovanov homology [43, 55] and can be used to give additional concordance information

[42, 40]. (A homotopy-theoretic lift of Khovanov homology which does not have more
information than Khovanov homology was given by Everitt–Turner [21, 20].)

We would like to use the Khovanov homotopy type to study smoothly embedded

surfaces in R4. Following Khovanov and Bar-Natan, as a step towards this goal, in this

article we construct an extension of the Khovanov stable homotopy type to tangles.

Remark 1.1. Hu–Kriz–Somberg have outlined a construction of a stable homotopy

type refining sln Khovanov–Rozansky homology [26]. Their construction passes through

oriented tangles ; that is, tangles in [0,1]×D2, every strand of which runs from {0}×D2

to {1}×D2. At the time of writing, their construction is restricted to a homotopy type

localised at a ‘large’ prime p (depending on n).

1.2. Statement of results

In this article, we give two extensions of the Khovanov homotopy type to tangles. The first

is combinatorial and has the form of a multifunctor MBT from a particular multicategory
to the Burnside category. The functor MBT is well-defined up to a notion of stable

equivalence (Theorem 3). (For the special case of knots, this essentially reduces to the

combinatorial invariant described in a previous paper [39].) To summarise, we give the
following.

Theorem 1. Given a (2m,2n)-tangle T with N crossings, there is an associated

multifunctor
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MBT : 2N ×̃mTn → B.

Up to stable equivalence, MBT is an invariant of the isotopy class of T. The composition
of MBT with the forgetful map B →Ab is identified with Khovanov’s tangle invariant [32].

(This is restated and proved as Lemma 3.22 and Theorem 3.)
Next, we use the Elmendorf–Mandell machine to define a spectral category (category

enriched over spectra) H m so that the homology of H m is the Khovanov arc algebraHm.

(After this introduction we denote the algebra Hm by Hm, to avoid conflicting with the
notation for singular cohomology.) We then turn MBT into a (spectral) bimodule X (T )

over H m and H n, so that the singular chain complex of X (T ) is quasi-isomorphic, as a

complex of (Hm,Hn)-bimodules, to the Khovanov tangle invariant of T. We then prove
the following.

Theorem 2. Up to equivalence of (H m,H n)-bimodules, X (T ) is an invariant of the

isotopy class of T. Further, given a (2n,2p)-tangle T ′,

X (T ′ ◦T )� X (T )⊗L
H n X (T ′)

(where tensor product denotes the tensor product of module spectra).

(This is restated and proved as Theorems 4 and 5.)

The outline of the construction is as follows:

(1) We construct a multicategory C̃obd, enriched in groupoids, of divided cobordisms,

so that:

(a) there is at most one 2-morphism between any pair of morphisms in C̃obd;

(b) the Khovanov–Burnside functor VHKK from the embedded cobordism category

to the Burnside category induces a functor V HKK from C̃obd to the Burnside

category; and

(c) the cobordisms involved in the Khovanov arc algebras and tangle invariants

have (essentially canonical) representatives in C̃obd (Subsections 3.1 and 3.2.3).

(2) We define an arc-algebra shape multicategory S0
n and tangle shape multicategory

mT 0
n so that the Khovanov arc algebras and tangle invariants are equivalent to

multifunctors S0
n → Ab and mT 0

n →Kom. There are also groupoid-enriched versions

of Sn and mTn and projection maps Sn → S0
n, mTn → mT 0

n (Subsections 2.3 and
3.2.2).

(3) The functor S0
n → Ab factors through a functor Sn → C̃obd. Similarly, the tangle

invariant mT 0
n → Kom factors through a functor 2N ×̃mTn → C̃obd from (an

appropriate kind of) product of mTn and a cube. So, we can compose with V HKK

to get functors MBn : Sn → B and MBT : 2N ×̃mTn → B. We also digress to note

that we can view MBT as a tangle invariant in an appropriate derived category

(Subsection 3.5).
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Figure 1.1. The outline of the construction. We construct the above diagram starting with

a (2m,2n)-tangle diagram T. Hook-tailed arrows are subcategory inclusions, split-tailed arrows are

strictifications from groupoid enriched multicategories to ordinary multicategories and solid-headed

arrows convert a multicategory to an ordinary category by forgetting multimorphisms. Only the thick

arrows depend on the tangle T. Solid arrows are strict, whereas the dashed arrows are lax. The two dotted

arrows are functors between functor categories, S (2N ×̃mTn)0 → S mT 0
n and Ab(2

N ×̃mTn)0 → KommT 0
n

(their only dependence on the tangle is in an overall grading shift). The diagram commutes, with the

understanding that anything involving the strictification arrows only commutes up to (zigzags of) natural

equivalences and arrows to Kom only commute up to quasi-isomorphisms. The picture does not encompass

the quantum gradings.

(4) Using the Elmendorf–Mandell K -theory machine and rectification results, we can

turn MBn and MBT into functors S0
n → S and mT 0

n → S . We reinterpret these
functors as a spectral category and spectral bimodule, respectively. Whitehead’s

theorem combined with familiar invariance arguments implies that the functor

mT 0
n → S is a tangle invariant (Section 4).

(5) The gluing theorem for tangles follows by considering a map from a larger

multicategory to C̃obd; the corresponding result for the Khovanov bimodules,

projectivity (sweetness) of the Khovanov bimodules and, again, a version of

Whitehead’s theorem (Section 5).

We precede these constructions with a review of Khovanov’s tangle invariants and some
algebraic topology background (Section 2) and follow it with some modest structural

applications (Section 7). We concentrate the discussion of quantum gradings in Section 6.

The outline of the construction is summarised by Figure 1.1.

Remark 1.2. To construct both the combinatorial and topological tangle invariants,
we use the language of multicategories. There is another construction of a combinatorial

invariant with at least as much information, using the language of enriched bicategories

(cf. [23]); we may return to this point in a future paper.
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2. Background

2.1. Homological grading conventions

In this article, we will work with chain complexes. We view cochain complexes as chain
complexes by negating the grading. In particular, the Khovanov complex was originally

defined as a cochain complex [31], but we will view it as a chain complex. So, our

homological gradings differ from Khovanov’s by a sign.

2.2. Multicategories

Definition 2.1. A multicategory (or colored operad) C consists of:

(M-1) A set or, more generally, class, Ob(C ) of objects ;

(M-2) For each n ≥ 0 and objects x1, . . . ,xn,y ∈ Ob(C ), a set Hom(x1, . . . ,xn;y) of
multimorphisms from (x1, . . . ,xn) to y ;

(M-3) a composition map

Hom(y1, . . . ,yn;z)×Hom(x1,1, . . . ,x1,m1
;y1)×·· ·×Hom(xn,1, . . . ,xn,mn

;yn)

→Hom(x1,1,x1,2, . . . ,xn,mn
;z);

and

(M-4) A distinguished element Idx ∈Hom(x;x), called the identity or unit,

satisfying the following conditions:

(M-5) Composition is associative, in the sense that the following diagram commutes:

Hom(y1, . . . ,yn;z)

×
∏n

i=1Hom(xi,1, . . . ,xi,mi ;yi)

×
∏n

i=1

∏mi
j=1Hom(wi,j,1, . . . ,wi,j,ki,j ;xi,j)

��

��

Hom(x1,1, . . . ,xn,mn ;z)

×
∏n

i=1

∏mi
j=1Hom(wi,j,1, . . . ,wi,j,ki,j ;xi,j)

��Hom(y1, . . . ,yn;z)

×
∏n

i=1Hom(wi,1,1, . . . ,wi,mi,ki,mi
;yi)

�� Hom(w1,1,1, . . . ,wn,mn,kn,mn
;z).

(Here, all of the maps are composition maps.)

(M-6) The identity elements are right identities for composition, in the sense that the

following diagram commutes:
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Hom(x1, . . . ,xn;y)
= ��

Id×
∏

Idxi

��

Hom(x1, . . . ,xn;y)

Hom(x1, . . . ,xn;y)×
∏n

i=1Hom(xi,xi).

◦

���������������������

(M-7) The identity elements are left identities for composition, in the sense that the

following diagram commutes:

Hom(x1, . . . ,xn;y)
= ��

Idy × Id

��

Hom(x1, . . . ,xn;y)

Hom(y,y)×Hom(x1, . . . ,xn;y).

◦

�������������������

Given multicategories C and D , amultifunctor F : C →D is a map F : Ob(C )→Ob(D)

and, for each x1, . . . ,xn,y ∈Ob(C ), a map HomC (x1, . . . ,xn;y)→HomD(F (x1), . . . ,F (xn);

F (y)) which respects multicomposition and identity elements.

Multicategories, which model the notion of multilinear maps, are a common gener-

alisation of a category (a multicategory in which only multimorphism sets with one
input are nonempty) and an operad (a multicategory with one object). Multicategories

were introduced by Lambek [37] and Boardman–Vogt [7]. In Boardman–Vogt’s work and

most modern algebraic topology, the multimorphism sets in multicategories are equipped

with actions of the symmetric group; the definition we have given would be called a
nonsymmetric multicategory. Some of our multicategories (notably B, Sets/X and S )

are, in fact, symmetric multicategories. In particular, the multicategories Sets/X to which

we apply Elmendorf–Mandell’s K -theory are symmetric multicategories.
A monoidal category (C ,⊗) produces a multicategory, which we will denote C , as

follows. The objects of C are the same as the objects of C and the multimorphism sets

are given by

HomC (x1, . . . ,xn;y) = HomC (x1⊗·· ·⊗xn;y)

(for any choice of how to parenthesise the tensor product). If the monoidal category

happened to be a symmetric monoidal category, as in the case of abelian groups Ab,
graded abelian groups Ab∗ or chain complexes Kom, then the corresponding multicategory

is a symmetric multicategory. (These are examples of Hu–Kriz–Kriz’s �-categories [25].)

Many of our multicategories will be enriched in groupoids. That is, the multimorphism

sets will be groupoids (i.e., categories in which all the morphisms are invertible) and the
composition maps are maps of groupoids (i.e., functors).

Most of our nonenriched multicategories will be rather simple, in a sense we make

precise.

Definition 2.2. Given a finite set X, the shape multicategory of X has objects X ×X

and the multimorphism set Hom((a1,b1),(a2,b2), . . . ,(an,bn); (b0,an+1)) consists of a single
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https://doi.org/10.1017/S147474802100044X


1516 T. Lawson, R. Lipshitz, and S. Sarkar

element if bi = ai+1 for all 0≤ i≤ n and all other multimorphism sets empty. We allow the
special case n = 0 which produces a unique zero-input multimorphism in Hom(∅; (a,a))

for each a ∈X.

Generalising Definition 2.2, we have the following variant.

Definition 2.3. Given a finite sequence of finite sets X1, . . . ,Xk, the shape multicategory

of (X1, . . . ,Xk) has objects
∐

i≤jX
i×Xj and Hom((a1,b1),(a2,b2), . . . ,(an,bn); (b0,an+1))

consists of a single element if bi = ai+1 for all 0≤ i≤ n and all other multimorphism sets

empty. Once again, we allow the special case n = 0 which produces a unique zero-input

multimorphism in Hom(∅; (a,a)) for each a ∈
∐

iX
i.

2.3. Linear categories and multifunctors to abelian groups

Many of the algebras that we will encounter in this article will come equipped with an

extra structure, which we abstract below.

Definition 2.4. An algebra equipped with an orthogonal set of idempotents is an algebra

A and a finite subset I ⊂A, so that

• ι2 = ι for all ι ∈ I,
• ιι′ = ι′ι= 0 for all distinct ι,ι′ ∈ I and
•

∑
ι∈I ι= 1.

The following three notions are equivalent.

(1) A ring A (algebra over Z) equipped with an orthogonal set of idempotents X.

(2) A linear category (category enriched over abelian groups Ab) with objects a finite
set X.

(3) A multifunctor from the shape multicategory M of a finite set X to the

multicategory Ab of abelian groups.

(A similar statement holds for algebras over any ring R; the corresponding linear category

has to be enriched over R-modules and the corresponding multifunctor should map to

the multicategory of R-modules.)

To see the equivalence, given a multifunctor F : M →Ab there is a corresponding linear
category with objects X, Hom(x,y) = F ((x,y)), composition Hom(y,z)⊗Hom(x,y) →
Hom(x,z) is the image of the unique morphism (x,y),(y,z) → (x,z) and the identity

Idx ∈ Hom(x,x) is the image of 1 under the maps Z → Hom(x,x), which is the image
under F of the unique morphism ∅→ (x,x). Given a linear category C with finitely many

objects, we can form a ring AC =
⊕

x,y∈Ob(C )HomC (x,y) with multiplication given by

composition (i.e., a ·b := b◦a) when defined and 0 otherwise; the ring AC is equipped with
the orthogonal set of idempotents {Idx | x ∈ Ob(C )}. From a ring A equipped with an

orthogonal set of idempotents I, we obtain a map F : M → Ab by setting F ((x,y)) = xAy

and declaring that F sends the unique morphism (x,y),(y,z)→ (x,z) to the multiplication

map xAy⊗yAz → xAz and that F respects composition and identity maps.
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In a similar fashion, given linear categories C and D with finitely many objects, the

following are equivalent notions for bimodules:

(1) A left-AC right-AD bimodule B.

(2) An enriched functor FA : C op × D → Ab; an enriched functor between linear

categories is one for which the map on morphisms HomC op×D((c,d),(c′,d′)) →
HomAb(FA(c,d),FA(c

′,d′)) is linear or, equivalently, HomC op×D((c,d),(c′,d′)) ×
FA(c,d)→ FA(c

′,d′) is bilinear.

(3) A multifunctor from the shape multicategory M(C ,D) of (Ob(C ),Ob(D)) to Ab,
which restricts to the multifunctors corresponding to C , respectively D , (as defined
above) on the subcategory of M(C ,D) which is the shape multicategory of Ob(C ),

respectively Ob(D).

Recall from Definition 2.3 that M(C ,D) consists of the following data:

• Three kinds of objects:
– Pairs (x1,x2) ∈Ob(C )×Ob(C ).

– Pairs (y1,y2) ∈Ob(D)×Ob(D).

– Pairs (x,y) where x ∈ Ob(C ) and y ∈ Ob(D). For notational clarity, we will
write (x,y) instead as (x,[B],y).

• A single multimorphism in each of the following cases:
– (x1,x2),(x2,x3), . . . ,(xm−1,xm)→ (x1,xm) where x1, . . . ,xm ∈Ob(C ).

– (y1,y2),(y2,y3), . . . ,(yn−1,yn)→ (y1,yn) where y1, . . . ,yn ∈Ob(D).

– (x1,x2), . . . ,(xm−1,xm),(xm,[B],y1),(y1,y2), . . . ,(yn−1,yn) → (x1,[B],yn) where
x1, . . . ,xm ∈Ob(C ) and y1, . . . ,yn ∈Ob(D).

The bimodule B defines a multifunctor FB : M(C ,D)→ Ab as follows:

• On objects, for x1,x2 ∈ Ob(C ) and y1,y2 ∈ Ob(D), FB(x1,x2) = HomC (x1,x2) =
Idx1

AC Idx2
, FB(y1,y2) = HomD(y1,y2) = Idy1

AD Idy2
and FB(x1,[B],y1) =

Idx1
B Idy1

.
• On the first and second types of multimorphisms, FB is simply composition. For

the third type, the map FB sends the multimorphism

(x1,x2), . . . ,(xm−1,xm),(xm,[B],y1),(y1,y2), . . . ,(yn−1,yn)→ (x1,[B],yn)

to the product

Idx1
RC Idx2

⊗·· ·⊗ Idxm−1
RC Idxm

⊗ Idxm
B Idy1

⊗ Idy1
RD Idy2

⊗·· ·⊗ Idyn−1
RD Idyn

→ Idx1
B Idyn

.

Conversely, every multifunctor M(C ,D) → Ab of the given form arises as FB for the

bimodule B =
⊕

x∈Ob(C ),y∈Ob(D)FB(x,[B],y).

Similarly, given a multifunctor FB : M(C ,D) → Ab, we can construct an enriched
functor FA : C op×D → Ab as follows:

• On objects, FA(c,d) = FB(c,[B],d).
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• On morphisms, HomC op×D((c,d),(c′,d′))⊗FA(c,d)→ FA(c
′,d′) is the composition

HomC op×D((c,d),(c′,d′))⊗FA(c,d) = FB(c
′,c)⊗FB(c,[B],d)⊗FB(d,d

′)

→ FB(c
′,[B],d′).

There are similar equivalences for the notions of differential (AC ,AD)-bimodules,

enriched functors C op×D → Kom and multifunctors M(C ,D)→ Kom.

2.4. Trees and canonical groupoid enrichments

To define some enriched multicategories, we will first need some terminology about trees.

A planar, rooted tree is a tree with some number n ≥ 1 of leaves, which has been
embedded in R× [0,1] so that k ≤ n−1 of the leaves are embedded in R×{0}, one leaf is

embedded in R×{1} and no other edges or vertices are mapped to R×{0,1}. The vertices
mapped to R×{0} are called inputs of and the vertex mapped to R×{1} is the output

or root of . We call the remaining vertices of internal. We view planar, rooted trees
as directed graphs, in which edges point away from the inputs and towards the output.

In particular, given a valence m internal vertex p of , (m− 1) of the edges adjacent

to p are input edges to p and one edge is the output edge of p and the inputs of p are
ordered. We allow the case m= 1 and call such 0-input 1-output internal vertices stump

leaves. We view two planar, rooted trees as equivalent if there is an orientation-preserving

self-homeomorphism of R× [0,1] which preserves R×{0} and R×{1} and takes one tree
to the other.

Given a tree , the collapse of is the result of collapsing all internal edges of , to

obtain a tree with one internal vertex (i.e., a corolla).

2.4.1. Canonical groupoid enrichments. First, given a nonenriched multicate-

gory C we can enrich C over groupoids trivially as follows. Given elements f,g ∈
HomC (x1, . . . ,xn;y), define Hom(f,g) to be empty if f 
= g and to consist of a single

element, the identity map, if f = g.
Next we give a different way of enriching multicategories over groupoids, which

provides a tool for turning lax multifunctors into strict ones (from a different source),

though we will avoid ever actually defining or using the notion of a lax multifunctor
or multicategory. Suppose C is an unenriched multicategory. The canonical thickening

C̃ is the multicategory enriched in groupoids defined as follows. The objects of C̃ are

the same as the objects of C . Informally, an object in HomC̃ (x1, . . . ,xn;y) is a sequence
of composable multimorphisms starting at x1, . . . ,xn and ending at y. The 2-morphisms

record whether two sequences compose to the same multimorphism.

More precisely, an object of HomC̃ (x1, . . . ,xn;y) is a tree with n inputs, together

with a labelling of each edge of by an object of C and each internal vertex of by a
multimorphism of C , subject to the following conditions:

(1) The input edges of are labelled by x1, . . . ,xn (in that order).

(2) The output edge of is labelled by y.
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(3) At a vertex v, if the input edges to v are labelled w1, . . . ,wk and the output edge

is labelled z, then the vertex v is labelled by an element of HomC (w1, . . . ,wk;z). In

particular, stump leaves of are labelled by multimorphisms in HomC (∅;z); that
is, by 0-input multimorphisms.

Given a morphism f ∈ HomC̃ (x1, . . . ,xn;y), we can compose the multimorphisms

labelling the vertices according to the tree to obtain a morphism f◦ ∈HomC (x1, . . . ,xn;y).
Given morphisms f,g ∈ HomC̃ (x1, . . . ,xn;y), define HomC̃ (f,g) to have one element if

f◦ = g◦ and to be empty otherwise. The unit in HomC̃ (x;x) is the tree with one input,

one output, no internal vertices and edge labelled x. This completes the definition of the
multimorphism groupoids in C̃ .

Composition of multimorphisms is simply gluing of trees. (When gluing together the

external vertices, they disappear rather than creating new internal vertices.)

Lemma 2.5. This definition of composition extends uniquely to morphisms in the
multimorphism groupoids.

Proof. This is immediate from the definitions.

Lemma 2.6. These definitions make C̃ into a multicategory enriched in groupoids.

Proof. At the level of objects of the multimorphism groupoids, associativity follows from
associativity of composition of trees. At the level of morphisms of the multimorphism

groupoids, associativity trivially holds. The unit axioms follow from the fact that gluing

on a tree with no internal vertices has no effect.

We will call a multimorphism in C̃ basic if the underlying tree has only one internal

vertex. Every object in the multimorphism groupoid HomC̃ (x1, . . . ,xn;y) is a composition

of basic multimorphisms.

Example 2.7. Consider the canonical groupoid enrichment of the shape multicategory
of some set X (cf. Definition 2.2). For any x,y,z,w ∈ X, the multimorphism set

Hom((x,y),(y,z),(z,w); (x,w)) consists of infinitely many elements since the underlying

tree could contain an arbitrary number of internal vertices. However, there is exactly one
multimorphism when the underlying tree has exactly one internal vertex, exactly 10 when

the underlying tree has exactly two interval vertices (shown in Figure 2.1) and so on.

There is a canonical projection multifunctor C̃ → C which is the identity on objects

and composes the multimorphisms associated to the vertices of a tree according to the

edges. (Here, we view C as trivially enriched in groupoids.)

Lemma 2.8. The projection map C̃ → C is a weak equivalence.

(See [19, Definition 12.1] for the definition of a weak equivalence.)

Proof. We must check that projection induces an equivalence on the categories of
components and that for each x1, . . . ,xn,y the projection map gives a weak equivalence

of simplicial nerves

N HomC̃ (x1, . . . ,xn;y)→ N HomC (x1, . . . ,xn;y). (2.1)
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(x, y)(y, z)(z, w)

(x, w)

(x, y)(y, z)(z, w)

(x, w)

(x, y)(y, z)(z, w)

(x, w)

(x, y)(y, z)(z, w)

(x, w)

(x, y)(y, z)(z, w)

(x, w)

(x, y)(y, z)(z, w)

(x, w)

(x, y)(y, z)(z, w)

(x, w)

(x, y)(y, z)(z, w)

(x, w)

(x, y) (z, w)

(x, w)

(y, z)

(x, y) (z, w)

(x, w)

(y, z)

Figure 2.1. Some of the multimorphisms in Hom((x,y),(y,z),(z,w); (x,w)) from Example 2.7.

The edges are labelled by the objects and the internal vertices are labelled by multimorphisms in the

original multicategory (i.e., basic multimorphisms). Edges ending in a node are stumps. The original

multicategory being the shape multicategory of a set, the vertex labels and the internal edge labels are

forced and are not shown.

The first statement follows from the fact that the components of the groupoid

HomC̃ (x1, . . . ,xn;y) correspond, under the projection, to the elements of HomC

(x1, . . . ,xn;y). The second statement follows from the fact that in each component of

the multimorphism groupoid HomC̃ (x1, . . . ,xn;y), every object is initial (and terminal),
so N HomC̃ (x1, . . . ,xn;y) is contractible.

A related construction is strictification.

Definition 2.9. Given a multicategory C enriched in groupoids there is a strictification

C 0 of C , which is an ordinary multicategory, with objects Ob(C 0) = Ob(C ) and multi-

morphism sets HomC 0(x1, . . . ,xn;y) the set of isomorphism classes (path components) in
the groupoid HomC (x1, . . . ,xn;y). If we view C 0 as trivially enriched in groupoids, then

there is a projection multifunctor C → C 0.

Strictification is a left inverse to thickening; that is, for any nonenriched multicate-

gory C ,

(C̃ )0 ∼= C .

A more general notion than a multicategory enriched in groupoids is a simplicial
multicategory ; that is, a multicategory enriched in simplicial sets. Given a multicategory

enriched in groupoids C , replacing each Hom groupoid HomC (x,y) by its nerve gives a

simplicial multicategory. One can also strictify a simplicial multicategory D by replacing
each Hom simplicial set by its set of path components. If D came from a multicategory

C enriched in groupoids by taking nerves, then the strictification C 0 of C and the

strictification D0 of D are naturally equivalent. Our main reason for introducing simplicial
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multicategories is that some of the background results we use are stated in that more
general language. For instance, spectra form a simplicial multicategory.

2.5. Homotopy colimits

In this section we will discuss homotopy colimits in the categories of simplicial sets and

chain complexes.

Given an index category I and a functor F from I to the category SSet∗ of based
simplicial sets, there is a based homotopy colimit denoted by hocolimI F : it is a quotient

of the space ∐
p≥0

∐
i0→i1→···→ip

F (i0)∧ (Δp)+

by an equivalence relation induced by simplicial face and degeneracy operations [9, XII.2].

Similarly, if instead we are given a functor F from I to the category Kom of complexes,

there is a homotopy colimit hocolimI F (denoted
∐

∗F in [9]): it is a quotient of the
complex ⊕

p≥0

⊕
i0→i1→···→ip

F (i0)⊗C∗(Δ
p),

where C∗ is the normalised chain functor on simplicial sets. (More explicit chain-

level descriptions can be given.) In particular, the natural commutative and associative

Eilenberg–Zilber shuffle pairing C̃∗(X)⊗ C̃∗(Y ) → C̃∗(X ∧ Y ), applied to the above
constructions, gives rise to a natural transformation hocolim(C̃∗ ◦F )→ C̃∗(hocolimF ).

In the following, we use the shorthand equivalence to denote both a weak equivalence

of simplicial sets and a quasi-isomorphism of chain complexes.

Proposition 2.10. Homotopy colimits satisfy the following properties:

• Homotopy colimits are functorial: a natural transformation F → F ′ induces a map
hocolimF → hocolimF ′ that makes hocolim functorial in F and a map of diagrams
j : I → J induces a natural transformation hocolim(F ◦j)→ hocolimF that makes
hocolim functorial in I.

• Homotopy colimits preserve equivalences: any natural transformation F → F ′ of
functors such that F (i)→ F ′(i) is an equivalence for all i induces an equivalence
hocolimF → hocolimF ′.

• For a diagram F indexed by I×J , there is a natural transformation

hocolimi∈I(hocolimj∈J F (i× j))→ hocolimI×J F

coming from the (noncommutative) Alexander–Whitney pairing (not the commu-
tative Eilenberg–Zilber shuffle pairing). This is an isomorphism for a homotopy
colimit in simplicial sets and a quasi-isomorphism for a homotopy colimit in
complexes. This is associative in I and J but not commutative.

• The reduced chain functor C̃∗ preserves homotopy colimits: given a functor F : I →
SSet∗, the natural map hocolim(C̃∗ ◦F )→ C̃∗(hocolimF ) is a quasi-isomorphism.

• The smash product ∧ and tensor product ⊗ preserve homotopy colimits in each
variable and this is compatible with the Eilenberg–Zilber shuffle pairing.
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In particular, these combine to give a natural quasi-isomorphism

(hocolimI F )⊗ (hocolimJ G)→ hocolimI×J (F ⊗G)

which is compatible with associativity (but not commutativity) of the tensor product.

Homotopy colimits in the category Kom are closely related to left derived functors.

In the following, we view Ab as a subcategory of Kom, given by the chain complexes

concentrated in degree zero.

Proposition 2.11. Homotopy colimits of complexes satisfy the following properties:

• Write AbI for the category of functors I → Ab and colimI for the colimit functor
AbI → Ab. Then there is a natural isomorphism between the left derived functor
Lp colimI(F ) and the homology group Hp(hocolimF ), for each p≥ 0 [9, XII.5].

• For a functor F : I → Kom, there is a convergent spectral sequence

Lp colimI(Hq ◦F )⇒Hp+q(hocolimI F ).

• For a functor F : I → SSet∗, there is a convergent spectral sequence

Lp colimI(H̃q ◦F )⇒ H̃p+q(hocolimI F )

for the homology groups of a homotopy colimit [9, XII.5.7].

Proposition 2.12 ([9, XII.5.6]). Suppose Δ denotes the category of finite ordinals and

order-preserving maps and A : Δop → Kom represents a simplicial chain complex A•.
Then the chain complex hocolimΔop A is quasi-isomorphic to the total complex of the

double complex

· · · →A2 →A1 →A0 → 0,

where the ‘horizontal’ boundary maps are given by the standard alternating sum of the
face maps of A•.

Proposition 2.13. If A is an abelian group, represented by a functor F : I → Ab from

the trivial category with one object, then the complex hocolimI F is the complex with A
in degree 0 and 0 in all other degrees.

Proposition 2.14. Suppose I is a category and we have a natural transformation φ : F →
G of functors I → Kom. Let P denote the category {∗ ← 0 → 1} and define a functor

Cφ : P × I → Kom on objects by

Cφ(x,y) =

⎧⎪⎨⎪⎩
0 if x= ∗,
F (y) if x= 0,

G(y) if x= 1

with morphisms determined by F, G and φ. Then the chain complex hocolimP×I(Cφ)

is quasi-isomorphic to the standard mapping cone of the map of chain complexes
hocolimI F → hocolimI G induced by φ.

Using the previous two propositions to iterate a mapping cone construction gives the

following result for cube-shaped diagrams.
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Corollary 2.15. Let P denote the category {∗ ← 0 → 1} and 2 denote the subcategory

{0→ 1}. Given a functor F : 2n → Ab, its totalisation is defined to be the chain complex⊕
v∈2n

|v|=0

F (v)→
⊕
v∈2n

|v|=1

F (v)→ ·· · →
⊕
v∈2n

|v|=n

F (v), (2.2)

graded so that
⊕

v∈2n

|v|=i

F (v) is in grading n − i (where |v| denotes the number

of 1s in v), and the differential counts the sum of the edge maps of F with standard

signs. Let F̃ : Pn → Ab be the extended functor given by

F̃ (v) =

{
F (v) if v ∈ 2n,

0 otherwise.

Then the complex hocolimPn F̃ is quasi-isomorphic to the totalisation of F.

2.6. Classical spectra

In this section we will review some of the models for the category of spectra and some of

the properties we will need.

For us, a classical spectrum X (sometimes called a sequential spectrum) is a sequence
of based simplicial sets Xn, together with structure maps σn : Xn ∧S1 →Xn+1. A map

X → Y is a sequence of based maps fn : Xn → Yn such that the diagrams

Xn∧S1

fn∧Id

��

σX
n �� Xn+1

fn+1

��

Yn∧S1

σY
n

�� Yn+1

(2.3)

all commute. The structure maps produce natural homomorphisms on homotopy groups

πk(Xn)→ πk+1(Xn+1) and (reduced) homology groups H̃k(Xn)→ H̃k+1(Xn+1), allowing

us to define homotopy and homology groups

πk(X) = colimnπk+nXn Hk(X) = colimn H̃k+nXn

for all k ∈ Z that are functorial in X. A map of classical spectra X → Y is defined

to be a weak equivalence if it induces an isomorphism π∗X → π∗Y and the stable

homotopy category is obtained from the category of classical spectra by inverting the
weak equivalences. The functors π∗ and H∗ both factor through the stable homotopy

category. (This description is due to Bousfield and Friedlander [8], and they show that it

gives a stable homotopy category equivalent to the one defined by Adams [1]. It has the
advantage that maps of spectra are easier to describe but the disadvantage that maps

X → Y in the stable homotopy category are not defined as homotopy classes of maps

X → Y .)
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Classical spectra X and Y have a handicrafted smash product given by

(X ∧Y )n =

{
Xk ∧Yk if n= 2k,

(Xk ∧Yk)∧S1 if n= 2k+1.

The structure map (X ∧Y )n∧S1 → (X ∧Y )n+1 is the canonical isomorphism when n is
even and is obtained from the structure maps of X and Y when n is odd. This smash

product is not associative or unital, but it induces a smash product functor that makes the

stable homotopy category symmetric monoidal. There is a Künneth formula for homology:
there is a multiplication pairing Hp(X)⊗Hq(Y )→Hp+q(X ∧Y ) that is part of a natural

exact sequence

0→
⊕

p+q=n

Hp(X)⊗Hq(Y )→Hn(X ∧Y )→
⊕

p+q=n−1

TorZ1 (Hp(X),Hq(Y ))→ 0

that can be obtained by applying colimits to the ordinary Künneth formula. In particular,
this multiplication pairing is an isomorphism if the groups H∗(X) or H∗(Y ) are all flat

over Z.

Given a functor F from I to the category of classical spectra, there is a homotopy
colimit hocolimI F obtained by applying homotopy colimits levelwise. Homotopy colimits

preserve weak equivalences and the handicrafted smash product preserves homotopy

colimits in each variable. There is also a derived functor spectral sequence

Lp colimI(Hq ◦F )⇒Hp+q(hocolimI F )

for calculating the homology of a homotopy colimit. (In fact, this spectral sequence exists
for stable homotopy groups π∗ as well.)

The Hurewicz theorem for spaces translates into a Hurewicz theorem for spectra:

Definition 2.16. For an integer n, an object X in the stable homotopy category is n-

connected if πkX = 0 for k ≤ n. If n=−1, we simply say that X is connective .

Theorem 2.17. There is a natural Hurewicz map πn(X) → Hn(X), which is an

isomorphism if X is (n−1)-connected.

This induces a homology Whitehead theorem.

Theorem 2.18. If f : X → Y is a map of spectra that induces an isomorphism H∗(X)→
H∗(Y ) and both X and Y are n-connected for some n, then f is an equivalence.

Spectra have suspensions and desuspensions.

Definition 2.19. For a spectrum X, there are suspension and loop functors, as well as
formal shift functors, as follows:

(S1∧X)n = S1∧ (Xn) (ΩX)n =Ω(Xn)

sh(X)n =Xn+1 sh−1(X)n =

{
Xn−1 if n > 0

∗ if n= 0
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Proposition 2.20. The pairs (S1∧ (−),Ω) and (sh−1 , sh) are adjoint pairs and all unit

and counit maps are weak equivalences.

In the stable homotopy category, there are isomorphisms

S1∧X ∼= sh(X) ΩX ∼= sh−1(X)

In particular, the suspension functor and desuspension (i.e., loop) functor are inverse to

each other.

Although it may look like there are natural maps S1∧X → sh(X) and ΩX → sh−1(X)

that implement these equivalences, there are not: the apparent maps do not make Diagram
(2.3) commute.

2.7. Symmetric spectra

Many of our constructions make use of Elmendorf–Mandell’s paper [19], which uses

Hovey–Shipley–Smith’s more structured category of symmetric spectra [24]. In this
section we review some details about symmetric spectra and their relationship to classical

spectra.

A symmetric spectrum (which, in this article, we may simply call a spectrum) is a
sequence of based simplicial sets Xn, together with actions of the symmetric group Sn

onXn and structure maps σn : Xn∧S1 →Xn+1. These are required to satisfy the following

additional constraint. For any n and m, the iterated structure map

Xn∧Sm ∼=Xn∧ (S1∧S1∧·· ·∧S1)→Xn+m

has actions of Sn×Sm on the source and target: via the actions on the two factors for
the source and via the standard inclusion Sn×Sm →Sn+m in the target. The structure

maps are required to intertwine these two actions. A map of symmetric spectra consists

of a sequence of based, Sn-equivariant maps fn : Xn → Yn commuting with the structure
maps. We write S for the category of symmetric spectra.

A symmetric spectrum can also be described as the following equivalent data. To a

finite set S, a symmetric spectrum assigns a simplicial set X(S) and this is functorial
in isomorphisms of finite sets. To a pair of finite sets S and T, there is a structure map

X(S)∧
(∧

t∈T S1
)
→X(S

∐
T ), and this is compatible with isomorphisms in S and T as

well as satisfying an associativity axiom in T. We recover the original definition by setting

Xn =X({1,2, . . . ,n}).
Symmetric spectra also have a more rigid monoidal structure ∧, characterised by the

property that a map X∧Y →Z is equivalent to a natural family of maps X(S)∧Y (T )→
Z(S

∐
T ) compatible with the structure maps in both variables. This makes the category

of symmetric spectra symmetric monoidal closed.

Again, the constructions of homotopy colimits are compatible enough that they extend

to symmetric spectra. Given a functor F from I to the category of symmetric spectra,
there is a homotopy colimit hocolimI F obtained by applying homotopy colimits levelwise.

Homotopy colimits preserve weak equivalences. The smash product also behaves well with

respect to homotopy colimits, as follows.
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Proposition 2.21. The smash product of symmetric spectra preserves homotopy colimits
in each variable.

The category of symmetric spectra has an internal notion of weak equivalence and a
homotopy category of symmetric spectra. Both symmetric spectra and classical spectra

have model structures [24, 8] and we have the following results.

Theorem 2.22 ([24, 4.2.5]). The forgetful functor U from symmetric spectra to classical

spectra has a left adjoint V, and this pair of adjoint functors is a Quillen equivalence

between these model categories.

Corollary 2.23. The homotopy category of symmetric spectra is equivalent to the stable

homotopy category.

Corollary 2.24. The equivalence between symmetric spectra and classical spectra pre-

serves homotopy colimits.

Note that the forgetful functor U does not preserve weak equivalences except between

certain symmetric spectra, the so-called semistable ones [24, Section 5.6]. Any fibrant
symmetric spectrum is semistable, and any symmetric spectrum is weakly equivalent to

a semistable one.

Theorem 2.25 ([46, 0.3]). The equivalence between the homotopy category of symmetric

spectra and the stable homotopy category preserves smash products.

Remark 2.26. In order for X ∧Y to have the correct homotopy type, X and Y should

both be cofibrant symmetric spectra.

These results allow us to define homotopy and homology groups for a symmetric

spectrum X as a composite: take the image of X in the homotopy category of symmetric

spectra; apply the (right) derived functor of U to get an element in the homotopy category
of classical spectra and then apply homotopy or homology groups. The homology groups

of symmetric spectra therefore inherit the following properties from classical spectra.

Proposition 2.27. For symmetric spectra X and Y, there is a natural Künneth exact

sequence

0→
⊕

p+q=n

Hp(X)⊗Hq(Y )→Hn(X ∧Y )→
⊕

p+q=n−1

TorZ1 (Hp(X),Hq(Y ))→ 0.

Proposition 2.28. For a diagram F : I →S of symmetric spectra, there is a convergent

derived functor spectral sequence

Lp colimI(Hq ◦F )⇒Hp+q(hocolimI F ).

It will be convenient for us to have a lift of these homology groups to a chain functor.
Let L denote the reduced chain complex C̃∗(S

1) of the simplicial set S1. This is a complex

with value Z in degree 1 and zero elsewhere. For complexes C and D, let Hom(C,D) be

the function complex.
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Definition 2.29. Fix a symmetric spectrum X. For an inclusion of finite sets T ⊂ U ,
there is a natural map

Hom(L⊗T ,C̃∗X(T ))
∼−→Hom(L⊗T ⊗L⊗U\T ,C̃∗X(T )⊗L⊗U\T )→Hom(L⊗U,C̃∗X(U)).

Now, given any set S (infinite or not), these maps make the complexes Hom(L⊗T ,

C̃∗X(T )) into a directed system indexed by finite subsets T ⊂S. Define the chain complex

Ĉk(X)S = colimT⊂S finiteHom(L⊗T ,C̃kX(T )).

If S is finite of size n, Ĉk(X)S is isomorphic to the shift C̃kXn[−n]. More generally,
these structure maps naturally make the system of chain groups and homology groups

{Hn+k(Xn)} into a functor from the category of finite sets and injections to the category

of abelian groups (i.e., an FI-module in the language of [13]).
There is a natural pairing

Ĉ∗(X)S ⊗ Ĉ∗(Y )T → Ĉ∗(X ∧Y )S
∐

T .

The construction of Ĉ∗ is also natural in injections S → S′.

Definition 2.30. Let M be the category whose objects are the sets
∐k

N for k ≥ 1 and
whose morphisms are monomorphisms of sets. For a symmetric spectrum X, we define

C∗(X) = hocolimS∈M(Ĉ∗(X)S).

Let M be the monoid of monomorphisms N→ N. Since all objects in the category M
are isomorphic to N, this homotopy colimit is quasi-isomorphic to the homotopy colimit

over this one-object subcategory, which can be re-expressed as the derived tensor product

Z⊗L
Z[M ] Ĉ∗(X)N. See [53] and [54, Exercise E.II.13] for a discussion of this functor.

Proposition 2.31. The chain functor C∗ : S → Kom satisfies the following proper-
ties:

• The homology groups of C∗X are the classical homology groups of the image of X
in the stable homotopy category.

• The associative disjoint union operation M×M→M gives rise to a natural quasi-
isomorphism

⊗
C∗(Xi)→C∗(

∧
Xi), which respects the associativity isomorphisms

for ∧ and ⊗.
• The functor C∗ preserves homotopy colimits: for a diagram F : I → S , there is a

natural quasi-isomorphism hocolim(C∗ ◦F )→ C∗(hocolimF ).

Therefore, if S denotes the associated multicategory of symmetric spectra, C∗ induces

a multifunctor S → Kom. To a multimorphism in symmetric spectra realised by a map

X1 ∧ ·· · ∧Xn → Y , C∗ associates the chain map C∗(X1)⊗·· ·⊗C∗(Xn) → C∗(X1 ∧ ·· · ∧
Xn)→ C∗(Y ). This definition of C∗ respects multicomposition. (The multifunctor C∗ is

not compatible with the symmetries interchanging factors, if we regard S and Kom as

symmetric multicategories.)
If we defined homotopy and homology groups

π̂k(X) = colimπk+n(Xn) Ĥk(X) = colimHk+n(Xn)
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using the same formula as for classical spectra, we obtain ‘näıve’ homotopy and homology
groups of a symmetric spectrum X which are not preserved under weak equivalence. If

we tensor with the sign representation of Sn and take colimHn+k(Xn)⊗ sgn, the result

is isomorphic to Ĥk(X)N with its action of the monoid M of injections N→ N [53]. The
natural map Ĥk(X)→Hk(X) to the true homology groups factors through the quotient

by M. A similar action and factorisation hold relating the näıve homotopy groups π̂k(X)

to the true homotopy groups πk(X).

A similar warning holds for homotopy colimits. If F is a diagram of symmetric spectra,
it is not the case that U(hocolimF )� hocolim(U ◦F ) unless F is a diagram of semistable

symmetric spectra. However, it is always possible to replace F with a weakly equivalent

diagram F ′ of semistable symmetric spectra so that hocolimF � hocolimF ′ and then
U(hocolimF ′)� hocolim(U ◦F ′).
Symmetric spectra have suspension and desuspension (i.e., loop) functors.

Definition 2.32. For a symmetric spectrum X, there are suspension and loop functors,

as well as formal shift functors, as follows:

(S1∧X)n = S1∧ (Xn) (ΩX)n =Ω(Xn)

sh(X)n =X1+n sh−1(X)n =

{
(S1+m)+∧Sm

Xm if n= 1+m

∗ if n= 0

The notation 1+n in the shift functor sh indicates that the Sn-action on X1+n is via

the inclusion S1×Sn →S1+n.

Proposition 2.33. The pairs (S1∧ (−),Ω) and (sh−1 , sh) are adjoint pairs and all unit
and counit maps are weak equivalences.

There are natural weak equivalences of symmetric spectra S1∧X→ sh(X) and sh−1X→
ΩX. These become equivalent to the standard shift functors in the stable homotopy
category.

For example, the map S1∧X → sh(X) is the composite

S1∧Xn
∼=Xn∧S1 →Xn+1

σ→X1+n,

where the final map σ is a block permutation in Sn+1: this is necessary to ensure that

this commutes with the structure maps.

Proposition 2.34. The suspension functor S1 ∧ (−) and the formal shift functors
preserve homotopy colimits. They also preserve smash products: there are natural

isomorphisms

sh(X)∧Y → sh(X ∧Y ) X ∧ sh(Y )→X ∧ sh(Y )

(S1∧X)∧Y → S1∧ (X ∧Y ) X ∧ (S1∧Y )→ S1∧ (X ∧Y ).

As with chain complexes, order matters in these identities. For example, the two
isomorphisms for (S1 ∧X)∧ (S1 ∧Y ) do not commute with each other but differ by a

transposition of (S1 ∧S1); the two isomorphisms of (shX)∧ (shY ) with sh(sh(X ∧Y ))

differ by a transposition in S2+n.
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Proposition 2.35. There are natural isomorphisms Hom(L,C∗(sh(X)) → C∗(X) and

C∗(sh
−1(X)) → Hom(L,C∗(X)), as well as natural quasi-isomorphisms C∗(S

1 ∧X) →
C∗(sh(X)).

In more standard notation, this implies that C∗(sh(X))∼=C∗(X)[1] and C∗(sh
−1(X))∼=

C∗(X)[−1]. The isomorphism for sh(X) is true before taking homotopy colimits for M,
but the isomorphism for sh−1 is not.

2.8. The Elmendorf–Mandell machine

A permutative category is a category C together with a 0-object, a strictly associative

operation ⊕ : C ×C → C and a natural isomorphism γ : a⊕ b→ b⊕a satisfying certain
coherence conditions (see [19, Definition 3.1]). An example is the category Sets/X of finite

sets over X, with:

• objects pairs (Y ,f : Y →X) of a finite set Y and a map from Y to X,
• morphisms Hom((Y ,f),(Z,g)) = {h : Y → Z | f = g ◦h},
• zero object the pair (∅,ι) (where ι is the unique map ∅→X) and
• sum ⊕ given by disjoint union.

The category Sets/X can be made small by requiring that all sets Y are elements of
some chosen large set. For instance, the objects of Sets/X could be pairs (n,S) where

n∈N and S is a finite subset of Rn mapping to X. Moreover, the disjoint union operation

may be made strictly associative by declaring objects to be finite sequences of such
pairs (n1,S1), . . . ,(nk,Sk) (which morally represents their disjoint union), the actual sum

⊕ given by concatenation of sequences and the morphisms from (n1,S1), . . . ,(nk,Sk) to

(m1,T1), . . . ,(m�,T�) are given by maps �k
i=1Si →��

i=1Ti (for any standard definition of
disjoint union), respecting the maps to X. We will elide these points, but see [27] for a

more detailed account.

Given a finite correspondence A : X→Y ; that is, a finite set A and a map (πX,πY ) : A→
X×Y , there is a corresponding functor of permutative categories

FA : Sets/X → Sets/Y

FA(Z,f) = (A×X Z,πY ) =
(
{(a,z) ∈A×Z | πX(a) = f(z)},(a,z) �→ πY (a)

)
.

The collection of all (small) permutative categories forms a simplicial multicategory

Permu [19, Definition 3.2]. The category S of symmetric spectra also forms a simplicial

multicategory, and Elmendorf–Mandell construct an enriched multifunctor, K-theory,

K : Permu→ S .

Their functor K takes the category Sets/X to
∨

x∈X S, a wedge of copies of the
sphere spectrum. Further, given a correspondence A from X to Y, the induced map

K(A) : K(X)→K(Y ) sends Sx to Sy (for x ∈X, y ∈ Y ) by a map of degree #
(
π−1
X (x)∩

π−1
Y (y)

)
. (This special case can be understood concretely using the Pontrjagin–Thom

construction; see, for example, [40, Section 5].)

We note that K is invariant under equivalence in the following sense. BecauseK respects

the enrichments of Permu and S in simplicial sets, it takes natural isomorphisms between
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functors of permutative categories to homotopies between maps of K -theory spectra.
Therefore, equivalent permutative categories give homotopy equivalent answers.

This concludes our general introduction to Elmendorf–Mandell’s K -theory machine.

In the rest of this section, we discuss a precise sense in which multifunctors from
different multicategories can be equivalent. This will be used in Subsection 4.1 to replace

multifunctors from floppy multicategories (enriched in groupoids) with multifunctors from

more rigid (unenriched) multicategories.

Definition 2.36 (cf. [45, 2.0.0.1]). Suppose I is a multicategory. The associated monoidal
category I⊗ is the category defined as follows. An object of I⊗ is a (possibly empty) tuple

(i1, . . . ,in) of objects of I. The maps (i1, . . . ,in)→ (j1, . . . ,jm) are given by∐
α : {1,...,n}→{1,...,m}

m∏
k=1

HomI(α
−1(jk);jk).

The monoidal structure on I⊗ is given by concatenation of tuples, with unit given by the

empty tuple.

Definition 2.37. Given multicategories I and J and multifunctors f : I → J and G : I →
S there is a map f∗G : J → S , the left Kan extension of G, defined on objects by

(f∗G)(j) = colim[(f(i1),...,f(in)→j]∈I⊗↓jG(i1)∧·· ·∧G(in). (2.4)

(Here I⊗ ↓ j denotes the overcategory of j.) Left Kan extension is functorial in G ; that
is, gives a functor of diagram categories f∗ : S I → S J .

There is also a restriction map f∗ : S J → S I and f∗ is left adjoint to f∗.

Following Elmendorf–Mandell [19, Definition 12.1], a map f : M → N between

simplicial multicategories is a (weak) equivalence if the induced map on the strictifications
f0 : M0 →N 0 is an equivalence of (ordinary) categories and for any x1, . . . ,xn,y ∈Ob(M),

the map HomM(x1, . . . ,xn;y) → HomN (f(x1), . . . ,f(xn);f(y)) is a weak equivalence of

simplicial sets.

A key technical result of Elmendorf–Mandell’s is the following:

Theorem 2.38. ([19, Theorems 1.3 and 1.4]). Let M be a simplicial multicategory.

Then the functor categories S M and S M0

are simplicial model categories with weak

equivalences (respectively fibrations) the maps which are objectwise weak equivalences
(respectively fibrations).

Further, suppose N is another simplicial multicategory and

f : M→N

is an equivalence. Then there are Quillen equivalences

S M
f∗

��
S N ,

f∗
��

where f∗ is left Kan extension and f∗ is restriction.
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For instance, in Theorem 2.38, M might be (the nerve of) a multicategory enriched

in groupoids whose every component is contractible and N might be (the nerve of) its

strictification M0.
We will need some additional cofibrancy for the rectification results we apply (see

Subsection 2.9). In particular, Elmendorf–Mandell also showed that S M is cofibrantly

generated [19, Section 11] and it is combinatorial in the sense of [44, Definition
A.2.6.1]. Using a small object argument, Chorny [12] constructed functorial cofibrant

factorisations that apply, in particular, to combinatorial model categories such as S . So,

his construction gives a cofibrant replacement functor

QM : S M → S M.

His construction satisfies the following property.

Proposition 2.39. Suppose j : N ↪→ M is a full subcategory such that Hom(m1, . . . ,

mk;n) = ∅ if n ∈ N and mi 
∈ N for some i. (That is, there are no arrows into N ; we

call such a full subcategory N blockaded.) Then the small object argument is preserved by

restriction: there is a natural isomorphism

j∗QM �−→QN j∗.

We note that various operations preserve cofibrancy.

Lemma 2.40. If X is a cofibrant symmetric spectrum, then sh(X) and sh−1(X) are also

cofibrant. Further, if F : I → S is a diagram of symmetric spectra which is pointwise

cofibrant (i.e., F (x) is cofibrant for all x ∈Ob(I)), then hocolimF is cofibrant.

Proof. This is mechanical to verify from the definitions in [24, Section 3.4], because shifts

of the generating cofibrations are cofibrations.

Lemma 2.41. If M is a multicategory and F : M→S is cofibrant, then for each object

x ∈Ob(M), F (x) is a cofibrant spectrum.

Proof. The functor evx : S M →S , given by F �→F (x), has a right adjoint given by right
Kan extension. Given a symmetric spectrum X, the value of this right Kan extension on

an object y is ∏
n≥0

XHomM(x,x,...,x;y).

In particular, any fibration X → Y becomes a fibration on applying right Kan extension.

Therefore, evx is a left Quillen functor and so preserves cofibrations and cofibrant objects.

2.9. Rectification

In the process of defining the arc algebras and tangle invariants, we will construct a
number of cobordisms which are not equal but are canonically isotopic. The lax nature

of the construction will be encoded by defining multifunctors from multicategories in

which the Hom sets are groupoids in which each component is contractible: the objects
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in the groupoids are mapped to the cobordisms and the morphisms in the groupoids are
mapped to the isotopies, and contractibility of the groupoids encodes the fact that these

isotopies are canonical. We then use the Khovanov–Burnside functor and the Elmendorf–

Mandell machine to produce functors from these multicategories to spectra. At that point,
we want to collapse the enriched multicategories to ordinary multicategories, to obtain

simpler invariants. This collapsing is called rectification and is accomplished as follows.

Definition 2.42. Let M be a simplicial multicategory (e.g., the nerve of a multicategory

enriched in groupoids), M0 the strictified (discrete) multicategory and f : M→M0 the

projection. Given a functor G : M→ S , the rectification of G is the composite

f∗Q
MG : M0 → S .

Lemma 2.43. If the projection map M → M0 is an equivalence, then rectification is

part of a Quillen equivalence. In particular, if the projection is an equivalence, then for
any G : M→ S , the functors G and f∗f∗Q

MG : M→ S are naturally equivalent.

Proof. By definition of cofibrant replacement, the natural transformation QMG→G is
an equivalence of diagrams: for every object in x ∈M the map (QMG)(x)→G(x) is an

equivalence. Thus, it suffices to show that the unit map from QMG to f∗f∗Q
MG is an

equivalence.
By Theorem 2.38, the adjoint pair f∗ and f∗ forms a Quillen equivalence. This implies

that for any fibrant replacement f∗Q
MG→ (f∗Q

MG)fib in S M0

, the composite

QMG→ f∗f∗Q
MG→ f∗(f∗Q

MG)fib

is an equivalence. For every object x ∈M the composite

(QMG)(x)→ (f∗Q
MG)(f(x))→ (f∗Q

MG)fib(f(x))

is therefore an equivalence. However, by definition of fibrant replacement, the map

(f∗Q
MG)(y)→ (f∗Q

MG)fib(y)

is an equivalence for any y ∈M0 and hence QM(G)→ f∗f∗Q
MG is also an equivalence

by the 2-out-of-3 property.

Lemma 2.44. Suppose that j : N ↪→M is a blockaded subcategory and let j0 : N 0 →M0

denote the strictification. For any functor G : M→S , there is a natural isomorphism of

rectifications

fN
∗ QN j∗G∼= (j0)∗fM

∗ QMG.

Proof. There is a natural transformation fN
∗ j∗G → (j0)∗fM

∗ G, the mate. Note that if

K ⊂ I is blockaded and j ∈K, then the colimit in Equation (2.4) only sees the objects of
K. Thus, the mate is a natural isomorphism

fN
∗ j∗G∼= (j0)∗fM

∗ G

(i.e., satisfies the Beck–Chevalley condition). So, the result follows from

Proposition 2.39.
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Figure 2.2. The actions of Diff1 and Diff2. Left: two flat (4,2)-tangles related by the action of Diff1× Id

and two flat (0,0)-tangles related by the action of Diff1× Id. Right: two flat (0,0)-tangle cobordisms related

by the action of Diff2× Id.

2.10. Khovanov invariants of tangles

Convention 2.45. All embedded cobordisms will be assumed to be the same as the

product cobordism in some neighbourhood of the boundary.

Definition 2.46. Let Diff1 denote the group of orientation-preserving diffeomorphisms

φ : [0,1]→ [0,1] so that there is some ε= ε(φ)> 0 so that φ|[0,ε)∪(1−ε,1] = Id. This restriction

that φ be the identity near the boundary is similar to Convention 2.45.

Definition 2.47. Let Diff2 denote the group of orientation-preserving diffeomorphisms

φ : [0,1]2 → [0,1]2 so that there is some ε = ε(φ) > 0 and some ψ0,ψ1 ∈ Diff1 so that

φ|[0,1]×([0,ε)∪(1−ε,1]) = Id and φ(p,q) = (p,ψ0(q)) for all p ∈ [0,ε) and φ(p,q) = (p,ψ1(q)) for

all p ∈ (1− ε,1].

See Figure 2.2 for examples of the actions of elements in Diff1 and Diff2.

By the 2n standard points in (0,1) we mean [2n]std = {1/(2n+1), . . . ,2n/(2n+1)}. A
flat (2m,2n)-tangle is an embedded cobordism in [0,1]× (0,1) from {0}× [2m]std to {1}×
[2n]std. More generally, a (2m,2n) -tangle is an embedded cobordism in R× [0,1]× (0,1)

from {0}×{0}× [2m]std to {0}×{1}× [2n]std. We call flat tangles T and T ′ equivalent if
there is a φ∈Diff1 so that T ′ = (φ×Id(0,1))(T ). Similarly, tangles T and T ′ are equivalent

if there is a φ ∈Diff1 so that T ′ = (IdR×φ× Id(0,1))(T ).

Convention 2.48. From now on, by tangle (respectively flat tangle) we mean an

equivalence class of tangles (respectively flat tangles).

Remark 2.49. We are writing tangles horizontally, whereas Khovanov [32] (and many

others) wrote tangles vertically.

Khovanov [32] associated an algebra Hn to each integer n, an (Hm,Hn)-bimodule

CKh(T ) to a flat (2m,2n)-tangle T and, more generally, a chain complex of (Hm,Hn)-

bimodules to any (2m,2n)-tangle. We will review Khovanov’s construction briefly. Because
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Figure 2.3. Flat tangles and the multiplication on Hn.

we reserve Hn for singular cohomology, we will use the notation Hn for Khovanov’s
algebra Hn.

The constructions start from Khovanov’s Frobenius algebra V =H∗(S2) = Z[X]/(X2)

with comultiplication 1 �→ 1⊗X+X⊗1,X �→X⊗X and counit 1 �→ 0,X �→ 1.
Let mB̂n denote the collection of flat (2m,2n)-tangles. Composition of flat tangles,

followed by scaling [0,2]× (0,1)→ [0,1]× (0,1), is a map mB̂n×nB̂p →mB̂p, which we will

write (a,b) �→ ab. (This map is associative and has strict identities because we quotiented
by Diff1.) Reflection is a map mB̂n → nB̂m, which we will write a �→ a.

The isotopy classes of 0B̂n with no closed components are called crossingless matchings.

For each crossingless matching a, we choose a namesake representative a ⊂ [0,1]× (0,1)

in 0B̂n so that the projection a → [0,1] to the x -coordinate is Morse with exactly n
critical points with distinct critical values; therefore, we may view the set of crossingless

matchings, Bn, as a subset of 0B̂n.

Given a collection of disjoint, embedded circles Z in the plane, let V (Z) =
⊗

C∈π0(Z)V .
As a Z-module, the ring Hn is given by

Hn =
⊕

a,b∈Bn

V (ab).

The product on Hn satisfies xy = 0 if x ∈ V (ab) and y ∈ V (cd) with b 
= c. To define

the product V (ab)⊗V (bc)→ V (ac), consider the representative b ⊂ [0,1]× (0,1) and let
μ1, . . . ,μn be the critical points of the projection b→ [0,1], ordered according to the critical

values. Define a sequence of (2n,2n)-tangles γi, i= 0, . . . ,n, inductively by setting γ0 = bb

and obtaining γi+1 by performing embedded surgery on γi along an arc connecting μi+1

and μi+1. (See Figure 2.3.) Observe that γn is canonically isotopic to the identity tangle

on 2n strands. The Frobenius structure on V induces a map V (aγic)→ V (aγi+1c); define

the product V (ab)⊗V (bc)→ V (ac) to be the composition

V (ab)⊗V (bc)∼= V (aγ0c)→ V (aγ1c)→ ·· · → V (aγnc)∼= V (ac).

Lemma 2.50 ([32, Proposition 1]). The multiplication just defined is associative and

unital and is independent of the choice of the representative in 0B̂n of the b ∈ Bn.

Sketch of proof. The key point is that a Frobenius algebra is the same as a
(1+1)-dimensional topological field theory. Multiplication is induced by certain collec-

tions of saddle cobordisms, described more explicitly and called multimerge cobordisms

in Subsection 3.3. Up to homeomorphism these cobordisms are independent of the choices
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10

Figure 2.4. Resolutions of a crossing.

of ordering of the saddles and a composition of these multimerge cobordisms is another
multimerge cobordism. (Units are also induced by canonical cup cobordisms.)

Given a flat (2m,2n)-tangle T ∈ mB̂n, the bimodule CKh(T ) is given additively by

CKh(T ) =
⊕

(a,b)∈Bm×Bn

V (aTb).

The left action of Hm (respectively, the right action of Hn) is defined similarly to the

multiplication on Hn: multiplication sends V (ab)⊗V (cTd) to 0 unless b= c (respectively,

sends V (cTd)⊗ V (ef) to 0 unless d = e) and the product V (ab)⊗ V (bTc) → V (aTc)
(respectively, V (bTc)⊗ V (cd) → V (bTd)) is defined by a sequence of merge and split

maps, turning the tangle bb (respectively, cc) into the identity tangle.

Lemma 2.51 ([32, Section 2.7]). The bimodule structure on CKh(T ) is independent of

the choices in its construction and defines an associative, unital action.

Sketch of proof. Like Lemma 2.50, this follows from the fact that these operations are

induced by cobordisms which, up to homeomorphism, themselves satisfy the associativity
and unitality axioms.

Now let mCn denote the collection of all (2m,2n)-tangles in R× [0,1]× (0,1), with each

component oriented. Call such a tangle generic if its projection to [0,1]× (0,1) has no
cusps, tangencies or triple points. A tangle diagram is a generic tangle along with a total

ordering of its crossings (double points of the projection to [0,1]× (0,1)). Let mDn be the

set of all (2m,2n)-tangle diagrams. (Forgetting the ordering of the crossings, followed by
an inclusion, gives a map mDn → mCn.)

Given a (2m,2n)-tangle diagram T ∈ mDn with N (totally ordered) crossings and any

crossingless matchings a ∈ Bm and b ∈ Bn, there is a corresponding link aTb, which has

an associated Khovanov complex CKh(aTb). Additively, CKh(aTb) is a direct sum over
the complete resolutions Tv, v ∈ {0,1}N , of V (aTvb). (Our conventions for resolutions are

shown in Figure 2.4.) Thus,

CKh(T ) :=
⊕

(a,b)∈Bm×Bn

v∈{0,1}N

V (aTvb)

inherits the structure of a chain complex, as a direct sum over the a and b of CKh(aTb)

and of a bimodule over Hm, and Hn, as a direct sum over v of CKh(Tv).
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Lemma 2.52 ([32, Section 3.4]). The differential and bimodule structures on CKh(T )

commute, making CKh(T ) into a chain complex of bimodules.

Sketch of proof. Again, this follows from the fact that both the differential and

multiplication are induced by Khovanov’s TQFT and the cobordisms inducing the

differential and the multiplication commute up to homeomorphism. Indeed, this is a kind
of far-commutation: the nonidentity portions of the cobordisms inducing multiplication

and differentials are supported over different regions of the diagram.

These chain complexes of bimodules have the following TQFT property.

Proposition 2.53 ([32, Proposition 13]). If T1 ∈ mDn is a (2m,2n)-tangle diagram

and T2 ∈ nDp is a (2n,2p)-tangle diagram, then the complexes of (Hm,Hp)-bimodules

CKh(T1T2) and CKh(T1)⊗Hn CKh(T2) are isomorphic.

Sketch of proof. Suppose T1 has N1 crossings and T2 has N2 crossings. Then the

isomorphism

CKh(T1)⊗Hn CKh(T2)
∼=−→ CKh(T1T2)

identifies the summand of CKh(T1)⊗Hn CKh(T2) over the vertices v ∈ {0,1}N1 and w ∈
{0,1}N2 with the summand of CKh(T1T2) over (v,w) ∈ {0,1}N1+N2 . For these flat tangles

T1,v, T2,w and (T1T2)(v,w), the gluing map

CKh(T1,v)⊗Hn CKh(T2,w)→CKh((T1T2)(v,w))

is induced by the multisaddle cobordism (cf. Subsection 3.3) map

CKh(aT1,vb)⊗Z CKh(bT2,wc)→CKh(a(T1T2)(v,w)c)

[32, Theorem 1].

Proposition 2.54 ([32, Theorem 2]). For any tangle diagram T ∈ mDn, the chain

homotopy type of the chain complex of bimodules CKh(T ) is an invariant of the isotopy
class of T viewed as a tangle in mCn.

For comparison with our constructions later, note that each of the 1-manifolds ab in
the construction of Hn lies in (0,1)2 ⊂ [0,1]× (0,1), and so does each of the 1-manifolds

aTb in the construction of CKh(T ) for a flat tangle T. There is a disjoint union operation

on embedded 1-manifolds in (0,1)2 induced by the map

(0,1)2� (0,1)2 → (0,1)2

which identifies the first copy of (0,1)2 with (0,1/2)× (0,1) and the second copy of (0,1)2

with (1/2,1)× (0,1), by affine transformations. Since we have quotiented by the action of

Diff1 on the first (0,1)-factor, this disjoint union operation is strictly associative. Further,

we can view the maps inducing the multiplication on Hn, the actions on CKh(T ) and
the differential on CKh(T ) when T is nonflat as induced by cobordisms embedded in

[0,1]× (0,1)2. For instance, the multiplication V (ab)⊗ V (bc) → V (ac) is induced by a

cobordism in [0,1]× (0,1)2 from {0}× (ab� bc) to {1}× (ac). For this section, only the
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abstract (not embedded) cobordisms are relevant, but for the stable homotopy refinement

we will need the embedded cobordisms.

2.10.1. Gradings. Khovanov homology has both a quantum (internal) and homologi-

cal grading.
We start with the quantum grading. We grade V so that grq(1) =−1 and grq(X) = 1.

Then the grading of Hn is obtained by shifting the grading on each V (ab) up by n. In

particular, the elements of lowest degree in Hn are the idempotents in V (aa), in which

each of the n circles is labelled by 1 and these generators lie in quantum grading 0. All
homogeneous, nonidempotent elements lie in positive quantum grading. Similarly, for the

invariants of flat tangles, if T ∈ mB̂n, then the quantum grading on V (aTb) is shifted up

by n. Given a tangle diagram T with N crossings and a vertex v ∈ {0,1}N , we shift the

grading of CKh(Tv), the part of CKh(T ) lying over the vertex v, down by an additional |v|.
(Here, |v| denotes the number of 1s in v.) The grading on the whole cube is then shifted

down by N+−2N−, where N+, respectively N−, is the number of positive, respectively

negative, crossings in T ; this is where the orientation of T is used. In other words, for T
a (2m,2n)-tangle diagram, the quantum grading on V (aTvb) ⊂ CKh(T ) is shifted up by

n−|v|−N++2N−.
For the homological gradings, all of Hn lies in grading 0. The homological grading on

CKh(Tv)⊂CKh(T ) is given by N−−|v|. The differential on CKh(T ) preserves the quantum

grading and decreases the homological grading by 1. The isomorphism of Proposition 2.53

and the chain homotopy equivalences of Proposition 2.54 respect both gradings.

Remark 2.55. Khovanov’s first paper on sl2 knot homology [31] and his paper on its

extension to tangles [32] use different conventions for the quantum grading: in the first
paper, grq(X) = grq(1)− 2, whereas in the second grq(X) = grq(1)+2. Our first papers

on Khovanov homotopy type [41, 40] follow Khovanov’s original convention from [31]. In

this article we switch to Khovanov’s newer quantum grading convention of [32].
Khovanov’s homological grading conventions are the same in all of his papers, but

our homological gradings also differ from his by a sign. This is because we treat the

Khovanov complex as a chain complex, not a cochain complex; see our conventions from

Subsection 2.1.

2.11. The Khovanov–Burnside 2-functor

Definition 2.56. Informally, the Burnside category B is the bicategory with objects

finite sets X, Hom(X,Y ) the class of finite correspondences A : X → Y ; that is, diagrams

of sets

A

s

����
��
��
��

t

		
��

��
��

��

X Y ,
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and 2Hom(A,B) the set of isomorphisms of correspondences from A to B ; that is,

commutative diagrams

A



��
��
��
�

����
���

���
���

���
∼= �� B

�����
���

���
���

��

		
��

��
��

��

X Y.

Composition of correspondences is fibre product: given A : X → Y and B : Y → Z, B ◦
A = A×Y B. Note that one can think of a correspondence A : X → Y as a (Y ×X)-

matrix of sets; that is, for each (y,x) ∈ Y ×X a set Ay,x = s−1(x)∩ t−1(y). Composition
of correspondences then corresponds to multiplication of matrices, using the Cartesian

product and disjoint union to multiply and add sets.

Note that, with this definition, composition is not strictly associative since (A×Y B)×Z

C is in canonical bijection with, but not equal to, A×Y (B×Z C). Composition also lacks

strict identities since A×X X is in canonical bijection with, but not equal to, A. There

are many ways to rectify this; here is one.
Instead of correspondences, let Hom(X,Y ) denote the set of pairs of an integer n and a

(Y ×X)-matrix (Ay,x)x∈X, y∈Y of finite subsets Ay,x of Rn, with the following property:

(D) Ay,x∩Ay′,x =∅ if y 
= y′ and Ay,x∩Ay,x′ =∅ if x 
= x′.

(A (Y ×X)-matrix of subsets of Rn is a function Y ×X → 2R
n

.) Given subsets A ⊂ Rn

and B ⊂ Rm, A×B is a subset of Rn+m. Composition is defined by

(Az,y)y∈Y , z∈Z ◦ (Ay,x)x∈X, y∈Y =

⎛⎝ ⋃
y∈Y

Az,y ×Ay,x

⎞⎠
x∈X, z∈Z

.

The condition that Ay,x ∩Ay′,x = ∅ whenever y 
= y′ implies that the sets in the union
are disjoint. Given x 
= x′, (Az,y ×Ay,x)∩ (Az,y′ ×Ay′,x′) is empty unless y = y′ (by

looking at the first factor) and thus is empty unless x = x′ (by looking at the second

factor). Similarly, (Az,y×Ay,x)∩ (Az′,y′ ×Ay′,x) =∅ if z 
= z′. Thus, the composition has
Property (D). Composition is clearly strictly associative. The (strict) identity element

of X is the (X ×X)-diagonal matrix with diagonal entries the 1-element subset of R0.

A 2-morphism of correspondences φ : (Ay,x)x∈X, y∈Y → (By,x)x∈X, y∈Y is a collection of

bijections (φy,x : Ay,x

∼=−→ By,x)x∈X, y∈Y ; note that 2-morphisms ignore the embedding

information.
Throughout, when we talk about the Burnside category we mean this latter, strict

version of the category. Typically, however, the embedding data can be chosen arbitrarily

and in those cases we will not specify it.

The free abelian group construction gives a functor B → Ab, by

Ob(B) �X �→
⊕
x∈X

Z

(Ay,x)x∈X, y∈Y �→ (|Ay,x|)x∈X, y∈Y
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where |Ay,x| denotes the number of elements of Ay,x; the right-hand side is a (Y ×X)-

matrix of nonnegative integers, specifying a homomorphism Z〈X〉 → Z〈Y 〉.

Definition 2.57. The embedded cobordism category of 1-manifolds in (0,1)2, Cobe =

Cob1+1
e ((0,1)2), has:

• Objects equivalence classes of smooth, closed, 1-dimensional submanifolds Z ⊂
(0,1)2 (i.e., finite collections of disjoint, embedded circles in the open square).
Here, we view Z and Z ′ as equivalent if there is a diffeomorphism φ ∈ Diff1 so
that (φ× Id(0,1))(Z) = Z ′.

• Morphisms Hom(Z,W ) equivalence classes of proper cobordisms embedded in
[0,1]× (0,1)2 from {0}×Z to {1}×W , which intersect [0,ε]× (0,1)2 and [1− ε,1]×
(0,1)2 as [0,ε]×Z and [1−ε,1]×W , respectively, for some ε > 0 (which may depend
on the cobordism; compare Convention 2.45) and so that each component of the
cobordism intersects {1}×(0,1)2. Here, we view two cobordisms Σ, Σ′ as equivalent
if there is a diffeomorphism φ ∈Diff2 so that (φ× Id(0,1))(Σ) = Σ′.

• Two-morphisms the set of isotopy classes of isotopies of cobordisms.

Note the morphisms are well-defined, because if an embedded 1-manifold Z, respectively

W, is equivalent (related by Diff1) to Z ′, respectively W ′, and if Σ is any embedded
cobordism from Z to W, then there is an embedded cobordism Σ′ from Z ′ to W ′ which
is equivalent (related by Diff2) to Σ. Note that composition maps and identity maps are

strict, because we quotiented by the action of diffeomorphisms of [0,1] (the first factor in
[0,1]×(0,1)2). There is also a disjoint union operation on objects and morphisms induced

by (0,1)
∐
(0,1)→ (0,1/2)

∐
(1/2,1) ↪→ (0,1), where (0,1) is the first factor in (0,1)2. This

operation is strictly associative because we quotiented by the action of diffeomorphisms on

this factor. Finally, note that we have explicitly disallowed closed surfaces in morphisms;
see Remark 2.59.

There is a forgetful map from the embedded cobordism category Cobe = Cob1+1
e ((0,1)2)

to the abstract (1+1)-dimensional cobordism category Cob1+1. So, any Frobenius algebra

induces a functor Cobe →Ab by composing the corresponding abstract (1+1)-dimensional

TQFT with the forgetful functor. (Here, we view the monoidal category Ab of abelian
groups as a monoidal bicategory with only identity 2-morphisms.) In particular, the

Khovanov Frobenius algebra V =H∗(S2) induces such a functor.

Hu–Kriz–Kriz [25] observed that the Khovanov functor V : Cob → Ab lifts to a lax

2-functor VHKK : Cobe → B:

Cobe

��

VHKK �� B

��

Cob
V

�� Ab.

(2.5)

In this section, we will describe this functor VHKK : Cobe → B, following the treatment

in our earlier paper [40, Section 8.1].
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Remark 2.58. The functor Cobe → B from [25, 40] actually did not lift the Khovanov

functor V but rather its opposite. That ensured that the cohomology of the space

constructed in [41, 25, 40] was isomorphic to the Khovanov homology.
However, in this article we wish to construct a stable homotopy refinement of

Khovanov’s arc algebras (among other things). If we stick to cohomology, we would either

have to construct a co-ring spectrum whose cohomology is the Khovanov arc algebra
or define a Khovanov arc co-algebra first and then construct a ring spectrum whose

cohomology is the newly defined Khovanov arc co-algebra. Not fancying either route,

in this article we instead construct stable homotopy refinements whose homologies are
Khovanov homology; that is, their cohomology is the Khovanov homology of the mirror

knot (cf. [31, Proposition 32]). Therefore, below we define a functor VHKK : Cobe → B
that actually lifts the Khovanov functor V : Cob→ Ab and not its opposite; in particular,

it is not the functor described in [25, 40] but rather its opposite.

Remark 2.59. In [25, 40], the functor to B was actually constructed from a larger

category, where the additional restriction that each component of the cobordism intersects
{1}× (0,1)2 was not imposed. However, in this article we wish to make the embedded

cobordism category strictly monoidal and strictly associative and therefore we have

quotiented out the objects and morphisms by Diff1 and Diff2, respectively. Unfortunately,
Diff2 can interchange some closed components of a cobordism and, therefore, we work

with the subcategory where each component of the cobordism must intersect {1}×(0,1)2,

ruling out closed components.

On objects, for C ∈Ob(Cobe) a disjoint union of circles, VHKK (C) is the set of labellings

of the circles in C by 1 or X ; that is, functions π0(C)→ {1,X}. Note that Diff1 cannot

interchange the components of C, so C, despite being a Diff1-equivalence class, still has
a notion of components.

To define VHKK on morphisms, fix an embedded cobordism Σ from C0 to C1. Fix also

a checkerboard colouring (2-colouring) of the complement of Σ; for definiteness, choose
the colouring in which the region at ∞ (the region whose closure in [0,1]× (0,1)2 is

noncompact) is coloured white.

The value of VHKK (Σ) is the product over the components Σ′ of Σ of VHKK (Σ′) (with
respect to the checkerboard colouring of the complement of Σ′ that is induced from the

checkerboard colouring of the complement of Σ by declaring that the two colourings agree

in a neighbourhood of Σ′) and the source and target maps respect this decomposition.

(Once again, since Σ has no closed components, Diff2 cannot interchange components
and so the notion of components descends to equivalence classes.)

So, to define VHKK (Σ), we may assume Σ is connected, but the checkerboard colouring

is now arbitrary (that is, the region at ∞ need not be coloured white). Fix x∈ VHKK (C0)
and y ∈ VHKK (C1). If Σ has genus > 1, then VHKK (Σ) = ∅. If Σ has genus 0, then we

declare that s−1(x)∩t−1(y)⊂VHKK (Σ) has 0 or 1 elements and so VHKK (Σ) is determined

by Formula (2.5). If Σ has genus 1, then s−1(x)∩ t−1(y) ⊂ VHKK (Σ) is empty unless x
labels each circle in C0 by 1 and y labels each circle in C1 by X.

In the remaining genus 1 case, VHKK (Σ) has two elements, which we describe as follows.

Let S2 denote the one-point compactification of (0,1)2. Let B(([0,1]×S2) \Σ) denote
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the black region in the checkerboard colouring (possibly extended to the new points at

infinity). Let B(({0,1}×S2) \Σ) = ({0,1}×S2)∩B(([0,1]×S2) \Σ). Then VHKK (Σ) is

the set of generators of

H1(B(([0,1]×S2)\Σ))/H1(B(({0,1}×S2)\Σ))∼= Z.

To define VHKK on 2-morphisms, note that the definitions above are natural with

respect to isotopies of the surface Σ.

The composition 2-isomorphism is obvious except when composing two genus 0

components Σ0, Σ1 to obtain a genus 1 component Σ. In this nonobvious case, it again
suffices to assume Σ is connected. For any curve C on Σ, let Cb and Cw be its push-offs

into B(({1/2}×S2)\Σ) (the black region) and ({1/2}×S2 \Σ)\B(({1/2}×S2)\Σ) (the
white region), respectively. Now consider the unique component C of (∂Σ0)∩(∂Σ1) that is
nonseparating in Σ and is labelled 1 and orient it as the boundary of B(({1/2}×S2)\Σ).
One of the two push-offs Cb and Cw is a generator of H1(([0,1]×S2) \Σ)/H1(({0,1}×
S2)\∂Σ) ∼= Z2 and the other one is zero. If Cb is the generator, label Σ by [C]. If Cw is
the generator, let D be a curve on Σ, oriented so that the algebraic intersection number

D ·C =1 (with Σ being oriented as the boundary of the black region), and label Σ by [Db].

3. Combinatorial tangle invariants

3.1. A decoration with divides

The embedded cobordism category Cobe has 2-morphisms which give nontrivial endo-

morphisms of VHKK (Σ). For example, if Σ consists of the connected sum of a cylinder
and a torus, then rotating the torus by π around the connect sum point exchanges the

two elements of VHKK (Σ). To define the tangle invariants, it is more convenient to be

able to work with a multicategory where each 2-morphism space is empty or has a single
element, so VHKK takes each 2-endomorphism to the identity map: this will save use from

having to check many compatibility conditions.

So, let Cobd be the following 2-category:

(1) An object of Cobd is an equivalence class of the following data:
• A smooth, closed 1-manifold Z embedded in (0,1)2.
• A compact 1-dimensional submanifold-with-boundary A ⊂ Z satisfying the

following: If I denotes the closure of Z \A, then each of A and I is a disjoint
union of closed intervals. We call components of A active arcs and components
of I inactive arcs.

We call (Z,A) a divided 1-manifold. Two divided 1-manifolds (Z,A) and (Z ′,A)
are equivalent if there is an orientation-preserving diffeomorphism φ ∈Diff1 so that

(φ× Id(0,1))(Z,A) = (Z ′,A′).
We may sometimes suppress A from the notation.
See Figure 3.1 for some examples of divided 1-manifolds.

(2) A morphism from (Z,A) to (Z ′,A′) is an equivalence class of pairs (Σ,Γ) where
• Σ is a smoothly embedded cobordism in [0,1]× (0,1)2 from Z to Z ′ (satisfying

Convention 2.45).
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• Γ⊂Σ is a collection of properly embedded arcs in Σ (also satisfying Convention
2.45), with (∂A∪∂A′) = ∂Γ, and so that every component of Σ \Γ has one of
the following forms:
(I) A rectangle, with two sides components of Γ and two sides components of

A∪A′.

(II) A (2n+2)-gon, with (n+1) sides components of Γ, one side a component
of I ′ and the other n sides components of I. (The integer n is allowed to
be zero.)

We call the components of Γ divides.
The pairs (Σ,Γ) and (Σ′,Γ′) are equivalent if there is a diffeomorphism φ ∈Diff2 so
that (φ× Id(0,1))(Σ) = Σ′ and (φ× Id(0,1))(Γ) = Γ′.
We will call a morphism in Cobd a divided cobordism. Again, we will sometimes

suppress Γ from the notation.

See Figure 3.2 for some examples of divided cobordisms.

(3) There is a unique 2-morphism from (Σ,Γ) to (Σ′,Γ′) whenever (some representative

of the equivalence class of) (Σ,Γ) is isotopic to (some representative of the

equivalence class of) (Σ′,Γ′) rel boundary.

(4) Composition of divided cobordisms is defined as follows. Given (Σ,Γ): (Z,A) →
(Z ′,A′) and (Σ′,Γ′) : (Z ′,A′)→ (Z ′′,A′′), choose a representative of the equivalence

class of (Z ′,A′) and representatives of the equivalence classes (Σ,Γ) and (Σ′,Γ′)
which end/start at this representative of (Z ′,A′). Define (Σ′,Γ′)◦ (Σ,Γ) to be (Σ′ ◦
Σ,Γ′ ◦Γ).
It is not too hard to check that composition of divided cobordisms is indeed is a

divided cobordism. To wit, Type (ii) regions compose to produce Type (ii) regions;
in particular, since each divide has a Type (ii) region on one side, we do not get any

closed components in the set of divides after composing. While composing Type

(I) rectangles, we glue them along their active boundaries to get new Type (I)
rectangles. We do not get any annuli by gluing together such rectangles since that

would produce closed divides.

It is also clear that the composition map extends uniquely to 2-morphisms.

Forgetting the divides does not immediately give a functor from the 2-category Cobd
to the 2-category Cobe. Though we do get maps on the objects and the 1-morphisms,

there are no immediate maps on the 2-morphisms. However, the following is a stand-in
for extending the map to the 2-morphisms.

Lemma 3.1. If (Σt,Γt) is a loop of divided cobordisms (rel boundary), then the induced

map Σ0 → Σ1 =Σ0 is isotopic to the identity map.

Proof. Since the loop is constant on the boundary, the induced map Σ0 →Σ0 must take
each connected component C of Σ0 \Γ to itself. The map fixes ∂Σ0 pointwise and the

divides Γ setwise; but since there are no closed divides, it is isotopic to a map that fixes Γ

pointwise. However, since C is a planar region (for both Types (I) and (II)), the mapping

class group of C fixing the boundary is trivial.
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Proposition 3.2. The lax 2-functor VHKK : Cobe → B induces a lax 2-functor

Cobd → B.

More precisely, there is an analogue Ĉobd of Cobd in which the set of 2-morphisms
from Σ0 to Σ1 is the set of isotopy classes of isotopies of divided cobordisms from Σ0

to Σ1. There are forgetful maps ΠCobd : Ĉobd → Cobd (collapsing the 2-morphism sets)

and ΠCobe : Ĉobd → Cobe (forgetting the divides). Proposition 3.2 asserts that the map

VHKK ◦ΠCobe descends to a functor Cobd → B, so that the following diagram commutes:

Ĉobd
ΠCobe ��

ΠCobe

��

Cobe

VHKK

��

Cobd ����� B.

Proof of Proposition 3.2. We must check that if φ is an isotopy from (Σ,Γ) to

itself, then the induced map VHKK (Σ) → VHKK (Σ) is the identity map. The only
interesting case, of course, is a genus 1 component of Σ. By Lemma 3.1, a loop

induces the identity map on H1(Σ). The Mayer–Vietoris theorem implies that the map

H1(Σ) → H1(B(([0,1]×S2)\Σ)) ∼= H1(B(([0,1]×S2) \Σ)) is surjective, so the map on
H1(B(([0,1]×S2)\Σ)) induced by φ is also the identity map. �
By a slight abuse of notation, we will let VHKK denote the induced functor Cobd → B

as well.

Remark 3.3. It is interesting to compare Cobd with Zarev’s divided surfaces [60,
Definition 3.1].

3.2. A meeting of multicategories

3.2.1. The Burnside multicategory. We may treat the Burnside category B as a

monoidal category with Cartesian product as the monoidal operation on objects. However,

this operation is not strictly associative. We can make the monoidal structure strict
by embedding the objects of B in standard Euclidean spaces, similar to what we did

for morphisms in Definition 2.56, and then define a multicategory B induced from the

monoidal structure.

More directly, define B as the multicategory enriched in groupoids with:

• Objects pairs (k,X) where k ∈ N and X is a finite subset of Rk. We will always
suppress k from the notation.

• HomB(X1, . . . ,Xn;Y ) = HomB(X1 × ·· · ×Xn,Y ), the groupoid of maps in the
Burnside category from X1×·· ·×Xn to Y. (Note that since each Xi is a subset
of Rki , (Xi×Xi+1)×Xi+2 =Xi× (Xi+1×Xi+2) identically.)

Multicomposition is defined in the obvious way. The special case n= 0 of the multimor-
phism sets seems worth spelling out. Let 1 = (0,{0}) be the object in B consisting of a

single point embedded in R0. Note that for any object X in B, 1×X =X. We declare

that the empty product in the Burnside category is the object 1. So, for any object
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X ∈Ob(B), HomB(∅;X) = HomB(1,X). In particular, an element of the set X gives a

multimorphism ∅→X.

Recall that we have a multicategory of abelian groups Ab by defining Hom(V1,V2, . . . ,
Vn;V ) to be the set of multilinear maps V1, . . . ,Vn → V (or, equivalently, the set of maps

V1 ⊗ ·· · ⊗ Vn → V ). We can view Ab as trivially enriched in groupoids. The forgetful

functor B → Ab from Subsection 2.11 respects the monoidal structure on both B and Ab
and therefore induces a forgetful functor Forget : B → Ab.

3.2.2. Shape multicategories. Recall from Subsection 2.10 that Bn denotes the set of

crossingless matchings on 2n points. Define S0
n to be the shape multicategory associated

to Bn (Definition 2.2). Specifically, the multicategory S0
n has one object for each pair (a,b)

of crossingless matchings of 2n points and a unique multimorphism

(a1,a2),(a2,a3), . . . ,(ak−1,ak)→ (a1,ak).

We will sometimes denote the unique morphism in Hom((a1,a2),(a2,a3), . . . ,(ak−1,ak);

(a1,ak)) by fa1,...,ak
. In particular, the special case k= 1 of the zero-input multimorphism

∅→ (a1,a1) is denoted fa1
.

Similarly, define mT 0
n to be the shape multicategory associated to the sequence of sets

(Bm,Bn) (Definition 2.3). Specifically, the multicategory mT 0
n has three kinds of objects:

(1) Objects (a,b) where a,b are crossingless matchings on 2m points,

(2) objects (a,b) where a,b are crossingless matchings on 2n points and

(3) objects (a,b) where a is a crossingless matching of 2m points and b is a crossingless

matching of 2n points. For clarity we will write such objects instead as (a,T,b)
where T is just a notational placeholder.

There is a unique multimorphism

(a1,a2),(a2,a3), . . . ,(ak−1,ak)→ (a1,ak)

if a1, . . . ,ak are crossingless matchings on 2m points. There is a unique multimorphism

(b1,b2),(b2,b3), . . . ,(b�−1,b�)→ (b1,b�)

if b1, . . . ,b� are crossingless matchings on 2n points. There is a unique multimorphism

(a1,a2), . . . ,(ak−1,ak),(ak,T,b1),(b1,b2), . . . ,(b�−1,b�)→ (a1,T,b�)

if a1, . . . ,ak are crossingless matchings on 2m points and b1, . . . ,b� are crossingless

matchings on 2n points. (The special cases k = 1 and = 1 are allowed.)
Note that S0

m and S0
n are full sub-multi-categories of mT 0

n . Extending the notation

fa1,...,ak
from S0

m, we will sometimes denote the unique morphism in

Hom
mT 0

n

(
(a1,a2), . . . ,(ak−1,ak),(ak,T,b1),(b1,b2), . . . ,(b�−1,b�); (a1,T,b�)

)
by fa1,...,ak,T,b1,...,b� .
Let Sn (respectively mTn) be the canonical groupoid enrichment of S0

n (respectively

mT 0
n ) from Subsection 2.4.1. See in particular Example 2.7 for some of the multimorphisms

that appear in the groupoid enriched categories.
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Now recall, from Subsection 2.10, Khovanov’s arc algebra Hn and Khovanov’s tangle
invariant CKh(T ), which is a dg (Hm,Hn)-bimodule. The algebra Hn is equipped with an

orthogonal set of idempotents (Definition 2.4), one for each crossingless matching a ∈ Bn,

with the idempotent corresponding to a being the element of V (aa) that labels each of
the n circles by 1 ∈ V . Therefore, via the equivalences from Subsection 2.3, we have the

following.

Principle 3.4. The Khovanov arc algebra Hn may be viewed as a multifunctor S0
n →

Ab. Composing with the inclusion Ab→ Kom (which views an abelian group as a chain
complex concentrated in grading 0), we can also view the Khovanov arc algebra as a

multifunctor from S0
n to chain complexes. Similarly, Khovanov’s tangle invariant CKh(T )

may be viewed as a multifunctor mT 0
n → Kom which restricts to S0

m and S0
n as the arc

algebra multifunctors.

3.2.3. The divided cobordism multicategory. Next we turn to the multicategory

C̃obd of divided cobordisms. The divided cobordism category Cobd from Subsection 3.1
can be endowed with a disjoint union bifunctor � induced by concatenation in the first

(0,1)-factor. Disjoint union is a strictly associative (nonsymmetric) monoidal structure on

Cobd, since we have quotiented out objects by Diff1 and morphisms by Diff2. Therefore,

we get an associated multicategory Cobd. The groupoid enriched multicategory C̃obd is

the canonical groupoid enrichment of Cobd.

Fleshing out the definition, the objects of C̃obd are the same as the objects of Cobd;
that is, Diff1-equivalence classes of smooth, closed, embedded 1-manifolds in (0,1)2 which

are decomposed as unions of active arcs and inactive arcs.

A basic multimorphism from (Z1, . . . ,Zn) to Z is an element of HomCobd(Z1�·· ·�Zn,Z).
Now, an object of Hom

C̃obd
(Z1, . . . ,Zn;Z) consists of:

• a tree ;
• a labelling of each edge of by an object of Cobd, so that the input edges are

labelled Z1, . . . ,Zn and the output edge is labelled Z ; and
• a labelling of each internal vertex v of with input edges labelled Z ′

1, . . . ,Z
′
k and

output edge labelled Z ′ by a basic multimorphism from (Z ′
1, . . . ,Z

′
k) to Z ′ (i.e., an

object in HomCobd(Z
′
1�·· ·�Z ′

k,Z
′)).

Composition of multimorphisms is induced by composition of trees; being a canonical

thickening, this is automatically strictly associative and has strict units (the 0 internal

vertex trees).
Given a multimorphism f in Hom

C̃obd
(Z1, . . . ,Zn;Z), the collapsing f◦ of f is the result

of composing the cobordisms associated to the vertices of the tree according to the edges

of the tree, in some order compatible with the tree. Associativity of composition in C̃obd
implies that the collapsing f◦ of f is well-defined; that is, independent of the order that
one composes vertices in the tree. Given multimorphisms f,g ∈ Hom

C̃obd
(Z1, . . . ,Zn;Z),

there is a unique morphism from f to g if and only if f◦ is isotopic to g◦. It is clear that
if f ◦ (g1, . . . ,gn) is defined and there is a morphism from f to f ′ and from gi to g′i for

i= 1, . . . ,n, then there is a morphism from f ◦ (g1, . . . ,gn) to f ′ ◦ (g′1, . . . ,g′n).
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Putting these observations together, we have proved:

Lemma 3.5. These definitions make C̃obd into a multicategory.

3.2.4. Cubes. To a nonflat tangle we will associate a cube of flat tangles and hence,

roughly, a cube of multifunctors between groupoid-enriched multicategories. In this

section we make sense of this notion in enough generality for our applications.

Definition 3.6. Let 2N0 , the cube category, be the category with objects {0,1}N and a
unique morphism v = (v1, . . . ,vN )→ w = (w1, . . . ,wN ) whenever vi ≤ wi for all 1≤ i≤N .

Remark 3.7. In our previous papers, we defined cube categories to be the opposite

category of the above. However, since in this article we are taking homology instead of
cohomology (cf. Remark 2.58), we need the morphisms in the cube to go from 0 to 1.

We will define a groupoid-enriched multicategory 2N ×̃mTn, a kind of product of the

cube 2N and mTn. We first define its strictification (2N ×̃mTn)0 (Definition 2.9).

• Objects of (2N ×̃mTn)0 are pairs (a,b) ∈Ob(Sm)∪Ob(Sn) or quadruples (v,a,T,b)
where v ∈ {0,1}N and (a,T,b) ∈Ob(mTn).

• For any objects ai ∈ Ob(Sm), bj ∈ Ob(Sn) and morphism v → w in 2n, there are
unique multimorphisms

(a1,a2), . . . ,(ak−1,ak)→ (a1,ak)

(a1,a2), . . . ,(ak−1,ak),(v,ak,T,b1),(b1,b2), . . . ,(b�−1,b�)→ (w,a1,T,b�)

(b1,b2), . . . ,(b�−1,b�)→ (b1,b�)

in (2N ×̃mTn)0 and no other multimorphisms.

Next define the thick N-cube category of mT 0
n , 2

N ×̃mTn, as the following multicategory

enriched in groupoids:

• The objects are he same as Ob((2N ×̃mTn)0).
• A basic multimorphism is one of:

– a multimorphism in Sm or Sn or

– a multimorphism of the form

(a1,a2), . . . ,(ak−1,ak),(v,ak,T,b1),(b1,b2), . . . ,(b�−1,b�)→ (v,a1,T,b�)

in (2N ×̃mTn)0 or

– a morphism of the form (v,a,T,b)→ (w,a,T,b) in (2N ×̃mTn)0.
• An object of a multimorphism groupoid in 2N ×̃mTn is a tree with p inputs,

together with a labelling of:
– each edge by an object of 2N ×̃mTn and

– each vertex by a basic multimorphism from the inputs of the vertex to the
output of the vertex.

• Given a multimorphism in 2N ×̃mTn, there is a corresponding multimorphism
in (2N ×̃mTn)0 by composing the basic multimorphisms according to the tree.
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Define the multimorphism groupoid to have a unique morphism → ′
if the

corresponding multimorphisms in (2N ×̃mTn)0 are the same. Equivalently, there is

a unique morphism → ′
if and only if and

′
have the same source and

target.

The above definition ensures that (2N ×̃mTn)0 is indeed the strictification of 2N ×̃mTn.

Lemma 3.8. The projection 2N ×̃mTn → (2N ×̃mTn)0, which is the identity on objects and

sends a tree with inputs x1, . . . ,xn and output y to the unique multimorphism x1, . . . ,xn →
y, is a weak equivalence.

Proof. The proof is essentially the same as the proof of Lemma 2.8.

The category 2N+1×̃mTn has the category 2N ×̃mTn as a full subcategory in two

distinguished ways: the full subcategory spanned by objects (a,b) and ({0}× v,a,T,b),
which we denote {0}×2N ×̃mTn, and the full subcategory spanned by objects (a,b) and

({1}×v,a,T,b), which we denote {1}×2N ×̃mTn. The strictified product (2N+1×̃mTn)0 has
corresponding subcategories ({0}×2N ×̃mTn)0 and ({1}×2N ×̃mTn)0, both isomorphic to
(2N ×̃mTn)0.

Remark 3.9. The groupoid-enriched multicategory 2N ×̃mTn is related to a groupoid-

enriched version of the Boardman–Vogt tensor product [7, Section II.3, Paragraph (2.15)],
the main difference being that we have not multiplied the objects of the form (a,b) in

mTn by 2N .

3.3. A cabinet of cobordisms

In this section we enhance some of the topological objects used to define the Khovanov

arc algebras and modules so that they lie in the category of divided cobordisms.

Definition 3.10. Given a tangle diagram T, π(T )⊂R2 is a planar, 4-valent graph. The

edges of π(T ) are the segments of T.
A poxed tangle is a tangle diagram T together with a collection of points (pox ) on the

segments of π(T ) ⊂ R2 so that for each resolution Tv of T, there is at least one pox on

each closed component of Tv.
A poxed link is a poxed (0,0)-tangle.

Construction 3.11. Given crossingless matchings a,b ∈ Bn, we make ab into a divided

1-manifold as follows. The inactive arcs are the connected components of a small
neighbourhood of ∂a ⊂ ab (so there are 2n inactive arcs), and the active arcs are the

connected components of the complement of the inactive arcs (so there are also 2n active

arcs). See Figure 3.1.

Given an oriented, poxed link K ∈ 0D0 with N ordered crossings and a vector v ∈
{0,1}N , we make the resolution Kv into a divided 1-manifold as follows. Let π(K) denote
the projection of K to (0,1)2. For each 1 ≤ i ≤ N , choose a small disk Di around the

ith crossing of π(K), so that ∂Di intersects π(K) transversely in 4 points and a small

disk D′
p around each pox p of K. Choose the disks Di and D′

p small enough that they
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Figure 3.1. Active arcs and flat tangles. Left: ab for two crossingless matchings a,b ∈ B2 and the

decomposition of ab into active (dotted) and inactive (dashed) arcs. Center: a poxed (4,2)-tangle T.

Right: aTvb where v = (1,0,0) and a is the same crossingless matching as on the left.

are all pairwise disjoint. Choose the resolution Kv so that π(K)∩
(
(0,1)2 \ (

⋃
iDi)

)
=

Kv ∩
(
(0,1)2 \ (

⋃
iDi)

)
; that is, so that π(K) and Kv agree outside the disks Di. The

boundaries of the disks Di and D′
p divide Kv into arcs. Declare the arcs outside the disks

Di and D′
p to be inactive. Define the arcs inside Di to be active if vi = 0 and inactive if

vi = 1. Define the arcs inside the D′
p to be active.

Combining the previous two cases, we have the following.

Construction 3.12. Given a poxed (2m,2n)-tangle T ∈ mDn with N ordered crossings,

a∈Bm, b∈Bn, and v ∈ {0,1}N , we make aTvb into a divided 1-manifold as follows. Again,

choose small disks Di around the crossings of π(T ), so that outside the disks Di, Tv agrees
with π(T ) and small disks D′

p around the pox of T. Choose small neighbourhoods of the

endpoints of a and b. Here, small means that all of these neighbourhoods are disjoint.

Then the active arcs of aTvb are:

• the arcs inside the Di with vi = 0,
• the arcs inside the D′

p and

• the arcs in a and b in the complement of the neighbourhoods of the endpoints.

The remaining arcs of aTvb are inactive. See Figure 3.1.

Next we turn to the divided cobordisms we will use as building blocks.

A trivial cobordism is a cobordism of the form [0,1]×Z where Z is a divided 1-manifold.
If P is the set of endpoints of the active arcs in Z, then the divides are given by Γ =

[0,1]×P .

Next, fix a divided 1-manifold Z and a disk D so that D∩Z consists of exactly two
active arcs in Z. Call these four endpoints a,b,c,d, so that the arcs join a↔ b and c↔ d

and a and d are consecutive around ∂D. Let Z ′ be a divided 1-manifold which agrees

with Z outside D and consists of two arcs in Z ′∩D connecting a↔ d and b↔ c. Make Z ′

into a divided 1-manifold by declaring that the arcs inside D are inactive and the other

arcs of Z ′ are the same as the arcs of Z. A saddle cobordism is a cobordism Σ from Z to

Z ′ so that:
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Figure 3.2. Basic divided cobordisms. Left: a saddle. Center: a cup. Curves Γ are thick, arcs in I∪I′

are dashed and arcs in A∪A′ are dotted. Together with product cobordisms, these are the local pieces

that the divided cobordisms of interest are built from. Right: the divided cobordism associated to a

product on the Khovanov arc algebra.

• Σ∩
(
[0,1]× ((0,1)2 \D)

)
= [0,1]× (Z \D),

• inside [0,1]×D, Σ consists of a single embedded saddle and
• the dividing arcs Γ for Σ connect a↔ d and b↔ c inside the saddle and agree with

[0,1]×P outside the saddle, where P is the collection of endpoints of active arcs
of Z ′.

(See Figure 3.2 for the local form of Σ in a neighbourhood of D.) The cobordism Σ is well-

defined up to unique isomorphism in Cobd. We call D the support of the saddle cobordism.

Note that a saddle cobordism Σ: Z1 → Z2 is determined by Z1 and the support of Σ (up

to isotopy rel ({0}×Z1)∪ ([0,1]× (Z1 \D))).
More generally, given a divided 1-manifold Z and a collection of disjoint disks Di

so that each Di ∩Z consists of two active arcs, a multisaddle cobordism is a divided

cobordism Σ from Z so that Σ∩([0,1]×Di) is a saddle for each i and Σ\
(⋃

i[0,1]×Di

)
=(

[0,1]×Z
)
\
⋃

i

(
[0,1]×Di

)
is a product and where the dividing arcs on Σ

• connect the points in P ∩∂Di in pairs inside the saddles, as in Figure 3.2 (i.e., so
that points not connected in Z ∩Di are connected by arcs in Γ) and

• are of the form [0,1]×{p} for p ∈ (P \∂Di) the ends of active arcs not involved in
the saddles.

We call
⋃

iDi the support of the multisaddle cobordism.
Next, given crossingless matchings a,b,c ∈ Bn, a merge cobordism ab� bc → ac is a

composition of saddle cobordisms, one for each arc in b. Again, this merge cobordism is

well-defined up to unique isomorphism in Cobd. Similarly, given a,b ∈ Bm, a flat (2m,2n)-
tangle T ∈mB̂n and c,d ∈ Bn there are merge cobordisms ab�bTc→ aTc and bTc�cd→
bTd. As usual, these merge cobordisms are well-defined up to unique isomorphisms. The

support of a merge cobordism is the union of the supports of the sequence of saddle
cobordisms. We will also call the union of a merge cobordism with a trivial cobordism a

merge cobordism. More generally, a multimerge cobordism is a composition, in Cobd, of
merge cobordisms.
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A birth cobordism is a genus 0 decorated cobordism from the empty set to aa, for some
a ∈ Bn. Birth cobordisms are unions of cups; see Figure 3.2. We call the union of the

disks bounded by aa the support of the birth cobordism. A multibirth cobordism is the

union of finitely many birth cobordisms with disjoint supports and a trivial cobordism.
We note some commutation relations for cobordisms.

Proposition 3.13. Let Σ1 : Z1 → Z2 and Σ2 : Z2 → Z3 be saddle cobordisms supported
on disjoint disks D1 and D2. Let Σ′

2 : Z1 → Z ′
2 and Σ′

1 : Z
′
2 → Z3 be saddle cobordisms

supported on D2 and D1, respectively. Then Σ2 ◦Σ1 is isotopic to Σ′
1 ◦Σ′

2 rel boundary.

Proof. This is straightforward and is left to the reader.

We state a corollary somewhat informally; it can be formalised along the lines of

the statement of Proposition 3.13, but the precise version seems more confusing than
enlightening.

Corollary 3.14. Suppose each of Σ1 : Z1 → Z2 and Σ2 : Z2 → Z3 is a multisaddle or
a multimerge cobordism and the supports of Σ1 and Σ2 are disjoint. Then Σ1 and Σ2

commute up to isotopy, in the obvious sense.

Finally, we note some relations involving births.

Proposition 3.15. Birth and merge cobordisms satisfy the following relations:

(1) Let Z2 be a divided 1-manifold and Z1 ⊂ Z2 a subset which is itself a divided 1-

manifold. Then all multibirth cobordisms from Z1 to Z2, in which the circles Z2 \Z1

are born, are isotopic.

(2) If Σ1 is a multibirth, multimerge, or multisaddle cobordism and Σ2 is a multibirth

cobordism and the supports of Σ1 and Σ2 are disjoint, then Σ1 and Σ2 commute up

to isotopy.

(3) If Σ1 : aTb→ aa�aTb (respectively Σ1 : aTb→ aTb� bb) is a birth cobordism and
Σ2 : aa�aTb→ aTb (respectively Σ2 : aTb� bb→ aTb) is a merge cobordism, then

Σ2 ◦Σ1 is isotopic to a trivial cobordism aTb→ aTb.

(4) If Σ1 : aTb� bT ′c→ aTb� bb� bT ′c is a birth cobordism and Σ2 : aTb� bb� bT ′c→
aTT ′c is a multimerge cobordism, then Σ2 ◦Σ1 is isotopic to a merge cobordism

aTb� bT ′c→ aTT ′c.

Proof. Parts (1), (2) and (3) are straightforward from the definitions. Part (4) follows

from Parts (1) and (3).

3.4. A frenzy of functors

Subsection 2.11 recalls the Khovanov–Burnside functor, which we can view as a

multifunctor V HKK : C̃obd → B.

Lemma 3.16. There is a strict multifunctor V HKK : C̃obd → B defined as follows:

• On objects, V HKK (Z) = VHKK (Z), the set of labellings of Z by {1,X}.
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• On basic multimorphisms, V HKK

(
Σ: (Z1, . . . ,Zn)→ Z

)
is the correspondence

VHKK (Σ): V HKK (Z1)×·· ·×V HKK (Zn)→ V HKK (Z).

On general multimorphisms of C̃obd (which are trees with vertices labelled by basic
multimorphisms), VHKK is obtained by composing, in some order compatible with
the tree, the correspondences VHKK (Σv) associated to the vertices v.
Given f ∈ Hom

C̃obd
(Z1, . . . ,Zn;Z), we have two correspondences from

VHKK (Z1)× ·· · × VHKK (Zn) to VHKK (Z): the correspondence V HKK (f), which
is a composition of a sequence of correspondences associated to cobordisms
and the correspondence VHKK (f◦), which is the correspondence associated to
the composition of those cobordisms. The coherence isomorphisms for the lax
functor VHKK give an isomorphism C(f) : V HKK (f) → VHKK (f◦). Now, given
f,g ∈ Hom

C̃obd
(Z1, . . . ,Zn;Z) and φ ∈ Hom(f,g), let φ◦ be the corresponding

morphism in Cobd from f◦ to g◦ and define

V HKK (φ) = C(g)−1 ◦VHKK (φ◦)◦C(f).

Proof. We must check that:

(1) Given φ ∈ Hom(f,g) and ψ ∈ Hom(g,h), V HKK (ψ ◦φ) = V HKK (ψ) ◦V HKK (φ), so

that V HKK defines a map of groupoids.

(2) The functor V HKK respects the identity maps. This is trivial.

(3) The functor V HKK respects composition of trees.

For Point (1), we have

V HKK (ψ)◦V HKK (φ) = C(h)−1 ◦VHKK (ψ◦)◦VHKK (φ◦)◦C(f)

= C(h)−1 ◦VHKK (ψ◦ ◦φ◦)◦C(f) = V HKK (ψ ◦φ),

where the second equality uses functoriality of VHKK (Proposition 3.2). For Point (3), at

the level of objects of the multimorphism groupoids, this is immediate from associativity
of composition in B. For morphisms in the multimorphism groupoids, this uses naturality

of the coherence maps C(f).

Lemma 3.17. There is a multifunctor MCn : Sn → C̃obd from the multicategory Sn to

the cobordism multicategory C̃obd defined as follows:

• On objects, MCn((a,b)) = ab, which is a divided 1-manifold as described in
Subsection 3.3.

• On basic multimorphisms, MCn sends fa1,...,ak
: (a1,a2), . . . ,(ak−1,ak)→ (a1,ak) to

some particular, chosen multimerge cobordism

MCn(fa1,...,ak
) : a1a2�·· ·�ak−1ak → a1ak

if k > 1 and to the birth cobordism

MCn(fa1
) : ∅→ a1a1
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if k = 1. The functor MCn assigns to an object in HomSn
((a1,a2), . . . ,(ak−1,ak);

(a1,ak)) with underlying tree the composition (in C̃obd), according to , of the
multimerge or birth cobordisms chosen for each vertex.

Proof. We must check that MCn extends to the morphisms in the multimorphism

groupoids (i.e., 2-morphisms) and that it respects multicompositions. The fact that

MCn extends to 2-morphisms follows from Corollary 3.14 and Proposition 3.15 (the
second of which is only relevant when stumps are involved). The fact that MCn respects

composition is purely formal on the level of 1-multimorphisms (from the definition of the

canonical thickening). At the level of 2-morphisms, it follows from the fact that given

multimorphisms Σ,Σ′ in C̃obd, there is at most one 2-morphism from Σ to Σ′.

Given a flat, poxed (2m,2n)-tangle T ∈mB̂n, there is a multifunctor MC�
T : mTn → C̃obd

defined similarly to MCn. Indeed, on the subcategories Sm,Sn ⊂ mTn the functor MC�
T

is exactly MCm, MCn. On objects (a,T,b), let MC�
T ((a,T,b)) = aTb, which is a divided

1-manifold as in Construction 3.12. On the basic multimorphisms

fa1,...,ai,T,b1,...,bj : (a1,a2), . . . ,(ai−1,ai),(ai,T,b1),(b1,b2), . . . ,(bj−1,bj)→ (a1,T,bj)

the functor MC�
T (fa1,...,ai,T,b1,...,bj ) is some chosen multimerge cobordism corresponding

to the obvious merging. As usual, this extends formally to general objects in the
multimorphism groupoids.

Lemma 3.18. This construction extends uniquely to a multifunctor MC�
T : mTn → C̃obd.

Proof. The proof is essentially the same as the proof of Lemma 3.17 and is left to the

reader.

Next, fix a poxed (2m,2n)-tangle T ∈ mDn (see Definition 3.10) with N ordered
crossings. We associate to T a multifunctor

MCT : 2N ×̃mTn → C̃obd

as follows. First, choose a collection of disjoint disks Di around the crossings of T and

for each v ∈ {0,1}N choose a particular flat tangle Tv representing the v -resolution of T,
so that Tv agrees with (the projection of) T outside the disks Di.

Now, objects of 2N ×̃mTn are of three kinds:

• Pairs (a1,a2) where a1,a2 ∈ Bm. In this case we define MCT (a1,a2) = a1a2, which
we give the structure of a divided 1-manifold as described in Construction 3.11.

• Pairs (b1,b2) where b1,b2 ∈ Bn. In this case we (again) define MCT (b1,b2) = b1b2.
• Quadruples (v,a,T,b) where v ∈ {0,1}N , a ∈ Bm and b ∈ Bn. In this case, we

define MCT (v,a,T,b) = aTvb. We give aTvb the structure of a divided 1-manifold
as described in Construction 3.12.

As always, defining MCT on multimorphism groupoids takes more work. To define MCT

on objects of the multimorphism groupoids it suffices to define MCT for the following two

elementary morphisms:
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• A basic multimorphism coming from a morphism in 2N ; that is, a map
f2N : (v,a,T,b) → (w,a,T,b). Define MCT (f2N ) to be a multisaddle cobordism

from aTvb to aTwb (see Subsection 3.3).
• A basic multimorphism coming from a morphism f

mTn
in mT 0

n . In this case, define

MCT (fmTn
) to be the cobordism MC�

Tv
(f

mTn
) (associated to the flat tangle Tv).

On a general object, MCT is defined by composing these multimorphisms according to

the tree. (Since this composition happens in C̃obd, given a multimorphism f in 2N ×̃mTn
with underlying tree , MCT (f) is the same tree with vertices labelled by the divided

cobordisms corresponding to the labels in f.)
Since there is a unique isomorphism between isotopic divided cobordisms, to extend

MCT to morphisms in the multimorphism groupoids it suffices to show that if two

morphisms ,
′
in 2N ×̃mTn have a morphism between them, the divided cobordisms

MCT ( )◦ and MCT (
′
)◦ are isotopic.

Lemma 3.19. If and
′
are multimorphisms in 2N ×̃mTn with the same source and

target, then the divided cobordisms MCT ( )◦ and MCT (
′
)◦ are isotopic.

Proof. Both MCT ( )◦ and MCT (
′
)◦ are compositions of:

• multimerge cobordisms of crossingless matchings,
• saddle cobordisms supported on small disks around certain crossings of T, which

are disjoint from the crossingless matchings being merged, and
• multibirth cobordisms, corresponding to stump leaves, each of which is followed

by a multimerge cobordism.

By Proposition 3.15, if we let 0 (respectively
′
0) be the result of removing all

stump leaves from , then MCT ( )◦ and MCT ( 0)
◦ are isotopic, as are MCT (

′
)◦

and MCT (
′
0)

◦. Now, since the source and target of 0 and
′
0 are the same, the

cobordisms MCT ( 0)
◦ and MCT (

′
0)

◦ have saddles at the same crossings and merge

the same crossingless matchings. Thus, the result follows from Corollary 3.14 and the
fact that all multimerge cobordisms with the same source and target are isotopic.

Proposition 3.20. The map MCT does, indeed, define a multifunctor 2N ×̃mTn → C̃obd.

Proof. By Lemma 3.19, the map MCT is well-defined. We must check that it respects
multicomposition. At the level of objects of the multimorphism groupoids, since we defined

MCT (f) by composing the values ofMCT on basic multimorphisms, this is immediate from

the definition. Since each 2-morphism set in C̃obd is empty or has 1 element, at the level

of morphisms of the multimorphism groupoids there is nothing to check.

3.5. The initial invariant

In this section, we will construct combinatorial tangle invariants as equivalence classes of
multifunctors to the Burnside multicategory. Explicitly, to the 2n points [2n]std ⊂ (0,1),

we associate the functor from the multicategory Sn to the Burnside multicategory B

MBn := V HKK ◦MCn : Sn → B,
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and to a tangle diagram T ∈ mDn connecting {0}×{0}× [2m]std to {0}×{1}× [2n]std,

we associate the pair (MBT ,N+), where MBT is the functor

MBT := V HKK ◦MCT : 2N ×̃mTn → B

and N+ is the number of positive crossings in the oriented tangle diagram T. We will
refer to this sort of pairs often, so we give it a name.

Definition 3.21. A stable functor from 2N ×̃mTn to B is a pair

(functor F : 2N ×̃mTn → B, integer S)

so that the restriction of F to the subcategory Sm (respectively Sn) of 2
N ×̃mTn is MBm

(respectively MBn).

3.5.1. Recovering the Khovanov invariants. Given a functor Fn : Sn →B, we can
compose with the forgetful functor Forget : B → Ab to obtain a functor Forget ◦Fn : Sn →
Ab. Since Ab is trivially enriched, the functor Forget ◦ Fn descends to an unenriched

multifunctor, still denoted Forget ◦Fn, from the strictification S0
n to Ab.

Similarly, given a stable functor (F : 2N ×̃mTn → B,S), we get a functor Forget ◦
F : (2N ×̃mTn)0 → Ab. We can associate to the pair (Forget ◦F,S) a functor

Tot(Forget ◦F,S) : mT 0
n → Kom,

which restricts to Forget ◦Fm and Forget ◦Fn on the subcategories Sm and Sn, as follows.

Given an object (a,b) ∈Ob(mTn)0, we let

Tot(Forget ◦F,M)(a,b) = (Forget ◦F )(a,b),

viewed as a chain complex concentrated in grading 0. Given an object (a,T,b)∈Ob(mT 0
n )

there is an associated subcategory 2N × (a,T,b) of (2N ×̃mTn)0 isomorphic to the cube

2N : it is the full subcategory spanned by objects of the form (v,a,T,b). Let Tot(Forget ◦
F,M)(a,T,b) be the totalisation of the cube of abelian groups Forget ◦F |2N×(a,T,b), cf.

Equation (2.2), followed by a downward grading shift by the integer S (so that the chain

complex is supported in gradings [−S,N −S]).

Lemma 3.22. The Khovanov arc algebra Hm (respectively Hn) is the functor Forget ◦
MBm : S0

m → Ab (respectively Forget ◦MBn : S0
n → Ab) which is the restriction of Tot(Forget ◦

MBT ,N+) to S0
m (respectively S0

n) and the Khovanov tangle invariant CKh(T ) is the
functor Tot(Forget ◦MBT ,N+) : mTn → Kom, reinterpreted per Principle 3.4.

Proof. This is an exercise in unwinding the definitions.

3.5.2. Invariance. Next we describe in what sense the functor MBn : Sn → B is an

invariant of 2n points and in what sense the stable functor (MBT : 2N ×̃mTn → B,N+) is
an invariant for the underlying tangle. First we consider MBn.

Superficially, the functor MBn : S0
n → B depended on a number of choices:

(C-1) The choice of curves representing each isotopy class of crossingless matching

in Bn.
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(C-2) The choice of divided multimerge cobordisms.

(C-3) The choice of embeddings in the definitions of the Burnside multicategory

(Subsection 3.2.1).

To deal with this, we could make specific once-and-for-all choices or we can invoke the
following.

Definition 3.23. A natural isomorphism η between multifunctors F,G from a groupoid

enriched multicategory C to B is a collection of bijections ηx : F (x)→G(x) for all objects
x ∈Ob(C ) and ηφ : F (φ)→G(φ) for all multimorphisms φ ∈Hom(x1, . . . ,xn;y) which are

compatible with the 2-morphisms and the source and the target maps in the following

sense: for any objects x1, . . . ,xn,y ∈Ob(C ), any multimorphisms φ,ψ ∈Hom(x1, . . . ,xn;y),
any 2-morphism κ : φ→ ψ and any element w ∈ F (φ),

ηψ
(
F (κ)(w)

)
=G(κ)

(
ηφ(w)

)
, (ηx1

, . . . ,ηxn
)
(
s(w)

)
= s

(
ηφ(w)

)
, ηy

(
t(w)

)
= t

(
ηφ(w)

)
.

Lemma 3.24. Let MB1
n,MB2

n : Sn →B be the functors associated to two different choices
of curves, multimerge cobordisms and embeddings of associated sets. Then there is a

natural isomorphism η12 : MB1
n →MB2

n. Further, these maps η form a transitive system,

in the sense that η11 is the identity and if MB3
n : Sn → B is the functor associated to a

third collection of choices then η13 = η23 ◦η12.

Proof. Since the 2-morphisms in the Burnside multicategory pay no attention to the

embeddings of the correspondences, the identity 2-morphisms give a transitive system
of natural isomorphisms associated to changing the embeddings of correspondences.

Similarly, any two choices of divided multimerge cobordisms are uniquely isomorphic

(because isotopic divided cobordisms are uniquely isomorphic), so different choices of
decorated cobordisms give naturally isomorphic functors and these natural isomorphisms

are transitive. Next, any two choices of representatives of the crossingless matchings are

related by an obvious divided cobordism, the trace of an isotopy between the two represen-
tatives, and this divided cobordism is unique up to unique isomorphism. Independence

from the choice of curves representing the crossingless matchings follows. Finally, the

maps in these three transitive systems commute with each other in an obvious sense, so

we can view them all together as a single transitive system. This completes the proof.

Now, consider the groupoid C with:

• Objects sets of choices (C-1)–(C-3).
• A unique morphism between each pair of objects.

Lemma 3.24 asserts that we have a functor C → Fun(Sn,B), where Fun(Sn,B) is the
category of functors from Sn →B with morphisms being natural isomorphisms. Existence

of this functor on the contractible groupoid C expresses the fact that different choices

are canonically isomorphic.
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Following the standard colimit procedure, we can harness the above fact to construct
MBn as a functor independent of choices. For any object x and any multimorphism φ of

Sn, define

MBn(x) =
∐

i∈Ob(C)

MBi
n(x)/∼ and MBn(φ) =

∐
i∈Ob(C)

MBi
n(φ)/∼ ,

where the equivalence relation ∼ identifies u ∈MBi
n(x) (respectively, w ∈MBi

n(φ)) with

ηi,jx (u) ∈MBj
n(x) (respectively, ηi,jφ (w) ∈MBi

n(φ)) for any i,j ∈ Ob(C ), with the source,

target and 2-morphism maps defined componentwise.
For the rest of the article, we will elide the fact that MBn : Sn →B depended on choices

and expect the reader to either assume we made once-and-for-all choices in defining MBn

or insert the discussion above where appropriate.
Next we turn to MBT .

Definition 3.25. Given multifunctors F,G : 2N ×̃mTn → B and any integer S, a
natural transformation connecting the stable functors (F,S) to (G,S) is a multifunctor

H : 2N+1×̃mTn → B so that H|{0}×2N ×̃mTn
= F and H|{1}×2N ×̃mTn

= G. A natural

transformation from (F,S) to (G,S) induces a homomorphism of dg modules Tot(Forget ◦
F,S)→Tot(Forget ◦G,S) in an obvious way, where Tot(Forget ◦F,S) and Tot(Forget ◦G,S) are
being viewed as dg bimodules as per Subsection 2.3. We call H a quasi-isomorphism if

the induced chain map is a quasi-isomorphism.

Proposition 3.26. Up to quasi-isomorphism, the stable functor (MBT ,N+) is indepen-

dent of the choices of pox, resolutions and cobordisms in the definition of MCT .

Proof. First, since the value of V HKK on objects and 1-morphisms is given by the functor
VHKK : Cobe → B, which does not depend on the pox, adding more pox does not change

V HKK . Thus, MBT is independent of the choice of pox.

Next, fix choices MC0
T and MC1

T of resolutions and cobordisms, with respect to the

same pox. We will define a natural transformation H : 2N+1×̃mTn → C̃obd from MC0
T to

MC1
T and then compose with V HKK to get a natural transformation from MB0

T to MB1
T .

On the subcategories Sm and Sn of 2N ×̃mTn, MC0
T and MC1

T already agree. From the

definition of ×̃, to define H on the objects of the multimorphism groupoids, it suffices

to define H on the maps f2N+1 × Id(a,T,b), where f2N+1 : (0,v) → (1,w) is a morphism
from {0} × 2N to {1} × 2N , since H has already been defined on the other type of

elementary morphisms. Define H(f2N+1 ×Id(a,T,b)) to be any multisaddle cobordism from

the resolution Tv with respect to the first set of choices to the resolution Tw with respect
to the second set of choices. (This is actually a slight variant of the multisaddle cobordisms

from Subsection 3.3: there, outside certain of theDi the cobordism was a product, whereas

here it is the trace of an isotopy between the different choices of resolutions. In particular,
if v = w the cobordism is a deformed copy of the identity cobordism.) The extension of

H to morphisms in the multimorphism groupoids proceeds without incident as in the

construction of MCT using Lemma 3.19.
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The induced diagram of chain complexes Tot(Forget ◦V HKK ◦H,N+) sends the arrows

(0,v)→ (1,v) to identity maps. Thus, the map Tot(Forget ◦MB0
T ,N+)→Tot(Forget ◦MB1

T ,N+)

is the identity map and hence is a quasi-isomorphism (indeed, an isomorphism).

Convention 3.27. For the rest of the article, we will usually suppress the choice of pox,

resolutions and cobordisms in the definition of MCT and view MCT as associated to the

tangle diagram T.

Definition 3.28. A face inclusion is a functor i : 2M → 2N that is injective on objects

and preserves relative gradings (see [39, Definition 5.5]). Let |i| be the absolute grading

shift of i, given by |i(v)|− |v| for any v ∈Ob(2M ), where | · | denotes the height (number
of 1s) in the cube. Given a stable functor (F : 2M ×̃mTn → B,S) and a face inclusion

i : 2M ↪→ 2N , there is an induced stable functor (i!F : 2N ×̃mTn → B,S+N −M − |i|),
where i!F is defined as follows:

• On objects of the form (a,b), (i!F )(a,b) = F (a,b). On objects of the form (v,a,T,b),

(i!F )(v,a,T,b) =

{
F (u,a,T,b) if v = i(u) is in the image of i,

∅ otherwise.

• On multimorphisms, if all of the input and output leaves of a tree are labelled
by elements (v,a,T,b) with v in the image of i or by pairs (a1,a2) or (b1,b2), then

the same must be true for all intermediate edges and vertices, so there is a tree
′

with i(
′
) = (in the obvious sense) and we define (i!F )( ) =F (

′
). Otherwise,

(i!F )( ) is the empty correspondence. (Note that, in the second case, at least one
of the source or target of (i!F )( ) is the empty set.)

We call (i!F,S +N −M − |i|) a stabilisation of (F,S) and (F,S) a destabilisation of

(i!F,S+N −M −|i|). The dg bimodules Tot(Forget ◦F,S) and Tot(Forget ◦ i!F,S+N −M −
|i|) are isomorphic and the isomorphism is canonical up to an overall sign.

Call stable functors (F : 2M ×̃mTn → B,R) and (G : 2N ×̃mTn → B,S) stably equivalent

if (F,R) and (G,S) are related by a sequence of quasi-isomorphisms, stabilisations and
destabilisations.

There are some convenient ways to produce equivalences.

Definition 3.29. Given a functor F : 2N ×̃mTn → B, an insular subfunctor of F is

a collection of subsets G(v,a,T,b) ⊂ F (v,a,T,b), such that for any xi ∈ F (ai,ai+1),
y ∈G(u,ak,T,b1), zi ∈ F (bi,bi+1), w ∈ F (v,a1,T,b�)\G(v,a1,T,b�) and

f ∈Hom((a1,a2), . . . ,(ak−1,ak),(u,ak,T,b1),(b1,b2), . . . ,(b�−1,b�); (v,a1,T,b�)),

s−1(x1, . . . ,xk−1,y,z1, . . . ,z�−1)∩ t−1(w) =∅⊂ F (f). (3.1)

Extend G to a functor G : 2N ×̃mTn → B by defining G(a,b) = F (a,b) for (a,b) ∈
Ob(Sm)∪Ob(Sn) and, for f ∈Hom(p1, . . . ,pn;q),

G(f) = s−1(G(p1)×·· ·×G(pn))∩ t−1(G(q))⊂ F (f)

https://doi.org/10.1017/S147474802100044X Published online by Cambridge University Press

https://doi.org/10.1017/S147474802100044X


1558 T. Lawson, R. Lipshitz, and S. Sarkar

with source and target maps induced by s and t and maps of 2-morphisms induced by F
in the obvious way. The fact that G respects composition follows from Equation (3.1).

Given an insular subfunctor G of F there is a quotient functor F/G : 2N ×̃mTn → B
defined by:

• (F/G)(a,b) = F (a,b),
• (F/G)(v,a,T,b) = F (v,a,T,b)\G(v,a,T,b), the complement of G(v,a,T,b),
• (F/G)(f) = s−1((F/G)(p1)× ·· · × (F/G)(pn)) ∩ t−1((F/G)(q)) ⊂ F (f) for f ∈

Hom(p1, . . . ,pn;q) and
• the value of F/G on 2-morphisms is induced by F.

Again, the fact that this defines a functor follows from Equation (3.1).

Given an insular subfunctor G of F and any integer S, there is an induced short exact

sequence of dg bimodules

0→ Tot(Forget ◦G,S) ↪→ Tot(Forget ◦F,S)� Tot(Forget ◦ (F/G),S)→ 0.

Lemma 3.30. Fix any integer S. If G is an insular subfunctor of F, then there is a

natural transformation η from (G,S) to (F,S) so that the induced map of differential

bimodules is the inclusion map defined above. There is also a natural transformation θ
from (F,S) to (F/G,S) so that the induced map of differential bimodules is the quotient

map defined above. In particular, if the inclusion (respectively quotient) map of chain

complexes is a quasi-isomorphism, then the map η (respectively θ) is an equivalence.

Proof. To define η (respectively θ), for

f ∈Hom((a1,a2), . . . ,(ak−1,ak),((0,u),ak,T,b1),(b1,b2), . . . ,(b�−1,b�); ((1,v),a1,T,b�))

a basic multimorphism there is a corresponding basic multimorphism

f̃ ∈Hom((a1,a2), . . . ,(ak−1,ak),(u,ak,T,b1),(b1,b2), . . . ,(b�−1,b�); (v,a1,T,b�)).

Define η(f) =G(f̃) (respectively θ(f) = (F/G)(f̃)). Similarly, on 2-morphisms η (respec-

tively θ) is induced by G (respectively F/G). It is straightforward to verify that these
definitions make η and θ into natural transformations with the desired properties.

Theorem 3. The stable equivalence class of MBT is invariant under Reidemeister moves

and so gives a tangle invariant. Further, the chain map

Tot(Forget ◦MBT1
,N+(T1))→ Tot(Forget ◦MBT2

,N+(T2))

induced by a sequence of Reidemeister moves relating T1 and T2 agrees, up to a sign and
homotopy, with Khovanov’s invariance maps [32, Section 4].

Proof. This is essentially a translation of the invariance proof for the Khovanov homotopy

type [41, Section 6] (itself a modest extension of invariance proofs for Khovanov homology)
to the language of this article.

It suffices to verify invariance under reordering of the crossings and the three

Reidemeister moves shown in Figure 3.3, because this Reidemeister I and the Reidemeister
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Figure 3.3. Reidemeister moves. The orientations of the strands are arbitrary. This figure originally

appeared in [41].

II move generate the other Reidemeister I move and the usual Reidemeister III move
is generated by this braid-like Reidemeister III move and Reidemeister II moves

(see [4, Section 7.3]).

If T ∈ mDn is a (2m,2n)-tangle diagram with N ordered crossings and if T ′ ∈ mDn is

the same tangle diagram but with its crossings reordered by some permutation σ ∈SN ,
then the stable functor (MCT ′,N+) is the stabilisation (i!MCT ,N+), where i : 2N → 2N is

the face inclusion (v1, . . . ,vN ) �→ (vσ(1), . . . ,vσ(N)).

Next we turn to the Reidemeister I move. Let T ∈ mDn be a (2m,2n)-tangle diagram
with N ordered crossings, of which N+ are positive, and T ′ the result of performing a

Reidemeister I move to T as in Figure 3.3, so T ′ has one more positive crossing c than

T ; assume c is the (N +1)st crossing of T ′. Note that the 1-resolution of c gives a tangle
isotopic to T and the 0-resolution of c gives the disjoint union of T and a small circle C.

For each object (v,a,T,b) ∈Ob(2N+1×̃mTn), define G(v,a,T,b)⊂MCT ′(v,a,T,b) as

G(v,a,T,b) =

{
MCT ′(v,a,T,b) if vN+1 = 1

{w ∈MCT ′(v,a,T,b) | w assigns 1 to C} if vN+1 = 0.

(Compare [41, Figure 6.2].) We claim that G is an insular subfunctor of MCT ′ and that

the chain complex associated to G is acyclic. The second statement is clear. For the

first, note that every element w ∈ MCT ′(v,a,T,b) \G(v,a,T,b) is supported over the 0-
resolution at c and assigns X to the small circle C. The maps associated to the algebra

action respect the labelling of C, and the edges in the cube go from the 0-resolution to

the 1-resolution and hence either do not change the crossing c or map to a resolution in
which G(v,a,T,b) =MCT ′(v,a,T,b).

Thus, by Lemma 3.30, (MCT ′,N+ +1) is stably equivalent to (MCT ′/G,N+ +1). If

i : 2N → 2N+1 is the face inclusion (v1, . . . ,vN ) �→ (v1, . . . ,vN,0), forgetting the circle C
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Figure 3.4. Local Reidemeister moves. Khovanov’s invariance proof shows that the bimodules before

and after each Reidemeister move are quasi-isomorphic and in fact there is an essentially unique, up to

sign, quasi-isomorphism between them.

gives an isomorphism from (MCT ′/G,N++1) to (i!MCT ,N++1), which is a stabilisation

of (MCT ,N+).

The proofs of Reidemeister II and III invariance are similar adaptations of the proofs
from our previous paper [41, Propositions 6.3 and 6.4]. For Reidemeister II invariance,

that proof defines a contractible insular subfunctor G1 of MCT ′ and an insular subfunctor

G3 of the quotient G2 =MCT ′/G1 so that the quotient G4 =G2/G3 is contractible and G3

is isomorphic to MCT modulo the correct grading shifts. (See particularly [41, Figure 6.3],

where circles labelled 1 are denoted + and circles labelled X are denoted −.) The new

point is that all of these subsets are preserved by the algebra action, but this is immediate
from their definitions, which only involve restricting to certain vertices of the cube or

restricting the labels of certain closed circles. Similarly, for Reidemeister III invariance

the old proof gives a sequence of insular subfunctors inducing equivalences. Further details

are left to the reader.
The second part of the statement follows from the fact that, locally, up to sign there is

a unique homotopy class of homotopy equivalences of (Hn,Hn−2)-bimodules (respectively

(Hn,Hn)-bimodules) corresponding to a Reidemeister I move (respectively II or III move.
See Figure 3.4.) Both the map on the chain complexes induced by the construction above

and Khovanov’s map respect composition of tangles and so are induced from local maps.

See our previous paper [42, Proposition 3.4] for further details.

4. From combinatorics to topology

4.1. Construction of the spectral categories and bimodules

We warm up by giving a functorG : S0
n →S refining the arc algebras. In Subsection 3.5 we

defined a functor MBn : Sn → B. The Burnside multicategory maps to the multicategory

of permutative categories Permu by taking a set X to the category Sets/X of finite sets
over X and a correspondence A : X → Y to the functor Sets/X → Sets/Y given by fibre

product with A (cf. Subsection 2.8). Elmendorf–Mandell defined a multifunctor Permu→
S , K -theory, where S is the multicategory of symmetric spectra (with multicategory
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structure induced by the smash product) [19, Theorem 1.1]. (Again, see Subsection 2.8.)

So, composing with this functor gives us a functor

Sn → S .

Rectification as in Definition 2.42 combined with Lemma 2.8 turns this into a functor

G : S0
n → S . (4.1)

The story for tangles is similar. Given a tangle diagram T ∈ mDn (with N ordered

crossings, of which N+ are positive), in Subsection 3.5 we defined a stable functor
(MBT : 2N ×̃mTn → B,N+). Compose MBT with the map B → Permu to get a functor

2N ×̃mTn → Permu. Applying Elmendorf–Mandell’s K -theory functor [19, Theorem 1.1]

as before gives us a functor

2N ×̃mTn → S .

Rectification as in Definition 2.42 turns this into a functor

F : (2N ×̃mTn)0 → S

from the strictified product. Note that Sm∪Sn is a blockaded subcategory of mTn, so by
Lemma 2.44, on S0

m∪S0
n the functor F agrees with the map G from Equation 4.1.

Recall from Subsection 3.5 that for each pair of crossingless matchings a ∈ Bm and

b ∈ Bn we have a cube 2N × (a,T,b) in (2N ×̃mTn)0. The restriction of F to 2N × (a,T,b)
is a functor F |(a,T,b) : 2

N → S . Next we take the iterated mapping cone of F |(a,T,b).

That is, adjoin an additional object ∗ to 21 with a single morphism 0 → ∗, to obtain

a larger category 21+. (This category is denoted P in Corollary 2.15.) Let 2N+ = (21+)
N .

Extend F |(a,T,b) to F |+(a,T,b) : 2
N
+ → S by declaring that F |+(a,T,b)(x) = {pt}, a single

point, if x 
∈Ob(2N ). Then the iterated mapping cone of F |(a,T,b) is the homotopy colimit

hocolimF |+(a,T,b).
Now, define

G : mT 0
n → S

by defining

G(a,b) = F (a,b) G(a,T,b) = sh−N+ hocolim2N+
F |+(a,T,b).

In fact, on the entire subcategory S0
m∪S0

n, define G to agree with F (and hence also the

map G from Equation (4.1)). The map

G(fa1,...,ak,T,b1,...,b�) : G(a1,a2)∧·· ·∧G(ak,T,b1)∧·· ·∧G(b�−1,b�)→G(a1,T,b�)
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is the composition

G(a1,a2)∧·· ·∧G(ak,T,b1)∧·· ·∧G(b�−1,b�)

= F (a1,a2)∧·· ·∧
[
sh−N+ hocolim2N+

F |+(ak,T,b1)

]
∧·· ·∧F (b�−1,b�)

∼= sh−N+ hocolim2N+

[
F (a1,a2)∧·· ·∧F |+(ak,T,b1)

∧·· ·∧F (b�−1,b�)
]

→ sh−N+ hocolim2N+
F |+(a1,T,b�)

=G(a1,T,b�),

where the last map comes from naturality of the shift functor and homotopy colimits (see

Propositions 2.34 and 2.10) and the fact that F is a multifunctor.

Lemma 4.1. This definition makes G into a multifunctor.

Proof. Again, this follows from naturality of shift functors and homotopy colimits and
the fact that F is a multifunctor.

Proposition 4.2. Composing G and the chain functor S → Kom gives a map mT 0
n →

Kom which is quasi-isomorphic to the Khovanov tangle invariant (reinterpreted as in

Subsection 2.3).

The following result will be useful in proving Proposition 4.2.

Lemma 4.3. Let C be a multicategory and suppose K is any multifunctor C → Kom.

Let τ≥0 be the connective cover functor on Kom, sending a complex C to the following

subcomplex:

(τ≥0C)k =

⎧⎪⎨⎪⎩
Ck if k > 0

ker(d0) if k = 0

0 if k < 0.

Then there are natural transformations

K ← τ≥0 ◦K →H0 ◦K

of multifunctors C → Kom. If, for any x ∈ Ob(C ), the complex K(x) has no homology

in negative (respectively positive, nonzero) degrees, the left-hand map (respectively the

right-hand map, each of the maps) is a natural quasi-isomorphism.

Proof. The map τ≥0 is a multifunctor Kom → Kom and comes with a natural

transformation τ≥0 → Id (an inclusion map of complexes), inducing an isomorphism on
homology in nonnegative degrees, and a natural transformation τ≥0 →H0 of multifunctors

(a quotient map of complexes), inducing an isomorphism on H0. Putting these together,

for a functor K as described the composite maps

K ← τ≥0 ◦K →H0 ◦K

are natural transformations of multifunctors C → Kom; and the left-hand (respectively

right-hand) arrow is a quasi-isomorphism if K has homology groups supported in

nonnegative (respectively nonpositive) degrees.
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Proof of Proposition 4.2. We begin by observing that the functor

C∗ ◦F : (2N ×̃mTn)0 → Kom

has homology concentrated in degree zero: the spectra G(a,b) and F |(a,T,b)(v) are wedge

sums of copies of the sphere spectrum S. Therefore, the previous lemma provides us with

a quasi-isomorphism between the multifunctor C∗ ◦F and the multifunctor H0 ◦F .

The identification H0(G(a,b)) ∼= 1aHn1b is obvious: F (a,b) is a wedge sum of spheres,
one for each Khovanov generator. (See Subsection 2.8.) Similarly, for each vertex v ∈ 2N ,

F |(a,T,b)(v) is a wedge sum of copies of the sphere spectrum S, one for each element of

MBT (a,T,b), so H0(F |(a,T,b)(v)) ∼= Forget(MBT (v,a,T,b)). Further, the map on homology
associated to each edge v → w of the cube is the map Forget(MBT ((v,a,T,b)→ (w,a,T,b)).

We must check that the composition maps agree with the Khovanov composition maps.

For definiteness, consider the map F (a,b)∧F (b,T,c)→F (a,T,c). There is a corresponding
map

(H0 ◦F )|(a,b)⊗ (H0 ◦F )|(b,T,c)(v)→ (H0 ◦F )|(a,T,c)(v)

that is natural in v ∈ 2N . Tracing through the isomorphisms above, this is exactly the

Khovanov multiplication

1aHn1b⊗1bCKh(Tv)1c → 1aCKh(Tv)1c.

Thus, the multifunctor H0 ◦F represents (up to shift) precisely the cubical diagram of

bimodules over the arc algebras whose totalisation is 1aCKh(T )1b. As quasi-isomorphisms
preserve shifts and homotopy colimits (see Proposition 2.10), our quasi-isomorphism from

F to H0 ◦F becomes a quasi-isomorphism

C∗G(a,T,b)� hocolim2N+
(H0 ◦F )|(a,T,b)[−N+]. (4.2)

By Corollary 2.15, this homotopy colimit is precisely the total complex Tot(Forget ◦
MBT |(a,T,b)),N+), which is the bimodule 1aCKh(T )1b. Since the quasi-isomorphisms

respected composition and Equation (4.2) is natural, the identification C∗G(a,T,b) �
1aCKh(T )1b respects multiplication. This proves the result. �
We could stop here and define G to be our stable homotopy refinement of the Khovanov

tangle invariants, but we can make the invariant look a little closer to Khovanov’s invariant

by reinterpreting it as a spectral category. That is, we will refine Hn to a category H n

with:

• Objects crossingless matchings.
• Hom(a,b) a symmetric spectrum.
• Composition a map Hom(b,c)∧Hom(a,b)→Hom(a,c).
• Identity elements which are maps S→Hom(a,a).

(This is a spectrum-level analogue of a linear category; cf. Subsection 2.3. See [6] for a more

in-depth review of spectral categories.) Associated to a (2m,2n)-tangle T we will construct
a left-H m, right-H n bimodule X (T ); that is, a functor X (T ) : (H m)op×H n → S .

We construct H n as follows. Let

HomH n(a,b) =G(a,b).
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Composition is defined by

HomH n(b,c)∧HomH n(a,b) =G(b,c)∧G(a,b)∼=G(a,b)∧G(b,c)
G(fa,b,c)−−−−→G(a,c)

= HomH n(a,c).

Identity elements are given by

S
G(fa)−−→G(a,a) = HomH n(a,a).

Turning to X (T ), let

X (T )(a,b) =G(a,T,b).

On morphisms, the map is given by

Hom(H m)op×H n((a,b),(a′,b′))∧X (T )(a,b) =G(a′,a)∧G(b,b′)∧G(a,T,b)

∼=G(a′,a)∧G(a,T,b)∧G(b,b′)
G(fa′,a,T,b,b′ )−−−−→ G(a′,T,b′) = X (T )(a′,b′).

Lemma 4.4. These definitions make H n into a spectral category and X (T ) into a

(H m,H n)-bimodule.

Proof. We only need to check the associativity and identity axioms, which are immediate

from the definitions and the fact that G was a multifunctor.

Note that, in a similar spirit to Subsection 2.3, we can reinterpret H n as a ring spectrum

H n
ring =

∨
a,b∈Ob(H n)

HomH n(a,b)

with multiplication given by composition when defined and trivial when composition is

not defined. (Our ordering convention is that the product a · b stands for b◦a.) Similarly,
X (T ) induces an (H m

ring,H
n

ring)-bimodule spectrum

Xmodule(T ) =
∨

a∈Ob(H m)
b∈Ob(H n)

X (T )(a,b).

Finally, we will use the following technical lemma to simplify the definition of the

derived tensor product and topological Hochschild homology.

Lemma 4.5. The spectral categories H n and spectral bimodules X (T ) are pointwise

cofibrant. That is, HomH n(x,y) and X (T )(x,y) are cofibrant symmetric spectra for all
pairs of objects x,y.

Proof. This is clear: the spectra are produced by rectification from Definition 2.42, which

gives a cofibrant diagram which is hence pointwise cofibrant (Lemma 2.41), and then

taking homotopy colimits and shifting, which preserves cofibrancy (Lemma 2.40).
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4.2. Invariance of the bimodule associated to a tangle

Before turning to the bimodule, consider invariance of the spectral category H n.

Superficially, the functor G : S0
n →S , and hence the spectral category H n, depended on

a number of choices:

(1) The choices (C-1)–(C-3) from Subsection 3.5.2.

(2) Any choices in the Elmendorf–Mandell machine and the rectification procedure.

As noted in Subsections 2.8 and 2.9, Choice (2) is, in fact, canonical. As discussed
in Subsection 3.5.2, Choices (C-1)–(C-3) can be made canonical by a colimit-type

construction. So, H n is, in fact, completely well-defined.

Turning next to X (T ), we will show that this spectral bimodule is well-defined up to
the following equivalence.

Definition 4.6. Given spectral categories C and D and spectral (C ,D)-bimodules M
and N , a homomorphism F : M → N is a natural transformation from M to N . A

homomorphism is an equivalence if for each a ∈Ob(C ) and b ∈Ob(D), the map

F (a,b) : M (a,b)→ N (a,b)

is an equivalence of spectra. The symmetric, transitive closure of this notion of equivalence

is an equivalence relation; two bimodules are equivalent if they are related by this
equivalence relation (i.e., if there is a zig-zag of equivalences between them).

Proposition 4.7. If (F0 : 2
N0×̃mTn → B,S0) and (F1 : 2

N1×̃mTn → B,S1) are stably
equivalent functors, then the induced spectral bimodules G0 and G1 over (H m,H n) are

equivalent.

Proof. We first consider the case of quasi-isomorphisms. So, assume N0 =N1 =N , S0 =

S1 = S and F01 : 2
N+1×̃mTn →B satisfies F01|{i}×2N ×̃mTn

= Fi for i= 0,1 and Tot(Forget ◦
F01) is acyclic. Let IdF1

denote the identity quasi-isomorphism from F1 to itself, viewed
as a multifunctor 2N+1×̃mTn → B.

Consider the full subcategory {01 → 11 ← 10} × 2N ×̃mTn of 22 × 2N ×̃mTn. The

multifunctors F01 and IdF1
can be patched together to produce a single multifunctor

F∨ : {01 → 11 ← 10}× 2N ×̃mTn → B which agrees with F01 on {01 → 11}× 2N ×̃mTn
(with the obvious identification of {01→ 11}× 2N ×̃mTn and 21× 2N ×̃mTn) and agrees

with IdF1
on {11← 10}×2N ×̃mTn.

We now apply the construction from Subsection 4.1 to this functor. Composing with
the functor B → Permu→ S and rectifying, we get a functor

G∨ : ({01→ 11← 10}×2N ×̃mTn)0 → S

and since {01}×2N ×̃mTn and {10}×2N ×̃mTn are blockaded subcategories, the restric-

tions of G∨ to ({01}× 2N ×̃mTn)0 and ({10}× 2N ×̃mTn)0 agree with G0 and G1, the

rectifications of the compositions of F0 and F1 with the functor B → Permu→ S .
LetH0 andH1 be the result of applying the mapping cone construction from Subsection

4.1 to G0 and G1 and let K0 and K1 be the spectral bimodules obtained from H0 and H1

by shifting by S. Let H∨ be the result of applying the same mapping cone construction
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to G∨ and let K∨ be the spectral bimodule obtained by shifting by S+1. Finally, let

H→ and H← be the results of the mapping cone construction applied to G∨ restricted to
({01→ 11}×2N ×̃mTn)0 and ({11← 10}×2N ×̃mTn)0, respectively.
It is clear from the mapping cone construction that for each a,b, there are cofibration

sequences

· · · →H←(a,b)→H∨(a,b)→ ΣH0(a,b)→ ·· ·
· · · →H→(a,b)→H∨(a,b)→ ΣH1(a,b)→ ·· ·

and these maps are natural with respect to morphisms in (H m)op ×H n. Moreover,
H←(a,b) and H→(a,b) are contractible since Tot(Forget ◦ IdF1

) and Tot(Forget ◦ F01) are

acyclic. Therefore, for each i = 0,1, the map H∨ → ΣHi is an equivalence of spectral

bimodules. Shifting by S+1, we get that the map K∨ → sh−S−1ΣHi is an equivalence as
well; moreover, we also have an equivalence sh−S−1ΣHi → sh−S−1 shHi → sh−SHi = Ki

(cf. Proposition 2.20).

For stabilisations i!F of (F : 2N ×̃mTn → B,S), it is enough to consider the two face

inclusions of 2N ↪→ 2N+1 as {0}×2N and as {1}×2N (since any arbitrary face inclusion is
a composition of such face inclusions and permutations of the factors of 2N and invariance

under permutations is clear). In each case, let G and i!G be the corresponding rectified

functors to S , H and i!H the results after applying the mapping cone constructions and
K and i!K the corresponding spectral bimodules after shifting by S and S +1− |i|,
respectively.

In the first case, {0}×2N ×̃mTn is a blockaded subcategory, so the restriction of i!G to
({0}× 2N ×̃mTn)0 agrees with G and from the mapping cone construction, we have an

equivalence i!H → ΣH of spectral bimodules. As before, after shifting by S+1, we get

an equivalence i!K → sh−S−1ΣH → K as well.

In the second case, {1}×2N ×̃mTn is not a blockaded subcategory, so the previous proof
does not quite work. Nevertheless, we can proceed as in the case of quasi-isomorphisms.

Let IdF be the identity quasi-isomorphism from F to itself, viewed as a multi-

functor 2N+1×̃mTn → B. Consider the full subcategory of 23 × 2N ×̃mTn spanned by
100,110,101,011,111 ∈ 23. Two copies of the multifunctors IdF can be patched together

to produce a single multifunctor Fbig from this category to B which agrees with IdF on

{110→ 111}×2N ×̃mTn and {011→ 111}×2N ×̃mTn and is 0 on the rest; schematically,
the functor looks like:

100

110 101 011

111

0

F 0 F

F
IdF IdF

Let Gbig be the corresponding rectified functor,Hbig the result after applying the mapping
cone construction and Kbig the result after shifting by S+1. Once again, since {100→
110}× 2N ×̃mTn and {011}× 2N ×̃mTn are blockaded subcategories, the restrictions of

Gbig to ({100→ 110}×2N ×̃mTn)0 and ({011}×2N ×̃mTn)0 agree with i!G and G.
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Let H∨ and H♦ be the results of the mapping cone construction applied to Gbig

restricted to the full subcategories generated by 101,011,111 ∈ 23 and 100,110,101,111 ∈
23, respectively. As before, there are natural cofibration sequences

· · · →H♦(a,b)→Hbig (a,b)→ ΣH(a,b)→ ·· ·
· · · →H∨(a,b)→Hbig (a,b)→ Σi!H(a,b)→ ·· ·

and, moreover, H♦(a,b) and H∨(a,b) are contractible for each a,b. Therefore, the maps

Hbig → ΣH and Hbig → Σi!H are equivalences of spectral bimodules. Shifting by S+1,
the maps Kbig → sh−S−1ΣH → K and Kbig → sh−S−1Σi!H → i!K are equivalences as

well.

Theorem 4. Up to equivalence of (H m,H n)-bimodules, X (T ) is an invariant of the
isotopy class of the (2m,2n)-tangle T. Further, the map on homology induced by a

sequence of Reidemeister moves agree, up to a sign, with Khovanov’s invariance map

[32, Section 4].

Proof. This is immediate from Theorem 3 and Proposition 4.7.

5. Gluing

In this section we prove that gluing tangles corresponds to the derived tensor product of

spectral bimodules (Theorem 5). We start by introducing one more shape multicategory,
adapted to studying triples of tangles (T1,T2,T1T2). We then recall the tensor product of

spectral bimodules and, with these tools in hand, prove the gluing theorem.

Fix nonnegative integers m,n,p. The gluing multicategory U0
m,n,p, which is the shape

multicategory associated to (Bm,Bn,Bp) (cf. Definition 2.3). Explicitly, U0
m,n,p has

objects:

• Pairs (a1,a2) of crossingless matchings on 2m points.
• Pairs (b1,b2) of crossingless matchings on 2n points.
• Pairs (c1,c2) of crossingless matchings on 2p points.
• Triples (a,T1,b) where a is a crossingless matching of 2m points, b is a crossingless

matching of 2n points and T1 is a placeholder (a mnemonic for a (2m,2n) tangle).
• Triples (b,T2,c) where b is a crossingless matching of 2n points, c is a crossingless

matching of 2p points and T2 is a placeholder (a mnemonic for a (2n,2p) flat
tangle).

• Triples (a,T1T2,c) where a is a crossingless matching of 2m points, c is a
crossingless matching of 2p points and T1T2 is a placeholder (a mnemonic for
the composition of T1 and T2).

So, the objects of mT 0
n , nT 0

p and mT 0
p are contained in the gluing multicategory and in fact

we let these three multicategories be full subcategories of the gluing multicategory. There
is one more kind of multimorphism in the gluing multicategory: a unique multimorphism

(a1,a2), . . . ,(ai−1,ai),(ai,T1,b1),(b1,b2), . . . ,(bj−1,bj),(bj,T2,c1),(c1,c2), . . . ,(ck−1,ck)

→ (a1,T1T2,ck)
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where the a� (respectively b�, c�) are crossingless matchings of 2m (respectively 2n, 2p)

points. Let Um,n,p be the canonical groupoid enrichment of U0
m,n,p.

Next we define a category 2N1|N2×̃Um,n,p similar to (and extending) 2N ×̃mTn. The
objects of 2N ×̃Um,n,p are of the following forms:

• Pairs (x,y) in Ob(Sm) or Ob(Sn) or Ob(Sp).
• Quadruples (v,a,T1,b) where v ∈Ob(2N1), a ∈ Bm and b ∈ Bn.
• Quadruples (v,b,T2,c) where v ∈Ob(2N2), b ∈ Bn and c ∈ Bp.
• Quadruples (v,a,T1T2,c) where v ∈Ob(2N1+N2), a ∈ Bm and c ∈ Bp.

So,

Ob(2N1|N2×̃Um,n,p) = Ob(2N1×̃mTn)∪Ob(2N2×̃nTp)∪Ob(2N1+N2×̃mTp).

A basic multimorphism for 2N1|N2×̃Um,n,p is one of:

• A basic multimorphism in 2N1×̃mTn, 2N2×̃nTp, or 2N1+N2×̃mTp, or
• A (unique) multimorphism

(a1,a2), . . . ,(aj−1,aj),(v,aj,T1,b1),(b1,b2), . . . ,(bk−1,bk),(w,bk,T2,c1),

(c1,c2). . . ,(c�−1,c�)→ ((v,w),a1,T1T2,c�).

The multimorphisms in 2N1|N2×̃Um,n,p are planar, rooted trees whose edges are decorated

by objects in 2N1|N2×̃Um,n,p and whose vertices are decorated by basic multimorphisms

compatible with the decorations on the edges. If two multimorphisms have the same

source and target, then we declare that there is a unique morphism in the corresponding
multimorphism groupoid between them.

Let (2N1|N2×̃Um,n,p)
0 be the strictification of 2N1|N2×̃Um,n,p. We have the following

analogue of Lemma 3.8.

Lemma 5.1. The projection 2N1|N2×̃Um,n,p → (2N1|N2×̃Um,n,p)
0 is a weak equivalence.

Proof. The proof is essentially the same as the proofs of Lemmas 2.8 and 3.8.

Fix a (2m,2n)-tangle T1 with N1 crossings and a (2n,2p)-tangle T2 with N2 crossings

and let T1T2 denote the composition of T1 and T2. Choose enough pox on T1 and T2 so that

T1T2 is a poxed tangle (Definition 3.10). Then we have multifunctors MCT1
: 2N1×̃mTn →

C̃obd, MCT2
: 2N2×̃nTp → C̃obd and MCT1T2

: 2N1+N2×̃mTp → C̃obd.

Lemma 5.2. There is a multifunctor G : 2N1|N2×̃Um,n,p → C̃obd extending MCT1
,

MCT2
and MCT1T2

and so that for any a ∈ Bm, b ∈ Bn, c ∈ Bp and (v,w) ∈ 2N1|N2 ,
G
(
(v,a,T1,b),(w,b,T2,c)→ ((v,w),a,T1T2,c)

)
is a multimerge cobordism (connecting bb to

the identity).

Proof. This is a straightforward adaptation of the construction of MCT and is left to the
reader.
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Composing G with the Khovanov–Burnside functor gives a functor V HKK ◦G : Um,n,p →
B. Proceeding as in the construction of the tangle invariants in Subsection 4.1 we obtain

a functor

Gl : (Um,n,p)
0 → S .

The functor Gl restricts to GT1
on mT 0

n and GT2
on nT 0

p . (This uses the fact that mTn
and nTp are blockaded subcategories of Um,n,p and Lemma 2.44.) By Lemma 2.43, on

mT 0
p , the functor Gl is naturally equivalent to GT1T2

but because of the rectification step
may not agree with GT1T2

exactly. Since there are no morphisms out of the subcategory

mT 0
p , we can compose Gl with the equivalence from Gl |

mT 0
p

to GT1T2
to obtain a new

functor whose restriction to Gl |
mT 0

p
agrees with GT1T2

. Abusing notation, from now on
we use Gl to denote this new functor.

We recall two notions of tensor product of modules over a spectral category.

Definition 5.3. Let C , D and E be spectral categories, M a (C ,D)-bimodule and N
a (D,E )-bimodule. Assume that D , M and N are pointwise cofibrant (cf. Lemma 4.5).

The tensor product of M and N over D , M ⊗D N , is the (C ,E )-bimodule P where

P (a,c) is the coequaliser of the diagram∐
b,b′∈Ob(D)

M (a,b)∧HomD(b,b′)∧N (b′,c)⇒
∐

b∈Ob(D)

M (a,b)∧N (b,c).

(Here, the two maps correspond to the action of Hom(b,b′) on M (a,b) and on N (b′,c),
respectively.)
The derived tensor product of M and N over D , M ⊗L

D N , is

P (a,c) = hocolim

(
· · · →→→→

∐
b,b′,b′′∈Ob(D)

M (a,b)∧HomD(b,b′)∧HomD(b′,b′′)∧N (b′′,c)

→→→
∐

b,b′∈Ob(D)

M (a,b)∧HomD(b,b′)∧N (b′,c)

⇒
∐

b∈Ob(D)

M (a,b)∧N (b,c)

)
.

There is an evident quotient map M ⊗L
D N → M ⊗D N .

The derived tensor product is functorial and preserves equivalences in the following

sense. Given a map D → D ′, modules M and N over D , modules M ′ and N ′ over D ′

and maps M → M ′ and N → N ′ intertwining the actions of D and D ′, there is a map

M ⊗L
D N → M ′⊗L

D′ N ′.

If the maps D →D ′, M →M ′ and N →N ′ are equivalences, this map of derived tensor

products is an equivalence.
Replacing smash products with tensor products gives the derived tensor product of

chain complexes (assuming that the constituent complexes are all flat over Z). Again, the

derived tensor product is functorial and preserves quasi-isomorphisms of complexes.
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Reinterpreting Gl , for each triple of crossingless matchings a,b,c we have a map

Gl((a,T1,b),(b,T2,c)→ (a,T1T2,c)) : G(a,T1,b)∧G(b,T2,c)→G(a,T1T2,c).

Lemma 5.4. The map Gl induces a map of bimodules X (T1)⊗H n X (T2)→ X (T1T2).

Proof. By definition,(
X (T1)⊗H n X (T2)

)
(a,c) =

∐
b∈Bn

GT1
(a,T,b)∧GT2

(b,T,c)/∼ .

The map Gl gives maps

∐
b∈Bn

GT1
(a,T,b)∧GT2

(b,T,c)

∐
bGl((a,T1,b),(b,T2,c)→(a,T1T2,c))

�� GT1T2
(a,T,c).

We must check that these maps respect the equivalence relation ∼ and the actions of

H m and H p, but both statements are immediate from the fact that the map Gl is a
multifunctor (and the definition of U0

m,n,p).

Composing with the quotient map X (T1)⊗L
H n X (T2)→ X (T1)⊗H n X (T2) gives a

map X (T1)⊗L
H n X (T2)→ X (T1T2).

We recall a fact about the classical Khovanov bimodules.

Lemma 5.5. If T is an (2m,2n) flat tangle, then the bimodule CKh(T ) is left-projective

and right-projective. So, given a (2m,2n)-tangle T1 and a (2n,2p)-tangle T2, there are

quasi-isomorphisms

CKh(T1)⊗L
Hn CKh(T2)� CKh(T1)⊗Hn CKh(T2)� CKh(T1T2).

Further, the second quasi-isomorphism is induced by the evident multimerge cobordisms.

Proof. Khovanov proved that the bimodules associated to flat tangles are left and right

projective; he used the word sweet for finitely generated bimodules with this property [32,

Proposition 3]. So, the first isomorphism follows from the definition of the derived tensor
product and sweetness. The second isomorphism is Khovanov’s gluing theorem (repeated

above as Proposition 2.53); his proof also shows that it comes from the multimerge

cobordisms.

Lemma 5.6. Given a (2m,2n)-tangle T1 and a (2n,2p)-tangle T2, there is a commutative

diagram of isomorphisms in the derived category of complexes

C∗
(
X (T1)⊗L

H n X (T2)
)

Gl
			

				
				

				
			

C∗(X (T1))⊗L
C∗(H n)C∗(X (T2)) ��

��

�� CKh(T1)⊗L
Hn CKh(T2)

��

C∗
(
X (T1T2)

)
�� CKh(T1T2),

where the right-hand horizontal arrows are induced by the quasi-isomorphisms of Propo-

sition 4.2 and the rightmost vertical arrow is the quasi-isomorphism from Lemma 5.5.
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Proof. We begin by applying C∗ to the diagram defining the derived tensor product
X (T1)⊗L

H n X (T2). Using both the natural quasi-isomorphism hocolimC∗ →C∗hocolim
and monoidality of C∗, we get the quasi-isomorphism

C∗(X (T1))⊗L
C∗(H n)C∗(X (T2))→ C∗

(
X (T1)⊗L

H n X (T2)
)
.

Define the map C∗(X (T1))⊗L
C∗(H n)C∗(X (T2))→ C∗(X (T1T2)) to be the composition

of this quasi-isomorphism and the map on chains induced by the gluing map Gl .
We now address the right-hand square. Recall that Lemma 4.3 constructs natural

transformations of multifunctors S → Kom

C∗ ← τ≥0 ◦C∗ →H0,

where the left-hand arrow is always an isomorphism in nonnegative homology degrees
and the right-hand one is always an isomorphism in homology degree zero. In particular,

this gives us natural quasi-isomorphisms of dg-categories

C∗H
n ← τ≥0C∗H

n →H0H
n,

where the right-hand term is Khovanov’s arc algebra Hn. Similarly, we can apply these
truncation transformations to the spectral bimodule X (T ), obtaining quasi-isomorphisms

C∗X (T ) = C∗
(
sh−N+ hocolim2N+

F |+(a,T,b)

)
← hocolim2N+

C∗(F |+(a,T,b))[−N+]

← hocolim2N+

(
τ≥0C∗(F |+(a,T,b))

)
[−N+]

→ hocolim2N+

(
H0 ◦F |+(a,T,b))

)
[−N+]

= CKh(T ).

These maps are compatible with bimodule structures: all terms are bimodules over

(τ≥0C∗H m,τ≥0C∗H n), and these bimodule structures are compatible with the structure

of a bimodule over the untruncated chain complex (C∗H m,C∗H n) on C∗X (T ) and of
a bimodule over the arc algebras (Hm,Hn) on CKh(T ).

Let

D∗(T ) = hocolim2N+

(
τ≥0C∗(F |+(a,T,b))

)
[−N+].

We now apply derived tensor products and the gluing pairing Gl , obtaining a diagram

C∗X (T1)⊗L
C∗H n C∗X (T2)

��

D∗(T1)⊗L
τ≥0C∗H n D∗(T2)

��

�� �� CKh(T1)⊗L
Hn CKh(T2)

��

C∗X (T1T2) D∗(T1T2)�� �� CKh(T1T2).

As we just showed, the bottom horizontal maps are quasi-isomorphisms. Since the derived
tensor product preserves homotopy colimits, the top horizontal maps are also quasi-

isomorphisms. It follows from compatibility of the maps with the bimodule structures

that both squares commute, where the rightmost arrow is the map induced by the evident
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multimerge cobordisms. Lemma 5.5 implies that this is exactly Khovanov’s gluing quasi-
isomorphism.

Theorem 5. The gluing functor X (T1)⊗L
H n X (T2) → X (T1T2) is an equivalence of

bimodules.

Proof. Lemma 5.6 shows that the induced map of chain complexes agrees with the
map CKh(T1)⊗L

Hn CKh(T2) → CKh(T1T2), which is a quasi-isomorphism. As the spectra

in question are connective, the result follows from the homology Whitehead theorem

(Theorem 2.18).

6. Quantum gradings

So far, we have suppressed the quantum gradings; in this section we reintroduce them.

Definition 6.1. The grading multicategory G has:

• one object for each integer n and
• a unique multimorphism (m1, . . . ,mk)→m1+ · · ·+mk for each m1, . . . ,mk ∈ Z.

As usual, we can view the grading multicategory as trivially enriched in groupoids.

Definition 6.2. The naive product of multicategories C and D , C ×D , has object pairs

(c,d) ∈Ob(C )×Ob(D), multimorphism sets

HomC×D((c1,d1), . . . ,(cn,dn); (c,d)) = HomC (c1, . . . ,cn;c)×HomD(d1, . . . ,dn;d),

and the obvious composition and identity maps.

Given a multicategory C and a multifunctor F : G ×C → B satisfying

(F) for all objects x ∈Ob(C ), F (n,x) is empty for all but finitely many n,

there is an associated multifunctor
∐
F : C → D defined by

(
∐
F )(x) =

∐
n∈Z

F (n,x)

and, given f ∈HomC (x1, . . . ,xk;y), the correspondence

(
∐
F )(f) :

( ∐
m1∈Z

F (m1,x1)

)
×·· ·×

( ∐
mk∈Z

F (mk,xk)

)
=

∐
(m1,...,mk)∈Zk

F (m1,x1)×·· ·×F (mk,xk)−→
∐
n∈Z

F (n,y)

satisfies

s−1 (F (m1,x1)×·· ·×F (mk,xk))∩ t−1 (F (n,y))

=

{
F (((m1, . . . ,mk)→ n)×f) if n=m1+ · · ·+mk

∅ otherwise.
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We will lift the functors MBm : Sm → B and MBT : 2N ×̃mTn → B to functors

MB•
m : G ×Sm → B

MB•
T : G × (2N ×̃mTn)→ B.

By ‘lift’ we mean that there are natural isomorphisms∐
MB•

m
∼=MBm

∐
MB•

T
∼=MBT . (6.1)

We start by defining the lifts at the level of objects, by copying Khovanov’s definitions

of the quantum gradings on the arc algebras and modules. Specifically, given an object

(a,b) ∈ Ob(Sm) and an element x ∈ MBm(a,b) which labels p(x) circles by 1 and n(x)
circles by X, we define the quantum grading

grq(x) = n(x)−p(x)+m (6.2)

and let

MB•
m(k,(a,b)) = {x ∈MBm(a,b) | grq(x) = k}.

Similarly, for (v,a,T,b) ∈ Ob(2N ×̃mTn) and x ∈ MBT (v,a,T,b) which labels p(x) circles
by 1 and n(x) circles by X, we define

grq(x) = n(x)−p(x)+n−|v|, (6.3)

where |v| is the number of 1s in v, and let

MB•
T (k,(v,a,T,b)) = {x ∈MBT (v,a,T,b) | grq(x) = k}.

Example 6.3. For (a,a) ∈Ob(Sm), the quantum grading of an element x ∈MBm(a,b) is
two times the number of circles labelled X and in particular ranges between 0 and 2m.

The unit element, in which all circles are labelled 1, is in quantum grading 0.

Lemma 6.4. These definitions of MB•
m and MB•

T extend uniquely to the morphism

groupoids of MB•
m and MB•

T satisfying Equations (6.1).

Proof. Uniqueness is clear. Existence follows from the fact that the multiplication on the

Khovanov arc algebras and bimodules respects the quantum gradings.

Using MB•
m and MB•

T in place of MBm and MBT in Subsection 4.1 gives functors

G• : G ×S0
n → S and G• : G ×mT 0

n → S .

These give a graded spectral category H n and graded (H m,H n)-bimodule X (T ), with

the same objects, by setting

HomH n(a,b)k =G•(k,(a,b))

X (T )(a,b)k =G•(k,(a,T,b))
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(where the subscript k denotes the kth graded part). These refine the spectral category
and bimodule introduced in Subsection 4.1 in the sense that

HomH n(a,b)�
∨
k

HomH n(a,b)k

X (T )(a,b)�
∨
k

X (T )(a,b)k,

canonically, where the left side is the definition in Subsection 4.1 and the right side is
the definition in this section. So, the fact that we are using the same notation for the

definitions in this section and in Subsection 4.1 will not cause confusion.

The proof of invariance (Subsections 3.5.2 and 4.2) goes through without essential

changes. The graded analogue of the gluing theorem is as follows.

Theorem 6. The gluing map induces an equivalence of graded spectral bimodules

X (T1)⊗L
H n X (T2)� X (T1T2).

The proof differs from the proof of Theorem 5 only in that the notation is more
cumbersome.

Remark 6.5. There is an asymmetry in Formula (6.3): the number of points 2n on the

right of the tangle appears, but the number of points 2m on the left of the tangle does
not.

Remark 6.6. The quantum gradings we have defined agree with the gradings in
Khovanov’s paper on the arc algebras [32] but not with those in his first paper on

Khovanov homology [31]. See also Remark 2.55.

7. Some computations and applications

7.1. The connected sum theorem

We start by noting that our previous connected sum theorem can be understood as a
special case of tangle gluing. Recall the following.

Theorem 7 ([40, Theorem 8]). Given any knots K1, K2 there are H 1-module structures

on X (Ki) so that X (K1#K2)� X (K1)⊗L
H 1 X (K2).

Proof. Delete a small interval from Ki to obtain a (0,2)-tangle T1 and a (2,0)-tangle T2.

Since there is a unique crossingless matching c of 2 points, X (Ti) consists of a single
spectrum X (K1) � X (T1)(∅,c) (respectively X (K2) � X (T2)(c,∅)), together with a

map

X (T1)(∅,c)∧HomH 1(c,c)→ X (T1)(∅,c)

HomH 1(c,c)∧X (T1)(c,∅)→ X (T2)(c,∅)

making X (T1)(∅,c) (respectively X (T2)(c,∅)) into a module spectrum over the ring

spectrum HomH 1(c,c). So, the statement is immediate from Theorem 5.
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Remark 7.1. In [40, Theorem 8], the derived tensor product over H 1 was denoted

⊗H1 , and the Khovanov spectra were denoted XKh(Ki). The construction of this article
is the ‘opposite’ of the construction of the previous paper (see Remark 2.58) and therefore

X (Ki) = XKh(m(Ki)), where m(Ki) is the mirror knot.

Next we note that the Künneth spectral sequence for structured spectra implies a

Künneth spectral sequence for Khovanov generalised homology (e.g., Khovanov K -theory,

Khovanov bordism, . . .).

Theorem 8. Suppose K is decomposed as a union of a (0,2n)-tangle T1 and a (2n,0)-
tangle T2. Then for any generalised homology theory h∗ there is a spectral sequence

Torh∗(H
n)

p,q (h∗(X (T1)),h∗(X (T2)))⇒ hp+q(X (K)).

Proof. This is a corollary [18, Theorem 6.4], after using the equivalence of symmetric

spectra and EKMM spectra.

7.2. Hochschild homology and links in S1×S2

Using Hochschild homology, Rozansky defined a knot homology for links in S1×S2 with

even winding number around S1 [52] (see also [57]). In this section we note that Rozansky’s

invariant admits a stable homotopy refinement and conjecture that the refinement is a
knot invariant.

Given an (n,n)-tangle T in [0,1]×D2, there are three ways one can close T :

(1) Identify (0,p)∼ (1,p) to obtain a knot KS1×D2 ⊂ S1×D2.

(2) Include S1×D2 as a neighbourhood of the unknot in S3 and let KS3 ⊂ S3 be the
image of KS1×D2 .

(3) Include S1×D2 in S1×S2 = (S1×D2)∪∂ (S
1×D2) and let KS1×S2 ⊂ S1×S2 be

the image of KS1×D2 .

It is clear that every link in S1×D2, S3 and S1×S2 arises this way. If we require that

n be even (which we shall), then the links which arise in S1×D2 and S1×S2 are exactly

those with even winding number around S1.

Rozansky’s invariant of a knot K in S1 ×S2 is the Hochschild homology of CKh(T ),
where T is a tangle whose closure is K. Correspondingly, the stable homotopy lift is the

topological Hochschild homology of X (T ), the definition of which we recall briefly.

Definition 7.2. Given a pointwise cofibrant spectral category C and a (C ,C )-bimodules

M , the topological Hochschild homology THHC (M ) = THH(M ) of M is the homotopy
colimit of the diagram

· · · →→→→
∐

a1,a2,a3∈Ob(C )

M (a3,a1)∧C (a1,a2)∧C (a2,a3)
→→→

∐
a1,a2∈Ob(C )

M (a2,a1)∧C (a1,a2)

⇒
∐

a1∈Ob(C )

M (a1,a1)
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where C (a,b) denotes HomC (a,b) and the maps

di : M (an,a1)∧C (a1,a2)∧·· ·∧C (an−1,an)

→
∐

M (bn−1,b1)∧C (b1,b2)∧·· ·∧C (bn−2,bn−1)

are given by composition C (ai,ai+1)∧C (ai+1,ai+2)→ C (ai,ai+2) if 1≤ i≤ n−2 and the

actions M (an,a1)∧C (a1,a2)→ M (an,a2) and C (an−1,an)∧M (an,a1)→ M (an−1,a1) if

i= 0 or n−1, respectively.

(Compare [6, Proposition 3.5]. Recall from Lemma 4.5 that H n is pointwise cofibrant.)

Proposition 7.3. If T and T ′ induce isotopic knots in S1×D2, then for each j ∈ Z,

THH(X (T,j))� THH(X (T ′,j)).

Proof. Given a (2n,2n)-tangle T decomposed as a composition of two smaller tangles,
T = T1 ◦T2, we will call the tangle T2 ◦T1 a rotation of T. If T and T ′ induce isotopic

knots in S1×D2, then T and T ′ are related by a sequence of Reidemeister moves and

rotations. Topological Hochschild homology is invariant under quasi-isomorphisms of
spectral bimodules [6, Proposition 3.7], so by Theorem 4 Reidemeister moves do not

change THH(X (T,j)). Topological Hochschild homology is a trace, in the sense that

given spectral categories C , D , a (C ,D)-bimodule M and a (D,C )-bimodule N ,

THHC (M ⊗L
D N )� THHD(N ⊗L

C M )

[6, Proposition 6.2]. Thus, it follows from Theorem 5 that THH(X (T,j)) is invariant
under rotation as well.

Remark 7.4. Since we have only defined an invariant of a (2m,2n)-tangle, any link in

S1×D2 which arises from our construction has even winding number.

Proposition 7.5. The singular homology of THH(X (T )) is Rozansky’s invariant
Hst(S2×S1,KS2×S1).

Proof. The proof is similar to the proof of Proposition 4.2 and is left to the reader.

Conjecture 7.6 If T and T ′ induce isotopic knots in S1×S2, then for each j ∈ Z,

THH(X (T,j))� THH(X (T ′,j)).

As Rozansky notes, given Proposition 7.3, to verify Conjecture 7.6 it suffices to verify

that THH(X (T,j)) is invariant under dragging the first strand around the others [52,

Theorem 2.2].

7.3. Where the ladybug matching went: an example

Our longtime readers will recall that a key step in the construction of X (K) is the ladybug
matching, which provides an identification across each 2-dimensional face in the cube of

resolutions. (This matching is equivalent to the rule for composing genus 0 cobordisms

to get a genus 1 cobordism in Subsection 2.11.) In particular, the ladybug matching is
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Figure 7.1. Where have all the ladybugs gone? Left: a tangle T. Center: the resolutions T0 and T1

of T. Right: the crossingless matchings a and b.

(a, 1)

(a, 1 ⊗ 1)

A0

(a, X)

(a, 1 ⊗ X)

(a, X ⊗ 1)

A2

(a, X ⊗ X)

A4

(b, 1 ⊗ 1)

B−1

(b, 1)

(b, 1 ⊗ X)(b, X ⊗ 1)

B1

(b, X ⊗ X)

(b, X)

B3

Figure 7.2. Some mapping cones. The space X (T )(a) is the wedge sum of the spaces A0, A2 and

A4, and X (T )(b) is the wedge sum of the spaces B−1, B1 and B3 (the subscripts denote the quantum

gradings). A cellular decomposition is shown with the cells labelled by the corresponding Khovanov

generators. The space A2 is built from one 1-cell labelled (a,X) and two 2-cells labelled (a,1⊗X) and

(a,X⊗1). The space B1 has two 1-cells labelled (b,1⊗X) and (b,X⊗1) and one 2-cell labelled (b,1).

relevant for certain pairs of crossings in a diagram K. Such readers may wonder where the

ladybug matching has gone, now that the Khovanov homotopy type can be constructed
by composing a sequence of 1-crossing tangles. We answer this question with an example.

Consider the (0,4)-tangle T shown in Figure 7.1. If we let a and b be the two crossingless

matchings on 4 strands, labelled as in that figure, then

X (T )(a) = Cone(Sa,1⊗1∨Sa,1⊗X ∨Sa,X⊗1∨Sa,X⊗X −→ Sa,1∨Sa,X)

= Cone(Sa,1⊗1 → Sa,1)∨Cone(Sa,1⊗X ∨Sa,X⊗1 → Sa,X)∨Cone(Sa,X⊗X → pt),

X (T )(b) = Cone(Sb,1∨Sb,X −→ Sb,1⊗1∨Sb,1⊗X ∨Sb,X⊗1∨Sb,X⊗X)

= (Sb,1⊗1)∨Cone(Sb,1 → Sb,1⊗X ∨Sb,X⊗1)∨Cone(Sb,X → Sb,X⊗X),

where we have used subscripts to indicate the Khovanov generator corresponding to each

summand. These mapping cones are indicated in Figure 7.2 (where S has been depicted

as S1).
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Consider now the spaces A2 = Cone(Sa,1⊗X ∨Sa,X⊗1 → Sa,X) and B1 = Cone

(Sb,1 → Sb,1⊗X ∨Sb,X⊗1). The operation X (T )(b)⊗HomH 2(b,a) → X (T )(a) gives a

map

B1∧Sba,1 →A2,

where Sba,1 is the wedge summand of HomH 2(b,a) which labels the single circle in ba by
1 (which lives in quantum grading 1). This map sends half of B1 to the top half in A2

and half of B1 to the bottom half in A2. Which half is sent to which half is determined by

the ladybug matching. The two maps are, of course, homotopic, by rotating the sphere
A2 by π or −π, but the homotopy is not canonical.
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