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Abstract. LSST will uncover a few million time-domain alerts per night with a latency of a
minute. This will provide a huge discovery space, where previously undiscovered rare phenomena
may be revealed. The early detection of such previously unknown events from a minimal set of
measurements is critical for discovery and follow-up. Analysis methods to recognise such events
are being investigated and developed. A discussion of those approaches was presented.
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1. The Problem

The Large Synoptic Survey Telescope (LSST) is projected to image approximately
half the sky every three or four nights for ten years in one or other of six passbands
(u, g, r, i, z, Y ). By comparing every exposure to a past template image of the same
sky region, it will find objects that change, either in brightness or in position (but we
concern ourselves here only with the former). The LSST data system will generate ‘alerts’
whenever it finds a change, with a remarkable latency of only minutes. Each night we
expect of order 107 genuine alerts. Many of those will simply be from known objects in the
sky, but many will be transients that are interesting for follow-up studies (e.g. supernovæ,
gamma-ray bursts, etc.). Brokers such as ANTARES (Saha et al. 2014, 2016); (Soraisam,
p. 155) are being developed to identify those interesting objects from the LSST alerts.
In addition, with its single visit depth of r∼ 24 mag, wide sky coverage, and revisits of
only a few days, the LSST alert stream will also open up an unprecedented ‘discovery
space’ for rare and unknown phenomena. Many are likely to be transitory, requiring
early identification to enable follow-up observations whilst a phenomenon is still active.
The challenge is to identify and find such phenomena that behave differently from all
others that we know, and to pick them out reliably from the alert deluge that LSST will
generate. This paper presented some ideas of how the early identification of such rare
and peculiar phenomena might be made possible, given the kind of data that LSST will
supply.

2. Boundary Conditions

A phenomenon can be assessed as rare or peculiar only in relation to those that are
known to be relatively commonplace. This requires the existence of a dictionary of known
variable phenomena (acknowledging that such a dictionary will grow dynamically, espe-
cially in the LSST era). We use the term ‘feature’ to describe some characteristic property
of a variable phenomenon, e.g., its light-curve (a sequence of brightness measures in one
or more passbands from which we may derive time-scales, amplitudes, shape charac-
teristics, etc.), the location of the object (Galactic coordinates, angular proximity to an
external galaxy), plus contextual information such as whether it is a known X-ray emitter
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or a known radio source. Collating and analysing all of the ‘features’ gathered for a given
source arms us with ways to compare against our dictionary of known variable sources.

Notionally we can construct a hyperspace of our features; we expect the known vari-
ables to distribute themselves in a limited volume of that hyperspace. If we have features
that discriminate well between the different classes, we expect that the known objects will
distribute in this hyperspace into well defined clumps. If the features for a new unknown
object make it fall within a particular clump, it may be inferred to be a member of the
class corresponding to that clump. In reality, some classes will not be separable from
others, and other ambiguities are likely to prevail, but a rare class of phenomenon will
have features that place its hyperspace location far from those of any known class of
variable. However, we must be mindful of several limitations concerning the observed or
derived features:

(a) not all features are known for all known variables or all alerts
(b) some features are better at categorising variable phenomena than others
(c) features are not necessarily independent

These considerations motivate us to focus on those features that are always present and
are most efficacious.

The features that are always present (from here on referred to as ‘persistent features’)
are those that are furnished directly by the LSST data. For a given target displaying
variability, we always have its position on the sky, angular proximity to other known
objects, and the observations over time (in the past), comprised of measurements of
brightness in up to 6 bands.

3. Learning from Persistent Features

Learning to use persistent features for maximal benefit is an ongoing process. Here are
some simple starting examples. One must of course eventually employ machine-learning
methods, but these examples begin with cases that can easily be visualised.

3.1. Frequency distributions in the brightness/colour – time-interval planes

Consider a sequence of brightness measurements m for an object at times t. We can
take any pair of epochs and obtain Δt and Δm for that pair of observations. We can plot
a two-dimensional histogram of Δm vs Δt (in practice we use log Δt rather than Δt). If
the sequence of observations samples all Δt bins evenly, such a histogram represents an
empirical probability distribution in the sense that it gives the probability distribution
for Δm for two observations separated by a given Δt for that object. If we superpose a
representative distribution (reflecting the distribution of periods/time-scales and ampli-
tudes within that class) of individual objects from a certain class of variable phenomena,
then the superposed distribution will represent the corresponding probability distribu-
tion for that class in the Δt vs Δm plane. The top left panel of Fig. 1 shows ‘grayscale’
representations of such 2-D frequency distributions (using g-band light-curves) for a
sample of Long Period Variables (LPVs), from de-reddened photometry (with DECam)
of a field in the Galactic bulge; the top right shows the corresponding distribution for
Type-Ia supernovæ (SNeIa) from the SDSS supernova survey (Sako et al. 2018). Given
a set of observations in m and t for an unknown object, we can compute the likeli-
hood (or other measures such as Kullback–Leibler divergence) that the Δm vs Δt from
those observations has been drawn from either of these two frequency distributions. We
need not of course restrict ourselves to light-curves in one passband; the difference in
magnitudes across two different passbands measured at different times, e.g., the distri-
bution of Δ(g− r), where g is measured at epoch t1 and r is measured at epoch t2, can
be collated against Δt = t2 − t1. Such distributions for the same two samples of LPVs
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Figure 1. The top panels show the Δm (g-band) vs Δt frequency distributions described in
Sect. 3.1 for LPVs (left) and SNeIa (right). The lower panel shows the frequency distributions
for the pseudo-colour (defined in Sect. 3.1) Δ(g− r) vs Δt, for LPVs (left), and SNeIa right.
(Courtesy: M. Soraisam, private communication ).

and SNeIa are shown in the lower left and right panels of Fig. 1, respectively. With only
g-band measurements, disambiguating between the two classes is not too easy, since the
top two panels are not very different. However, the Δ(g− r) distributions for these two
classes are very different (the distributions peak at very different values of the ordinate),
and disambiguation between those two specific classes will be easy.

The actual implementation of this method presents several challenges, principally the
need to have data samples at all time-scales. In addition, with the very many classes of
object present, distinguishing between different classes will require several observations
to be at hand. This will not be efficient at early identification of unusual phenomena.
Note also that there are inherent correlations that have been ignored; for a given light-
curve, there are correlations among the frequencies in the Δm - Δt plane that are being
ignored, but a full discussion is beyond the scope of this article.

3.2. Δm for consecutive Δt pairs

In an effort to account for the correlations, it is useful to look at observed tri-
ads, i.e. ma, mb and mc measured at 3 epochs ta, tb and tc. Let Δm1 =mb −ma and
Δm2 =mc −mb, corresponding to Δt1 = tb − ta and Δt2 = tc − tb. Consider a sine-wave
light-curve with half-amplitude unity and period 0.5 days, for which we have such a triad
of observations. We know from our measurements what Δt1 and Δt2 are – let us choose
an example where they are 0.25 and 0.12 days, respectively. Given the light-curve, we can
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Figure 2. The frequency distribution of magnitude differences for 2 measurements of a sine-
wave light-curve (left) and a sawtooth one (right) with a period of 0.5 days, when sampled at
three epochs separated successively by 0.25 and then 0.12 days. See Sect. 3.2 for a full description.

sample Δm1 and Δm2 for all possible phases at ta, and for good measure add a random
noise drawn from a normal distribution with σ= 0.1. The frequency distribution in the
Δm1 − Δm2 plane for such a uniform sampling of this light-curve for this specific Δt1
and Δt2 is shown in the left panel of Fig. 2. The right panel shows the distribution
sampled identically for a light-curve with the same period and semi-amplitude, but with
a saw-tooth shape. It is striking how different the two frequency distributions are. It
should take only a few measured triads to tell whether the unknown is drawn from the
left or from the right panel (or from neither) using the likelihood or entropy analysis
discussed above for the simple Δm vs Δt case. This method of analysis marginalises over
the correlations in Δt and corresponding Δm for any given object that are imposed by
the light-curve itself, and provides a way to tell between different light-curve shapes on
the basis of just a few observations.

As for the earlier case of ‘independent’ Δt and corresponding Δm, we can construct
frequency distributions for the Δm measured across passbands, which will enhance the
discrimination. We can also proceed to higher dimensions, e.g., from 3 to 4 observations,
where there are 3 of Δt and 3 of Δm, with the frequency distribution mapped in a 3-D
space of 3 Δm, and so on. However, practical considerations of constructing and storing
frequency distributions for n-dimensional Δt distributions will limit how high one can
go. Nevertheless, the example shown here may well hold the key to how a few early
observations may characterise a newly discovered transient well enough to decide if it is
unlike anything we know. Only continued work will tell.
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