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Abstract Let G be a group that is either virtually soluble or virtually free, and let ω be a weight on G.
We prove that if G is infinite, then there is some maximal left ideal of finite codimension in the Beurling
algebra `1(G,ω), which fails to be (algebraically) finitely generated. This implies that a conjecture of
Dales and Żelazko holds for these Banach algebras. We then go on to give examples of weighted groups
for which this property fails in a strong way. For instance, we describe a Beurling algebra on an infinite
group in which every closed left ideal of finite codimension is finitely generated and which has many
such ideals in the sense of being residually finite dimensional. These examples seem to be hard cases for
proving Dales and Żelazko’s conjecture.
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1. Introduction

In this article, we explore some connections between the properties of a discrete group
G and the properties of the left ideals of its Beurling algebras `1(G,ω). We shall show
that the existence or not of a weight ω on G such that `1(G,ω) has a finitely generated
maximal left ideal of finite codimension depends on properties of the group G. One of
our key methods will be based on weights defined in terms of word length with respect
to a given generating set for the group.
We begin with some background and motivation. Let A be an infinite-dimensional uni-

tal Banach algebra, and let I be a closed left ideal of A. There is a natural tension between
finite generation of I and various ways that I could be ‘large’, such as being maximal or
having finite codimension. It is this idea that motivates the following conjecture of Dales
and Żelazko [5].

Conjecture 1.1. (Dales–Żelazko). Let A be an infinite-dimensional unital Banach
algebra. Then A has a maximal left ideal, which is not finitely generated.
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The conjecture has since attracted some attention and is known to be true for var-
ious special classes of Banach algebras, for example commutative Banach algebras [7],
C*-algebras [3], `1(G) for a group G [10] and the algebra of bounded linear operators on
a large class of Banach spaces [6], including the reflexive Banach spaces [11, Corollary
2.2.7]. At the time of writing, no counterexample is known.
In [10], the author showed that the Dales–Żelazko Conjecture holds for Beurling alge-

bras on discrete groups, provided that the weight is sufficiently well-behaved. In the
present work, we instead consider arbitrary weights but a restricted class of groups. Our
first result is the following.

Theorem 1.2. Let G be an infinite group, which is either

(i) a virtually soluble group or
(ii) a virtually free group,

and let ω be an arbitrary weight on G. Then `1(G,ω) contains a maximal left ideal of
finite codimension, which is not finitely generated. In particular, `1(G,ω) satisfies the
Dales–Żelazko conjecture.

One innovation of the present work on [10] is a lemma, which allows us to go up finite-
index group extensions. Then the fact that Dales and Żelazko’s conjecture is known to
hold in the commutative case means that it holds for any Beurling algebra on an abelian
group, regardless of the weight. Combining these two ideas will prove the more general
Proposition 3.3, which will imply Theorem 1.2.
The results in [10], as well as Theorem 1.2, establish the Dales–Żelazko Conjecture by

finding examples of finite-codimension left ideals. These left ideals are usually easier to
work with than those of infinite codimension. However, as we shall see, a Beurling algebra
need not have a finite-codimension maximal left ideal that fails to be finitely generated.
Indeed, our next result shows that Beurling algebras can have starkly different behaviour
to that displayed in Theorem 1.2. First of all, it can happen that there is only one
finite-codimension maximal left ideal.

Theorem 1.3. Let G be a finitely generated, infinite simple group. Fix a finite, sym-
metric generating set X for G and let ω(t) = 2|t|X (t ∈ G). Then the only proper,
finite-codimension left ideal of `1(G,ω) is the augmentation ideal `10(G,ω), and it is
finitely generated.

On the other hand, it can happen that the Beurling algebra has ‘many’ finite-
codimension maximal left ideals, all of which are finitely generated. We do not
know of any other example of an infinite-dimensional unital Banach algebra satisfying
(i) and (ii).

Theorem 1.4. Let G be a finitely generated, just infinite, residually finite group, which
is not a linear group. Fix a finite, symmetric generating set X for G, and set ω(t) =
2|t|X (t ∈ G). Then `1(G,ω) has the following properties:

(i) The intersection of the finite-codimension, maximal left ideals of `1(G,ω) is {0}.
(ii) Every finite-codimension left ideal is finitely generated.
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Examples of groups satisfying this theorem include finitely generated, just infinite
branch groups, such as the Grigorchuk group and the Gupta–Sidki p-groups; it fol-
lows from [1, Corollary 7] that branch groups cannot be linear. For background on
branch groups and their relationship to the theory of just infinite groups, we refer the
reader to [2].
Note that in part (ii) of Theorem 1.4, we do not assume that the left ideals are closed.

However, as we shall remark after the proof, every finite codimension left ideal of this
Beurling algebra is in fact closed. Likewise, in Theorem 1.3, the augmentation ideal is
the only proper finite-codimension left ideal, closed or otherwise.
These two theorems entail that if the Dales–Żelazko conjecture is true for Beurling

algebras, then in order to prove it one needs to look beyond finite-codimension left ideals.
We have been unable to resolve the conjecture for these examples.

2. Notation and terminology

We now fix our notation and terminology. Let A be a unital Banach algebra, and let I be
a left ideal of A. We say that I is finitely generated if there exists n ∈ N and a1, . . . , an ∈ I
such that I = Aa1 + · · · + Aan. We shall usually study left ideals that are closed but
note that we do not take any closure on the right hand side in our definition of finite
generation. Recall that a maximal left ideal in a unital Banach algebra is automatically
closed and that a codimension-1 left ideal is always maximal, although in general a
finite-codimension left ideal need not be closed.
By a weight on a group G we mean a function ω : G → [1,∞) such that ω(st) ≤

ω(s)ω(t) (s, t ∈ G) and ω(e) = 1. We set

`1(G,ω) =

{
f : G → C :

∑
t∈G

|f(t)|ω(t) < ∞

}
,

which is a Banach algebra with multiplication given by convolution, which we write as
‘∗’, and the norm given by ‖f‖ω =

∑
t∈G |f(t)|ω(t) (f ∈ `1(G,ω)). Banach algebras of

this form are called Beurling algebras. We write CG for the set of finitely supported,
complex-valued functions of G, which is a dense subset of every Beurling algebra on G.
Given t ∈ G, we write δt for the point-mass at t, and given f ∈ `1(G,ω), we write
f t := δt ∗ f ∗ δt−1 .
Given a group G, a weight ω on G and a normal subgroup N, we write ω̃ for the weight

induced on the quotient G/N defined by

ω̃(Nt) = inf{ω(st) : s ∈ N} (t ∈ G). (2.1)

By [9, Theorem 3.7.13], the quotient map q : G → G/N extends to a surjective bounded
algebra homomorphism q : `1(G,ω) → `1(G/N, ω̃), whose kernel is given by

Jω(G,N) :=

{
f ∈ `1(G,ω) :

∑
s∈Nt

f(s) = 0 (t ∈ G)

}
.
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In fact, `1(G,ω)/Jω(G,N) and `1(G/N, ω̃) are isometrically isomorphic as Banach
algebras. We define the augmentation ideal of `1(G,ω) to be

`10(G,ω) := Jω(G,G) =

{
f ∈ `1(G,ω) :

∑
t∈G

f(t) = 0

}
.

Let G be a group with finite generating set X. We write |t|X for the word length of
t ∈ G with respect to X, and given r ∈ N, we write

BX
r = {t ∈ G : |t|X ≤ r}.

We also write ḂX
r := BX

r \ {e}. A generating set X is said to be symmetric if, for all
x ∈ X, we have x−1 ∈ X. We shall often insist that our generating sets are symmetric,
both to ease notation and to apply the results of [10]. Word length gives us an important
way to construct weights on the group G. Given c> 1, we can define a weight ω on G by

ω(t) = c|t|X (t ∈ G).

Such a weight is sometimes called a radial exponential weight. Weights of this form with
c=2 appear in two of our main results discussed above; the choice c=2 has merely been
made for concreteness, and the analogous results also hold for arbitrary c> 1.
Let G be a group, and let H be a subgroup. By a right/left transversal for H in

G, we mean a set of right/left coset representatives, respectively. When H is a normal
subgroup, every left transversal is a right transversal and vice versa, so we refer simply
to a transversal for H in G.
We write Fn for the free group on the set {a1, . . . , an}, where a1, . . . , an are just n

arbitrary symbols. We say that a group G is a linear group if it is isomorphic to a
subgroup of GLn(K), the group of invertible n-by-n matrices over a field K. We say that
an infinite group G is just infinite if all of its non-trivial quotients are finite.

3. The Proofs

Our first task is to prove Theorem 1.2. We begin by proving a lemma that allows us to
use our understanding of a finite-index subgroup to study the ambient group.

Lemma 3.1. Let G be a group, and let ω be a weight on G. Let H be a finite-index,
normal subgroup of G and suppose that `1(H,ω|H) has a closed finite-codimension left
ideal, which is not finitely generated. Then so does `1(G,ω).

Proof. Let I be a finite-codimension left ideal in `1(H,ω|H), which fails to be finitely
generated. We consider `1(H,ω|H) as a subalgebra of `1(G,ω). Let n = [G : H], and let
t1, . . . , tn be a transversal for H in G. Define

J =
{
δt1 ∗ f (1) + · · ·+ δtn ∗ f (n) : f (i) ∈ I (i = 1, . . . , n)

}
.
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Note that J is the `1-direct sum of δti ∗ I for i = 1, . . . , n, so it is closed. We show that J
is a left ideal of `1(G,ω). Let u ∈ G, and for each i = 1, . . . , n, write uti = tj(i)vi, where

vi ∈ H (i = 1, . . . , n) and j is a permutation. Then given f (i) ∈ I (i = 1, . . . , n), we have

δu ∗

(
n∑

i=1

δti ∗ f
(i)

)
=

n∑
i=1

δtj(i) ∗ δvi ∗ f
(i) ∈ J,

since each δvi ∗ f
(i) ∈ I. It follows that J is a left ideal in `1(G,ω).

We claim that codim J = [G : H] codim I, which is finite. Indeed, write k = codim I,
and suppose that g1, . . . , gk ∈ `1(H,ω|H) have the property that {g1 + I, . . . , gk + I} is
a basis for `1(H,ω|H)/I. Then it is easily checked that {δti ∗ gj + J : i = 1, . . . , n, j =
1, . . . , k} is a basis for `1(G)/J .
Next we show that J is not finitely generated. Assume towards a contradiction that

J = `1(G,ω) ∗ f1 + · · ·+ `1(G,ω) ∗ fm,

for some m ∈ N and some f1, . . . , fm ∈ J . Then each fi may be written as

fi = δt1 ∗ f (1)
i + · · ·+ δtn ∗ f (n)

i ,

for some f
(1)
i , . . . , f

(n)
i ∈ I. Let g ∈ I be arbitrary. Then, in particular, g ∈ J , so it may

be written as g = h1 ∗ f1 + · · ·+ hm ∗ fm for some h1, . . . , hm ∈ `1(G,ω). Again, we may

write each hi as hi = δt1 ∗h
(1)
i +· · ·+δtn ∗h

(n)
i , for some functions h

(1)
i , . . . , h

(n)
i ∈ `1(G,ω)

supported on H. We have

hi ∗ fi =
n∑

j,k=1

δtj ∗ h
(j)
i ∗ δtk ∗ f (k)

i =
n∑

j,k=1

δtjtk ∗
(
h
(j)
i

)t−1
k ∗ f (k)

i =
n∑

j,k=1

δtjtk ∗ φijk,

where φijk := (h
(j)
i )t

−1
k ∗ f (k)

i . Since H is normal, for all i, j, k, we have suppφijk ⊂ H,

so that supp
{
δtjtk ∗ φijk

}
⊂ tjtkH. Since g is supported on H, it must be equal to the

sum of those terms δtjtk ∗ φijk which are supported on H. For each k = 1, . . . , n, write

k′ ∈ {1, . . . , n} for the natural number satisfying t−1
k H = tk′H. We see that

g = g|H =
n∑

k=1

m∑
i=1

δtk′ tk ∗
(
h
(k′)
i

)t−1
k ∗ f (k)

i .

Hence, since g was arbitrary, I is generated by
{
f
(k)
i : i = 1, . . . ,m, k = 1, . . . , n

}
. This

contradiction concludes the proof. �

In the proof of the next lemma, B(E) denotes the Banach algebra of bounded linear
operators on a Banach space E.
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Lemma 3.2. Let A be a Banach algebra with a finite-codimension left ideal, which is
not finitely generated. Then:

(i) A contains a finite-codimension two-sided ideal that is not finitely generated as a
left ideal.

(ii) If A is also unital, then A contains a finite-codimension maximal left ideal, which
is not finitely generated.

Proof. (i) Let I be a left ideal of finite codimension in A, which is not finitely gen-
erated. Let J be the kernel of the map θ : I → B(A/I) given by a 7→ (x + I 7→ ax + I).
Then

J = {a ∈ I : ax ∈ I for all x ∈ A}

and is a two-sided ideal contained in I (in fact the largest one). The ideal J has finite
codimension in I, since dim(I/J) ≤ dim im θ ≤ dimB(A/I) < ∞, and hence also has
finite codimension in A. In particular, we can write I = J + span {a1, . . . , an} for some
n ∈ N and some a1, . . . , an ∈ I. If J were finitely generated as a left ideal, then taking a
finite generating set for J together with a1, . . . , an would give a finite generating set for
I. Hence, J cannot be finitely generated.
(ii) This follows from part (i) and [5, Lemma 2.9]. �

We are now ready to prove the first of our main results.

Proposition 3.3. Let G be an infinite group with a finite-index normal subgroup H
which has an infinite abelian quotient. Let ω be a weight on G. Then `1(G,ω) has a
finite-codimension maximal left ideal that is not finitely generated. In particular, `1(G,ω)
satisfies the Dales–Żelazko Conjecture.

Proof. Since by [5] the Dales–Żelazko Conjecture holds in the commutative case,

the Banach algebra `1
(
H/H ′, ω̃|H

)
has a codimension-1 ideal which fails to be finitely

generated. By considering the preimage of this ideal under the quotient map `1(H,ω|H) →
`1(H/H ′, ω̃|H), we see that `1(H,ω|H) has a codimension-1 ideal which is not finitely
generated. It follows from Lemma 3.1 that `1(G,ω) has a finite-codimension left ideal
which fails to be finitely generated. Hence, by Lemma 3.2(ii), `1(G,ω) has a maximal left
ideal of finite codimension which is not finitely generated, as required. �

Proof of Theorem 1.2. (i) Suppose that G is virtually soluble. Then G has a finite-
index soluble subgroup S that we may take to be normal. Set k = min{i ∈ N : [S(i) :
S(i+1)] = ∞} and observe that H := S(k) is a finite-index subgroup of G with an infinite
abelian quotient. Moreover, since H is characteristic in S, it is normal in G, so we may
apply Proposition 3.3.
(ii) Suppose that G is virtually free. Then G contains a finite-index free subgroup H,

which we may assume is normal. The result now follows from Proposition 3.3. �

We now move on to our theorem about simple groups.
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Proof of Theorem 1.3. By [10, Corollary 1.9(ii)] (and its proof), the augmentation
ideal `10(G,ω) is generated by finitely many elements of the form δe − δt (t ∈ G). We
shall show that this is the only proper, finite-codimension left ideal. Indeed, let I be a
proper, left ideal of `1(G,ω) of finite codimension. Then G acts linearly on the quotient
E := `1(G,ω)/I, and since G is simple, the action is either trivial or faithful. If the action
was faithful, then G would be a linear group, which is impossible by Malcev’s Theorem
[8]. As such, the action is trivial, and so δt · x = x for all x ∈ E and all t ∈ G. It follows
that (δe − δt) · x = 0 (x ∈ E) for all t ∈ G and, since these elements generate `10(G,ω)
as a left ideal, we must have f · x = 0 for all f ∈ `10(G,ω). As such, `10(G,ω) is contained
in the kernel of the action of `1(G,ω) on E, which is contained in I, and hence I must
equal the augmentation ideal by maximality. This completes the proof. �

Finally, we turn towards the proof of Theorem 1.4. Our strategy for showing that
the left ideals in question are finitely generated will involve reducing to the case of an
ideal of the form Jω(G,H) for a finite-index subgroup H. We shall show that for radial
exponential weights, Jω(Fm,H) is finitely generated for any finite-index subgroup H of
Fm. Then, exploiting the fact that any finitely generated group is the quotient of some
Fm, we shall show that in fact Jω(G,H) is finitely generated whenever G is a finitely
generated group, H is a finite-index subgroup and ω is a radial exponential weight. To
ease the notation, we fix the base of our radial exponential weights to be 2, although this
plays no significant role in the proofs.
To carry this out, we first require a technical lemma about free groups. Note that the

subgroup H of the lemma always has a generating set of the form described.

Lemma 3.4. Let m ∈ N, let Fm be the free group on the set {a1, . . . , am} and let H
be a finitely generated subgroup of Fm. Let X = {a±1

1 , . . . , a±1
m } and let Y be a generating

set for H of the form ḂX
r ∩H, for some r ∈ N. Take u ∈ H, and write u = y1y2 · · · yn,

where n = |u|Y and y1, . . . , yn ∈ Y . Write

yi = xi,1xi,2 · · ·xi,ki
(i = 1, . . . , n),

where xi,p ∈ X and ki = |yi|X , for i = 1, . . . , n and p = 1, . . . , ki.

(i) For each i = 1, . . . , n, when we reduce the expression for yiyi+1 given by

xi,1 · · ·xi,ki
xi+1,1 · · ·xi+1,ki+1

,

at most min{dki
2 e, d

ki+1
2 e} − 1 of the elements xi,1, . . . , xi,ki

can cancel.

Moreover for each j ∈ {2, . . . , n}, the following hold.

(ii) When we convert the expression for y1y2 · · · yj given by

x1,1 · · ·x1,k1
x2,1 · · ·x2,k2

· · ·xj,1 · · ·xj,kj

to a reduced word, the elements xj,p do not get canceled for p = dkj
2 e, . . . , kj.

(iii) |y1y2 · · · yj−1|X < |y1y2 · · · yj−1yj |X .
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Proof. We first prove part (i). Observe that if any more than dki+1/2e − 1 (that
is to say, half or more) of the elements xi+1,1, . . . , xi+1,ki+1

are canceled when reduc-
ing xi,1 · · ·xi,ki

xi+1,1 · · ·xi+1,ki+1
, then we remove at least as many elements from

xi,1, . . . , xi,ki
as we add from xi+1,1, . . . , xi+1,ki+1

, so that |yiyi+1|X ≤ |yi|X ≤ r. This

implies that yiyi+1 ∈ Y ∪{e} by our hypothesis on the special form of the generating set
Y, and this contradicts n = |u|Y . By a symmetrical argument, we cannot cancel more
than dki/2e − 1 elements either.
We shall prove parts (ii) and (iii) together by induction on j. The base case j =2 follows

from part (i). Suppose that the induction hypothesis holds for j. We shall now prove that
(ii) holds for j +1. Write

y1y2 · · · yj = z1z2 · · · zq

for some z1, . . . , zq ∈ X, where q = |y1 · · · yj |X and z1z2 · · · zq is a reduced word over X.
By the induction hypothesis,

zq = xj,kj
, zq−1 = xj,kj−1, . . . , zq−bkj/2c = xj,dkj/2e.

By part (i), when we reduce

yjyj+1 = xj,1 · · ·xj,kj
xj+1,1 · · ·xj+1,kj+1

,

at most dkj/2e − 1 of the elements xj+1,1, . . . , xj+1,kj+1
can cancel with the elements

xj,1, . . . , xj,kj
. This means that when we reduce

z1z2 · · · zqxj+1,1 · · ·xj+1,kj+1
,

the only cancellations that can occur are between the elements xj+1,1, . . . , xj+1,kj+1
and

the elements xj,1, . . . , xj,kj
. However, part (i) also implies that at most dkj+1/2e − 1 of

these elements can cancel, and so xj+1,p will not be cancelled for p = dkj+1/2e, . . . , kj+1 as
required for part (ii). It also follows that we are cancelling fewer terms from z1, . . . , zq than
we are adding from xj+1,1, . . . , xj+1,kj+1

, so that |y1y2 · · · yj−1|X < |y1y2 · · · yj−1yj |X ,

and part (iii) follows. �

Lemma 3.5. Let m ∈ N, write Fm = 〈a1, . . . , am〉, and let X = {a±1
1 , . . . , a±1

m }.
Set ω(t) = 2|t|X (t ∈ Fm). Let H be a finite-index subgroup of Fm. Then the left ideal
Jω(Fm,H) of `1(Fm, ω) is generated by finitely many elements of the form δe − δt, where
t ∈ H.

Proof. Let k = [Fm : H] and let t1, . . . , tk be a right transversal for H in Fm. Write
γ = ω|H . Then Jω(Fm,H) can be written as

Jω(Fm,H) = `10(H, γ) ∗ δt1 + · · ·+ `10(H, γ) ∗ δtk .

As such, it suffices to prove that `10(H, γ) is finitely generated as a left ideal of `1(H, γ).
The weight γ may not be radial, so we cannot apply [10, Theorem 1.8] directly, but
instead we adapt its proof.
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Since H has finite index, it is finitely generated. Let Y be a finite generating set for
H of the form ḂX

r ∩ H for some r ∈ N. Let given u ∈ H, write u = y1y2 · · · yn, for
y1, . . . , yn ∈ Y , where n = |u|Y . By [10, Lemma 6.2(i)], we can write

δe − δu =
∑
y∈Y

gy ∗ (δe − δy),

where each gy ∈ CH and has the form

gy =
n−1∑
j=0

h(j)
y , (3.1)

where each h
(j)
y is either 0 or δy1···yj in the case that j 6=0 and is either 0 or δe in the

case that j =0. (Note that, contrary to what is stated immediately before it, [10, Lemma
6.2(i)] is a purely algebraic statement that is independent of the weight; we shall see that
we are able to prove that part (ii) of that lemma also holds for γ by applying Lemma 3.4
above.)

For j = 1, . . . , n−1, we have ‖h(j)
y ‖γ ≤ 2|y1···yj |X , and so ‖gy‖γ ≤ 1+

∑n−1
j=1 2|y1···yj |X .

By Lemma 3.4(iii), this sum consists of strictly increasing powers of 2, each less than
2|u|X , so that

‖gy‖γ ≤
|u|X−1∑
j=0

2j ≤ 2|u|X = γ(u) (y ∈ Y ). (3.2)

We can now mimic the proof of [10, Theorem 1.8]. Enumerate H = {u0 = e, u1, u2 . . .},
and let f =

∑∞
i=0 αiδui ∈ `10(H, γ). For each i ∈ N, write

δe − δui =
∑
y∈Y

g(i)y ∗ (δe − δy)

for some functions g
(i)
y ∈ CH as in Equation (3.1). Define functions φy (y ∈ Y ) by

φy = −
∞∑
i=0

αig
(i)
y

and note that the series converges because, by Equation (3.2), ‖g(i)y ‖γ ≤ γ(ui) (i ∈ N).
Then, since

∑∞
i=0 αi = 0, we have

f =
∞∑
i=0

αiδui −

( ∞∑
i=0

αi

)
δe = −

∞∑
i=0

αi(δe − δui),
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= −
∞∑
i=1

αi

∑
y∈Y

g(i)y ∗ (δe − δy)

 =
∑
y∈Y

φy ∗ (δe − δy).

As f was arbitrary, it follow that `10(H, γ) is generated by the finite set {δe− δy : y ∈ Y },
which completes the proof. �

The next lemma is an interesting generalization of [10, Corollary 1.9(ii)], which states
that `10(G,ω) is finitely generated for any radial exponential weight ω on G.

Lemma 3.6. Let G be a finitely generated group with a finite, symmetric generating
set X, and let H be a finite-index subgroup. Let ω be the weight on G defined by ω(t) =
2|t|X (t ∈ G). Then the left ideal Jω(G,H) is finitely generated in `1(G,ω). Moreover,
the generators can be chosen to each have the form δe − δt for some t ∈ H.

Proof. Write X = {u±1
1 , . . . , u±1

n } and let {v1, . . . , vm} be a finite generating set
for H, where n,m ∈ N. Writing Fn = 〈a1, . . . , an〉, let q : Fn → G denote the surjective
homomorphism defined by ai 7→ ui (i = 1, . . . , n). LetK = q−1(H), which is a finite-index
subgroup of Fn.
Let β denote the weight on Fn given by β(t) = 2|t|Z , where Z = {a±1

1 , . . . , a±1
n },

and let β̃ be the weight induced on G by regarding it as a quotient of Fn via q, as
in Equation (2.1). We claim that β̃ = ω. Indeed, note that

|t|X = inf{|s|Z : q(s) = t},

and by Equation (2.1), we have

β̃(t) = inf{β(s) : q(s) = t} = inf{2|s|Z : q(s) = t} = 2inf{|s|Z :q(s)=t} = ω(t).

The map q extends to a bounded algebra homomorphism, which we also denote by q,

q : `1(Fn, β) → `1(G, β̃) = `1(G,ω).

It is routinely checked that q(Jβ(Fn,K)) = Jω(G,H). By Lemma 3.5, Jβ(Fn,K) is finitely
generated, and hence so is Jω(G,H). The final statement also follows from Lemma 3.5
since q(δe − δt) = δe − δq(t) (t ∈ K). �

We now prove our final theorem.

Proof of Theorem 1.4. (i) Let f ∈ `1(G,ω) \ {0}. We shall show that there is a
finite-codimension maximal left ideal I in `1(G,ω) for which f /∈ I. By multiplying on
the left by δt for some t ∈ G, we may assume that f(e) 6= 0. Let ε = 1

2 |f(e)|, and let F
be a finite subset of G containing the identity for which∑

t∈G\F

|f(t)|ω(t) < ε.

Since G is residually finite, there exists H CG of finite index such that H ∩ F = {e}.
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Let q : `1(G,ω) → `1(G/H, ω̃) denote the quotient map. Then

q(f)(e) =
∑
s∈H

f(s), (3.3)

which is non-zero because ∑
s∈H,s 6=e

|f(s)| ≤
∑

s∈G\F

|f(s)| < |f(e)|,

so that f (e) can never cancel with the rest of the terms in the sum (3.3). Therefore, in
particular, q(f) 6= 0. Since G/H is a finite group, `1(G/H,ω) is equal to C(G/H), which

is semisimple. Therefore, there exists a maximal left ideal Ĩ in `1(G/H, ω̃) such that

q(f) /∈ Ĩ. Let I = q−1(Ĩ). Then I is a finite-codimension maximal left ideal of `1(G,ω)
and f /∈ I.
(ii) Let I be a finite-codimension left ideal of `1(G,ω). Then G acts linearly on the

quotient E := `1(G,ω)/I, and since G is not a linear group, the action cannot be faithful,
so has a kernel, which we shall denote by H C G. Since G is just infinite, H must have
finite index in G.
We claim that I ⊃ Jω(G,H). As the action of H on E is trivial, we must have δt ·x = x,

and hence (δe−δt) ·x = 0 for all t ∈ H and x ∈ E. By Lemma 3.6, Jω(G,H) is generated
as a left ideal by elements of the form δe − δt (t ∈ H), so it follows that f · x = 0 for all
f ∈ Jω(G,H), which implies that I ⊃ Jω(G,H).
Finally, fix finitely many elements f1, . . . , fk ∈ I such that I = Jω(G,H) +

span {f1, . . . , fk}. Then a finite generating set for Jω(G,H) together with f1, . . . , fk form
a finite generating set for I. �

Remark. Note that in Theorem 1.4(ii), the left ideals are not assumed to be closed.
However, it follows from the above proof that all of the finite-codimension left ideals
of the Banach algebra in Theorem 1.4 actually are closed. Indeed, we have seen that
an arbitrary finite-codimension left ideal I is equal to Jω(G,H) + span {f1, . . . , fk}, for
some finite-index subgroup H and some f1, . . . , fk ∈ I, and since Jω(G,H) is closed, I
must be as well. Not every unital Banach algebra has the property that all of its finite-
codimension left ideals are closed: for intance, add a unit to any of the many interesting
examples in [4]. This property can be rephrased as an automatic continuity property of
`1(G,ω), namely that every module map from `1(G,ω) to a finite-dimensional Banach
left `1(G,ω) module is automatically continuous.
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