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1.  Introduction
This Article is a follow-up to a recent Gazette Article about a

probabilistic betting game studied by Abdin et al. [1]. We examine the speed
of convergence of the probability needed to investigate this game by giving
concrete examples, using the large deviation, which is a valuable tool for
estimating probabilities of repeated trials (see [2], [3, Chapter 6], [4, Section
5.11]). Moreover, to get a deep understanding of the game, we study
fairness when it is repeated infinite times. Let us call it fairness in the sense
of infinity, whose exact definition will be given in the final section.

We know that casino games are unfair to bettors by considering
expectations. In contrast, there are some games that are difficult to interpret
as fair or not. For example, we have the St Petersburg game, whose fairness
has been discussed by many authors (see [5]). For this game, Feller [6,
Sections X.3 and X.4] provided an important study of the fairness using the
weak law of large numbers, and Stoica [7] efficiently obtained large
deviation estimates to investigate some properties of the game. In addition,
the Feller games and the super-Petersburg games, which are games derived
from the St Petersburg game, were investigated by [8, 9] and [10, 11],
respectively.

Abdin et al. [1] also investigated another interesting probabilistic betting
game with a constant ratio of capital. Let us explain the game by using some
notation.
Game 1 ( -betting games): Letting , we consider a bettor
who repeats a bet at each time . Let  be the net gain of the nth bet,
namely  are -valued independent identically distributed (i.i.d.)
random variables with

b � = {1,  2,  … }
n ∈ � ξn

(ξn)n ∈� �

#{a ∈ � : ξ1 = a} < ∞  and  P(ξ1 < 0) > 0  and  P(ξ1 > 0) > 0, (1)
where . In other words, the number of outcomes for the bet is
finite, and the winning probability and the losing probability are both
positive. Let  be the bettor's capital at , in particular,

 is the initial capital, which is a constant. Given a constant ratio
, she bets  at the th bet for each . Then since she

gets , it follows that

� = (−∞, ∞)

Mn n ∈ � ∪ {0}
M0 > 0
b ∈ (0, 1) bMn − 1 n n ∈ �

(bMn − 1) ξn

Mn = Mn− 1 + (bMn− 1)ξn = (1 + bξn)Mn− 1 =  …  = ∏
n

i =1

(1 + bξn)M0. (2)

Note that we assume

1 + bξ1 > 0 (3)
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238 THE MATHEMATICAL GAZETTE

to satisfy . In other words, she can continue to bet without getting
into debt. For simplicity, we call this game the betting game or the b-betting
game if we need to emphasise the dependence on .

Mn > 0

b
We say that the bet with (1) or the betting game is fair, favourable and

unfavourable if ,  and , respectively. For
these betting games, we would like to know the relation between the fairness
of the bets and  for large  which is the probability that she
will be in a winning position after a large number of bets. Abdin et al. [1]
define

E (ξ1) = 0 E (ξ1) > 0 E (ξ1) < 0

P (Mn > M0) n

β = β (b) = E (log (1 + bξ1)) , (4)
which is called the betting index, and showed the following.

Theorem 1 ([1]): For arbitrary betting games, the limit of the probability of
being in a winning position is

lim
n → ∞

P (Mn > M0) =

⎧

⎩

⎨
⎪

⎪

⎪

⎪

(5)
0, if β < 0,
1
2, if β = 0,
1, if β > 0.

In particular, if the betting game is fair, namely , thenE (ξ1) = 0

E (Mn) = M0 for  n ∈ �, (6)
but

lim
n → ∞

P (Mn > M0) = 0. (7)

In fact, the fairness criterion yields . Therefore (6) follows
from (2). Since  for ,

E (1 + bξ1) = 1
log (1 + x) < x −1 < x ≠ 0

β = E (log (1 + ξ1)) < E (bξ1) = b E (ξ1) = 0.
Hence (5) implies (7).

Remark 1: 
(i) If the betting game is fair then the bettor cannot be in any winning

position in the long run, no matter how she adjusts .b ∈ (0, 1)
(ii) From the proof of Theorem 1 of [1], not only (7) but also

 is true. However, this equation seems to be

paradoxical when compared with (6). We study it in the last section.

lim
n → ∞

P (Mn ≥ M0) = 0

Note that even a favourable game may have (7) if the bettor does not
choose  carefully. We confirm it using the following simple setting.b

Game 2 ( -binary games): Let us consider a -betting game withb b

P(ξ = 1) = p and  P(ξ = −1) = 1 − p for  p ∈ (0, 1), (8)
which is investigated in [1, Section 5]. For simplicity, we call it the binary

https://doi.org/10.1017/mag.2024.62 Published online by Cambridge University Press

https://doi.org/10.1017/mag.2024.62


A BETTING GAME WITH A CONSTANT RATIO OF CAPITAL 239

game or the b-binary game. In particular, the original betting game
discussed in [12, 13] is the -binary one. In this case, we have

. Therefore (5) implies that if  then (7) holds.

1
2

β = p log3 − log2
1
2

< p <
log2
log3

The organisation of this Article is as follows. In Section 2, we estimate
the probability  using large deviations. In Section 3, we
elaborate on the results of Section 2 for b-binary games, and study them
with varying . In Section 4, numerical examples are given.
Finally, in Section 5, we discuss the fairness in the sense of infinity to
resolve the paradox of Remark 1 (ii).

P (Mn > M0)

b ∈ (0, 1)

2.  Large deviations with the rate index
In order to extend Theorem 1, we make some preparations. For

 and  let us putb ∈ (0,  1) (ξn)n ∈�

Xi = log (1 + bξi)  for  i ∈ �, (9)
which are well-defined by (3). Then  are i.i.d. with(Xi)i ∈�

P (X1 < 0) > 0 and  P (X1 > 0) > 0 (10)
because

P(X1 < 0) = P(log(1 + bξ1) < 0) = P(bξ1 < 0) = P(ξ1 < 0) > 0,
from (1), and similarly . The betting index is simply
expressed by . The moment generating function of  is defined
as  for . Let us put

P (X1 < 0) > 0
β = E (X1) X1

ϕ (t) = ϕX1 (t) = E (etX1) t ∈ �

ρ = inf
t ∈�

ϕ (t) , (11)

and say that  is a rate index. We see that  for , andρ ϕ (t) > 0 t ∈ �

t → ϕ (t) is smooth and strictly convex. (12)
In fact, the smoothness follows from the fact that  takes only a finite
number of values. Therefore, interchanging differentiation inside the
expectation yields  (see for example [4, 5.1 (12), p. 170]).
Hence (10) implies  for , which gives (12). The rate index
is calculated by the following.

X1

ϕ″(t) = E(X2
1etX1)

ϕ″(t) > 0 t ∈ � ρ

(I) If  then there exists a unique  satisfying .β < 0 τ > 0 ρ = φ(t) ∈ (0, 1)
(II) If  then there exists a unique  satisfying .β > 0 τ < 0 ρ = φ(t) ∈ (0, 1)

Because  can take both positive and negative values with non-zero
probabilities as seen in (10),  for both  and .
Therefore (12) implies that  has a unique minimum at . If

 then  because ,  and .
Thus we obtain (I). (II) is also proved in the same fashion.

X1
ϕ (t) → ∞ t → +∞ t → −∞

ϕ (t) t = τ ∈ �
β < 0 τ > 0 ϕ (t) > 0 ϕ (0) = 1 ϕ′ (0) = β < 0
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Theorem 2 (Large deviations for betting games): For arbitrary betting
games, we have for n ∈ �

P (Mn > M0)
⎧

⎩

⎨
⎪

⎪

⎪

⎪

(13)
≤ ρn if β < 0,
→ 1

2 as n → ∞ if β = 0,
≥ 1 − ρn if β > 0,

where  is calculated by (I) and (II). In particular, for ,
putting 

ρ ∈ (0, 1) ε ∈ (0,  1)

n∗ = ⎢⎢⎣
log ε
log ρ

⎥⎥⎦
+ 1, (14)

where  denotes the integer part of , we have for ⎣x⎦ x > 0 n ≥ n∗

P (Mn > M0)
⎧

⎩
⎨
⎪
⎪

(15)
≤ ε if β < 0,
≥ 1 − ε if β > 0.

Proof: When , the proof is similar to Theorem 1. Defining
, we have . If  then  by

(I). This assures us that

β = 0
Sn = ∑n

i = 1 Xi {Mn > M0} = {Sn > 0} β < 0 τ > 0

P(Mn > M0) = P(τSn > 0) = P(eτSn > 1) ≤ E(eτSn) = (ϕ(τ))n = ρn.
Similarly, if  then . Therefore we also obtainβ > 0 τ < 0

P (Mn > M0) = P (τSn < 0) = 1 − P (eτSn ≥ 1) ≥ 1 − E (eτSn)
= 1 − (ϕ (τ))n = 1 − ρn.

Hence (13) follows. Finally, combining (13) and (14) gives (15), which
completes the proof.

Remark 2: Not only (13) but also the following statements hold.

• If  then .β < 0 lim
n → ∞

1
n log P (Mn > M0) = log ρ

• If  then .β > 0 lim
n → ∞

1
n log P (Mn ≤ M0) = log ρ

Proofs of these results are interesting, as the exponential change distribution
technique is used (see [4, Theorem 5.11.4, p.226]). However, they are not so
useful for obtaining explicit bounds for . In Section 4, we give
them numerically.

P (Mn > M0)

 In general it is not easy to find the rate index algebraically, but we
explicitly present it for binary games in the next section.

3.  Large deviations for the binary game
Throughout this section, we focus on b-binary games with (8). By

definition, the moment generating function of  is written byX1

ϕ (t) = E (etX1) = petB + (1 − p) e−tA, (16)

https://doi.org/10.1017/mag.2024.62 Published online by Cambridge University Press

https://doi.org/10.1017/mag.2024.62


A BETTING GAME WITH A CONSTANT RATIO OF CAPITAL 241

where

A = A (b) = − log (1 − b) and  B = B (b) = log (1 + b) . (17)
Noting that  and , we defineA > 0 B > 0

a =
A

A + B
= −

log (1 − b)
log 1 + b

1 − b
. (18)

For arbitrary binary games, the rate index can be represented by

ρ = (p
a)a (1 − p

1 − a)1 − a

. (19)

In fact, solving

ϕ′ (y) = pBttB − (1 − p) Ae−tA = 0 (20)
and using (I) and (II), we obtain

τ =
log (1 − p

p  A
B)

A + B
. (21)

It follows that

eτB = (1 − p
p

 
A
B)

B
A + B

= (1 − p
p )1 − a ( a

1 − a)1 − a

and

e−τA = ( p
1 − p

 
B
A)

A
A + B

= ( p
1 − p)a (1 − a

a )a

.

Since , substituting then into (16) gives (19).ρ = ϕ (τ)

Remark 3: From (19) we have

log ρ = a log
p
a

+ (1 − a) log
1 − p
1 − a

= −H (a, p) ,

where

H (a, p) = a log
a
p

+ (1 − a) log
1 − a
1 − p

, (22)

which is called the Kulback-Leibler distance. Indeed it is known that
 andH (a, p) ≥ 0

ρ < 1 ⇔ H (a, p) > 0 ⇔ p ≠ a
(see [2, Equation (1)]).

 For b-binary games with (8), the betting index is

β = pB − (1 − p) A = p log (1 + b) + (1 − p) log (1 − b) , (23)
and it follows that 

⎧

⎩

⎨
⎪

⎪
(24)

β < 0 ⇔ p < a,
β = 0 ⇔ p = a,
β > 0 ⇔ p > a.
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Actually (23) follows from  with (17) and (20). If
 in (24) then  by (23), and vice versa. The other two

are also proved in the same manner, hence (24) holds. Combining (15) and
(24), we have

β = E (X1) = ϕ′ (0)
β = 0 p = A

A + B = a

P (Mn > M0)
⎧

⎩
⎨
⎪
⎪

(25)
≤ ρn if  p < a,
≥ 1 − ρn if  p > a,

where  is defined by (18). From (25), for an arbitrary  we have
for any  defined by (14),

a ε ∈ (0, 1)
n ≥ n∗

P (Mn > M0)
⎧

⎩
⎨
⎪
⎪

(26)
≤ ε if  p < a,
≥ 1 − ε if  p > a.

Remark 4:
(i) Equation (25) is an extension of [1, p.37, line 9] because .a (1

2) = log 2
log 3

(ii) For arbitrary binary games, it follows that ,
where  denotes the binomial random variable with parameters
and . From this point of view, the estimate (25) is well known (see for
example [2, Theorem 1] and [3, p.24, Theorem 6.1 (1)]).

P(Mn > M0) = P(B(n, p) > na)
B (n, p) n

p

We study the probability of the winning position as a function of . Let
us consider  defined in (18) as a function  for . Then

b
a b → a (b) b ∈ (0, 1)

a : (0, 1) → (1
2, 1) is strictly increasing and bijective. (27)

In fact, since a simple calculation provides ,

and , we obtain (27).

d
dba (b) > 0 lim

b → 0 + 0
a (b) = 1

2

lim
b → 1 − 0

a (b) = 1

 Fixing  for (19), we regard the rate index  calculated by
(19) as a function of  like .

p ∈ (0, 1) ρ
b → ρ (b) a (b)

Theorem 3 (Varying  for -binary games): For -binary games, we have the
following.

b b b

(i) Suppose . Then no matter how the bettor chooses
it follows that  for . Moreover,
is strictly decreasing for .

0 < p ≤ 1
2 b ∈ (0, 1)

P (Mn > M0) ≤ ρn n ∈ � b → ρ (b)
b ∈ (0, 1)

(ii) Suppose . Then  takes a unique maximum1
2 < p < 1 b → β (b)

β (bmax) = log 2 − h (p) > 0 (28)
at , and there exists a unique
satisfying  and

b = bmax = 2p − 1 b∗ ∈ (0, 1)
a (b∗) = p > 1

2

P (Mn > M0)
⎧

⎩
⎨
⎪
⎪

(29)
≤ ρn if b ∈ (b∗, 1) ,
≥ 1 − ρn if b ∈ (0, b∗) ,

where  is the entropy function.h(p) = −p log p − (1 − p) log(1 − p)
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Moreover, it follows that

ρ (b) is strictly  
⎧

⎩
⎨
⎪
⎪

(30)
decreasing for b ∈ (b∗, 1) ,
increasing for b ∈ (0, b∗) .

Proof: 
(i) Since  and (27), we obtain . Therefore,

applying (25), we have . Moreover, it follows that

 for . Hence

and (27) yield the desired result.

0 < p ≤ 1
2 p ≤ 1

2 < a
P (Mn > M0) ≤ ρn

∂ H(a, p)
∂ a

= log
a(1 − p)
p(1 − a)

> 0 0 < p ≤ 1
2 ρ(b) = e−H(a(b),p)

(ii) From (23) the equation  has a unique solution
 because of . Checking the increasing and

decreasing of , we have (28). From (27), there exists a
unique  with . Applying (25) with , we
have (29). The proof of (30) is similar to (i).

β′ (b) = 0
b = 2p − 1 ∈ (0, 1) 1

2 < p < 1
b → β (b)

0 < b∗ < 1 b (b∗) = p > 1
2 b∗

Remark 5: It follows from (28) that .bmax ∈ (0, b∗)

4.  Examples
In this section, we examine three examples investigated in [1]. Indeed,

we numerically evaluate (13) and (15). Note that  defined by (14) depends
on  and , but for all examples we set  and write .

n∗
ε b ε = 0.05 n∗ = n∗ (b)

Example 1 (American roulette): We consider the -binary game, and
suppose  in (8), which is the win probability for American red-
or-black roulette (see [1, Section 4]). Since

1
2

p = 18
38 = 9

19

E (ξ1) = −
1
19

= −0.0526… < 0, (31)

the bet is unfavourable. Moreover, we have

β = −0.1727… < 0 (32)
written in [1, p. 36],

⎧

⎩

⎨
⎪

⎪

⎪

⎪

a = log 2
log 3 = 0.6309… ,

τ =
log( 10 log 2

9 log(3/2)
log 3 = 0.5839… ,

ρ = 10 log 3
19 log(3/2) (9 log(3/2)

10 log 2 )
log 2
log 3 = 0.9513… ,

and , namelyn∗ = 61

P (Mn > M0) ≤ 0.05,  if n ≥ 61. (33)
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Example 2 (American roulette with mixed bets): For -betting games, we
suppose that the probability distribution of  is

b
ξ1

⎧

⎩

⎨
⎪

⎪
 where  

⎧

⎩

⎨
⎪

⎪

⎪

⎪

P (ξ1 = x1) = p1,
P (ξ1 = x2) = p2,
P (ξ1 = x3) = p3,

x1 = 18 − 1
2, p1 = 1

38,

x2 = 1
2 − 1

2, p2 = 18
38,

x3 = −1, p3 = 19
38,

whose distribution shows that the bettor mixes her bets by choosing more than
one possible outcome (see [1, p. 36]). Since , it is
unfavourable, but more advantageous than (31). If  then the betting
index is  from [1, p. 36], which is smaller than (32). For

 since

E(ξ1) = − 3
76 = −0.039… < 0

b = 1
2

β = −0.2866…
b ∈ (0, 1)

ϕ (t) = E (etX1) = p1e
tC1 + p2e

tC2 + p3e
tC3,

we cannot solve the equation algebraically

ϕ′ (t) = p1C1e
tC1 + p2C2e

tC2 + p3C3e
tC3 = 0 for t ∈ �,

where  for . When , we obtain
numerically ,  and , namely

Ci = log (1 + bxi) i = 1, 2, 3 b = 1
2

τ (1
2) = 0.5908… ρ (1

2) = 0.4330… n∗ (1
2) = 4

P (Mn > M0) ≤ 0.05 if n ≥ 4,
which should be compared with (33).

Example 3 (Favourable -binary games): For the -betting game, we
suppose (8) with , which is studied in [1, Section 7]. Since

, it is favourable. In general, many people think that no
favourable bet exists in the real world. However, for example, if you
become the dealer rather than the bettor in Example 1 then you can consider
the favourable bet.

b b
p = 3

5 > 1
2

E (ξ1) = 1
5 > 0

Since  appeared in Theorem 3 (ii) is the unique solution of
, we get numerically  . Here, we investigate both

the case of  and the case of  which
is pointed out in Remark 5. Since the numerical calculations of (19) give

 and , it turns out that

b∗
a(b) = p = 0.6 b∗ = 0.38939…

b = 0.5 > b∗ 0 < b = bmax = 2p − 1 = 0.2 < b∗

ρ (0.5) = 0.9979… ρ (0.2) = 0.9949…

P (Mn > M0)
⎧

⎩
⎨
⎪
⎪

≤ 0.998n if b = 0.5 > b∗,
≥ 1 − 0.995n if b = 0.2 < b∗.

This indicates that

⎧

⎩
⎨
⎪
⎪

P (Mn > M0) ≤ 0.05 if n ≥ n∗ (0.5) = 1490.
P (Mn > M0) ≥ 0.95 if n ≥ n∗ (0.2) = 591.

In addition,  follows in a similar manner. Indeed,
 for  is increasing because of (14) and (30). It

suggests that if the bet is favourable then the ratio of the capital for bets

n∗ (0.1) = 261
b → n∗ (b) 0 < b < b∗
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should be as small as possible to increase the probability of being in a
winning position. In American roulette, the dealer who wants to be in a
winning position hopes that the bettor bets with a lower ratio of her capital.

5.  Fairness in the sense of infinity for the binary game
Throughout this section, we focus on the fair -binary games for

 and (8) with , namely . In this setting, we have
b

b ∈ (0, 1) p = 1
2 E (ξ1) = 0

lim
n → ∞

Mn = 0 almost surely. (34)

The proof of (34) is as follows. Since  is a product of non-negative
independent random variables of mean 1 by (2) and (3), the process
is a martingale relative to  by [14, Section 10.4 (b)]. From
Kakutani's theorem [14, Section 14.12], there exists  almost surely,

and say . Since

Mn
(Mn)n ∈�

(ξn)n ∈�

lim
n → ∞

Mn

M∞

0 < E ( 1 + bξ1) =
1 + b + 1 − b

2
< 1, (35)

we have . Therefore Kakutani's theorem also
yields , which means (34).

∑∞
n = 1 (1 − E ( 1 + bξn)) = ∞

P (M∞ = 0) = 1

Equation (34) tells us that we are not permitted in general to reverse the
order of taking a limit and an expectation as follows.

0 = E (M∞) ≠ lim
m → ∞

E (Mn) = M0 > 0, (36)

which is similar to the calculation of the extinction probability for the
branching process (see [14, Section 0.7 (a), p.8] and [4, Theorem 5.4.5,
p.194]). The reason for (36) is that  does not satisfy uniform
integrability (see [14, Chapter 13]). Equation (36) causes (7), which is an
explanation of Remark 1 (ii). A betting game is said to be unfair in the sense
of infinity if (36) holds. Namely, we have the following claim.

(Mn)n ∈�

Theorem 4: The fair -binary games are unfair in the sense of infinity.b

On the other hand, a betting game is fair in the sense of infinity if it
satisfies

E (M∞) = lim
n → ∞

E (Mn) = M0. (37)

To establish this, let us use  by adding the time parameter  to .bn n b

Theorem 5: If  then the fair -binary games are fair in the
sense of infinity.

∑∞
n = 1 b2

n < ∞ bn

Proof: It follows from (35) that , whereE( 1 + bnξn) ∼ (1 − 1
8b2

n) xn ∼ yn
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stands for . By assumption, we havelim
n → ∞

xn

yn
= 1

∑
∞

n = 1
(1 − (1 −

b2
n

8 )) < ∞.

Consequently,  by the comparison test. Thus

applying [14, Theorem 14.12 (v)] to , we obtain (37), which
completes the proof.

∑
∞

n = 1

(1 − E ( 1 + bnξn)) < ∞

(1 + bnξn)n ∈�

For example, if  then (37) follows. Theorem 5 tells us that if we
will enjoy fair betting games in the sense of infinity, we must adequately
reduce the ratio of the capital for the bets.

bn = 1
n
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Continued from page 224.

4. From every throat in the room there proceeded a shout, a shriek, or
some other variety of cry, as the test-tube, slipping from between the
victim's fingers, described a parabola through the air.

5. With cool head and tranquil judgement, imperturbably unconscious of
the flight, they oscillated from asymptote to asymptote

6. STEPHEN: Here’s another for you. (He frowns) The reason is because
the fundamental and the dominant are separated by the greatest possible
interval which …

THE CAP: Which? Finish. You can’t.
STEPHEN: (With an effort) Interval which. Is the greatest possible
ellipse. Consistent with. The ultimate return. 
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