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L I E I D E A L S IN ASSOCIATIVE A L G E B R A S 

BY 

G. J. M U R P H Y 

ABSTRACT. It is shown that in a certain extensive class of alge
bras one can associate with each Lie ideal a corresponding associa
tive ideal which facilitates the study of Lie ideals, especially for 
simple algebras. We apply this construction to obtain new, simpler 
proofs of some known results of Herstein [10] and others on the Lie 
structure of associative rings. 

Introduction. Let B be the algebra of all bounded operators on a separable 
Hilbert space of infinité dimension, and for / a subset of B let [B, J ] denote the 
set of all finite sums of elements [T, X]=TX-XT where TeB and XeJ. It is 
shown in Fong-Meiers-Sorrour [8] that a linear manifold L in B is a Lie ideal 
in B if and only if there is an associative two-sided ideal J in B such that 
[B, J]^L ç J + C1. Their proof uses some deep results in Operator Theory. In 
this paper we show that analogous results hold in a much more general context, 
and our proofs are simpler and more algebraic. We also give a partial 
generalization of a result of de la Harpe [4] (see also Murphy-Radjavi [11]). In 
certain simple algebras we are able to completely characterize the Lie ideals 
(see [10], where these results were originally obtained by different methods). 

Terminology. The terms algebra and ideal when not qualified will always 
mean associative algebra and associative two-sided ideal. Every algebra B over 
a field F is a Lie algebra with respect to the commutator product [x, y] = 
xy - yx. 

Let B be an algebra over a field F and suppose B has a set of 2 x 2 matrix 
units ell9 e12, e21, e22. It turns out that we can say a lot about the Lie ideals of 
such algebras. If A is the centralizer of the matrix units, i.e. A = 
{xeB : xetj = etjx, 1 < i , j<2}, then A is a subalgebra of B, and it's well known 
that B is isomorphic to the algebra M2(A) of all 2 x 2 matrices with entries in 
A (see [5] p. 134). 

The class of algebras over C having a set of 2 x 2 matrix units is extensive: it 
includes the properly infinite von Neumann algebras, and the hyperfinite type 
IIa-factors [13] pp. 48-49. Of course if H is a Hilbert space of infinite 
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dimension and B(H), K(H) denote the algebra of bounded operations, and the 
ideal of compact operators respectively, then B(H) and B(H)/K(H) admit sets 
of 2 x 2 matrix units. More generally, any 2-homogeneous von-Neumann 
algebra admits a set of 2 x 2 matrix units [13]. In fact, if B is a Banach 
*-algebra and there exists P, VeB with P a projection and V*V = P and 
W * = 1 - P, then the set e n = P, e12 = V*, e21 = V, e22 = 1 - P, forms a set of 
2 x 2 matrix units for B. 

Let B be a unital algebra over a field F not of characteristic 2. We shall use 
the following notation. If S, T are subsets of B we let [S, T] denote the set of 
all sums [x, y] where xeS and y e T . For I an ideal in B, we let I~ = 
{ x e B : [b, x ]e I (beB)} . Clearly I + F l ç I ~ . In some important examples (see 
below) we have equality, I + F1 = I. 

Before proving the following theorem a short observation will be useful: if L 
is a Lie ideal in B, and ueB such that u2 = 1, then uLw ç= L. This follows from 
the elementary calculation uxu = x - l/2[w, [w, x]]. (This calculation appears 
in [8].) 

rLHKOREM 1. Let B be an algebra, over a field F not of characteristic 2, which 
contains a set of 2 x 2 matrix units. If L is a Lie ideal in B, then there is an ideal 
I in B such that [B, T\<^L<^I~. 

Proof. We assume w.l.o.g. that B = M2(A) for some algebra A over F. 
Define 

>•{"< M 
Now if x G J and aeA, then 

a; x ti\< " ) - - te o)-(o : K : ) -
Thus ax, xa e J. Since it's obvious / is a linear manifold, we conclude that / is 

an ideal in A. Now define I = \ ( I : x, y, z, t e j \ . Then I is an ideal in B. 

First we show L^I~. Let I I G L and I J e B . We have to show 
\z t) \c d) 

/0 y\ /0 0\ /0 1\ 
lie in L. Hence I I, I n ) G ^ - B u t ^ M = \ i n ) t^ i e n M ^n B' s o 

wLw C L by the remark preceding this theorem. Hence ( ) = u\ jueL. 
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Thus y,zeJ9 and so ( ° j ) e l . Also (* J ) e L Now [ ( ° J ) , ( j ° 

/ ° * - * \ T x ^ /x y\ /x 0 \ /0 y \ 
I ^ G L , so t — x e J. Thus = l+l , and the second 
\0 0 / \z tJ \0 x / \z t - x / 

\(a b\ (x y\\ 
term is in I. Thus to show I 1,1 e l we need now only show 

\(a b\ (x 0 \ ] /[a,x][fo,x]\ _ . ^ i u r i r f n 
1 , , I ̂  = \ r - i r i -. G L i e - w e need only show [a, xj G J for all a 

l\c d) \0 x / J \[c, x][d, x ] / 

L\o o/ \o t/J \ o o/ Lvo o/ \ o 0/ 

( ' I eL , implying [a, x]e J. Thus L s l ~ . 

Now we show [£?, I] ç L. Let x € J and aeA. Then 

[a,x] o\_r/a o\ r/o x\ /o o\ 
0 0/ Lvo o/'L\o 0M1 0/ 

\0 0/ 

G L. Also if x, y G J then 

eL, and so 

0 x 

are in L, hence I ) 
Vy 0/ 

0 0 

G L. Thus if 

a b 
then 

[(: x :)} a b 

L\c 

since bt — xb 

[a, x] 

0 M 

and 

/0 l \ / [ d , t ] 0 \ /0 1\ 
\i oA 0 0A1 0/ 

0 \ / 0 bt-xb\ Via b\ /0 y 
U ] / \ cx - f c 0 / L i e d / ' \ z 0 

(° y\ T (° ° \ 
ex —tee J, 1 eL , and I r , -, 

\z 0/ V0 [d , r ] / 

eL 

eL. 

COROLLARY 2. 1/ the Lie ideal L in the above theorem is of finite codimension 
in B one can choose the ideal I to be of finite codimension also. 

Proof. Let I and / be as in the proof of the above theorem. Now if 
yi , . . . , yn are linearly independent elements of A such that J n [ y l 5 . . . , yn] = 0 

where [y1?. . . , yn] denotes the linear span, then ( x 1 , . . . , ( n I are 

linearly independent in B and L H 
0 y i 

0 0 : ?)]-• Thus n < 

dim(B/L), and so dim(A/J)<oo. 
Now suppose / © [ y i , . . . , y„] = A. Then if M denotes the linear span in B of 
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the elements (yJ J ) , (J » ) , ( ° ° ) , ( ° y
0J ( l ^ ^ n ) , it is easily seen 

that WM = B. Thus dim(B/J)<oo. 

REMARK. If ?if is a separable Hilbert space of infinite dimensions and 3 is an 
ideal in â8(9if), then it was shown by Calkin [3] that ^~ = I + C1. We use this 
interesting fact to deduce the following theorem from Theorem 1. 

THEOREM 3 (Fong-Miers-Sourour [8]). If dtf is a separable infinite dimen
sional Hilbert space and SE is a linear manifold in Sft(ffl) then SE is a Lie ideal in 
9b(W) if and only if there is an ideal $ of 3B(3if) such that [ ^ W , i ] ç ^ ç 

REMARK. It was shown by de la Harpe [4] that if ^ is a Hilbert space, 
dimH = oo? and SE a Lie ideal in K(%£) of finite codimension, then necessarily 
L = K{ffl) (see also Murphy-Radjavi [11] for related results). Using our results 
above we can give a quick proof in the case where Sif is separable of a weaker 
version of de la Harpe's theorem, viz if SE is a Lie ideal of 38(3?) which is of 
finite codimension in K(9€), then SE = K{<$€). For, by Theorem 3, there is an 
ideal S of M(%) such that [ « ( ^ ^ c i f c i + C l . H e n c e ^ « ( 3 1 0 , since 
[â8(9if), 3B(9if)] = 3B(9if) [2]. Thus â> ç K ( ^ ) . Hence ^ is of finite codimension in 
Kiffî), since i ^ ç ^ + C l . But this implies 3 is closed [11]. Hence $ = JC($C). 
Now XW) = [M(%),XW] [I]- Hence SE = %($€) since 2^[&(%),*l 

Recall that the centre Z(JB) of an algebra £ is the set {xeB:xy = yx(y G JB)}. 
It is clear that if L is a linear manifold in B such that L ç Z(B) or [J3, JB] Ç L, 
then L is a Lie ideal in B. The following theorem gives a class of algebras for 
which every Lie ideal is got in this manner, and is a weaker version of a 
theorem of Herstein. 

THEOREM 4 (Herstein [10]). Let B be a simple algebra, over a field F not of 
characteristic 2, which has a set of 2 x 2 matrix units. Then the Lie ideals of B 
are precisely the linear manifolds L of B such that L^Z(B) or [J3, B ] ç L . 

Proof. Let L be a Lie ideal of JB. By Theorem 1, there is an ideal I in B 
such that [B, I]^L^I~. Now by the simplicity of J3, I = 0 or B. If I = 0, then 
L^r = Z(B). If I = B, the [B, B]çL. 

REMARK. Let 3€ be an infinite dimensional separable Hilbert space and 
B = &(%)/%(%)- Then B is simple and has a set of 2 x 2 matrix units. Also 
[B,B] = B [2], and Z(B) = C1. Hence by Theorem 4 the only Lie ideals of B 
are 0, CI , and B itself. This observation is apparently originally due to 
Topping. 

If an algebra B satisfies B =\_B, B] and has a set of 2 x 2 matrix units, then 
we are able to characterize its Lie ideals in terms of its ideals. Some examples 
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of such algebras are: S8(3if) where $? is an infinite dimensional Hilbert space; 
2ft(ffl)/3£(%!) if Sif is also separable; also every properly infinite von Neumann 
algebra [12]. 

THEOREM 5. Let Be be an algebra, over a field F not of characteristic 2, with a 
set of 2 x 2 matrix units, and suppose B = [B, B]. Then a linear manifold L in B 
is a Lie ideal if and only if there is an ideal I in B such that \B, I ] ç L ç=J~. 

Proof. The forward implication has been shown in Theorem 1. So let's 
suppose L is a linear manifold and I is an ideal such that [B, I J ^ L ç I . Let 
xeL and a,beB. Then [[a, b], x] = [a, [b, x]] — [b, [a, xj] by the Jacobi iden
tity. But xel~, so [a,x],[b,x]el. Now [B,I]^L, hence [a, [b, x]] and 
[b,[a,x]]eL. Thus [[a,b],x]eL. But since [B, B] = B, this implies [c,x]eL 
for all c in B. Thus L is a Lie ideal. 

THEOREM 6. Let B be an infinite dimensional algebra over a field F not of 
characteristic 2 and suppose B =[B, B] and B has a set of 2 x 2 matrix units. 
Then B has proper finite codimensional Lie ideals if and only if B has proper 
finite codimensional ideals. 

Proof. The backward implication is clearly trivial. Suppose L is a proper Lie 
ideal with DimB/L<°° . Then by Corollary 2 there is an ideal I in B with 
[B, I]^L^I~ and dimB/I<°°. Hence 1^ 0 since dim B = oo. Also 1^ B since 
B = [B, B]^L^B. 

REMARK. We finish this paper with a generalization of a result in [8]. It's 
shown there (Theorem 1) that a linear manifold Z£ in £$($?) (5if a separable 
infinite dimensional Hilbert space) is a Lie ideal in 38(3?) iff U*!£U<^!£ for 
every unitary U in S8(3if). An inspection of the proof shows that it only uses 
the following two facts about 38(3?). 

(a) Every unitary in 38(3?) is a product of (four) symmetries. 
(b) Every operator in 38(3?) is a finite linear combination of projections. The 

first result is due to Halmos-Kakutani [9], and in [7] it is shown that this result 
can be extended to any properly infinite von Neumann algebra B (i.e. every 
unitary in B is a product of symmetries in B.) The second result is due to 
Fillmore [6], and in [12] it is generalized to a properly infinite von Neumann 
algebra B (i.e. every element of B is a linear combination of projections in B.) 
Hence, we conclude: A linear manifold L in a properly infinite von Neumann 
algebra B is a Lie ideal in B if and only if u*Lu^ L for every unitary u in B. 
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