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Abstract

It was recently proven that the correlation function of the stationary version of a reflected
Lévy process is nonnegative, nonincreasing, and convex. In another branch of the litera-
ture it was established that the mean value of the reflected process starting from zero is
nondecreasing and concave. In the present paper it is shown, by putting them in a com-
mon framework, that these results extend to substantially more general settings. Indeed,
instead of reflected Lévy processes, we consider a class of more general stochastically
monotone Markov processes. In this setup we show monotonicity results associated with
a supermodular function of two coordinates of our Markov process, from which the
above-mentioned monotonicity and convexity/concavity results directly follow, but now
for the class of Markov processes considered rather than just reflected Lévy processes.
In addition, various results for the transient case (when the Markov process is not in
stationarity) are provided. The conditions imposed are natural, in that they are satisfied
by various frequently used Markovian models, as illustrated by a series of examples.
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1. Introduction

In the context of Lévy-driven queues [8] and Lévy storage processes [18], it was recently
shown [3] that, whenever the stationary distribution exists and has a finite second moment, the
correlation function associated with the stationary version of the reflected process is nonnega-
tive, nonincreasing, and convex. Here, a Lévy-driven queue is to be interpreted as the one-sided
(Skorokhod) reflection map applied to a Lévy process. Notably, the results in [3] show that
the mentioned structural properties carry over to the finite-buffer Lévy-driven queue, i.e., the
two-sided (Skorokhod) reflection map. One could regard [3] as the endpoint of a long-lasting
research effort which began over four decades ago. The nonnegativity, nonincreasingness, and
convexity of the correlation function of the stationary process was proven in [19] for the case
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From Lévy to stoch. monotone Markov 69

where the Lévy process under consideration is compound Poisson. The more recent contri-
butions [10, 11] deal with the spectrally positive and negative cases, respectively. Finally, [3]
removed the spectral restrictions on the Lévy process assumed in [10, 11]. Whereas [10, 11, 19]
rely on the machinery of completely monotone functions, [3] uses a direct conditioning
argument in combination of elementary properties of the reflection map.

A second strand of research that we would like to mention concerns structural properties of
the mean value (and related quantities) of the reflected process. It was found [14] that for a one-
sided Skorokhod reflection, when the driving process has stationary increments and starts from
zero, the mean of the reflected process (as a function of time) is nondecreasing and concave.
In particular this holds when the driving process also has independent increments (i.e., the
Lévy case), which for the spectrally-positive case had been discovered earlier [12]; we refer to
[15, Theorem 11] for a multivariate analogue. The nondecreasingness and concavity of the
mean was proven to extend to the two-sided reflection case in [1], where it was also shown that
for the one- and two-sided reflection cases the variance is nondecreasing.

The main objective of this paper is to explore to what level of generality the results from the
above two branches of the literature can be extended, and whether they could be somehow
brought under a common umbrella. Importantly, in our attempt to understand the above-
mentioned structural properties better, we discovered that they are covered by a substantially
broader framework. We have done so by considering stochastically monotone Markov pro-
cesses (in both discrete and continuous time), and deriving properties of the expected value of
bivariate supermodular functions of coordinates of the process.

Importantly, we discovered a neat and quite simple approach to extend a broad range of
existing results to a substantially broader class of processes and more general functional setups.
We strongly feel that this particular approach gets to the heart of the matter, and also helps in
giving a much clearer understanding of earlier results. More specifically, our findings directly
imply the type of monotonicity results for the covariance that were found in [3, 10, 11] and
[12, 14]. For the convexity results of [3, 10, 11] and the concavity results of [14] (restricted
to Lévy processes) and [12], a further, rather natural, condition needs to be imposed on the
underlying Markov transition kernel; this is Condition 1, to follow. However, notably, the
monotonicity of the variance established in [1] is not valid under the conditions imposed in
the current paper, as we will show by means of a counterexample.

The area of stochastically monotone Markov processes is vast. Without aiming at giv-
ing a full overview, we would like to mention [7, 16, 22, 23]. In particular, in [7] a main
result is Theorem 4, which states that if {Xn | n≥ 0} is a stationary stochastically monotone
time-homogeneous Markov chain (on a real-valued state space) and f is nondecreasing, then
Cov(f (X0), f (Xn)) (whenever it exists and is finite) is nonnegative and nonincreasing in n. As
it turns out, this result also is a special case of the results established in our current paper.
Importantly, quite a few frequently used stochastic processes are stochastically monotone
Markov processes, including for example birth–death processes and diffusions [16], as well as
certain Lévy dams and (state-dependent) random walks, besides the above-mentioned reflected
processes.

In our proofs we use the notion of a generalized inverse of a distribution function and
some of its properties, conditioning arguments, and the application of the concept of super-
modularity and its relationship to comonotonicity. More concretely, it will be important to
study the properties of h(Xs, Xt) or h(Xs, Xt − Xt+δ) (and others) for 0≤ s≤ t and δ > 0, where
h is a supermodular function. This will be done for both the stationary case and the tran-
sient case (under various conditions). For background on results associated with supermodular
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70 O. KELLA AND M. MANDJES

functions, and in particular the relationship with comonotone random variables, which we will
need several times, we refer to [5, 20, 21].

As so often in mathematics, once we are in the right framework, proofs can be highly
compact and seemingly straightforward. It is, however, typically far from trivial to identify
this best ‘lens’ through which one should look at the problem. This phenomenon also applies
in the context of the properties derived in the present paper. Indeed, in previous works the focus
has been on specific models and specific properties, with proofs that tend to be ad hoc, lengthy,
and involved, reflecting the lack of an overarching framework. With the general approach that
we develop in this paper, we manage to bring a wide class of existing results under a common
denominator, with the underlying proofs becoming clean and insightful. In addition, because
we have found the right angle to study this class of problems, we succeed in shedding light on
the question of the extent to which these results can be further generalized. Our objective was
to present the framework as cleanly as possible; our paper is self-contained in the sense that it
does not require any previous knowledge of stochastically monotone Markov processes.

The paper is organized as follows. In Section 2 the formal setup (including Condition 1), the
main results, and their proofs will be given. In Section 3 we provide a series of appealing exam-
ples of frequently used stochastically monotone Markov processes that satisfy Condition 1.
Section 4 concludes.

Throughout we write a∧ b=min(a, b), a∨ b=max(a, b), a+ = a∨ 0, a− =−a∧ 0=
(−a)+. In addition, a.s. stands for almost surely (i.e., with probability one), and CDF stands
for cumulative distribution function. Also, =d means ‘distributed’ or ‘distributed like’, and
X ≤st Y means P(X > t)≤ P(Y > t) for all t (stochastic order).

2. General theory

This section presents our main results. Section 2.1 treats our general theory, whereas
Section 2.2 further reflects on general questions that can be dealt with relying on our results,
as well as the connection with supermodular functions.

2.1. Main results

For x ∈R and A Borel (one-dimensional), we let p(x, A) be a Markov transition kernel. By
this we mean that for every Borel A, p(·, A) is a Borel function and for each x ∈R, p(x, ·) is
a probability measure. We will say that p is stochastically monotone if p(x, (y,∞)) is nonde-
creasing in x for each y ∈R, which, as was discussed earlier and will be demonstrated later, is
a natural property across a broad range of frequently used stochastic models.

The following condition plays a crucial role in our results. Whenever it is satisfied, it allows
us to establish highly general results. The condition is natural in the context of, e.g., queues
and other storage systems, as will be pointed out in Section 3.

Condition 1. For each y, p(x, (x+ y,∞)) is nonincreasing in x.

Now, for n≥ 1, let p and pn, for n≥ 1, be transition kernels. Define

G(x, u)= inf{y | p(x, (−∞, y])≥ u} (1)

to be the generalized inverse function associated with the CDF Fx(y)= p(x, (−∞, y]), and
similarly let Gn(x, u) be the generalized inverse function associated with pn. We recall (see
e.g. the paper [9], among many others) that G(x, u) is nondecreasing and left-continuous in u
(on (0, 1)), and that G(x, u)≤ y if and only if u≤ p(x, (−∞, y]). Thus, if U =d U(0, 1), where
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U(0, 1) is the uniform distribution on (0, 1), then P(G(x, U)≤ y)= p(x, (−∞, y]) and thus
P(G(x, U) ∈ A)= p(x, A). Similar reasoning applies to Gn(x, u) for every n≥ 1.

Lemma 1. The transition kernel p is stochastically monotone if and only if, for each u ∈ (0, 1),
G(x, u) is nondecreasing in x. Furthermore, Condition 1 is satisfied if and only if, for each u,
G(x, u)− x is nonincreasing in x.

Proof. It follows from the facts (i) that for x1 < x2

{y | p(x1, (−∞, y])≥ u} ⊃ {y | p(x2, (−∞, y])≥ u}, (2)

(ii) that under Condition 1 for x1 < x2

{y | p(x1, (−∞, x1 + y])≥ u} ⊂ {y | p(x2, (−∞, x2 + y])≥ u}, (3)

and (iii) that G(x, u)− x= inf{y | p(x, (−∞, x+ y]≥ u}. �

Now, let gk
k(x, u)=Gk(x, u), and for n≥ k+ 1 let

gn
k(x, u1, . . . , un−k+1)=Gn(gn−1

k (x, u1, . . . , un−k), un−k+1). (4)

It immediately follows by induction that if pk, . . . , pn are stochastically monotone, then
gn

k(x, u1, . . . , un−k+1) is nondecreasing in x. Assume that U1, U2, . . . are independent and
identically distributed (i.i.d.) with distribution U(0, 1); then with X′0 = x and

X′n = gn
1(x, U1, . . . , Un) (5)

for n≥ 1, {X′n | n≥ 0} is a real-valued (possibly time-inhomogeneous) Markov chain with pos-
sibly time-dependent transition kernels p1, p2, . . .. Let us now set pk−1

k (x, A)= 1A(x) and, for
n≥ k,

pn
k(x, A)=

∫
R

pn(y, A)pn−1
k (x, dy). (6)

Lemma 2. If, for 1≤ k≤ n, pk, . . . , pn are stochastically monotone Markov kernels (resp.,
and in addition satisfy Condition 1), then pn

k is stochastically monotone (resp., and in addition
satisfies Condition 1).

Proof. By induction, it suffices to show this for the case n= k+ 1. If pk and pk+1 are
stochastically monotone, then gk+1

k (x, U1, U2) is a random variable having the distribution
pk+1

k (x, ·). Therefore, the stochastic monotonicity of pk+1
k is a consequence of the fact that

gk+1
k (x, U1, U2) is nondecreasing in x. Now, if stochastic monotonicity and Condition 1 hold,

then Gk(x, U1)− x and Gk+1(Gk(x, U1), U2)−Gk(x, U1) are nonincreasing in x, and thus so is
their sum. This implies that gk+1

k (x, U1, U2)− x is nonincreasing in x, which implies that pk+1
k

satisfies Condition 1. �

A (possibly time-inhomogeneous) Markov chain with stochastically monotone transition
kernels will be called a stochastically monotone Markov chain (see, e.g., [7] for the time-
homogeneous case). Lemma 2 immediately implies the following.

Corollary 1. Any subsequence of a stochastically monotone Markov chain (resp., in addition
satisfying Condition 1) is also a stochastically monotone Markov chain (resp., in addition
satisfying Condition 1).
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Therefore, a subsequence of a time-homogeneous stochastically monotone Markov chain
(resp., in addition satisfying Condition 1) may no longer be time-homogeneous, but is always
a stochastically monotone Markov chain (resp., in addition satisfying Condition 1).

Recall that h : R2→R is called supermodular if whenever x1 ≤ x2 and y1 ≤ y2 we have
that

h(x1, y2)+ h(x2, y1)≤ h(x1, y1)+ h(x2, y2). (7)

If X and Y have CDFs FX and FY , then (X, Y) will be called comonotone if P(X ≤ x, Y ≤ y)=
P(X ≤ x)∧ P(Y ≤ y) for all x, y. There are various equivalent definitions for comonotonicity.
In particular it is worth mentioning that when X and Y are identically distributed, they are
comonotone if and only if P(X = Y)= 1. It is well known that if (X′, Y ′) is comonotone and
has the same marginals as (X, Y), then for any Borel supermodular h for which Eh(X, Y) and
Eh(X′, Y ′) exist and are finite, we have that Eh(X, Y)≤Eh(X′, Y ′). In particular, if X, Y are
identically distributed, then Eh(X, Y)≤Eh(Y, Y), which is a property that we will need later
in this paper. For such results and much more, see e.g. [21] and references therein, where the
Borel assumption is not made but is actually needed, as there are non-Borel supermodular
functions for which h(X, Y) is not necessarily a random variable. We write down what we will
need later as a lemma. Everything in this lemma is well known.

Lemma 3. Let (X,Y) be a random pair such that X =d Y. Then for every Borel supermodular
function h : R2→R for which Eh(X, Y) and Eh(Y, Y) exist and are finite, we have that

Eh(X, Y)≤Eh(Y, Y). (8)

Moreover, if h is supermodular and f1, f2 are nondecreasing, then h(f1(x), f2(y)) is super-
modular, and in particular, since h(x, y)= xy is supermodular, f1(x)f2(y) is supermodular as
well.

As usual, we call π invariant for a Markov kernel p if, for every Borel A,
∫
R

p(x, A)π (dx)=
π (A). We proceed by stating and proving our first main result.

Theorem 1. Assume that X0, X1, X2 is a stochastically monotone Markov chain where p1 has
an invariant distribution π1 and X0 is π1-distributed. Then for every Borel supermodular
h : R2→R,

Eh(X0, X2)≤Eh(X1, X2) (9)

whenever the means exist and are finite. In particular, for any nondecreasing f1, f2 for which
the means of f1(X0), f2(X2), f1(X0)f2(X2), and f1(X1)f2(X2) exist and are finite, we have that

0≤Cov(f1(X0), f2(X2))≤Cov(f1(X1), f2(X2)). (10)

Proof. Let X′0, U1, U2 be independent with U1, U2 =d U(0, 1) and X′0 = X0. Then with
X′1 =G1(X′0, U1) and X′2 =G2(X′1, U2) we have that (X′0, X′1, X′2)=d (X0, X1, X2). Now we
note that since G2(y, u2) is nondecreasing in y, we have (by Lemma 3) that h(x, G2(y, u2))
is supermodular in x, y for every fixed u2. Since X′0 =d X′1, it follows from Lemma 3 that

E(h(X′0, G2(X′1, U2)) |U2)≤E(h(X′1, G2(X′1, U2)) |U2). (11)

Taking expected values on both sides gives (9). Noting that Ef1(X0)Ef2(X2)=Ef1(X1)Ef2(X2)
and that f1(x)f2(y) is supermodular gives the right inequality in (10). To show the left
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inequality, note that G2(G1(x, u1), u2) is a nondecreasing function of x, and thus, so is
γ (x)=Ef2(G2(G1(x, U1, U2))). Now,

Cov(f1(X0), f2(X2))=Cov(f1(X0),E[f2(X2)|X0])=Cov(f1(X0), γ (X0)), (12)

and it is well known that the covariance of comonotone random variables (whenever well
defined and finite) must be nonnegative. �

A time-homogeneous continuous-time Markov process {Xt | t≥ 0} will be called stochas-
tically monotone whenever pt(x, A)= Px(Xt ∈ A) is a stochastically monotone kernel for each
t > 0. We will say that it satisfies Condition 1 whenever pt satisfies this condition for every
t > 0. Note that by Corollary 1 this is equivalent to the assumption that these conditions are
satisfied for 0 < t≤ ε for some ε > 0.

Theorem 2. Consider a stationary stochastically monotone discrete-time or continuous-time
time-homogeneous Markov process {Xt | t≥ 0}. Then for every supermodular h for which the
following expectations exist and are finite, Eh(X0, Xt) is nonincreasing in t≥ 0, where t is
either nonnegative integer- or nonnegative real-valued. In particular, when f1, f2 are non-
decreasing and the appropriate expectations exist, Cov(f1(X0), f2(Xt)) is nonnegative and
nonincreasing in t≥ 0.

Proof. For every 0 < t1 < t2 we have that X0, Xt2−t1 , Xt2 satisfy the conditions and hence the
conclusions of Theorem 1 (for the discrete-time case, recall Corollary 1). By stationarity we
have that (Xt2−t1, Xt2 )=d (X0, Xt1 ). Therefore

Eh(X0, Xt2 )≤Eh(Xt2−t1 , Xt2 )=Eh(X0, Xt1 ). (13)

Note that, since Xt =d X0, Lemma 3 implies that

Eh(X0, Xt)≤Eh(X0, X0), (14)

so that Eh(X0, Xt) is nonincreasing on [0,∞) and not just on (0,∞). Since

Ef1(X0)Ef2(Xt)=Ef1(X0)Ef2(X0),

the result for the covariance follows by taking h(x, y)= f1(x)f2(y). �

Remark 1. The following is a standard and very simple exercise in ergodic theory. Let T be a
measure-preserving transformation on (�,F , μ), where μ is a σ -finite measure. This means
that μ(T−1(A))=μ(A) for every A ∈F , where T−1(A)= {ω ∈� | T(ω) ∈ A}. Then T is mixing
(in the sense that μ(A∩ T−nB)→μ(A)μ(B) as n→∞, for every A, B ∈F) if and only if, for
every f1, f2 : �→R such that

∫
f 2
i dμ <∞ for i= 1, 2, we have that

∫
f1 · Tnf2dμ→ ∫

f1dμ ·∫
f2dμ, where Tnf2(ω)= f2(Tnω).

The implication of this, under the assumptions of Theorem 2, is that with such mixing
conditions, Cov(f1(X0), f2(Xn))→ 0 for every Borel f1, f2 such that Ef 2

i (X0) <∞ for i= 1, 2.
This in particular holds when in addition fi, i= 1, 2, are nondecreasing. This also implies that
the same would hold in the continuous-time case as the covariance is nonincreasing (when fi
are nondecreasing), and thus it suffices that it vanishes along any subsequence (such as tn = n).
In particular this will hold for any Harris-recurrent Markov process for which there exists a
stationary distribution. In this case an even stronger form of mixing is known to hold (called
strong mixing or α-mixing; see e.g. [2]). All the examples discussed in Section 3 for which a
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stationary distribution exists are in fact Harris-recurrent and even have a natural regenerative
state. Alternatively, the same holds whenever the stationary distribution is unique and f1, f2 are
nondecreasing with Efi(X0)2 <∞ for i= 1, 2. This may be shown by adapting the proof of
[7, Theorem 4], in which f1 = f2. For all of our examples in which a stationary distribution
exists, it is also unique.

Of course, we cannot expect that the covariance will vanish without such mixing conditions
or uniqueness of the stationary distribution. For example, if ξ is some random variable having a
finite second moment and variance σ 2 > 0, set Xt = ξ for all t≥ 0. Then {Xt | t≥ 0} is trivially
a stochastically monotone, stationary Markov process (and also trivially satisfies Condition 1),
but (taking f1(x)= f2(x)= x) Cov(X0, Xt)= σ 2 clearly does not vanish as t→∞. �

We continue with two theorems in which Condition 1 is imposed.

Theorem 3. Assume that X0, X1, X2, X3 is a stochastically monotone Markov chain satisfying
Condition 1, where p1 has an invariant distribution π1 and X0 is π1-distributed. Then for every
Borel supermodular h : R2→R,

Eh(X0, X2 − X3)≤Eh(X1, X2 − X3) (15)

whenever the expectations exist and are finite. In particular, if f is nondecreasing and the
appropriate expectations exist and are finite, then

0≤Cov(f (X0), X2)−Cov(f (X0), X3)≤Cov(f (X1), X2)−Cov(f (X1), X3). (16)

Proof. The proof is very similar to the proof of Theorem 1. That is, we let X′0 = X0,
X′n =Gn(X′n−1, Un) for n= 1, 2, 3, where X′0, U1, U2, U3 are independent and U1, U2, U3 =d
U(0, 1). From the stochastic monotonicity and Condition 1 it follows that G2(x, u2)−
G3(G2(x, u2), u3) is nondecreasing in x. Therefore, by Lemma 3 we have that, since
h(x, G2(y, u2)−G3(G2(y, u2), u3)) is supermodular in x, y and X′1 =d X′0,

E[h(X′0, X′2 − X′3)|U2, U3]=E[h(X′0, G2(X′1, U2)−G3(G2(X′1, U2), U3))|U2, U3]

≤E[h(X′1, G2(X′1, U2)−G3(G2(X′1, U2), U3))|U2, U3] (17)

=E[h(X′1, X′2 − X′3)|U2, U3],

and taking expected values establishes (15). Taking h(x, y)= f (x)y gives the right inequal-
ity of (16). The left inequality is obtained via comonotonicity, by observing that since
G2(G1(x, u1), u2)−G3(G2(G1(x, u1), u2), u3) is nondecreasing in x, E[X2 − X3|X0] is a non-
decreasing function of X0, so that this inequality follows from the comonotonicity of f (X0) and
E[X2 − X3|X0] as in the proof of the left inequality of (10). �

Theorem 4. Consider a stationary stochastically monotone discrete-time or continuous-time
time-homogeneous Markov process {Xt | t≥ 0}, satisfying Condition 1. Then for every s > 0
and every supermodular h for which the following expectations exist and are finite, Eh(X0, Xt −
Xt+s) is nonincreasing in t, where t is either nonnegative integer- or nonnegative real-valued.
In particular, when f is nondecreasing and the appropriate expectations exist, Cov(f (X0), Xt)
is nonnegative, nonincreasing, and convex in t.
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In particular, note that when choosing f (x)= x and assuming that EX2
0 <∞, we see that, under

the conditions of Theorem 4, the auto-covariance R(t)=Cov(Xs, Xs+t) (or auto-correlation
R(t)/R(0) when X0 is not a.s. constant) is nonnegative, nonincreasing, and convex in t.

Proof. Let t1 < t2; then X0, Xt2−t1 , Xt2−t1+s, Xt2+s satisfy the conditions and hence the
conclusion of Theorem 3. Therefore,

Eh(X0, Xt2 − Xt2+s)≤Eh(Xt2−t1 , Xt2 − Xt2+s)=Eh(X0, Xt1 − Xt1+s), (18)

where the right equality follows from stationarity. If f is nondecreasing, then h(x, y)= f (x)y is
supermodular and thus Ef (X0)Xt+s −Ef (X0)Xt is nonincreasing in t for every s > 0. Therefore
Ef (X0)Xt is midpoint-convex, and since by Theorem 2 it is nonnegative and nonincreasing
(hence Borel), it must be convex (see [4, 24]). �

Can anything be said for the case where the initial distribution is not invariant? Here is one
possible answer.

Theorem 5. Let {Xt | t≥ 0} be a stochastically monotone discrete-time or continuous-time
time-homogeneous Markov process. Assume that the initial distribution can be chosen so that
X0 ≤ Xt a.s. for every t≥ 0. Then the following hold:

(i) Xt is stochastically increasing in t.

(ii) For every Borel supermodular function which is nondecreasing in its first variable and
for which the expectations exist and are finite, Eh(Xs, Xt) is nondecreasing in s on [0, t].
When in addition Condition 1 is satisfied, the same is true for Eh(Xs, Xt − Xt+δ) for
every δ > 0 (whenever the expectations exist and are finite).

(iii) If h is nondecreasing in both variables (not necessarily supermodular) and expected
values exist and are finite, then Eh(Xs, Xt+s) is nondecreasing in s. When Condition 1 is
satisfied, the same is true for Eh(Xs, Xs+t − Xs+t+δ) for δ > 0.

(iv) If EXt exists and is finite, then it is nondecreasing, and under Condition 1 it is also
concave.

We note that it would suffice to assume that X0 ≤ Xt for t ∈ (0, ε] for some ε > 0, or in
discrete time for t= 1. Also, we note that for (i) we can replace X0 ≤ Xt by X0 ≤st Xt.

Proof. For any s < t take ε ∈ (0, t− s] and let Gv(x, u) be the generalized inverse with
respect to the kernel pv. Let U0, U1, . . . be i.i.d. with Ui =d U(0, 1). Since X0 ≤ Xε we have
with X′0 = X0 that X′0 ≤Gε(X′0, U0), and thus

X′s ≡Gs(X
′
0, U1)≤Gs(Gε(X′0, U0), U1)≡ X′′s+ε =d X′s+ε ≡Gε(X′s, U2), (19)

implying stochastic monotonicity.
Taking X′t =Gt−s−ε(X′s+ε, U3), we have that (X′0, X′s, X′s+ε, X′t) is distributed like

(X0, Xs, Xs+ε, Xt). Since h is nondecreasing in its first variable and X′s ≤ X′′s+ε , it follows that

Eh(X′s, X′t)≤Eh(X′′s+ε, X′t). (20)

The (by now repetitive) fact that

E[h(X′′s+ε, X′t)|U3]=E[h(X′′s+ε, Gt−s−ε(X′s+ε, U3)|U3]

≤E[h(X′s+ε, Gt−s−ε(X′s+ε, U3)|U3]=E[h(X′s+ε, X′t)|U3] (21)
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follows from the supermodularity of h(x, Gt−s−ε(y, u3)) in x, y. Taking expected values,
together with (20), implies that Eh(Xs, Xt) is nondecreasing in s on [0, t]. The proof of
the fact that, under Condition 1, Eh(Xs, Xt − Xt+δ) is nondecreasing in s on [0, t] is sim-
ilar, once we define X′t+δ =Gδ(X′t, U4) and observe that X′t − X′t+δ =Gt−s−ε(X′s+ε, U3)−
Gδ(Gt−s−ε(X′s+ε, U3), U4) is nondecreasing in X′s+ε .

When h is nondecreasing in both variables we have that

h(Xs, Xs+t)=d h(Xs, Gt(Xs, U0)),

so that by stochastic monotonicity E(h(Xs, Gt(Xs, U0))|U0) is nondecreasing in s and hence
also Eh(Xs, Xs+t). The proof for Eh(Xs, Xs+t − Xs+t+δ), under Condition 1, is similar.

Finally, since Xt is stochastically increasing, it clearly follows that EXt is nondecreas-
ing. When Condition 1 is met, taking h(x, y)= y (nondecreasing in both variables) we have
that EXs+t −EXs+t+δ is nondecreasing. This implies midpoint-concavity, so that since EXt is
monotone (hence Borel) it follows that it is concave (again, see [4, 24]). �

We complete this section by noting that although, for the sake of convenience, all the results
are written for the case where the state space is R, they hold whenever the state space is any
Borel subset of R, as was assumed in [7]; for instance, for the examples discussed in Section 3,
the state space is either [0,∞) or Z+.

2.2. Role of stochastic monotone Markov processes and supermodularity

To put our work into perspective, we conclude this section by explaining the train of thought
that led us to this research. One result that sparked this line of research was that for a station-
ary reflected (both one- and two-sided) Lévy process X with EX2

0 <∞, R(t)=Cov(X0, Xt)
is nonnegative, nonincreasing, and convex [3, 10, 11]. Since in this case EXt =EX0, this is
equivalent to EX0Xt being nonnegative, nonincreasing, and convex. Another result is that for a
stationary discrete-time stochastically monotone Markov process and a nondecreasing function
g with Eg2(X0) <∞, Cov(g(X0), g(Xn)) is nonincreasing [7]. This is equivalent to Eg(X0)g(Xn)
being nonincreasing. We observed that xy, g(x)g(y) (when g is nondecreasing) are supermod-
ular functions of x, y. Also, we knew that the one- and two-sided Skorokhod reflection of a
process of the form x+ Xt is monotone in x. When X is a Lévy process, the reflected process
is Markovian, and from the monotonicity in x it must be stochastically monotone.

Therefore, a natural question arose: is it true that for any stationary stochastically monotone
Markov process (in discrete or continuous time) and for any supermodular h we have that
Eh(X0, Xt) is nonincreasing? If yes, then this would make the abovementioned results from
[3, 7, 10, 11], each of which uses a totally different (often quite involved) approach, simple
special cases. We were happy to see that the answer to this question was ‘yes’.

The next step was to try to identify what condition ensures convexity of the correlation
or even more general function. As seen in Section 2, the condition that ensures convexity of
Eg(X0)Xt for a nondecreasing function g (in particular g(x)= x) is Condition 1. We lack a full
intuitive understanding of why it is this precise condition that makes it work. As will be seen in
Section 3, various natural Markovian models satisfy stochastic monotonicity and Condition 1.

Finally, we also knew that for a (one- and two-sided) reflected Lévy process X starting from
the origin (and actually also for more general processes), EXt is nonincreasing and concave
[1, 12, 14, 15]. We asked ourselves whether this too might be seen as a special case of the
more general theory we had discovered, and, as it turned out, the answer to this question was
affirmative as well.
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3. Examples

The purpose of this section is to give a number of motivating examples for the kinds of
processes to which our theory applies. We chose these examples to illustrate the huge potential
of the methodology developed in this paper: it can serve to make proofs of existing results
significantly more transparent and compact (as in the examples with reflected Lévy processes),
and it can serve in the derivation of entirely new structural properties (as in the examples with
the Lévy dam, the state-dependent random walk, and the birth-and-death processes).

3.1. Lévy process reflected at the origin

Consider a càdlàg Lévy process Y = {Yt | t≥ 0} with P(Y0 = 0)= 1 (not necessarily spec-
trally one-sided). For every x, the one-sided (Skorokhod) reflection map, with reflection taking
place at level 0, is defined through

Xt(x)= x+ Yt − inf
0≤s≤t

(x+ Ys)∧ 0= Yt + Lt ∧ x, (22)

where Lt =− inf0≤s≤t Ys ∧ 0 with Lt(x)= (Lt − x)+ (so, in particular, Lt = Lt(0)). The pair
(Lt(x), Xt(x)) is known to be the unique process satisfying the following conditions:

(i) Lt(x) is right-continuous and nondecreasing in t, with L0 = 0.

(ii) Xt(x) is nonnegative for every t≥ 0.

(iii) For every t > 0 such that Ls(x) < Lt(x) for every s < t, we have that Xt(x)= 0.

It is known [13] that (iii) is equivalent to the condition that∫
[0,∞)

Xs(x)Lds(x)= 0, (23)

or alternatively to the condition that Lt(x) is the minimal process satisfying (i) and (ii). Special
cases of such processes are the workload process in an M/G/1 queue and the (one-dimensional)
reflected Brownian motion (where the reflection takes place at 0).

It turns out that when x= 0, EXt is nondecreasing and concave in t [12, 14]. When EY1 < 0,
this process, which is well known to be Markovian, has a stationary distribution. If W has this
stationary distribution and is independent of the process Y , then X∗t = Xt(W) is a stationary
process, and it has been established [10, 11, 19] that when EW2 <∞, the autocovariance
R(t)=Cov(X∗s , X∗s+t) (or autocorrelation R(t)/R(0)) is nonnegative, nonincreasing, and convex
in t. Where earlier proofs tended to be ad hoc (e.g. dealing only with spectrally one-sided
processes, i.e., assuming that the Lévy process has jumps in one direction) and involved (e.g.
requiring delicate manipulations with completely monotone functions), with the techniques
developed in the present paper this property now follows virtually immediately. The remainder
of this subsection illustrates this.

Let us define pt(x, A)= P(Xt(x) ∈ A), so that pt(·, ·) is the transition kernel of the associated
Markov process. Since Xt(x)= Yt + Lt ∧ x is nondecreasing in x and Xt(x)− x= Yt − (x− Lt)+
is nonincreasing in x (for each t > 0), we clearly have that

pt(x, (y,∞))= P(Xt(x) > y) (24)

is nondecreasing in x and

pt(x, (x+ y,∞))= P(Xt(x) > x+ y)= P(Yt − (x− Lt)
+ > y) (25)

is nonincreasing in x. Therefore stochastic monotonicity and Condition 1 are satisfied.
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Remark 2. We note that for the same reasons, a (general) random walk reflected at the origin is
a discrete-time version of the process featuring in the above setup. As a consequence, it is also
stochastically monotone and satisfies Condition 1. In particular, this applies to the consecutive
waiting times upon arrivals of customers in a GI/GI/1 queue.

3.2. Lévy process with a two-sided reflection

In this subsection we argue that the structural properties discussed in the previous subsection
carry over to the case of a two-sided reflection. With Y as defined in Section 3.1, a two-sided
(Skorokhod) reflection in [0, b] for b > 0 (and similarly in [a, b] for any a < b) is defined
as the unique process (Xt(x), Lt(x), Ut(x)), with Xt(x)= x+ Yt + Lt(x)−Ut(x), satisfying the
following:

(i) Lt(x), Ut(x) are right-continuous and nondecreasing with L0(x)=U0(x)= 0.

(ii) Xt(x) ∈ [0, b] for all t≥ 0.

(iii) For every t > 0 such that Ls(x) < Lt(x) (resp., Us(x) < Ut(x)) for every s < t, Xt(x)= 0
(resp., Xt(x)= b).

Also here, (iii) is equivalent to

∫
[0,∞)

Xt(x)Ldt(x)=
∫

[0,∞)
(b− Xt(x))Udt(x)= 0. (26)

For this case it is also known that EXt(0) is nondecreasing and concave [1] as well as that
for the stationary version the autocovariance R(t) is nonnegative, nondecreasing, and convex
[3]. As in the one-sided case, we can apply our newly developed results to establish these
facts in a very compact manner provided we verify that the process under consideration is a
stochastically monotone Markov process that fulfills Condition 1.

Since Y is a Lévy process, we have that Xt(x) is a time-homogeneous Markov process start-
ing at x. The driving process Y being the same for both Xt(x) and Xt(y), we find that choosing
x < y means that Xt(x) can never overtake Xt(y). Consequently, Xt(x) is nondecreasing in x and
thus the Markov chain is stochastically monotone (with some effort, this can also be shown
directly from representation (27) to follow).

In order to verify that it satisfies Condition 1, we recall from [17], upon re-denoting by
X0

t (x) the one-sided reflected process described in Section 3.1, that

Xt(x)= X0
t (x)− sup

0≤s≤t

[(
X0

s (x)− b
)+ ∧ inf

s≤u≤t
X0

t (x)

]
. (27)

Since X0
t (x) is nondecreasing and X0

t (x)− x is nonincreasing in x (as explained in Section 3.1),
it immediately follows that Xt(x)− x is nonincreasing in x, which implies Condition 1.

Regarding the results for R(t) that hold under stationarity, observe that in this two-sided
reflected case a stationary distribution always exists and has a bounded support. Therefore, we
do not need to impose any additional requirements on Y . This is in contrast to the one-sided
case, where it was necessary to assume that EY1 < 0 and that the stationary distribution has a
finite second moment. As in the case with one-sided reflection, the findings carry over to the
discrete-time counterpart: the two-sided reflected random walk.
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3.3. Lévy dams with a nondecreasing release rule

In the previous two subsections, dealing with the one- and two-sided reflected Lévy process,
we mentioned that existing (and also some previously nonexistent) results may be instantly
concluded from the theory that we develop in this paper. The present subsection gives an illus-
tration of our theory’s potential to produce similar results for dam processes which, to the best
of our knowledge, are completely new for these kinds of processes and were not known earlier.
More concretely, it shows that, with the general theory that we developed, the structural results
discussed above carry over to more than just reflected Lévy processes.

Let the process J = {Jt | t≥ 0} be a right-continuous subordinator (nondecreasing Lévy pro-
cess) with P(J0 = 0)= 1, and let r : [0,∞)→ [0,∞) be nondecreasing and left-continuous on
(0,∞), with r(0)= 0. Consider the following dam process:

Xt(x)= x+ Jt −
∫ t

0
r(Xs(x))ds. (28)

It is well known [6] that, under the stated assumptions, the solution to (28) is unique (pathwise)
and belongs to the class of time-homogeneous Markov processes.

As before, we need to check that the process under consideration is stochastically monotone
and fulfills Condition 1. For x < y we have that

Xt(y)− Xt(x)= y− x−
∫ t

0
(r(Xs(y)− r(Xs(x))ds. (29)

Denote by τ the first time (if it exists) for which the right side is zero. Because x < y, for every
t < τ we have that Xt(x) < Xt(y). On τ <∞ we clearly have that Xτ (x)= Xτ (y), and therefore
we also have that for any h≥ 0,

Xτ+h(x)= Xτ (x)+ Jτ+h − Jτ +
∫ h

0
r(Xτ+s(x))ds

= Xτ (y)+ Jτ+h − Jτ +
∫ h

0
r(Xτ+s(x))ds= Xτ+h(y), (30)

where the right equality follows from the uniqueness of the solution Z to the equation

Zh = z+ Jτ+h − Jτ −
∫ h

0
r(Zs)ds. (31)

Therefore, we have that Xt(x)≤ Xt(y) for every t≥ 0. Moreover, note that

(Xt(x)− x)− (Yt(y)− y)=
∫ t

0
(r(Xs(y))− r(Xs(x))ds, (32)

and thus, since r is assumed to be nondecreasing, we also have that Xt(x)− x≥ Xt(y)− y.
The conclusion is that Xt(x) is nondecreasing in x and Xt(x)− x is nonincreasing in x. In
other words, the process considered is a stochastically monotone Markov process satisfying
Condition 1. As a consequence, the structural properties on EXt and R(t), as we discussed
above, apply to this process as well. Regarding R(t), we note that here a stationary distribution
exists whenever EJ1 < r(x) for some x > 0 (recalling that r(·) is nondecreasing).
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To perform a sanity check, we note that if we choose r(x)= rx, then the resulting process is
a (generalized) shot-noise process. In this case it is well known that we can explicitly write

Xt(x)= xe−rt +
∫

(0,t]
e−r(t−s)Jds. (33)

In this setting it is immediately clear that Xt(x) is nondecreasing and Xt(x)− x is nonincreas-
ing in x. We observe that here, if EX2

0 <∞, then R(t)=Cov(X0, Xt)=Var(X0)e−rt, so that
R(t)/R(0)= e−rt, which is, as expected, nonnegative, nonincreasing, and convex in t (for any
distribution of X0 having a finite second moment), and which converges to zero as t→∞.
It is well known that in this particular case, the stationary distribution has a finite second
moment if and only if J1 has a finite second moment. This is equivalent to requiring that∫

(1,∞) x2ν(dx) <∞, where ν is the associated Lévy measure.

Remark 3. We note that if we replace J by any Lévy process and −r(·) by μ(·) where μ is
nonincreasing (not necessarily negative), then whenever the process described by (28) is well
defined, we have (for the same reasons as for the dam process) stochastic monotonicity and the
validity of Condition 1. In particular, this is the case when Jt = σBt and B is a Wiener process,
resulting in a diffusion with constant diffusion coefficient and a nonincreasing drift.

3.4. Discrete-time (state-dependent) random walks

Consider a discrete-time random walk on Z+ with the following transition probabilities:

pij =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

qi, i≥ 1, j= i− 1,

ri, i≥ 0, j= i,

pi, i≥ 0, j= i+ 1,

0 otherwise,

(34)

where qi + ri + pi = 1 for i≥ 1 and r0 + p0 = 1. It is a trivial exercise to check that p(i, A)=∑
j∈A pij is stochastically monotone if and only if pi−1 ≤ 1− qi for i≥ 1, and that it satisfies

Condition 1 if and only if qi is nondecreasing in i and pi is nonincreasing in i. From Lemma 2
it may be concluded that these are also the respective conditions for this Markov chain to
be stochastically monotone and to satisfy Condition 1. Therefore, the condition that both are
satisfied is that for each i≥ 1

pi ≤ pi−1 ≤ 1− qi ≤ 1− qi−1, (35)

where q0 ≡ 0.
From this it immediately follows that if ri = 0 for all i≥ 1, then the stochastic monotonicity

together with Condition 1 is equivalent to the assumption that pi = p for i≥ 0 and r0 = qi =
1− p for i≥ 1. This is precisely the reflected process associated with

∑n
k=1 Yk (zero for n= 0)

where the Yk are i.i.d. with P(Y = 1)= 1− P(Y =−1)= p, which is a simple special case of
Remark 2.

3.5. Birth-and-death processes

Consider a right-continuous birth-and-death process on Z+ with birth rates λi, i≥ 0, and
death rates μi ≥ 1. If the process is explosive we assume that the ‘cemetery’ state is +∞
and that from a possible time of explosion the process remains there forever (a minimal
construction, that is).
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As observed in [16], this Markov process is stochastically monotone. To see this (for the
sake of ease of reference), simply start two such independent processes from different initial
states. By independence they do not jump at the same time (a.s.), and thus as long as they
do not meet in a given state one remains strictly above the other. If and when they do meet
(stopping time + strong Markov property) we let them continue together. If the higher process
explodes then it remains at infinity forever and thus the bottom process never overtakes the top
one. This coupling immediately implies stochastic monotonicity.

Therefore it remains to identify when Condition 1 holds. For the random walk of
Subsection 3.4 the condition was that pi is nonincreasing and qi is nondecreasing in i. Therefore
it is conceivable that the condition here should be that λi is nonincreasing and μi is nondecreas-
ing in i. This indeed turns out to be correct. In order to see this we will first need the following
lemma.

Lemma 4. For k= 1, 2, let Xk = {Xk
t | t≥ 0} be a right-continuous birth-and-death process on

Z+ with birth rates λk
i for i≥ 0 and death rates μk

i for i≥ 1. Assume that when the process is
explosive, the ‘cemetery’ is +∞, and that the process remains there from the possible point of
explosion onward. Then the following two conditions are equivalent:

(i) X1
t ≤st X2

t for every t≥ 0 for any choice of initial distributions such that X1
0 ≤st X2

0 .

(ii) λ1
i ≤ λ2

i for every i≥ 0 and μ1
i ≥μ2

i for every i≥ 1.

Proof. We use the standard notation Pi to indicate the probability measure when the initial
state is i. Also recall that a right-continuous birth-and-death process is orderly, in the sense that
the probability that there are two or more jumps in the interval [0, t] starting from any initial
state is o(t). This implies that limt↓0 t−1

Pi(|Xk
t − i| ≥ 2)= 0 and thus

lim
t↓0

1

t
Pi(X

k
t ≥ i+ 1)= lim

t↓0

1

t
Pi(X

k
t = i+ 1)= λi (36)

for i≥ 0. Similarly, limt↓0 t−1
Pi(Xk

t ≤ i− 1)=μi for i≥ 1.
To show (i) ⇒ (ii), suppose that X1

0 = X2
0 = i a.s. (clearly X1

0 ≤st X2
0). From X1

t ≤st X2
t we

have that Pi(X1
t ≥ i+ 1)≤ Pi(X2

t ≥ i+ 1) for i≥ 0 and t > 0. Dividing by t and letting t ↓ 0
gives λ1

i ≤ λ2
i . Similarly, since Pi(X1

t ≥ i)≤ Pi(X2
t ≥ i) we have that Pi(X1

t ≤ i− 1)≤ Pi(X2
t ≥

i− 1) for i≥ 1 and t > 0. Dividing by t and letting t ↓ 0 gives μ1
i ≥μ2

i .
It remains to show (ii)⇒ (i). If we can find a coupling such that X1

t ≤ X2
t a.s. for each t≥ 0,

then the lemma instantly follows. It is well known that if X1
0 ≤st X2

0, then there are (X̃1
0, X̃2

0)
such that X̃k

0 =d Xk
0 and X̃1

0 ≤ X̃2
0 a.s. Now assume that (X1, X2) is a right-continuous Markov

process on {(i, j)| 0≤ i≤ j} with the following transition rates (with μ1
0 =μ2

0 = 0): for i < j we
have

(i, j+ 1)

λ2
j

⏐⏐

(i− 1, j)
μ1

i←− (i, j)
λ1

i−→ (i+ 1, j)

μ2
j

⏐⏐�
(i, j− 1)

(37)
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whereas for i= j

(i, i+ 1) (i+ 1, i+ 1)

λ2
i −λ1

i

⏐⏐ λ1
i ↗

(i− 1, i)
μ1

i −μ2
i←− (i, i)

μ2
i ↙

(i− 1, i− 1)

(38)

All other transition rates are zero. Since the process lives on {(i, j)| 0≤ i≤ j}, it is clear that
X1

t ≤ X2
t a.s. for each t. It is easy to check that for each k= 1, 2, Xk is a birth-and-death process

with birth rates λk
i and death rates μk

i . �

Note that the processes suggested in the proof run independently as long as they do not
meet, and only if and when they meet does something else happen that ensures that the bottom
process does not overtake the top one.

Theorem 6. Assume that X = {Xt| t≥ 0} is a right-continuous birth-and-death process with
birth rates λi for i≥ 0 and death rates μi for i≥ 1. Also assume that the ‘cemetery’ (when
explosive) is+∞ and that the process remains there forever from such an epoch onward. Then
X satisfies Condition 1 if and only if λi is nonincreasing in i and μi is nondecreasing in i.

Proof. Let us define X(i) to be a birth-and-death process with the above parameters which
starts from i. We need to show that Xt(i+ 1)− (i+ 1)≤st Xt(i)− i, or, equivalently, that Xt(i+
1)≤st Xt(i)+ 1. Now Xt(i)+ 1 is a birth-and-death process on Z+ starting from i+ 1, with
arrival rates λ̃i = λi−1 for i≥ 1, and λ̃0 may be chosen arbitrarily in [λ0,∞). The departure
rates of Xt(i)+ 1 are μ̃i =μi−1 for i≥ 2 and μ̃1 = 0.

From Lemma 4 it follows that the necessary and sufficient condition that we seek is λ̃i ≥ λi

for i≥ 0 and μ̃i ≤μi, which is equivalent to the condition that λi is nonincreasing and μi is
nondecreasing (in i). �

Remark 4. Note that pure birth and pure death processes are special cases of birth-and-death
processes, and thus Theorem 4 and Corollary 6 hold for these processes as well. Also note that
the state space does not need to be Z+, but can also be any finite or infinite subinterval of Z.

4. Some concluding remarks

In this paper have focused on techniques to prove structural properties of Markov processes.
We have developed a framework that succeeds in bringing various branches of the literature
under a common umbrella. As indicated earlier, we strongly believe that the results presented
in this paper open up the opportunity to produce compact proofs of existing results, as well as
to efficiently derive new properties. We conclude this paper with a couple of remarks.

Recalling Remark 1, when there exists a stationary distribution, for all of the examples
discussed in Section 3 we have that Cov(f1(X0), f2(Xt)) vanishes as t→∞ whenever f1, f2
are nondecreasing with Ef 2

i (X0) <∞ for i= 1, 2. We note that in light of the findings of
Sections 3.1 and 3.2, [3, Theorems 1 and 2] (as well as the earlier [10, Theoremm 3.1] and
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[11, Theorem 2.2]) are special cases of our Theorems 2 and 4. In addition, [14, Theorem 3.1]
restricted to the Lévy case (and the earlier [12, Theorem 3.3]), as well as the mean (not vari-
ance) parts of [1, Theorems 4.6 and 7.5], are special cases of (iv) in our Theorem 5 (upon
taking X0 = 0 in [1], that is).

One could wonder whether the monotonicity of the variance, as was discovered in [1] in a
reflected Lévy context, would carry over to any stochastically monotone Markov process sat-
isfying Condition 1. However, as it turns out, this particular result from [1] essentially follows
from the specific properties of reflected Lévy processes (or, in the discrete-time case, reflected
random walks) and is not true in general. One elementary counterexample is the following. Let
{Nt | t≥ 0} be a Poisson process (starting at 0) and take Xt = (k+Nt)∧m. Then {Xt | t≥ 0} is a
Markov process with state space {i | i≤m}, with an initial value k and an absorbing barrier m.
On k≤m we have that (k+Nt)∧m is nondecreasing in k and Xt − X0 =Nt ∧ (m− k) is nonin-
creasing in k, and thus this is a stochastically monotone Markov process satisfying Condition 1.
Clearly, Var(X0)= 0, and since Xt→m (a.s.) as t→∞, by bounded convergence (k≤ Xt ≤m)
the variance vanishes as t→∞. Since the variance is strictly positive for all 0 < t <∞, it
cannot be monotone in t.
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