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1. Introduction. Topologists’ understanding of smooth 4-manifolds has
witnessed a drastic improvement during the last 20 years. Advances in symplectic
geometry [8, 25, 31, 35, 65–67, 71] and inventions of gluing formulas [39, 46] for
diffeomorphism invariants [73] have paired elegantly with topological constructions
[16, 18, 19–21], offering a noteworthy insight into the smooth four-dimensional story.
The most recent series of successes [2–4, 6, 11, 16, 21] has answered as many questions
as it has raised new ones, and the 4-manifolds theory remains to be an intriguing and
active area of research.

Two factors responsible for the recent progress on the simply connected realm are
the increase in the repertoire of techniques that manufacture symplectic 4-manifolds
with small topological invariants, and a new perspective on the usage of already
existing mechanisms of construction. The idea of using symplectic sums [25] of
non-simply connected building blocks along genus 2 surfaces to kill fundamental
groups in an efficient way was introduced in [1]. Its immediate outcome was the

construction of an exotic symplectic ��2#5��2 and, later on, the existence of an exotic

symplectic ��2#3��2 [4] was put on display. Shortly after, Luttinger surgery [8, 35]
was introduced to the list of symplectic constructions in [11, 56]. The combinations

of these techniques yielded another construction of an exotic symplectic ��2#3��2

in [11, 16]. Eventually these techniques were successful in unveiling exotic smooth

structures on ��2#2��2 [6, 21], the 4-manifolds with the smallest Euler characteristic
known to admit exotic smooth structures at the time this paper was written.

Having in mind as a motivation Freedman’s topological classification of simply
connected 4-manifolds [23], the knowledge that has been accumulated on smooth
4-manifolds can be encoded to address the questions of existence and uniqueness
on a possible classification scheme as follows. The geography problem for symplectic
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4-manifolds with a given fundamental group [25, 37] asks which homeomorphism
classes are realized by an irreducible symplectic 4-manifold. The botany problem [26]
asks how many diffeomorphism classes exist within a given homeomorphism type. The
geography problem for symplectic manifolds with trivial fundamental group was first
studied systematically in [43], where regions are populated using the techniques of [25].
The novel tools recently introduced to unveil a myriad of smooth structures [16, 18, 20]
have allowed a hand-in-hand study of both problems. As a sample of the noteworthy
successes in the area, it is worth pointing out that the symplectic geography question
has been settled for simply connected 4-manifolds of negative signature, and it is known
that these manifolds admit infinitely many smooth structures [2, 6, 16, 25, 47, 48, 52].

The non-simply connected realm remains to be a somewhat uncharted territory.
The topological classification of closed oriented 4-manifolds for several choices of
good fundamental groups [24] has been established in [28–30, 33]. These considerations
motivate curiosity minding the symplectic geography and botany for manifolds with
nontrivial fundamental group.

The contribution and purpose of this paper is to show how current efforts set
on the simply connected realm extend naturally to smooth 4-manifolds with abelian
fundamental groups of small rank amongst other choices of fundamental groups. This
has been pointed out previously by other authors [2, 6, 13, 25], and extends work
of the author done in [69, 70]. We build greatly upon the recent constructions to
systematically study the geography and botany of irreducible symplectic 4-manifolds
with abelian fundamental groups. The first examples of exotic 4-manifolds with cyclic
fundamental group were constructed in [4, 13, 17, 25, 27, 28, 34, 36, 40, 72], and
examples of 4-manifolds with finite fundamental group can be found in [25, 28].
Examples of minimal symplectic 4-manifolds with fundamental group � ⊕ �p had
been previously built in [25, 41, 55]. Efforts towards more general fundamental groups
can be found in [10, 12, 13, 25, 51, 74].

The organization of the paper is as follows. The main result and the notation
employed are presented in Section 2. The results on homeomorphism criteria are
recalled in Sections 3.1, 3.2 and 3.3. The fundamental building blocks are presented in
Sections 3.4 and 3.8, and the basic construction tool is presented in Section 3.5. Our
two main technical results are presented in Section 3.7. With the purpose of providing
the reader with hands-on constructions, two examples are worked out thoroughly in
Section 3.6. Finally, in Section 4 the efforts are put together to fill in regions of the
symplectic geography for the choices of fundamental groups involved, and address the
botany. The region of 4-manifolds with negative signature is populated in Section 4.2,
and a region of non-negative signature is in Section 4.3.

2. Notation and main results. A finite cyclic group of order p ≥ 2 is denoted by
�p. The homeomorphism types of the 4-manifolds with non-spin universal cover, and
whose fundamental group is among the choices considered are given by

� π1 = �p ⊕ �q : b+
2 ��2#b−

2 ��2#Lp,q,
� π1 = �p : b+

2 ��2#b−
2 ��2#Lp, and

� π1 = � : b+
2 ��2#b−

2 ��2#S1 × S3

according to [24, 29, 30, 33] (see Section 3.1). The pieces Lp,q and Lp are oriented closed
smooth 4-manifolds that satisfy π1(Lp,q) = �p ⊕ �q, π1(Lp) = �p, e(Lp,q) = 2 = e(Lp)
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and σ (Lp,q) = 0 = σ (Lp). These manifolds are constructed as follows: Consider the
product L(p, 1) × S1 of a Lens space and a circle, and the map

φ : L(p, 1) × S1 → L(p, 1) × S1

{pt} × α �→ {pt} × αq.

Carve out the loop αq and glue in a copy of S2 × D2 in order to kill the generator
that corresponds to the �-factor in π1(L(p, 1) × S1) ∼= �p ⊕ � to obtain a manifold

Lp,q := (L(p, 1) × S1 − (S1 × D3)) ∪φ (S2 × D2).

Using the Seifert-van Kampen theorem, one concludes π1(Lp,q) = �p ⊕ �q. The
case q = 1 yields the manifold Lp := Lp,1 with finite cyclic fundamental group of
order p.

A smooth closed 4-manifold X is irreducible if for every smooth connected sum
decomposition X = X1#X2, either X1 or X2 is homeomorphic to S4 [26, Definition
10.1.17]. It is called minimal if it is not the blowup of another manifold [26, p. 46]. The
following definition will be used for our purposes (cf. [7, Definition 1]).

DEFINITION 1. The homeomorphism class of a 4-manifold X has the ∞-property if
and only if there exists an infinite set {Xn : n ∈ �} that consists of minimal 4-manifolds
such that
� if n �= m, then Xn is non-diffeomorphic to Xm;
� there exists an m ∈ � for which there is an element Xm ∈ {Xn} that is symplectic,

while Xm is non-symplectic for every m �= n; we will assume m = 1;
� Xn is homeomorphic to X for all n ∈ �.
The homeomorphism class of a 4-manifold X has the ∞2-property if and only if there
exists an infinite set {Xn : n ∈ �} that contains infinitely many irreducible symplectic
and infinitely many minimal non-symplectic 4-manifolds such that
� if n �= m, then Xn is non-diffeomorphic to Xm,
� Xn is homeomorphic to X for all n ∈ �.

The main result of the paper is the following theorem.

THEOREM 2. Let G ∈ {�p, �p ⊕ �q, � ⊕ �q, �, � ⊕ �}. Let (c, χ ) be any pair of
non-negative integers (except for (1, 1)), which satisfies

0 ≤ c ≤ 8χ − 1.

There exists an irreducible symplectic 4-manifold XG such that

π1(XG) = G,
(
c2

1(XG), χh(XG)
) = (c, χ ).

If χ = 1, then the homeomorphism types
� ��2#(10 − c − 1)��2#Lp

have the ∞-property.
If χ ≥ 2 and q is an odd prime number, then the homeomorphism types

� (2χ − 1)��2#(10χ − c − 1)��2,
� (2χ − 1)��2#(10χ − c − 1)��2#Lp,

� (2χ − 1)��2#(10χ − c − 1)��2#Lq,q, and
� 2χ��2#(10χ − c)��2#S1 × S3

have the ∞2-property.
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3. Background results, construction tools and building blocks.

3.1. Homeomorphism type of manifolds with π1 = �p. The topological
classification of closed oriented 4-manifolds with finite cyclic group was obtained
by Hambleton and Kreck [29]. Due to the existence of 2-torsion, one must be careful
when determining the parity of its intersection form. Let X̃ → X be the universal cover
of the non-simply connected 4-manifold X ,
� ω2-type (I) if ω2(X̃) �= 0,
� ω2-type (II) if ω2(X) = 0,
� ω2-type (III) if ω2(X) �= 0, but ω2(X̃) = 0.

THEOREM 3. (Hambleton–Kreck [29, Theorem C]). A smooth closed oriented 4-
manifold X with finite cyclic fundamental group is classified up to homeomorphism by the
fundamental group, the intersection form on H2(X ; �)/Tors, and the ω2-type. Moreover,
any isometry of the intersection form can be realized by a homeomorphism.

By using the known work of Donaldson and Minkowski-Hasse [26] on the
classification of bilinear forms over the integers that are realized as intersection forms
of smooth 4-manifolds, the previous result can be restated as follows.

THEOREM 4. A smooth, closed oriented 4-manifold with finite cyclic fundamental
and indefinite intersection form is classified up to homeomorphism by the fundamental
group, the Betti numbers b+

2 and b−
2 , the parity of the intersection form and the ω2-type.

3.2. Homeomorphism type of manifolds with π1 = �q ⊕ �q, q an odd prime number.
The classification up to homeomorphism of 4-manifolds with fundamental group
among the choices of finite non-cyclic abelian groups under consideration is given in
the following theorem.

THEOREM 5. (Hambleton–Kreck [29, Theorem B]). Let X be a smooth closed
oriented 4-manifold, and let π1(X) = π be a finite group of odd order. When ω2(X̃) = 0
(resp. ω2(X̃) �= 0), assume that

b2(X) − |σ (X)| > 2d(π ),

(resp. > 2d(π ) + 2). Then X is classified up to homeomorphism by the signature, Euler
characteristic, type and fundamental class in H4(π, �)/Out(π ).

In the statement of Theorem 5, the outer automorphism group of π is denoted by
Out(π ). The stability condition required on the lower bound for the Euler characteristic,
d(π ) ∈ � (see [29] for details), depends on the fundamental group of the manifold. In
[69], it was proven that d(�q ⊕ �q) = 1.

3.3. Homeomorphism type of manifolds with π1 = �. Provided a stability
condition holds, the homeomorphism criterion for oriented smooth 4-manifolds with
π1 = � is similar to Freedman’s known result [23] (see also [24, 33, 62]).

THEOREM 6. (Hambleton–Teichner [30, Corollary 3]). If X is a closed oriented
smooth 4-manifold with infinite cyclic fundamental group and satisfies the inequality

b2(X) − |σ (X)| ≥ 6,
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then X is homeomorphic to the connected sum of S1 × S3 with a unique closed simply-
connected 4-manifold. In particular, X is determined up to homeomorphism by its second
Betti number b2(X), its signature σ (X) and its ω2-type. Moreover, X is either spin or
non-spin depending on the parity of its intersection form.

3.4. Basic symplectic building blocks. Consider the 4-torus T4 = T2 × T2

equipped with the product symplectic form. Let x, y, a, b denote both the generators
of the group π1(T2 × T2) = �x ⊕ �y ⊕ �a ⊕ �b as well as the corresponding loops.
This convention will be maintained throughout the paper. The tori

T1 := x × a, T2 := y × a

and their respective geometrically dual tori Td
1 := y × b, Td

2 := x × b are Lagrangian,
and the torus T3 := a × b and its geometrically dual torus Td

3 := x × y are symplectic.
The characteristic numbers are c2

1(T4) = 0 = χh(T4).
The calculation of the fundamental group of the complement of surfaces inside a

manifold plays a fundamental role in recent constructions of 4-manifolds. Choices of
base points are fundamental in the application of the Seifert-van Kampen theorem,
which is to be used with care. For these matters we build greatly in the analysis done
in [11–13]. In particular, we have the following result.

PROPOSITION 7. (Baldridge–Kirk [11, Theorem 2]). The fundamental group

π1(T4 − (T1 ∪ T2))

is generated by the loops x, y, a, b, and the relations [x, a] = [y, a] = 1 hold. The meridians
of the tori and the two Lagrangian push-offs of their generators are given by

T1 : μ1 = [b−1, y−1], m1 = x, l1 = a,
T2 : μ2 = [x−1, b], m2 = y, l2 = bab−1.

As our next building block, we take the product of a genus 2 surface and a torus,
�2 × T2, and endow it with the product symplectic form. Its characteristic numbers
are c2

1(�2 × T2) = 0 = χh(�2 × T2). Let a1, b1, a2, b2 be the loops and generators of
π1(�2), and x, y be the loops and generators of π1(T2). Inside this manifold there
are four pairs of homologically essential Lagrangian tori, and a symplectic surface
of genus 2 and self-intersection zero. The tori are displayed in the statement of the
following proposition; the genus 2 surface is a parallel copy of the surface �2 × {pt},
and we will denote it by �2.

PROPOSITION 8. (Baldridge–Kirk [13, Proposition 7]). The fundamental group

π1(�2 × T2 − (�2 ∪ T1 ∪ · · · ∪ T4))

is generated by the loops x, y, a1, b1, a2, b2. Moreover, with respect to certain paths to the
boundary of the tubular neighbourhoods of Ti and �2, the meridians and two Lagrangian
push-offs of the surfaces are given by
� T1 : m1 = x, l1 = a1, μ1 = [b−1, y−1],
� T2 : m2 = y, l2 = b1a1b−1, μ2 = [x−1, b1],
� T3 : m3 = x, l3 = a2, μ3 = [b−1

2 , y−1],
� T4 : m4 = y, l4 = b2a2b−1

2 , μ4 = [x−1, b2],
� μ�2 = [x, y].
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The loops a1, b1, a2, b2 lie on the genus 2 surface and form a standard set of
generators; the relation [a1, b1][a2, b2] = 1 holds.

The final building block is obtained by applying Luttinger surgeries along
Lagrangian tori to the product of two genus 2 surfaces �2 × �2 equipped with the
product symplectic form. Let x1, y1, x2, y2 be the generators of π1(� × {x}), and
a1, b1, a2, b2 be the generators of π1({x} × �2).

PROPOSITION 9. ([2, Lemma 16], [16, Section 4]). There exists a minimal symplectic
4-manifold Z with c2

1(Z) = 8 and χh(Z) = 1 that contains eight homologically essential
Lagrangian tori {S1, S2, S3, S4, S5, S6, S7, S8} (each Si has a geometrically dual torus Sd

i
so that all other intersections are zero). The fundamental group π1(Z − (S1 ∪ · · · ∪ S8)) is
generated by x1, y1, x2, y2 and a1, b1, a2, b2, and the meridians and Lagrangian push-offs
are given by
� S1 : μ1 = [b−1

1 , y−1
1 ], m1 = x1, l1 = a1,

� S2 : μ2 = [x−1
1 , b1], m2 = y1, l2 = b1a1b−1

1 ,
� S3 : μ3 = [b−1

2 , y−1
1 ], m3 = x1, l3 = a2,

� S4 : μ4 = [x−1
1 , b2], m4 = y1, l4 = b2a2b−1

2 ,
� S5 : μ5 = [b1a−1

1 b−1
1 , y−1

2 ], m5 = x2, l5 = b−1
1 ,

� S6 : μ6 = [x−1
2 , b1a1b−1

1 ], m6 = y2, l6 = b1a1b−1
1 a−1

1 b−1
1 ,

� S7 : μ7 = [b2a−1
2 b−1

2 , y−1
2 ], m7 = x2, l7 = b−1

2 ,
� S8 : μ8 = [x−1

2 , b2a2b−1
2 ], m8 = y2, l8 = b2a2b−1

2 a−1
2 b−1

2 .

3.5. Luttinger and torus surgeries. Let T be a Lagrangian torus in a symplectic
4-manifold X . By the Darboux–Weinstein Theorem [38], there exists a parametrization
T2 × D2 ∼= NT ⊂ X of a tubular neighbourhood NT of T , for which the image of T2 ×
{d} (d ∈ D2) is Lagrangian. Let d ∈ D2 − {0}, the Lagrangian push-off or Lagrangian
framing of T is the push-off

Fd : T → T2 × {d} ⊂ X − T

determined by d. The smooth isotopy class of Fd : T → X − T depends only on the
symplectic structure of X around a neighbourhood of T . Let γ be an embedded curve
in T . The Lagrangian push-off of γ is the isotopy class of the image Fd(γ ). A meridian
of the torus T is a curve in the isotopy class of {t} × ∂D2 ⊂ ∂(NT ), and it will be
denoted by μT .

Let α and β be the generators of π1(T). Let mT = Fd(α) and lT = Fd(β) for d ∈ ∂D2

be the push-offs of the loops in ∂NT = T3. These are loops homologous in NT to α

and β respectively. The loops {m, l, μT } generate H1(∂(NT ); �) = �3. We choose a base
point t laying on ∂(NT ), and set mT , lT , μT ∈ π1(∂(NT ), t) = �3.

The manifold obtained from X by performing a (p, q, n)-torus surgery on T along
γ is defined as

XT,γ (p, q, n) := (X − NT ) ∪φ (T2 × D2),

where the gluing map φ : T2 × ∂D2 → ∂(X − NT ) satisfies

φ∗([∂D2]) = p[mT ] + q[lT ] + n[μT ] in H1(∂(X − NT )); �).

For n = 1, the procedure described above is known as Luttinger surgery on T along
γ ⊂ T , and XT,γ (p, q, 1) admits a symplectic structure [8, 35].
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If the base point of X is not on the boundary of the tubular neighbourhood NT

of T , then the based loops μ and γ are to be joined by the same path in X − T .
The core torus of the surgery S1 × S1 × {0} ⊂ XT,γ (p, q, 1) will be denoted by T(p,q,1).
Regarding the fundamental group of the manifolds XT,γ (p, q, n) constructed in this
paper, the following considerations suffice. We will fix generating curves α, β on the
torus T , and express the curve as γ = αaβb in π1(T) for a, b ∈ {0, 1} such that a �= b.

LEMMA 10. (cf. [11, Lemma 4]). The manifold obtained by applying a (p, q, n)-torus
surgery to X on the torus T along the curve γ = aα + bβ has fundamental group given
by

π1(XT,γ (p, q, n)) ∼= π1(X − T)/N
(
μn

T map
T lbq

T

)
,

where N(μn
T mp

T lq
T ) denotes the normal subgroup generated by μn

T mp
T lq

T .

Every torus surgery that is employed in this paper will require for only one of
the two integers p or q to be non-zero. From now on, the data needed to specify
a torus surgery will be encoded in the following terminology. A ±p/n-torus surgery
on the torus T along the curve mT implies that we are taking q = 0; analogously, a
±q/n-torus surgery on the torus T along the curve lT implies that we are setting p = 0.

3.6. Two examples. Before we start filling vast regions, the results and building
blocks from the previous sections are used to build hands-on examples.

EXAMPLE 11. With the goal of constructing irreducible 4-manifolds with c2
1 = 3,

and χh = 1, consider T2 × T2 and T2 × S2 equipped with the product symplectic
forms. We begin by finding symplectic surfaces of genus 2 inside each of these manifolds.
For t1, t2 ∈ T2, take T2 × {t2} ∪ {t1} × T2 ⊂ T2 × T2. By symplectically resolving the
double point, we obtain a symplectic surface of genus 2 and self-intersection ([T2 ×
{t2}] + [{t1} × T2])2 = 2. Blow up at the two intersection points, and obtain a symplectic

surface of genus 2 and self-intersection zero �2 ⊂ T2 × T2#2��2 [25, Building block
5.7].

Analogously, we obtain a symplectic surface of genus 2 that has self-intersection

zero �′
2 ⊂ T2 × S2#3��2 as follows (cf. [15], [6, Section 3]): Consider the embedded

torus T ′ that represents the homology class 2[T2 × {s1}], where s1 ∈ S2. Take the union
of this torus with T2 × {s1} ∪ {t1} × S2 for a given t1 ∈ T2. Blow up one of the double
points, and symplectically resolve [25] the remaining pair of double points to get a
genus 2 surface of self-intersection 2. Blow up at these intersection points to obtain

the desired �′
2 ⊂ T2 × S2#3��2.

Since both �2 and �′
2 have trivial self-intersection, there exist diffeomorphisms

ν(�2) → �2 × D2 and ν(�′
2) → �′

2 × D2, where ν(�2), ν(�′
2) are tubular neighbour-

hoods of the surfaces inside T4#2��2 and T2 × S2#3��2 respectively. Build the
generalized fibre sum along the genus 2 surfaces

Z := (T2 × T2#2��2)#�2=�′
2
(T2 × S2#3��2).

A well-known result of Gompf [25] (cf. [37]) implies that Z is a symplectic manifold,
and its characteristic numbers are given by c2

1(Z) = 3 and χh(Z) = 1. A result of Usher
[71, Theorem 1.1] implies that Z is minimal. In order to conclude its irreducibility
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using the criteria of Hamilton–Kotschick [31, Corollary 1], we proceed to compute its
fundamental group using the Seifert-van Kampen theorem.

The standard presentations of the groups involved in the cut-and-paste
construction of Z are

π1(T4) = 〈x, y, a, b|[x, y] = [a, b] = [x, a] = [x, b] = [y, a] = [y, b] = 1〉,
π1(T2 × S2) = 〈α, β|[α, β] = 1〉,

π1(�2) = 〈a1, b1, a2, b2|[a1, b1][a2, b2] = 1〉 and

π1(�′
2) = 〈

a′
1, b′

1, a′
2, b′

2|[a′
1, b′

1][a′
2, b′

2] = 1
〉
.

Let the inclusion �2 ↪→ T2 × T2#2��2 induce the homomorphism that maps the
generators as follows:

a1 �→ x, b1 �→ y,

a2 �→ a, b2 �→ b.

Similarly, let the homomorphism induced by the inclusion �′
2 ↪→ T2 × S2#3��2

map the generators of the fundamental groups by

a′
1 �→ α, b′

1 �→ β2,

a′
2 �→ α−1, b′

2 �→ β−2

(cf. [6, Section 3]). Take the diffeomorphism φ : �2 × ∂D2 → �′
2 × ∂D2 that induces

the homomorphism on fundamental groups that identifies the generators as
follows:

a1 �→ a′
1, b1 �→ b′

1,
a2 �→ a′

2, b2 �→ b′
2.

Furthermore, in each case the meridians of the surface are homotopically trivial
in the complement. Indeed, an exceptional sphere introduced by a blowup intersects
the surface transversally in one point. Thus, the meridians μ�2 , μ�′

2
are nullhomotopic

in T4#2��2 − ν(�2) and T2 × S2#3��2 − ν(�′
2) respectively.

Using the Seifert-van Kampen theorem, we conclude that the group
π1(Z) is generated by the elements x, y, a, b, α, β, and that they satisfy the
relations

[x, y] = [a, b] = [x, a] = [x, b] = [y, a] = [y, b] = [α, β] = 1,
x = α, y = β2, a = α−1, b = β−2.

Thus, π1(Z) = 〈
α, β|[α, β2] = 1

〉 ∼= � ⊕ �2.
Since � ⊕ �2 is a residually finite group, the symplectic 4-manifold Z is irreducible

[31, Corollary 1]. In order to produce irreducible and minimal manifolds with π ∈
{�2, �p1 ⊕ �2}, we proceed as follows. The work of Taubes indicates that the Seiberg–
Witten invariant of the symplectic manifold Z is nontrivial [65]. Moreover, it contains
two pairs of Lagrangian tori {T1, Td

1 }, {T2, Td
2 } such that Ti intersects Td

i (i = 1, 2)
transversally at one point, and any other intersection is empty. These tori are inherited
from the T2 × T2 building block in the construction of Z. By Proposition 7, the
Lagrangian push-off and meridian of torus T1 are

T1 : m1 = α,μT1 = 1.
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Perform a (p1/n)-torus surgery on T1 along m1 to produce an infinite set of pairwise
non-diffeomorphic manifolds

{Zp1,2,n : p1, n ∈ �}.
By the Seifert-van Kampen theorem (cf. Lemma 10),

π1(Zp1,2,n) ∼= 〈
α, β|αp1 = β2 = 1n = [α, β2]

〉 ∼= �p1 ⊕ �2.

The characteristic numbers are invariant under torus surgeries. This yields
c2

1(Zp1,2,n) = c2
1(Z) = 3 and χh(Zp1,2,n) = χh(Z) = 1 for all p1, n ∈ �. As it was

mentioned in Section 3.5, the (p1/1)-torus surgery is known as the Luttinger surgery,
and the manifolds {Zp1,2,1} are symplectic [8, 35]. As in [3, 16, 20, 21] the diffeomorphism
classes of the manifolds {Zp1,2,n} are distinguished by the Seiberg–Witten invariants [20,
Theorem 5.3], which are calculated according to the surgery coefficient n of the torus
surgery by the Morgan–Mrowka–Szabó formula [39], using the formulation given in
[64, Theorem 3.4] (see proof of Lemma 13 for more details). We have produced then an
infinite set {Zp1,2,n : p1, n ∈ �} of pairwise non-diffeomorphic, non-symplectic minimal
4-manifolds.

To finish the example, we claim that the manifold

��2#6��2#L2

has the ∞-property 1 for p1 = 1.

Let {Z1,2,n : n ∈ �} be the infinite set of pairwise non-diffeomorphic minimal
manifolds with fundamental group of order two that was previously constructed.
We proceed to pin down the homeomorphism type of these manifolds. Minding the
fundamental group, we have computed π1(Z1,2,n) ∼= �2. The characteristic numbers
are e(Z1,2,n) = e(Z) = 9, σ (Z1,2,n) = σ (Z) = −5, since both the Euler characteristic
and signature are invariant under torus surgeries. Let ˜Z1,2,n be the universal cover of
Z1,2,n. Its signature is σ (˜Zp1,1,n) = −10; by Rokhlin’s Theorem [54], ˜Zp1,1,n is non-spin.
This implies that, for arbitrary n ∈ �, the manifold Z1,2,n has ω2-type (I). By Theorem

3, Z1,2,n is homeomorphic to ��2#6��2#L2. The claim follows from the existence
of the infinite set {Z1,2,n : n ∈ �} of pairwise non-diffeomorphic manifolds that was
constructed before.

EXAMPLE 12. In this example, irreducible 4-manifolds with c2
1 = 1 and χh = 1

are constructed by modifying our choice of gluing map in the construction of
symplectic sum. We begin by unveiling a surface of genus 2 and self-intersection zero

symplectically embedded in T2 × S2#4��2 that intersects each exceptional sphere at
a point. Consider the product of a 2-torus and 2-sphere T2 × S2 equipped with the
product symplectic form. Take the union T2 × {s1} ∪ {t1} × S2 ∪ T2 × {s2} for t1 ∈ T2

and s1, s2 ∈ S2. This wedge of symplectic surfaces has two double points, which come
from the intersection of {t1} × S2 with two tori. Resolving symplectically [25] results
in a surface of genus 2 and self-intersection 4. Blow up four times, and obtain a
surface of genus 2 and self-intersection zero �2 that is symplectically embedded in

T2 × S2#4��2.
We build the generalized fibre sum

Zφ := T2 × S2#3��2#�′
2=�2 T2 × S2#4��2,
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where �′
2 ⊂ T2 × S2#3��2 are taken as in Example 11, and the glueing map is the

diffeomorphism φ : ∂ν(�′
2) → ∂ν(�2) of the tubular neighbourhoods of the genus 2

surfaces. The same arguments used in Example 11 imply that Zφ is a minimal symplectic
4-manifold with characteristic numbers c2

1(Zφ) = 1 and χh(Zφ) = 1.
Minding the fundamental group, we have the following computations. Let the

groups involved have the presentations

π1(T2 × S2#3��2) = 〈α, β|[α, β] = 1〉,

π1(T2 × S2#4��2) = 〈x, y|[x, y] = 1〉,
π1(�′

2) = 〈
a′

1, b′
1, a′

2, b′
2|[a′

1, b′
1][a′

2, b′
2] = 1

〉
,

π1(�2) = 〈a1, b1, a2, b2|[a1, b1][a2, b2] = 1〉, and

let the homomorphism induced by the inclusion, �′
2 ↪→ T2 × S2#3��2, map the

generators of the fundamental groups as

a′
1 �→ α, b′

1 �→ β2,
a′

2 �→ α−1, b′
2 �→ β−2.

Similarly, let the homomorphism induced by the inclusion, �2 ↪→ T2 × S2#4��2,
map the generators of the fundamental groups as

a1 �→ x, b1 �→ y,

a2 �→ x−1, b2 �→ y−1.

Different choices of gluing maps in the construction of Zφ yield different symplectic
manifolds with abelian fundamental groups of rank of at most two. For instance,
choose as gluing map the diffeomorphism φ : �2 × ∂D2 → �′

2 × ∂D2 that induces the
isomorphism on fundamental groups that identifies the generators as follows:

a′
1 �→ a1, b′

1 �→ b1,

a′
2 �→ a2, b′

2 �→ b2.

We conclude that π1(Zφ) = 〈
x, y|y2 = 1, [x, y] = 1

〉 ∼= � ⊕ �2 using the Seifert-van
Kampen theorem.

We proceed to construct an irreducible 4-manifold with fundamental group of
order two. Inside the surface �2, let A and B be parallel curves to α and β respectively.
Let φ1 : �2 × ∂D2 → �′

2 × ∂D2 be the diffeomorphism obtained from composing three
Dehn twists DADBDA with φ (cf. [11, Section 4.2]). The composition induces the
isomorphism on fundamental groups that assigns the generators as follows:

a′
1 �→ b−1

1 , b′
1 �→ b1a1b−1

1 ,
a′

2 �→ a2, b′
2 �→ b2.

By the Seifert-van Kampen theorem, we have that π1(Zφ1 ) is generated by x, y, α, β

and the following relations hold

[α, β] = [x, y] = 1, y2 = 1, α = y−1, β = yxy−1, α−1 = x−1, β−1 = y−1.

This implies α = β−1, x = y−1 and x2 = 1. Thus, Zφ1 is an irreducible symplectic
4-manifold with cyclic fundamental group of order two.
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3.7. Technical tools. We now present two useful lemmas that allow us to extend
results on simply connected manifolds to manifolds with abelian fundamental groups.

LEMMA 13. Let G ∈ {{1}, �p, �p ⊕ �q, � ⊕ �q, �, � ⊕ �}. Let X be an irreducible
symplectic simply connected 4-manifold, which contains a homologically essential
Lagrangian torus T of self-intersection zero such that π1(X − T) = {1}. Then, there
exists an irreducible symplectic 4-manifold XG with
� π1(XG) = G,
� c2

1(XG) = c2
1(X), and

� χh(XG) = χh(X).
If G ∈ {{1}, �p, �q ⊕ �q, �}, where q is an odd prime number, then XG has the ∞-
property. Moreover, suppose X contains a second homologically essential Lagrangian
torus T ′ of self-intersection zero, disjoint from T and π1(X − T ∪ T ′) = {1}. Then there
exists an infinite family {XG

n : n ∈ �} of pairwise non-diffeomorphic 4-manifolds with
ω2-type (I) that consists of infinitely many irreducible symplectic and infinitely many
minimal non-symplectic members such that
� π1(XG

n ) = G,
� c2

1(XG
n ) = c2

1(X), and
� χh(XG

n ) = χh(X)
for all n ∈ �. If G ∈ {{1}, �p, �q ⊕ �q, �}, then XG has the ∞2-property.

Proof. Consider the 4-torus T2 × T2 equipped with the product symplectic form.
Perturb the symplectic form on X so that T becomes symplectic [25, Lemma 1.6]. Build
the generalized fibre sum

Z := X#T=T ′T2 × T2,

where T ′ := {x} × T2 ⊂ T4. Using the notation in Proposition 8 by the Seifert-van
Kampen theorem we have π1(Z) ∼= �x ⊕ �y; the elements x and y each generate an
infinite cyclic factor of �2. As done in Example 11, an iterated usage of [25, 31, 71]
allows us to conclude that Z is an irreducible symplectic 4-manifold with characteristic
numbers c2

1(Z) = c2
1(X) and χh(Z) = χh(X).

The two Lagrangian tori T1 and T2 are contained inside the manifold Z and
are available for surgery. Using the notation of Proposition 8, apply a (−p/1)- and a
(−q/n)-torus surgery on T1 and T2 along the curves x and y, respectively, to produce
a set of 4-manifolds

{Zp,q,n : p, q, n ∈ �}.
Lemma 10 yields π1(Zp,q,n) ∼= 〈x, y|xp = 1, yq = 1n, [x, y] = 1〉.

The characteristic numbers are invariant under torus surgeries. Therefore, we
have c2

1(Zp,q,n) = c2
1(Z) = c2

1(X) and χh(Zp,q,n) = χh(Z) = χh(X) for all p, q, n ∈ �.
The manifolds {Zp,q,1 : p, q ∈ �} are symplectic since the case n = 1 corresponds to
Luttinger surgeries [8, 35].

The infinite set of pairwise non-diffeomorphic minimal non-symplectic 4-
manifolds {Zp,q,n : p, q, n ∈ �} can be constructed using the techniques of [3, 16, 20, 21].
The set is reverse-engineered from the symplectic 4-manifold Z in the sense of [16,
Section 2] and [21, Section 2], given that the work of Taubes [65] indicates that the
Seiberg–Witten invariant of Z is nontrivial. To verify that the needed hypothesis is
satisfied, we use an argument in [13, Remark, p. 343]. For clarity, we discuss the
case G = �; the other choices of fundamental group follow from a similar argument.
The group π1(∂ν(T2)) ∼= π1(T3) is generated by the loops m2, l2 and μ2. In the
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group π1(Z − ν(T2)), the identities m2 = y, l2 = 1 and μ2 = 1 hold by Proposition
7. Construct a manifold with infinite cyclic fundamental group

Z1,0 = (Z − ν(T2)) ∪φZ1,0
T2 × D2

using gluing map φZ1,0 that is defined as follows. Let T2 × D2 = S1 × S1 × D2, and
define the curves α := S1 × {1} × {1}, β := {1} × S1 × {1} and μZ1,0 := {(1, 1)} × ∂D2

that are contained in S1 × S1 × D2. Let φZ1,0 be the gluing map defined by the
identification of curves α �→ l2, β �→ μ2 and μZ1,0 �→ m−1

2 .
The core torus T̃ := T2 × {0} ⊂ T2 × D2 of the surgery is nullhomologous. Note

that we have Z − ν(T2) = Z1,0 − ν(T̃). Indeed, the meridian μT̃ is nontrivial in Z1,0 −
ν(T̃) due to our identification. The torus surgery that was applied kills a generator of the
first homology group as well as two generators of the second homology group. These
generators correspond to the class of the torus to which we apply the surgery, and the
class of its dual. Moreover, the curve β is nullhomotopic in Z − ν(T2) = Z1,0 − ν(T̃),
since it was identified with μ2. Thus, the curve β is nullhomologous in the complement.
The manifold Z can be recovered from Z1,0 by applying a 1/0-torus surgery on T̃
along the curve β. Applying a n/1-torus surgery on T̃ along β for n ∈ � produces
a 4-manifold Z1,0,n with infinite cyclic fundamental group. Another description of
this manifold is as the product of applying surgery to Z on T2 along m2 with the
identification μn

2m−1
2 �→ y−1, i.e. a 1/n-torus surgery.

The hypotheses of reverse-engineering in [16, 20, 21] are satisfied. The
diffeomorphism classes are distinguished by the Seiberg–Witten invariants [20,
Theorem 5.3], which are calculated with the Morgan–Mrowka–Szabó formula [39]
using the formulation given in [64, Theorem 3.4]. We have then produced an infinite set
{Z1,0,n : n ∈ �} of pairwise non-diffeomorphic minimal non-symplectic 4-manifolds
([20, Theorem 5.3], [21, Theorem 1]) with infinite cyclic fundamental group. Note
that we are abusing notation regarding the infinite set. Since we do not know if the
manifold Z has only one Seiberg–Witten basic class up to sign, we cannot conclude that
the manifolds Z1,0,n are pairwise non-diffeomorphic (cf. [16, Corollary 1]). However,
we do know that Z has a basic class [65], and [16, Corollary 2] implies that among the
manifolds {Z1,0,n : n ∈ �} there are infinitely many pairwise non-diffeomorphic. We
have kept the same notation for them.

The presence of a homologically essential torus T ′ ⊂ Z with the homomorphism
π1(T ′) → π1(Zp,q,1) ∼= G induced by the inclusion allows us to perform Fintushel and
Stern’s Knot surgery ([18], [14, Theorem 4], [19, Lecture 3]; see [46, Corollary 24] as
well), and produce infinitely many pairwise non-diffeomorphic 4-manifolds {XG

n : n ∈
�}. Given that T ′ is homologically essential, by [25, Lemma 1.6] one can perturb the
symplectic form so that T ′ becomes symplectic. A result by Thurston [68] implies that
for fibred knots, the manifolds constructed in this way are symplectic [26, Remark
10.3.5]. The presence of a symplectic structure allows us to conclude on irreducibility
using the results in [31].

In order to conclude on the ∞- and ∞2-properties, we examine the
homeomorphism types of the constructed manifolds. The hypothesis on the symplectic
torus of self-intersection zero contained in the minimal symplectic manifold X implies
that b+

2 (X) ≥ 3. Thus, the stability conditions of Theorems 5 and 6 are satisfied. Let
b+ := b+

2 (X) and b− := b−
2 (X). By Theorem 4, the manifolds in the set {Zp,1,n : n ∈ �}

are homeomorphic to b+��2#b−��2#Lp. Assuming p = q to be an odd prime number,
Theorem 5 implies that the manifolds in the set {Zq,q,n : n ∈ �} are homeomorphic to
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b+��2#b−��2#Lq,q. Theorem 6 implies that every manifold with infinite fundamental

group constructed above is homeomorphic to (b+ + 1)��2#(b− + 1)��2#S3 × S1. �
The previous result can be extended when the manifold X in the hypothesis of

Lemma 13 contains a submanifold of higher genus. The genus 2 case is exemplified in
the following lemma.

LEMMA 14. Let G ∈ {{1}, �p, �p ⊕ �q, � ⊕ �q, �, � ⊕ �}. Let X be an irreducible
symplectic simply connected 4-manifold, which contains a symplectic surface � of genus 2
and self-intersection zero such that π1(X − �) = {1}. Then there exists an infinite family
{XG

n : n ∈ �} of pairwise non-diffeomorphic 4-manifolds with ω2-type (I) that consists
of infinitely many irreducible symplectic and infinitely many minimal non-symplectic
members, such that
� π1(XG

n ) = G,
� c2

1(XG
n ) = c2

1(X) + 8, and
� χh(XG

n ) = χh(X) + 1
for all n ∈ �. If G ∈ {{1}, �p, �q ⊕ �q, �}, where q is an odd prime number, then XG has
the ∞2-property.

Proof. Consider the product T2 × �2 equipped with the product symplectic form.
Build the generalized fibre sum

Z := X#�=�2 T2 × �2

along the corresponding genus 2 surfaces. By Proposition 8, the loops a1, b1, a2, b2 lie
on the genus 2 surface. The Seifert-van Kampen theorem implies that the fundamental
group is π1(Z) ∼= �x ⊕ �y, since we assumed that π1(X − �) = {1}. Arguing as before,
we conclude that Z is an irreducible symplectic manifold with characteristic numbers
c2

1(Z) = c2
1(X) + 8 and χh(Z) = χh(X) + 1.

The symplectic manifold Z contains four homologically Lagrangian tori available
for surgery, which are contained in the T2 × �2 block of the symplectic sum. Perform
−1/1 Luttinger surgeries on T1 and T2 along x and y respectively. This results in
an irreducible symplectic simply connected 4-manifold Y that contains two pairs of
homologically essential Lagrangian tori T3 and T4 such that Y − (T3 ∪ T4) is simply
connected by Proposition 8. The lemma now follows from Lemma 13. �

3.8. Telescoping triples. The basic building blocks used to systematically
populate geographical regions of irreducible symplectic 4-manifolds are presented
in this section.

DEFINITION 15. ([2, Definition 2]). An ordered triple (X, T1, T2) consisting of a
symplectic 4-manifold X and two disjointly embedded Lagrangian tori T1 and T2 is
called a telescoping triple if

1. the tori T1 and T2 span a two-dimensional subspace of H2(X ; �).
2. π1(X) ∼= �2 and the inclusion induces an isomorphism

π1(X − (T1 ∪ T2)) → π1(X).
In particular, the meridians of the tori are trivial in π1(X − (T1 ∪ T2)).

3. The image of the homomorphism induced by the corresponding inclusion
π1(T1) → π1(X) is a summand � ⊂ π1(X).

4. The homomorphism induced by inclusion π1(T2) → π1(X) is an isomorphism.
The telescoping triple is called minimal if X itself is minimal.
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The order of the tori in the definition is relevant. The meridians μT1 and μT2

in π1(X − (T1 ∪ T2)) are trivial, and the fundamental groups involved are abelian.
The push-off of an oriented loop γ ⊂ Ti into X − (T1 ∪ T2) with respect to any
(Lagrangian) framing of the normal bundle of Ti represents a well-defined element
of π1(X − (T1 ∪ T2)), which is independent of the choices of framing and base point.

The first condition says that the Lagrangian tori T1 and T2 are linearly independent
in H2(X ; �). The symplectic form on X can be slightly perturbed so that one of the Ti

remains Lagrangian while the other becomes symplectic [25, Lemma 1.6].
Out of two telescoping triples, one is able to produce another as follows.

PROPOSITION 16. [2, Proposition 3]. Let (X, T1, T2) and (X ′, T ′
1, T ′

2) be two
telescoping triples. Then for an appropriate gluing map, the triple

(X#T2=T ′
1
X ′, T1, T ′

2)

is again a telescoping triple. If X and X ′ are minimal symplectic 4-manifolds, then the
resulting telescoping triple is minimal. The characteristic number of X#T2=T ′

1
X ′ is

c2
1(X) + c2

1(X ′) and χh(X) + χh(X ′).

Minimal telescoping triples are irreducible by [31, Corollary 1]. The existing
telescoping triples are gathered in the following result, which was proven in [2, Section
5] and [69].

THEOREM 17. Existence of telescoping triples.
� There exists a minimal telescoping triple (A, T1, T2) satisfying c2

1(A) = 7, χh(A) = 1.
� For each g ≥ 0, there exists a minimal telescoping triple (Bg, T1, T2) satisfying

c2
1(Bg) = 6 + 8g, χ (Bg) = 1 + g.

� There exists a minimal telescoping triple (C, T1, T2) satisfying c2
1(C) = 5, χh(C) = 1.

� There exists a minimal telescoping triple (D, T1, T2) satisfying c2
1(D) = 4, χh(D) = 1.

� There exists a minimal telescoping triple (F, T1, T2) satisfying c2
1(F) = 2, χh(F) = 1.

REMARK 18. The telescoping triples are obtained in the construction process of

minimal symplectic 4-manifolds homeomorphic to ��2#k��2 [1, 6, 4, 11, 13, 16]. In
[21], Fintushel and Stern introduced a procedure to unveil exotic smooth structures
on these manifolds by performing surgeries on nullhomologous tori that are contained
inside rational surfaces (cf. [20]). Minimal 4-manifolds with abelian fundamental group
of small rank lying on the line χh = 1 can be constructed using the techniques of
[21]. This requires only a small variation on the choices of surgeries on the pinwheel
structures on [21, Sections 7, 8].

An immediate consequence of Theorem 17 is the study of the geography and
botany of irreducible symplectic 4-manifolds for various fundamental groups (cf. [2, 4,
6, 10, 12, 13, 25, 27, 28, 29, 34, 36, 40, 41, 55, 69, 72, 74]). In particular, the following
result extends [69, Theorem 1].

COROLLARY 19. Let G ∈ {�p, �q ⊕ �p, �, � ⊕ �q, � ⊕ �}, and let n ≥ 1 and m ≥ 1.
For each of the following pairs of integers,

(1) (c, χ ) = (7n, n),
(2) (c, χ ) = (5n, n),
(3) (c, χ ) = (4n, n),
(4) (c, χ ) = (2n, n),
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(5) (c, χ ) = ((6 + 8g)n, (1 + g)n) (for g ≥ 0),
(6) (c, χ ) = (7n + (6 + 8g)m, n + (1 + g)m),
(7) (c, χ ) = (7n + 5m, n + m),
(8) (c, χ ) = (7n + 4m, n + m),
(9) (c, χ ) = (7n + 2m, n + m),

(10) (c, χ ) = ((6 + 8g)n + 5m, (1 + g)n + m) (for g ≥ 0),
(11) (c, χ ) = ((6 + 8g)n + 4m, (1 + g)n + m) (for g ≥ 0),
(12) (c, χ ) = ((6 + 8g)n + 2m, (1 + g)n + m) (for g ≥ 0),
(13) (c, χ ) = (5n + 4m, n + m),
(14) (c, χ ) = (5n + 2m, n + m), and
(15) (c, χ ) = (4n + 2m, n + m),

there exists an irreducible symplectic 4-manifold XG with ω2-type (I) and

π1(XG) = G and
(
c2

1(XG), χh(XG)
) = (c, χ ).

Moreover, if G = �p, then XG has the ∞-property. Assume q to be an odd prime number,
and let χ > 1. If G ∈ {�q ⊕ �q, �}, then XG has the ∞-property.

REMARK 20. Symplectic universal covers. It is natural to ask whether the universal
covers of the symplectic manifolds constructed are standard or exotic (we thank Paul
Kirk for bringing it to our attention). If they were standard, then the action of the
fundamental group would be exotic. Exotic smooth actions were studied in [22]. The
universal covers in our constructions admit a symplectic structure; thus, they are
exotic. This phenomena has previously been observed in [17]. Indeed, let π : X̃ → X
be the cover of a symplectic manifold X of ω2-type (I) with finite cyclic fundamental
group, and denote its symplectic structure by ω. By Freedman’s theorem [23], X̃ is
homeomorphic to

(p(b+
2 + 1) − 1)��2#(p(b−

2 + 1) − 1)��2.

The cover X̃ admits a symplectic structure, since the pullback π∗ω is a symplectic form
on X̃ . By Taubes’ [65] result, the Seiberg–Witten invariant of X̃ is nontrivial. Since

(p(b+
2 + 1) − 1)��2#(p(b−

2 + 1) − 1)��2 has vanishing Seiberg–Witten invariants [26,
Theorem 2.4.6], X̃ is not diffeomorphic to it.

4. Filling in geographical regions. We prove Theorem 2 in this section. We will
first construct irreducible 4-manifolds with negative signature for every possible lattice
point on the line χh = 2, and use these manifolds to construct more manifolds on the
lines χh > 2 using Proposition 9. The following bound is a guide to which 4-manifolds
are to be constructed.

LEMMA 21. Let X be a minimal symplectic 4-manifold. Then

b−
2 (X) ≤ 10χh(X) − 1.

Proof. By the work of Taubes [66, 67] (see also [32, Corollary 4.9]), a
minimal symplectic 4-manifold X must satisfy c2

1(X) ≥ 0 ([42, Corollary 13.1.12]).
A straightforward computation shows that the restriction implies

b−
2 (X) ≤ 5b+

2 (X) + 4 = 10(χh(X)) − 1.

�
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Table 1. Minimal symplectic 4-manifolds of Proposition 22

Symplectic # of Luttinger
b−

2 (c2
1, χh, σ ) sum/manifold. surgeries Reference

4 (15, 2, −1) X1,2#�2 T2 × �2 Two [6, Section 9]
5 (14, 2, −2) X3,5 None [13, Theorem 18]

6 (13, 2, −3) X1,2#�2 (T4#2��2) None [6, Section 9]
7 (12, 2, −4) X3,7 None [13, Corollary 15]

8 (11, 2, −5) X1,5#�2 (T4#��2) None [6, Sections 3 and 4]

9 (10, 2, −6) X1,5#�2 (T4#2��2) None [13, Corollary 16]

10 (9, 2,−7) X1,6#�2 (T4#2��2) None [6, Lemma 15]
11 (8, 2,−8) E(1)#T2 S Six [2, Lemma 16]
12 (7, 2,−9) E(1)#T2 A None Theorem 17
13 (6, 2, −10) E(1)#T2 B None Theorem 17

14 (5, 2, −11) ��2#12��2#�2 T2 × �2 Two [25, Building Block 5.6]

15 (4, 2, −12) ��2#13��2#�2 T2 × �2 Two [25, Building Block 5.6]

16 (3, 2, −13) ��2#12��2#�2 (T4#2��2) None [25, Building Blocks 5.6 and 5.6]

17 (2, 2, −14) ��2#13��2#�2 (T4#2��2) None [25, Building Blocks 5.6 and 5.7]
18 (1, 2, −15) S1,1 None [25, Example 5.4]
19 (0, 2, −16) E(1)#T2 T4#T2 E(1) None [64]

There are other restrictions for 4-manifolds with b1 ≤ 1 [59, Lemma 2.6]; Lemma
21 suffices for our purposes.

4.1. Irreducible manifolds on the line χh = 2. With the purpose of proving
Theorem 2, we begin to systematically populate every lattice point on the line χh = n
for every integer n ≥ 2 that corresponds to manifolds with negative signature, with an
irreducible 4-manifold. For the line χh = 2, we employ the following result.

PROPOSITION 22. Let b− ∈ {4, 5, . . . , 17, 18, 19}. There exists a minimal non-spin
symplectic simply connected 4-manifold X3,b− with second Betti number given by b+

2 (X) =
3 and b−

2 (X) = b−, which contains two homologically essential Lagrangian tori T1 and
T2 such that

π1(X3,b− − (T1 ∪ T2)) = {1}.
The manifolds of Proposition 22 unveil exotic smooth structures on 3��2#b−

2 ��2.
This enterprise has been done previously [1–4, 6, 10, 12, 13, 25, 44, 45, 47, 49, 50, 53,
57, 60, 61, 63]. What concerns us for our purposes is the existence of tori T1 and T2

with the required traits (cf. [13, Theorem 18]) in order to be able to apply Lemma 13.

Proof. Table 1 provides a guideline of where the manifolds of Proposition 22 are
built or obtained from as well as the number of Luttinger surgeries required in their
construction. We will prove the proposition for one case, given that the argument for
the other manifolds is analogous. We proceed to construct an irreducible symplectic
simply connected 4-manifold X3,15 with

(c2
1(X3,15), χh(X3,15), σ (X3,15)) = (4, 2,−12)

that contains the two tori as in the statement of the proposition. Take a quartic curve
inside ��2 with a single transverse double point. By blowing up at this singular point, a

surface of genus 2 and self-intersection 12 is obtained in ��2#��2. Proceed to blow up
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at each of these different points. The proper transform F of the 12 blowups is a complex

curve of genus 2 and self-intersection zero, which is contained in ��2#13��2 (cf. [25,
Building block 5.6]). From the construction it is clear that the surface F intersects

every exceptional sphere from each of the 13 blowups. Moreover, π1(��2#13��2 −
F) = {1}, since the exceptional sphere introduced during the 13th blowup provides a
nullhomotopy for the meridian of F once it is removed from the manifold.

Build the generalized fibre sum

Z4,2 := (��2#13��2)#F=�2 (T2 × �2).

Again, the manifold Z4,2 is symplectic by [25], it is minimal by [71, Theorem 1.1].

Its characteristic numbers are readily computed to be c2
1(Z4,2) = c2

1(��2#13��2) +
c2

1(T2 × �2) + 8 = 4 and χh(Z4,2) = χh(��2#13��2) + χh(T2 × �2) + 1 = 2.
One concludes π1(Z4,2) ∼= �x ⊕ �y from Proposition 8 and the Seifert-van

Kampen theorem. Since the fundamental group is residually finite, Z4,2 is irreducible by
[31, Corollary 1]. There are eight pairs of geometrically dual Lagrangian tori contained
in Z4,2 that come from the T2 × �2 block in the construction of the symplectic sum. We
apply torus surgeries to Z4,2 following Proposition 8 and the notation there. Perform
−1/1-torus surgeries on T3 and T4 along m3 = x and m4 = y, respectively, to obtain a
simply connected irreducible symplectic 4-manifold X3,15 [8, 35], Proposition 8. Both
tori T1 and T2 have each a geometrically dual torus inside X3,15. Thus, T1 and T2 are
homologically essential Lagrangian tori. One concludes from Proposition 8 that their
meridians are trivial in the complement, and one has π1(X3,15 − (T1 ∪ T2)) = {1}. �

4.2. Region of negative signature: proof of Theorem 2. We will fill out the region
of the geography of irreducible symplectic 4-manifolds whose fundamental group
is among the choices {�p, �p ⊕ �q, � ⊕ �q, �, � ⊕ �} by constructing irreducible
manifolds with the given choices of fundamental groups realizing all pairs of
integers (

c2
1, χh

)
when 0 ≤ c2

1 ≤ 8χh − 1.

Note that under the chosen coordinates, a 4-manifold with c2
1 = 8χ + k has

signature k. We proceed to prove the main result Theorem 2.

Proof. The homeomorphism types are pinned down by the work of Hambleton–
Kreck and Hambleton–Teichner presented in Sections 3.1 and 3.2. A worked out
argument on these matters was given in Example 11. The line χh = 1 was populated,
and its botany was studied in Corollary 19 and Example 11 (also see Remark 18). The
line χh = 2 is populated as a consequence of Proposition 22 and Lemma 13. Assume
n ≥ 3. The region

χh = n,

8n − 16 ≤ c2
1 ≤ 8n − 1

in statement of Theorem 2 is populated by an iteration on the construction of
generalized fibre sums of the manifolds of Proposition 22 with n copies of the manifold
Z of Proposition 9 along tori. Note that by [25, Lemma 1.6], the symplectic form on
these manifolds can be perturbed so that the Lagrangian tori become symplectic. The
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Seifert-van Kampen theorem implies that the fundamental group is trivial. The claim
now follows from Lemma 13. The region

χh = n,

0 ≤ c2
1 < 8n − 16

is populated by forming the generalized fibre sum of the manifolds in Proposition 22
and the telescoping triples of Theorem 17 along tori. Lemma 21 serves as guidance as
of which telescoping triple is to be used according to its signature. The torus involved
in the gluing of each telescoping triple is the torus T2; the Seifert-van Kampen theorem
implies that the fundamental group of the symplectic sum is trivial. The reader will
note that there are several choices on the building blocks used for the construction
of the generalized fibre sums; various points can be populated alternatively by using
Lemma 14. The claim now follows from an iterated application of [25, 31, 71] and
Lemma 13 as before. �

4.3. Regions of non-negative signature. The tools of Section 3.7 can also be used
to extend results on simply connected 4-manifolds with non-negative signature [2, 5,
9, 51, 58] to other fundamental groups. We give a sample result in this section, first
recalling the following theorem.

THEOREM 23. (Akhmedov–Park [5]). For each of the following pairs (c, χ ) ∈ � ⊕ �
� (c, χ ) = (200, 25),
� (c, χ ) = (201, 25),
� (c, χ ) = (204, 24),
� (c, χ ) = (219, 27), and
� (c, χ ) = (212, 26),
there exists a minimal symplectic simply connected 4-manifold X with characteristic
numbers c2

1(X) = c and χh(X) = χ . Moreover, X contains two disjoint homologically
essential Lagrangian tori, T1, T2, each of self-intersection zero and such that π1(X −
T1 ∪ T2) = π1(X − Ti) = {1} for i ∈ {1, 2}.

The previous theorem and Lemma 13 yield the following result.

COROLLARY 24. Let G ∈ {{1}, �p, �p ⊕ �q, �, � ⊕ �q, � ⊕ �}, and assume m, r, s, t
to be odd positive integers that satisfy m ≥ 49, r ≥ 47, s ≥ 53 and t ≥ 51. For each of the
following pairs of integers,

(1) (c, χ ) = (4m + 4, 1
2 (m + 1)),

(2) (c, χ ) = (4m + 5, 1
2 (m + 1)),

(3) (c, χ ) = (4r + 6, 1
2 (r + 1)) ,

(4) (c, χ ) = (4s + 7, 1
2 (s + 1)), and

(5) (c, χ ) = (4t + 8, 1
2 (t + 1)),

there exists a 4-manifold XG with ω2-type (I) and

π1(XG) = G and (c2
1(XG), χh(XG)) = (c, χ ).

If G ∈ {{1}, �, �p, �q ⊕ �q} for q an odd prime number, then the homeomorphism type
of XG has the ∞2-property.
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63. Z. Szabó, Irreducible four-manifolds with small Euler characteristics, Topology 35,

(1996), 411–426.
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