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Abstract

We consider the problem of obtaining effective representations for the solutions of linear,
vector-valued stochastic differential equations (SDEs) driven by non-Gaussian pure-
jump Lévy processes, and we show how such representations lead to efficient simulation
methods. The processes considered constitute a broad class of models that find applica-
tion across the physical and biological sciences, mathematics, finance, and engineering.
Motivated by important relevant problems in statistical inference, we derive new, gener-
alised shot-noise simulation methods whenever a normal variance-mean (NVM) mixture
representation exists for the driving Lévy process, including the generalised hyperbolic,
normal-gamma, and normal tempered stable cases. Simple, explicit conditions are iden-
tified for the convergence of the residual of a truncated shot-noise representation to a
Brownian motion in the case of the pure Lévy process, and to a Brownian-driven SDE
in the case of the Lévy-driven SDE. These results provide Gaussian approximations
to the small jumps of the process under the NVM representation. The resulting repre-
sentations are of particular importance in state inference and parameter estimation for
Lévy-driven SDE models, since the resulting conditionally Gaussian structures can be
readily incorporated into latent variable inference methods such as Markov chain Monte
Carlo, expectation-maximisation, and sequential Monte Carlo.

Keywords: Lévy processes; small jump approximation; Lévy simulation; Monte Carlo;
Lévy state space model
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1. Introduction

Lévy processes are commonly employed in the study of asset returns and derivative pricing
models, as well as in the prediction of high-frequency trading returns [3, 34, 24]. In derivative
pricing in particular, the Black–Scholes model specifies the dynamics of a financial market
which holds derivative instruments such as options, futures, and swaps [7]. Yet the assumption
that option prices are modelled by a stationary log-Gaussian process often fails to be validated
by empirical data [7], motivating research into the relaxation of this assumption. Lévy pro-
cesses such as the normal tempered stable process [4, Section 9], the generalised hyperbolic
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process [15], or the variance-gamma process [34, 43] can be used to model the variance, or
volatility, of the security as a stochastic process.

In biology, the generalised inverse Gaussian (GIG) process has been used to model spike
train activity from neurons [25], and to model the likelihood of extreme meteorological events
with high economic and social costs [17]. The tempered stable process has also been exten-
sively studied in relation to Lévy flight models [40] in physics, and the variance-gamma
process has been used to analyse continuous trait evolution such as population growth [35,
41], and in the analysis of nitrate concentration in the eastern U.S. [48]. More recently, the lep-
tokurtic properties of non-Gaussian Lévy processes have been exploited in the field of object
tracking [21] in order to capture abrupt changes in the kinematic state of a moving object,
which in turn has applications to animal tracking and the analysis of hunting patterns.

We are here concerned with the analysis of different representations of Lévy-driven
stochastic processes of the form

dX(t) = AX(t)dt + hdW(t), X(t) ∈R
P,

where A is a P × P matrix, h ∈R
P, and (W(t)) is a one-dimensional non-Gaussian Lévy

process.
Based on infinite-series representations for (W(t)), tractable and conditionally Gaussian

models can be developed for simulation and inference purposes; see, for example, [33, 23, 21],
where such models and inference procedures were developed for α-stable Lévy processes driv-
ing linear stochastic differential equations (SDEs). Here, by contrast, we study variance-mean
mixture Lévy processes [3], including (but not limited to) the normal-gamma, normal tempered
stable, and generalised hyperbolic processes. In particular, we provide functional central-limit-
theorem-like results for the convergence of the residual terms when series representations of
such processes are truncated at a finite level, and for the corresponding Gaussian convergence
of the above SDE’s residuals when it too is truncated in a corresponding fashion. The results
are linked in spirit to the study of [2], although posed in terms of a different truncation of small
jumps.

Lévy processes have been studied extensively via the general theory of stochastic processes
with stationary, independent increments. Samorodnitsky and Taqqu [42], Küchler and Tappe
[31], and Barndorff-Nielsen and Shephard [3, 4, 5] consider important special cases, including
the tempered stable, inverse Gaussian, and α-stable processes. The relevant properties estab-
lished are then used in the definition and analysis of broader classes of Lévy processes, such
as the normal variance-mean (NVM) mixture processes [4], which are formed by the subordi-
nation of Brownian motion to a non-negative process. Samorodnitsky and Taqqu also examine
stochastic integrals with respect to α-stable random noise, providing a series representation
closely related to the series representation of the α-stable process. Barndorff-Nielsen extends
the series representation of α-stable stochastic integrals to ones driven by a non-negative
Lévy process [3, Section 8], and Rosinski studies an analogous representation for symmetric
Gaussian mixture processes [38].

The breadth and depth of the study of Lévy processes have allowed for numerous studies
into their applications in modelling rare-event phenomena, e.g. in finance [3, 24, 12], physics
[40], and biology [25, 17, 48, 21].

Efficient methods for simulating Lévy processes have been critical in successfully bridg-
ing the gap between theory and application. Muller and Box outline a method of generating
normal random variates [9], and Chambers, Mallows and Stuck study the generation of
α-stable random variables, both of which are summarised in work by Barndorff-Nielsen
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[5, Sections 2.3–2.4] and Samorodnitsky and Taqqu [42]. While simulation from finite-activity
processes is straightforward [12], exact simulation from infinite-activity processes, such as
those considered in this work, is impossible, because of the presence of an infinite number of
small jumps in any finite time interval. Khinchin [29], Bondesson [8], and Fergusson and Klass
[18] outline the inverse Lévy method for simulating jumps from infinite-activity processes
with non-negative increments, and Rosinski [39] develops generalised shot-noise methods
with thinning and rejection sampling for processes with Lévy densities that cannot be sim-
ulated directly using approaches such as the inverse Lévy method. In [22], Godsill and Kindap
propose novel algorithms for simulating from the infinite-activity GIG process by combining
previous approaches, paving the way for direct simulation of generalised hyperbolic jumps.

While most simulation methods in principle require the computation of an infinite sum,
truncation of the series is of course required in practice. Asmussen and Rosinski [2] analyse
the effect of strict truncation of the process jumps on the representation of the ‘residual pro-
cess’, namely, the truncation error. They provide necessary and sufficient conditions for the
convergence of the residual to a diffusion process, and several authors [13, 14] provide bounds
on the rate of convergence of the residual for specific classes of Lévy processes. Further work
[11, 44] has also examined the Gaussian representation of strictly small jumps when studying
SDEs. In the setting of SDEs driven by Lévy processes, the work of [30] provides a promis-
ing approach in which the process is simulated by ODE solvers between large jumps of the
process, leading to an alternative and general methodology for nonlinear SDEs. In the con-
text of the generalised shot-noise representation of more complex processes, Rosinski studies
instead random Poisson truncations of the epochs of the process. This methodology is applied
by Godsill et al. [23] to the α-stable process, where they provide verification of the conver-
gence of the α-stable residual to a Brownian motion. Yet the analysis there is limited to the
α-stable normal mixture process where the mean and standard deviation are proportional to an
underlying stable process, and it does not consider the much broader class of NVM mixture
processes, where the mean and variance are proportional to the subordinator.

A framework for performing inference on state space models described by linear Lévy-
driven SDEs is presented in [23]. The problem of inference on linear Gaussian state space
models has largely been solved through the development of the Kalman filter [27]. Variants
such as the extended Kalman filter and the unscented Kalman filter have also been introduced
in order to handle nonlinearities [1]. Inference on non-Gaussian models has been accomplished
primarily through Bayesian modelling combined with sequential Monte Carlo methods (out-
lined e.g. in [10, 28]), and this is exploited in [23] through the use of the Rao–Blackwellised
particle filters to perform inference for a conditionally Gaussian state space model driven by
Lévy noise. The algorithm there uses the Kalman filter on the linear conditionally Gaussian
part, and it employs particle filtering to infer the distribution of the hidden process driven by
the α-stable noise. The main aim of this paper is to provide the theoretical foundations with
which to extend the ‘Lévy state space model’ [23] to a broader class of processes.

2. Background: Lévy processes and series representations

2.1. Lévy processes

A Lévy process, (X(t)) = (X(t) ; t ≥ 0), is a real-valued, infinitely divisible stochastic pro-
cess with stationary and independent increments. The log-characteristic function, commonly
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known as the characteristic exponent (CE) or cumulant function, of any Lévy process is given
by [16]

K(t; θ ) := ln E

(
eiθX(t)

)
= tiθa − t

1

2
b2θ2 + t

∫
R∗

[
eiθx − 1 − 1(|x|< 1)ixθ

]
Q(dx), (2.1)

where R
∗ := R\{0}. The term 1(|x|< 1)ixθ is a centring term that ensures convergence of the

CE for processes for which
∫
|x|<1 xQ(dx) is divergent, though it can be omitted for processes

with finite first absolute moment. The Lévy triplet (a, b2,Q) uniquely defines the Lévy process
[16], with a ∈R, b ∈ [0,∞), and where the Lévy measure, Q(dx), is a Poisson-process intensity
measure defining the distribution of jumps in the Lévy process, satisfying∫

R∗

(
1 ∧ x2)Q(dx)<∞, (2.2)

where (a ∧ b) denotes the minimum value of a and b. See e.g. [5, Section 2.3] for more details.

2.2. Subordinators

A subordinator (Z(t))t≥0 is a particular case of a Lévy process with non-negative incre-
ments, such that its paths are almost surely (a.s.) increasing [47]. The Lévy measure of any
subordinator, QZ(dz), satisfies [5]∫

(0,∞)
(1 ∧ z)QZ(dz)<∞. (2.3)

Observe that this is a stricter condition than that required for general Lévy processes in (2.2).
Consequently, the Lévy triplet of a subordinator has b2 = 0 and no centring term is required
[47]. The current work will consider only subordinators without drift; thus the CE for such a
subordinator (Z(t)) will always be of the form

KZ(t; θ ) := ln E
[
eiθZ(t)]= t

∫
(0,∞)

(
eiθz − 1

)
QZ(dz). (2.4)

The mean and variance of Z(t), when they exist, may be obtained for all t from the Lévy
measure:

E[Z(t)] = t
∫

(0,∞)
zQZ(dz), Var[Z(t)] = t

∫
(0,∞)

z2QZ(dz).

Most but not all of the processes we consider here will have finite first and second moments,
because their Lévy densities decay exponentially for large jump sizes; see Sections 3.1.4 and
3.3.2 of [5]. We will also be concerned here with so-called infinite-activity subordinators,
which exhibit infinitely many jumps in any finite time interval: QZ((0,∞)) = ∞. Combined
with (2.2), this implies the presence of infinitely many small jumps (|x|< 1) within finite time
intervals.

2.3. Normal variance-mean processes

A normal variance-mean (NVM) process is defined as time-deformed Brownian motion,
where jumps in a subordinator process (Z(t)) drive random time deformations of an indepen-
dent Brownian motion (B(t)) as follows [5]:

X(t) =μt +μWZ(t) + σWB(Z(t)), t ≥ 0, μ, μW ∈R, σW ∈ (0,∞). (2.5)
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Here (B(t)) is a standard one-dimensional Brownian motion and (Z(t)) is a subordinator process
as in the previous section. We limit attention to the case μ= 0 without loss of generality. The
parameter μW models the skewness of the jump distribution, with a fully symmetric process
for μW = 0. The specification of (Z(t)), coupled with the choice of μW and σW , allows for
a broad family of heavy-tailed and skewed processes to be implemented. We can express the
Lévy measure Q of any such process in terms of its subordinator’s Lévy measure QZ :

Q(dx) =
∫

(0,∞)
N (

dx;μWz, σ 2
Wz

)
QZ(dz), (2.6)

where N ( · ;μ, σ 2) denotes the Gaussian law with mean μ and variance σ 2. Finally, if KZ(t; θ )
is the Lévy–Khintchine exponent of Z(t) in (2.4), then the CE for the subordinated process is
given by [12, Section 4.4]

KX(t; θ ) = KZ

(
t;μWθ + i

1

2
σ 2

Wθ
2
)

= t
∫

(0,∞)

[
e

(
iμWθ− 1

2σ
2
Wθ

2
)

z − 1

]
QZ(dz), (2.7)

from which we obtain the mean and variance directly in terms of the moments of the
subordinator. Specifically, for t ≥ 0,

E[X(t)] =μW

∫
(0,∞)

zQZ(dz) = tμWE[Z(1)] (2.8)

and

Var[X(t)] = tμ2
W

∫
(0,∞)

z2QZ(dz) + tσ 2
W

∫ ∞

0
zQZ(dz) = tμ2

WVar[Z(1)] + tσ 2
WE[Z(1)], (2.9)

when these expectations exist.
We will consider examples based on the normal-gamma, normal tempered stable, and

generalised hyperbolic processes, which are obtained via Brownian motion subordinated to
the gamma, tempered stable, and GIG processes, respectively, with Lévy measures shown in
(2.10), (2.11), (2.12), respectively:

QZ(dz) = νz−1 exp

(
−1

2
γ 2z

)
dz, (2.10)

QZ(dz) = Az−1−κ exp

(
−1

2
γ

1
κ z

)
dz, (2.11)

QZ(dz) = z−1 exp

(
−γ

2

2
z

)[
max (0, λ) + 2

π2

∫ ∞

0

1

y
∣∣H|λ|(y)

∣∣2 exp

(
− zy2

2δ2

)
dy

]
dz. (2.12)

Appropriate ranges for the different parameters are specified in Section 6.

2.4. Generalised shot-noise representation

The shot-noise representation of a Lévy process is fundamental to the simulation methods
in [23], [39], and [22]. Adopting the perspective of viewing a Lévy process as a point process
defined on [0, T] ×R

d, Rosinski [39] considers the equivalent representation

N =
∞∑

i=1

δVi,H(Zi,Ui), (2.13)
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where δx denotes the Dirac measure at x, and {Vi} is a sequence of independent and identically
distributed (i.i.d.) uniforms, Vi ∼ U[0, T], independent of {Zi,Ui}. Intuitively, {Vi} represent
the arrival times of the jumps Xi = H(Zi,Ui) in the process, and {Zi} represent a non-increasing
set of jump sizes drawn from the subordinator process.

For the NVM Lévy process, H( · ) is related to the time-domain representation of the process
in (2.5) via

H(Zi,Ui) =μWZi + σW

√
ZiUi, Ui

i.i.d.∼ N (0, 1). (2.14)

The ordered jumps {Zi} are typically simulated through generation of the ordered epochs {�i}
of a standard Poisson point process, obtained by the partial sum of exponential random vari-

ables, ei
i.i.d.∼ Exp(1): �i = �i−1 + ei. Then we obtain the ith ordered subordinator jump through

a function Zi = h(�i) as

Z(t) =
∞∑

i=1

h(�i)1(Vi ≤ t),

where the map h( · ) can be expressed in terms of the upper tail of QZ [5, Section 3.4.1]
as h(�i) = inf{z ∈R:QZ([z,∞))<�i}, which may or may not be available in closed form,
depending on the particular choice of QZ . If it is not available, then rejection sampling or thin-
ning methods can be employed, as in [22], which leads to suitable algorithms for all of the
models considered here.

Substituting (2.13) into the Lévy–Khintchine representation (2.1), the Lévy process can be
expressed as the convergent infinite series [39]

X(t) =
∞∑

i=1

H(Zi,Ui)1(Vi ≤ t) − tbi, (2.15)

where bi is a compensator or centring term [39] that ensures the convergence of the series. A
Lévy process need not be compensated if and only if∫

R∗
(1 ∧ |x|)Q(dx)<∞;

see [47, 46]. In view of (2.3), any subordinator satisfies this condition, and hence so does the
corresponding NVM process; see Appendix C. Therefore, none of the Lévy processes studied
in this paper requires compensating terms, and we take bi = 0 for all i throughout.

3. Random truncation of subordinator

Consider the problem of simulating an NVM Lévy process via the shot-noise representation
in the previous section. Suppose we have access to a simulation algorithm for subordinator gen-
eration, which is capable of producing a non-increasing set of random jumps {Zi}, i = 1, 2, . . .,
and associated uniformly distributed random jump times {Vi}. Exact simulation for infinite-
activity processes via (2.15) is impossible with finite computational resources, so simulation
of a truncated process is typically implemented. In this paper, we consider the effect of random
Poisson truncations on the jumps of the subordinator process as in [23, 39],

X̂ε(t) =
∑

i:Zi≥ε
H(Zi,Ui)1(Vi ≤ t),

Xε(t) = X(t) − X̂ε(t) =
∑

i:Zi<ε

H(Zi,Ui)1(Vi ≤ t),
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FIGURE 1. Left: ten sample paths from a truncated gamma process. Right: histogram of N = 105 process
values at t = 1. Both are generated with ε = 10−10. The solid line is the true density of the original process
at time t = 1.
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FIGURE 2. Left: ten sample paths from a truncated tempered stable process. Right: Q–Q plot of N = 105

truncated process values at t = 1 versus N = 105 samples from the true distribution of the process at t = 1.
Both are generated with ε = 10−10.

where, as before, H is defined by H(Zi,Ui) =μWZi + σW
√

ZiUi, with Ui being i.i.d. N (0, 1).
Then X̂ε(t) is the process X(t) with subordinator jumps truncated at level ε, and Xε(t) is the
remainder, corresponding to the small jumps. There intuitively exists a trade-off between the
computational complexity of computing X̂ε(t), how accurately it approximates the true process
X(t), and whether a Gaussian approximation to Xε(t) is valid.

The left-hand plots in Figures 1, 2, and 3 show sample paths from the truncated versions of
the gamma (with parameters γ = √

2 and ν = 2), tempered stable (with parameters κ = 1/2,
γ = 1.35, and δ = 1), and GIG (with parameters δ = 1/3, γ = √

2, and λ= 0.2) subordina-
tors, using the above methodology with ε = 10−10, as described in [22]. See Section 6 for
the precise definitions of these processes. The corresponding right-hand plots compare the
empirical distributions of N = 105 truncated process values at time t = 1 with random vari-
ates from the theoretical exact (not truncated) marginal distribution of each of these truncated
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FIGURE 3. Left: ten sample paths from a truncated GIG process. Right: Q–Q plot of N = 104 truncated
process values at t = 1 versus N = 104 samples from the true distribution of the process at t = 1. Both are
generated with ε = 10−6.

processes at time t = 1. These are truncated at very low values of ε that might lead to infea-
sibly large computational burden in practical use. This motivates our justification of Gaussian
approximations to the residuals in the following sections, when larger values of ε are used for
computational reasons.

4. Gaussian process convergence

4.1. Preliminaries

Consider a subordinator (Z(t)) with Lévy measure QZ . The corresponding process with
jumps truncated at ε is denoted by (Zε(t)) and has Lévy measure QZε (B) = QZ(B ∩ (0, ε])
for all Borel sets B. The corresponding residual NVM process, denoted by (Xε(t)), has Lévy
measure

QXε (dx) =
∫ ε

0
N (

dx|μWz, σ 2
Wz

)
QZ(dz), (4.1)

and its moments can be obtained from (2.8) and (2.9):

E[Xε(t)] = t
∫ ∞

−∞
xQXε (dx) = tμWM(1)

Zε

and

tσ 2
ε =Var[Xε(t)] = t

∫ ∞

−∞
x2QXε (dx) = t

[
μ2

WM(2)
Zε

+ σ 2
WM(1)

Zε

]
, (4.2)

where

M(n)
Zε

=
∫ ε

0
znQZε (dz)<∞, n ≥ 1. (4.3)

Note that these moments are all well defined and finite since QZε satisfies (2.3) and for all n ≥ 1
we have limε→0 M(n)

Zε
= 0.
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Note also that, for any 0< ε ≤ 1 and m< n,

M(n)
Zε

≤ εn−mM(m)
Zε
, n ≥ 1, (4.4)

since xn ≤ εn−mxm for 0< x ≤ ε. In particular this implies that

σ 2
ε =μ2

WM(2)
Zε

+ σ 2
WM(1)

Zε
≤ M(1)

Zε

(
μ2

Wε + σ 2
W

)
ε→0→ 0

and that

σε
4

M(2)
Zε

=
(
μ2

WM(2)
Zε

+ σ 2
WM(1)

Zε

)2

M(2)
Zε

ε→0−−→ σ 4
W lim
ε→0

M(1)
Zε

2

M(2)
Zε

, (4.5)

whenever the limit limε→0
M(1)

Zε

2

M(2)
Zε

exists.

4.2. Gaussianity of the limit of Xε

The following is our first main result; it gives conditions under which the residual process
corresponding to an NVM Lévy process with jumps truncated at level ε converges to Brownian
motion as ε→ 0. An analogous one-dimensional result for α-stable processes is established,
along with corresponding convergence bounds, in [37].

Theorem 4.1. Consider a truncated NVM Lévy process Xε = (Xε(t)) with Lévy measure as in
(4.1). Let the standardised process Yε be defined as Yε(t) = (Xε(t) −E[Xε(t)])/σε , t ≥ 0. If

lim
ε→0

M(2)
Zε

M(1)
Zε

2
= 0, (4.6)

then Yε converges weakly to a standard Brownian motion W = (W(t)) in D[0,1] with the
topology of uniform convergence.

Proof. The main content of the proof is in establishing the claim that Xε(1), properly stan-
dardised, converges to a Gaussian under (4.6). For that, it suffices to show that the CE of the
standardised version of Xε(1) converges pointwise to −u2/2. The CE of Xε(1) is given as in
(2.7), by

φεX(u) =
∫
R∗

( exp (iux) − 1)QεX(dx) =
∫ ε

0

[
exp

(
iuμWz − 1

2
u2σ 2

Wz
)

− 1

]
QZ(dz),

where QεX(dx) is the Lévy measure for Xε , having the same structure as (4.1). The CE for
X̃ε(t) = Xε(t) −E[Xε(t)] is then given by

φε
X̃

(u) = φεX(u) − iu
∫
R∗

xQεX(dx) =
∫ ε

0

[
exp

(
iuμWz − 1

2
u2σ 2

Wz

)
− 1 − iuμWz

]
QZ(dz).
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Note that Xε has finite mean,
∫
R∗ xQεX(dx) =μWM(1)

Zε <∞, by the finiteness of M(1)
Zε in (4.3).

Now, if we scale the centred process, X̃ε , to have unit variance at t = 1, i.e., if we let Yε(t) =
X̃ε(t)/σε, then the CE for Yε(1) becomes

φεY (u) = φε
X̃

(u/σε) =
∫ ε

0

[
exp

(
v

z

σ 2
ε

)
− 1 − iuμW

z

σε

]
QZ(dz)

=
∫ ε

0

[
exp

(
v

z

σ 2
ε

)
− 1 − v

z

σ 2
ε

− 1

2
u2σ 2

W
z

σ 2
ε

]
QZ(dz)

=
∫ ε

0

[
exp

(
v

z

σ 2
ε

)
− 1 − v

z

σ 2
ε

]
QZ(dz) − 1

2
u2σ 2

W

M(1)
Zε

σ 2
ε

= ϕε(u) − 1

2
u2ψε,

where v = iuμWσε − u2σ 2
W/2, ϕε(u) = ∫ ε

0

[
exp

(
v z
σ 2
ε

)− 1 − v z
σ 2
ε

]
QZ(dz), and ψε = σ 2

W
M(1)

Zε
σ 2
ε

.

Consider the difference between exp (φεY (u)) and the CF of the standard normal:

eε(u) := exp

[
ϕε(u) − 1

2
u2ψε

]
− exp

(
−u2

2

)

= exp

(
−u2

2

) {
exp

[
ϕε(u) + 1

2
u2(1 −ψε)

]
− 1

}
.

First we establish bounds on ϕε and 1 −ψε . For 1 −ψε , from (4.2) and (4.4) we have

1 −ψε = μ2
WM(2)

Zε

σε2
= μ2

WM(2)
Zε

μ2
WM(2)

Zε
+ σ 2

WM(1)
Zε

= μ2
W

μ2
W + σ 2

WM(1)
Zε
/M(2)

Zε

;

therefore, since clearly 1 −ψε ≥ 0,

0 ≤ 1 −ψε ≤ μ2
W

μ2
W + σ 2

W/ε

ε→0−−→ 0. (4.7)

For ϕε , first recall that for any complex z with negative real part,∣∣∣∣∣ exp (z) −
n∑

i=0

zn/n!
∣∣∣∣∣≤ |z|n+1/(n + 1)!, (4.8)

and so

|ϕε(u)| =
∣∣∣∣
∫ ε

0

(
exp

(
vz/σ 2

ε

)− 1 − vz/σ 2
ε

)
Q(dz)

∣∣∣∣
≤

∫ ε

0

∣∣∣(exp
(
vz/σ 2

ε

)− 1 − vz/σ 2
ε

)∣∣∣ Q(dz)

≤
∫ ε

0

1

2
|v|2 z2

σ 4
ε

Q(dz) (4.9)

= 1

2
|v|2 M(2)

Zε

σ 4
ε

. (4.10)

https://doi.org/10.1017/apr.2023.63 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2023.63


Non-Gaussian Lévy stochastic systems 1225

The final integral is well defined by (4.3). Since |v|2 = u2μ2
Wσ

2
ε + u4σ 4

W/4, using (4.5) and
(4.7), we have

lim
ε→0

|v|2 M(2)
Zε

σ 4
ε

= lim
ε→0

[
u2
μ2

WM(2)
Zε

σ 2
ε

+ 1

4
u4σ 4

W

M(2)
Zε

σ 4
ε

]

= 1

4
u4σ 4

W lim
ε→0

M(2)
Zε(

μ2
WM(2)

Zε
+ σ 2

WM(1)
Zε

)2

= 1

4
u4 lim

ε→0

M(2)
Zε(

M(1)
Zε

)2
,

where we used the fact that M(2)
Zε
/M(1)

Zε
≤ ε→ 0 from (4.4). Combining the bounds in (4.7) and

(4.10), we have

∣∣∣ϕε(u) + 1

2
u2(1 −ψε)

∣∣∣≤ 1

2
|v|2 M(2)

Zε

σ 4
ε

+ 1

2
u2 εμ2

W

εμ2
W + σ 2

W

ε→0−−→ u4

8
lim
ε→0

M(2)
Zε

M(1)
Zε

2
.

This bound is finite for any |u|<∞ by the properties of σε and M(2)
Zε

, and hence, under (4.6),

|eε(u)| =
∣∣∣∣exp

(
−u2

2

) {
exp

[
ϕε(u) + 1

2
u2(1 −ψε)

]
− 1

}∣∣∣∣
≤ exp

(
−u2

2

)(
exp

∣∣∣∣ϕε(u) + 1

2
u2(1 −ψε)

∣∣∣∣− 1

)
ε→0−−→ 0.

This proves the claimed pointwise convergence exp (φεY (u)) → exp (−u2/2) as ε→ 0.
Next we argue that the condition (4.6) is in fact sufficient for the process-level convergence

claimed in the theorem. Note that the result of the claim also implies uniform convergence
of the relevant characteristic functions on compact intervals [26, Theorem 5.3, p. 86]. Now,
it is straightforward, from the definition of a Lévy process, that the increments Yε(t) − Yε(s)
converge in distribution to the corresponding (Gaussian) increments of a Brownian motion, for
all s< t. We proceed to verify the requirement (III) in [36, Theorem V.19], i.e. that given δ > 0,
there are α > 0, β > 0, and ε0 > 0 such that P{|Yε(t) − Yε(s)| ≤ δ} ≥ β whenever |t − s|<α
and ε < ε0. To see this, note that the Lévy process (Yε(t):t ∈ [0, 1]) is centred, so for any 1 ≥
t ≥ s ≥ 0, by Chebyshev,

P{|Yε(t) − Yε(s)|> δ} = P{|Yε(t − s)|> δ}
≤ 1

δ2
Var(Yε(t − s))

= (t − s)Var(Yε(1))

δ2
= (t − s)

δ2
.

By taking δ ∈ (0, 1), we can choose any ε0 and α = δ3. Then, P{|Yε(t) − Yε(s)|> δ} = 1 −
P{|Yε(t) − Yε(s)| ≤ δ}, so we can set β = 1 − δ, and we conclude that (Yε(t))

ε→0−−→ (W(t)) in
D[0,1], as claimed. �
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Next we show that some conditions are in fact necessary for the Gaussian limit in
Theorem 4.1 to hold.

Theorem 4.2. Consider a truncated NVM Lévy process Xε = (Xε(t)), and define the associ-
ated standardised process Yε as in Theorem 4.1. If the condition (4.6) does not hold and,
moreover,

L1 := lim inf
ε→0

M(2)
Zε

M(1)
Zε

2
> 0 and L2 := σ 6

W lim sup
ε→0

M(3)
Zε

σ 6
ε

> 0, (4.11)

then Yε(1) does not converge to N (0, 1) in distribution as ε→ 0.

Proof. Suppose the conditions in (4.11) hold. We will assume that Yε(1) converges to
N (0, 1) in distribution as ε→ 0, and derive a contradiction.

In the notation of the proof of Theorem 4.1, expanding the exponential series in (4.9) for
one more term than before and using (4.8) yields∫ ε

0

(
exp

(
vz/σ 2

ε

)− 1 − vz/σ 2
ε − v2z2/

(
2σ 4
ε

))
Q(dz) = Dε(v),

with |Dε(v)| ≤ |v|3M(3)
Zε
/(3!σ 6

ε ). Hence, rearranging and integrating, we obtain

ϕε(u) =
∫ ε

0

(
exp

(
vz/σ 2

ε

)− 1 − vz/σ 2
ε

)
Q(dz) = Fε(v) + Dε(v), (4.12)

where v = iuμWσε − u2σ 2
W/2 as before and Fε(v) := v2M(2)

Zε
/
(
2σ 4
ε

)
. The assumption that Yε(1)

converges to N (0, 1) implies that |ϕε(u)| → 0 for all u.
We consider several cases. First, we note that Fε(v) cannot converge to zero for any u �= 0,

since, by (4.11),

lim inf
ε→0

|Fε(v)| = 1

4
u4σ 4

W lim inf
ε→0

M(2)
Zε

σ 4
ε

= 1

4
u4σ 4

W lim inf
ε→0

M(2)
Zε

M(1)
Zε

2
= 1

4
u4σ 4

WL1 > 0. (4.13)

Second, we note that Dε(v) also cannot converge to zero, because then Fε(v) would need to
converge to zero as well. The only remaining case is if, for every u, neither Fε(v) nor Dε(v)
vanishes as ε→ 0, while their sum does vanish. By (4.11) we have

lim sup
ε→0

|Dε(v)| ≤ lim sup
ε→0

|v|3 M(3)
Zε

3!σ 6
ε

= 1

48
u6L2.

On the other hand, by (4.12) and (4.13) we have

lim inf
ε→0

|Dε(v)| = lim inf
ε→0

∣∣∣|ϕε(v)| − Fε(v)
∣∣∣= lim inf

ε→0
|Fε(v)| = 1

4
u4σ 4

WL1.

Therefore,
1

48
u6L2 ≥ lim sup

ε→0
|Dε(v)| ≥ lim inf

ε→0
|Dε(v)| = 1

4
σ 4

WL1u4.

Since L1, L2 > 0, this is clearly violated for u small enough, providing the desired contradiction
and completing the proof. �
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Corollary 4.1. Suppose the subordinator Lévy measure QZ(dz) admits a density QZ(z), which,
for some E> 0, satisfies QZ(z)> 0 for all z ∈ (0, E]. Then the condition (4.6) in Theorem 4.1
is equivalent to

lim
ε→0

εQZ(ε) = +∞.

Proof. A straightforward application of L’Hôpital’s rule twice gives

lim
ε→0

M(2)
Zε

M(1)2

Zε

= lim
ε→0

∫ ε
0 z2QZ(z)dz(∫ ε
0 zQZ(z)dz

)2
= lim
ε→0

ε

2M(1)
Zε

= lim
ε→0

1

2εQZ(ε)
,

where the positivity of QZ(z) in (0, E] was required to ensure that the derivative of the
denominator is non-zero for all ε small enough. �

5. Bounds on the marginal convergence rate

In addition to the asymptotic convergence of the process to a Brownian motion as in
Theorems 4.1 and 4.2, it is possible to compute finite-ε bounds on the marginals’ distance
from Gaussianity. The following theorem, based on Berry–Esseen-style arguments, gives a
general result. It may be observed once again (see Corollary 4.1) that the quantity ε/M(1)

Zε
is

of importance in determining the performance of different subordinators QZ . In the following
section we study specific NVM processes within this framework.

Theorem 5.1. Consider a truncated NVM Lévy process Xε = (Xε(t)), and let the standardised
process Yε be defined as in Theorem 4.1. Then the Kolmogorov distance Eε between Yε(1) and
B ∼N (0, 1) satisfies

Eε := sup
x∈R

∣∣P[
Yε(1) ≤ x

]−P[B ≤ x]
∣∣

≤ Cσ 3
W�

(
−3

2
,

1

2
; − μ2

W

2σ 2
W

ε

)
M

(
3
2

)
Zε

σ 3
ε

(5.1)

= Cσ 3
W

M

(
3
2

)
Zε

σ 3
ε

(
1 +O (ε)

)
, as ε→ 0, (5.2)

where C = 0.7975 × 2
√

2/π , �(a, b; m) is the Kummer confluent hypergeometric function,
and with the obvious extension of (4.3) to non-integer moments.

Furthermore, with the same constant C, Eε may be bounded, for ε ∈ (0, 1], as

Eε ≤ C�

(
−3

2
,

1

2
; − μ2

W

2σ 2
W

ε

)(
ε

M(1)
Zε

)1/2

(5.3)

= C

(
ε

M(1)
Zε

)1/2(
1 +O (ε)

)
, as ε→ 0. (5.4)

Proof. Arguing as in the proof of [23, Theorem 3.1], which was derived from [2, Theorem
2.1], the Kolmogorov distance Eε between Yε(1) and B ∼N (0, 1) is bounded above by

Eε = sup
x∈R

∣∣P[
Yε(1) ≤ x

]−P[B ≤ x]
∣∣≤ 0.7975σ−3

ε

∫
R

|x|3QεX(dx), (5.5)
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where σ 2
ε is the variance of the NVM process. From (2.9) it follows that

σ 2
ε =μ2

WM(2)
Zε

+ σ 2
WM(1)

Zε
≥ σ 2

WM(1)
Zε

. (5.6)

Using Fubini’s theorem, the third absolute moment of the residual process can be
expressed as

S :=
∫
R

|x|3QεX(dx)

=
∫ ∞

−∞
|x|3

∫ ε

0
N (x;μWz, σ 2

Wz)QZ(dz)dx

=
∫ ε

0
z

3
2 σ 3

W2
3
2
�(2)√
π
�

(
−3

2
,

1

2
; − μ2

W

2σ 2
W

z

)
QZ(dz),

and since the Kummer confluent hyper-geometric function is increasing for non-negative z
[32], we can bound S as

S ≤ σ 3
W2

3
2
�(2)√
π
�

(
−3

2
,

1

2
; − μ2

W

2σ 2
W

ε

) ∫ ε

0
z

3
2 QZ(dz)

= σ 3
W2

3
2
�(2)√
π
�

(
−3

2
,

1

2
; − μ2

W

2σ 2
W

ε

)
M

(
3
2

)
Zε

.

Substituting this bound into (5.5) and using (5.6), we obtain (5.1). Then, using the expansion

�(a, b; z) =
∞∑

n=0

a(n)zn

b(n)n! , (5.7)

where a(0) = 1 and a(n) = a(a + 1)(a + 2) · · · (a + n − 1), we obtain

�

(
−3

2
,

1

2
; − μ2

W

2σ 2
W

ε

)
= 1 + 3μ2

W

2σ 2
W

ε +O(
ε2),

from which the asymptotic expansion (5.2) is obtained.

Now, the term M

(
3
2

)
Zε

/σ 3
ε is bounded using (4.4) and (5.6), for ε ∈ (0, 1], as

M

(
3
2

)
Zε

σ 3
ε

≤ ε1/2M(1)
Zε

σ 3
WM(1)

Zε

3/2
= ε1/2

σ 3
WM(1)

Zε

1/2
,

which yields (5.3), and applying (5.7) once again leads to (5.4). �

6. Examples

In this section, the validity of the conditions in Theorems 4.1 and 4.2 on the Gaussian
convergence of the residual process is examined for several important cases of NVM Lévy
processes. Simulation results validating the corresponding conclusions are also shown, and
explicit bounds on the rate of convergence to the Gaussian are derived in some special cases,
using the general framework of Theorem 5.1.
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6.1. Normal-gamma process

The subordinator of the normal-gamma (NG) process is a gamma process, with parameters
ν, γ > 0 and with Lévy density

QZ(z) = νz−1 exp

(
−1

2
γ 2z

)
, z> 0.

Here, in view of Corollary 4.1,

lim
ε→0

M(2)
Zε

M(1)2

Zε

= lim
ε→0

1

2εQZ(ε)
= 1

2ν
> 0,

and also,

lim
ε→0

M(3)
Zε

σ 6
ε

= 1

3ν2σ 6
W

> 0.

Therefore, L1 and L2 in Theorem 4.2 are both non-zero, so we expect the residuals of the NG
process not to be approximately normally distributed.

Furthermore, since M(n)
Zε

= ν
bn γ (n, bε), where b = γ 2/2, we have from (5.1) that

Eε ≤ Cσ 3
W�

(
−3

2
,

1

2
; − μ2

W

2σ 2
W

ε

)
ν

b3/2 γ (3/2, bε)(
μ2

W
ν

b2 γ (2, bε) + σ 2
W
ν
bγ (1, bε)

)3/2
=O(1), as ε→ 0,

where we have obtained the asymptotic behaviour using γ (s, x) = xs ∑∞
k=0

(−x)k

k!(s+k) (for posi-
tive, real s and x) and (5.7). Hence, as expected, the bound on the distance from Gaussianity,
Eε , does not tend to zero as ε→ 0.

In order to verify this empirically, we generate a random sample of M = 104 residual NG
paths with parameters μ= 0, μw = 1, σW = ν = 2, and γ = √

2, and compare the empirical
distribution of the values of the residual at time t = 1 with a standard normal distribution by
standardising the residual values to have zero mean and unit variance. As expected, the result-
ing histograms are not approximately Gaussian. Figures 4 and 5 show that the distribution of
the residual (with truncation level ε = 10−6) is in fact leptokurtic and heavier-tailed than the
standard normal. Further simulations confirmed this empirical observation even for smaller
truncation levels ε.

6.2. Normal tempered stable process

The subordinator for the normal tempered stable (NTS) process is the tempered stable (TS)
process TS(κ, δ, γ ), for κ ∈ (0, 1), δ > 0, γ ≥ 0, which has a Lévy density

QZ(z) = Az−1−κ exp

(
−1

2
γ

1
κ z

)
, z> 0,

where A = δκ2κ�−1(1 − κ) and �−1( · ) is the reciprocal of the gamma function. Here,

lim
ε→0

εQZ(ε) = lim
ε→0

Aε−κ exp

(
−1

2
γ

1
κ ε

)
= +∞,
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FIGURE 4. Histogram of M = 105 NG residual path values at t = 1. The smooth curve represents the
standard normal density.
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FIGURE 5. Q–Q plot of M = 104 NG residual path values at t = 1.

since κ ∈ (0, 1). Therefore, in view of Corollary 4.1 and Theorem 4.1, the residuals are
expected to be approximately Gaussian. Moreover, in this case we can derive a bound on the
corresponding marginal convergence rate.

Lemma 6.1. For ε ∈ (0, 1), let (Yε(t)) denote the standardised truncated process associated to
an NVM process subordinated to the residual TS process TS(κ, δ, γ ). If B ∼N (0, 1), then the
Kolmogorov distance Eε between Yε(1) and B satisfies

Eε ≤ 0.7975 × 2
3
2
√
�(1 − κ)√

δκπγ
×�εγ

(
1 − κ,

1

2
εγ

1
κ

)− 3
2

γ

(
3

2
− κ,

1

2
γ

1
κ ε

)
, (6.1)
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where

�ε =�

(
−3

2
,

1

2
; − μ2

W

2σ 2
W

ε

)
,

and �(a, b; m), γ (s, x) are the Kummer confluent hypergeometric function and the incomplete
lower gamma function, respectively. Furthermore, as ε→ 0 we have

Eε ≤ 0.7975 × 2
3
2 − κ

2 (1 − κ)
3
2
√
�(1 − κ)( 3

2 − κ
)√
δκπ

ε
κ
2 +O(

ε1+ κ
2
)
. (6.2)

Proof. From Theorem 5.1 we obtain Eε ≤ Cσ 3
W�εM

(
3
2

)
Zε

/σ 3
ε , and from (2.9) it follows that

σ 2
ε =μ2

WM(2)
Zε

+ σ 2
WM(1)

Zε
≥ σ 2

WM(1)
Zε
,

where the residual first moment is given by

M(1)
Zε

=
∫ ε

0
zAz−1−κ exp

(
−1

2
γ

1
κ z

)
dz = Aγ

κ−1
κ 21−κγ

(
1 − κ,

1

2
εγ

1
κ

)
.

To find M

(
3
2

)
Zε

, substitute the Lévy density of the TS process described earlier,

M

(
3
2

)
Zε

= A
∫ ε

0
z

1
2 −κe− 1

2 γ
1
κ zdz = A

(
1

2
γ

1
κ

)κ− 3
2

γ

(
3

2
− κ,

1

2
γ

1
κ ε

)
.

Substituting this in (5.5) and noting that A = δκ2κ�−1(1 − κ) and C = 0.7975 × 2
√

2/π
yields

Eε ≤ 0.7975 × 2
3
2
√
�(1 − κ)√
δκπγ

�εγ

(
1 − κ,

1

2
εγ

1
κ

)− 3
2

γ

(
3

2
− κ,

1

2
γ

1
κ ε

)
,

as claimed. Finally, recalling the series expansion for γ (s, x) from the previous section, the
asymptotic expression in (5.2) leads to (6.2). �

Next we examine the empirical accuracy of the Gaussian approximation in this case.
Figures 6 and 7 show the empirical distribution of the residual NTS process at t = 1,
with parameter values μ= 0, μW = δ = 1, σW = 2, κ = 1/2, γ = 1.35, and truncation level
ε = 10−6.

With the same parameter values, Figure 8 shows the behaviour of the bound in (6.1) and the
first term in the asymptotic bound (6.2).

6.3. Generalised hyperbolic process

Finally, we consider the general class of generalised hyperbolic (GH) processes. The sub-
ordinator in this case is the generalised inverse Gaussian (GIG) process GIG(λ, δ, γ ), with
constraints on parameter values as detailed in [22], and with Lévy density given by [22]

QZ(z) = exp
(−zγ 2/2

)
z

[
max (0, λ) + 2

π2

∫ ∞

0

1

y
∣∣H|λ|(y)

∣∣2 exp
(

− zy2

2δ2

)
dy

]
1(z> 0),
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FIGURE 6. Histogram of M = 105 NTS residual path values at t = 1. The smooth curve represents the
standard normal density.
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FIGURE 7. Q–Q plot of M = 104 NTS residual path values at t = 1.

where Hv(z) is the Hankel function of real order v. A direct verification of the sufficient
condition in Corollary 4.1 is readily obtained as

lim
ε→0

εQZ(ε) = lim
ε→0

exp
(
−γ

2

2
ε
)

max (0, λ) + 2

π2
lim
ε→0

∫ ∞

0

1

y
∣∣H|λ|(y)

∣∣2 exp
(
−εγ

2

2
− εy2

2δ2

)
dy

= max (0, λ) + 2

π2

∫ ∞

0

1

y
∣∣H|λ|(y)

∣∣2 dy

= +∞,
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FIGURE 8. Plot of the finite-ε bound in (6.1) and the first term in the asymptotic bound (6.2) for the
approximation error Eε in Lemma 6.1.

since y
∣∣Hν(y)

∣∣2 is non-zero for z ∈ [z1,∞) where

z1 =
(

21−2νπ

�2(ν)

)1/(1−2ν)

;

see e.g. [22, Theorem 2] and [45]. Once again, in view of Corollary 4.1 and Theorem 4.1, the
residuals are expected to be approximately Gaussian. Indeed, in this case we can derive the
following bound on the corresponding marginal convergence rate.

Lemma 6.2. For ε ∈ (0, 1), let Yε(t) denote the standardised truncated process associated
to an NVM process subordinated to the residual GIG(λ, δ, γ ) process. If B ∼N (0, 1),
then for any z0 ∈ (0,∞), the Kolmogorov distance Eε between Yε(1) and B can be
bounded as

Eε ≤ 0.7975�εγ 3/2

erf
(
γ

√
ε√
2

) 3
2

(
2 max (0, λ)

π̃ (bδ)3/2
γ

(
3

2
, bε

)
+ 2|λ|+1δ2|λ|− 3

2�(|λ|)
π2π̃H0z2|λ|−1

0 b3/2−|λ| × γ

(
3

2
− |λ|, bε

)

+ 1

π̃4H0b
√
δ
γ (1, bε)

)
, for |λ| ≤ 1

2
,

Eε ≤ 0.7975�ε (γH0)
3/2

erfc
(

z0

δ
√

2

√
ε
) 3

2
erf(γ

√
ε√
2
)

3
2

(
max (0, λ)π

(bδ)
3
2

× γ

(
3

2
, bε

)

+ π̃

b
√
δ

× γ (1, bε)

)
, for |λ|> 1

2
, (6.3)
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with b = γ 2

2 , π̃ =
√
π
2 , H0 = z0

∣∣H|λ|(z0)
∣∣2, and

�ε =�

(
−3

2
,

1

2
; − μ2

W

2σ 2
W

ε

)
,

where, using the standard definitions erf(x) = 2√
π

∫ x
0 e−t2 dt and erfc(x) = 1 − erf(x), we

denote by �(a, b; m), γ (s, x), erf(x), and erfc(x) the Kummer confluent hypergeometric func-
tion, the incomplete lower gamma function, the error function, and the complementary error
function, respectively. Furthermore, as ε→ 0 we have

Eε ≤ 0.7975

π̃
5
2 bH0

√
δ
ε

1
4 +O(

ε
5
4
)
, for |λ| ≤ 1

2
,

Eε ≤ 0.7975π̃
5
2 H

3
2
0

b
√
δ

ε
1
4 +O(

ε
5
4
)
, for |λ|> 1

2
. (6.4)

Proof. Recalling the definition of the Jaeger integral as

J(z) =
∫ ∞

0

e
− x2z

2δ2

x|H|λ|(x)|2 dx,

we have from the bounds obtained in Appendix A, for |λ| ≤ 1/2,

J(z) ≥ δ
(π

2

)3/2
z− 1

2 ,

and for |λ|> 1/2,

J(z) ≥ δ2|λ|2|λ|−1

H0z2|λ|−1
0

z−|λ|γ
(

|λ|, z2
0

2δ2
z

)
+ δ

H0
√

2
z− 1

2�

(
1

2
,

z2
0

2δ2
z

)
.

Noting that the variance of the GH process satisfies σ 2
ε =μ2

WM(2)
Zε

+ σ 2
WM(1)

Zε
≥ σ 2

WM(1)
Zε

, for

|λ| ≤ 1
2 we obtain

M(1)
Zε

=
∫ ε

0
exp

(
−γ

2z

2

) [
max (0, λ) + 2

π2
J(z)

]
dz

≥ 2

π2

∫ ε

0
exp

(
−γ

2z

2

)
J(z)dz

≥ δ

γ
erf

(
γ
√
ε√

2

)
,

and similarly for |λ|> 1
2 we obtain

M(1)
Zε

≥ 2

π2

∫ ε

0
e− zγ 2

2

[
δ2|λ|2|λ|−1

H0z2|λ|−1
0

z−|λ|γ
(

|λ|, z2
0

2δ2
z

)
+ δ

H0
√

2
z− 1

2�

(
1

2
,

z2
0

2δ2
z

)]
dz

≥ 2

π2

∫ ε

0
e− zγ 2

2
δ

H0
√

2
z− 1

2�

(
1

2
,

z2
0

2δ2
z

)
dz

≥ 2δ

H0πγ
erfc

(
z0

δ
√

2

√
ε

)
erf

(
γ
√
ε√

2

)
.
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Therefore, we have the following bound on the variance:

σ 2
ε ≥

⎧⎪⎨
⎪⎩
σ 2

Wδ

γ
erf

(
γ
√
ε√

2

)
, for |λ| ≤ 1

2 ,

σ 2
Wδ

H0π̃
2γ

erfc
(

z0

δ
√

2

√
ε
)

erf
(
γ
√
ε√

2

)
, for |λ|> 1

2 .

Finding M

(
3
2

)
Zε

in line with Theorem 5.1, we have

M

(
3
2

)
Zε

=
∫ ε

0
z

3
2 QZ(dz)

= max (0, λ)
∫ ε

0
z

1
2 exp

(
−γ

2

2
z

)
dz + 2

π2

∫ ε

0
z

1
2 exp

(
−γ

2

2
z

)
J(z)dz

= S1 + S2.

Writing b = γ 2

2 , we have

S1 = max (0, λ)

b
√

b
γ

(
3

2
, bε

)
;

for |λ|> 1
2 we have J(z) ≤ δ(π2 )3/2

z− 1
2 and

S2 ≤ 2

π2
δ
(π

2

) 3
2
∫ ε

0
exp(−bz) dz = δ√

2πb
γ (1, bε) ,

and for |λ| ≤ 1
2 ,

S2 ≤ 2|λ|δ2|λ|

π2H0z2|λ|−1
0

∫ ε

0
z

1
2 −|λ|e−bzγ

(
|λ|, z2

0

2δ2
z

)
dz +

√
2δ

π2H0

∫ ε

0
e−bz�

(
1

2
,

z2
0

2δ2
z

)
dz

≤ 2|λ|δ2|λ|�(|λ|)
π2H0z2|λ|−1

0

∫ ε

0
z

1
2 −|λ|e−bzdz + δ

ππ̃H0

∫ ε

0
e−bzdz

≤ 2|λ|δ2|λ|�(|λ|)
π2H0z2|λ|−1

0 b
3
2 −|λ| γ

(
3

2
− |λ|, bε

)
+ δ

ππ̃H0b
γ (1, bε) .

Combining the above bounds, for |λ| ≤ 1/2,

M

(
3
2

)
Zε

≤ max (0, λ)

b
√

b
γ

(
3

2
, bε

)
+ 2|λ|δ2|λ|�(|λ|)
π2H0z2|λ|−1

0 b
3
2 −|λ| γ

(
3

2
− |λ|, bε

)
+ δ

ππ̃H0b
γ (1, bε) ,

and for |λ|> 1/2,

M

(
3
2

)
Zε

≤ max (0, λ)

b
√

b
γ

(
3

2
, bε

)
+ δ√

2πb
γ (1, bε) .

Finally, substituting these bounds for M

(
3
2

)
Zε

into (5.1), we obtain the bounds as stated in (6.3).
The series expansions of the gamma and hypergeometric functions then lead to the asymptotic
expansion (6.4). �
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FIGURE 9. Histogram of M = 105 GH residual path values at t = 1. The smooth curve represents the
standard normal density.
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FIGURE 10. Q–Q plot of M = 104 GH residual path values at t = 1.

Once again, we examine the validity of the Gaussian approximation empirically. Figures 9
and 10 show the empirical distribution of the residual GH process at time t = 1, with parameter
values μ= 0, μW = 1, σW = 2, δ = 1.3, γ = √

2, λ= 0.2, and truncation level ε = 10−6.
With the same parameter values, Figure 11 shows behaviour of the bound in (6.3) and the

first term in the asymptotic bound (6.4).
Note that the bounds (6.3) and (6.4) are discontinuous at |λ| = 1

2 . This discrepancy is likely

due to the upper bound for M(1)
Zε

in the case |λ|> 1
2 . Although we do expect this could be

improved, obtaining such refined bounds is beyond the scope of this paper.
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FIGURE 11. Plot of the finite-ε bound in (6.3) and the first term in the asymptotic bound (6.4) for the
approximation error Eε in Lemma 6.2.

7. Linear SDEs

The Lévy state space model [23] defines a stochastic process having the following
dynamics:

dX(t) = AX(t)dt + hdW(t), X(t) ∈RP,W(t) ∈R,
where A is a P × P matrix, and h ∈RP. In [23] (W(t)) is assumed to follow a stable law; here
it is taken to be an NVM Lévy process. The solution of the state process takes the form

X(t) = eA(t−s)X(s) +
∫ t

s
eA(t−u)hdW(u). (7.1)

We first present a shot-noise representation of the stochastic integral in (7.1), and then prove
the convergence of its small-jump residual to a Gaussian-driven SDE, under appropriate
conditions.

7.1. Shot-noise representation of SDE

In order to apply the Lévy state space model to NVM Lévy processes, we first establish
their representation as generalised shot-noise series. Theorem 7.1 gives the result for a general
integrand.

Theorem 7.1. Let (X(u)) be an NVM process generating the filtration (Ft). Suppose
ft:[0,∞) →RP is an L2 deterministic function, and let I(ft) denote the integral

I(f t) =
∫ T

0
ft(u)dX(u), 0 ≤ t ≤ T .

Then I(f t) admits the series representation

I(f t) =
∞∑

i=1

Xift(TVi)1
(

Vi ≤ t

T

)
,
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where

Xi =μWZi + σW

√
ZiUi,

and μW ∈R, σW ∈ (0,∞) are the variance-mean mixture parameters, Vi
i.i.d.∼ U [0, 1] are nor-

malised jump times, Zi are the jumps of the subordinator process arranged in non-increasing

order, and Ui
i.i.d.∼ N (0, 1).

Proof. Arguing as in [39, Section 7], we can extend (2.14) to any NVM process defined on
t ∈ [0, T], with Ṽi = TVi ∼ U [0, T], to obtain, for all u ∈ [0, T],

X(u) =
∞∑

i=1

[
μWZi + σW

√
ZiUi

]
1(Ṽi ≤ u)

=μW

∞∑
i=1

Zi1(Ṽi ≤ u) + σW

∞∑
i=1

√
ZiUi1(Ṽi ≤ u)

=μWM(u) + σWS(u),

where M(u) is a subordinator Lévy process and S(u) a symmetric Gaussian mixture process.
Therefore,

dX(u) =μWdM(u) + σWdS(u),

and hence we obtain the following representation for I(ft):

I(ft) =μW

∫ T

0
ft(u)dM(u) + σW

∫ T

0
ft(u)dS(u).

From [3, Corollary 8.2], a stochastic integral with respect to a Lévy subordinator admits the
a.s. generalised shot-noise representation

∫ T

0
ft(u)dM(u) =

∞∑
i=1

Zift(Ṽi)1(Ṽi ≤ t).

Similarly, Rosinski proves in [38, Section 4] the a.s. representation of stochastic integrals with
respect to Lévy processes of type G. These are symmetric normal variance mixture processes
such as the symmetric Student-t, symmetric α-stable, and Laplace which are special cases of
NVM Lévy processes having μW = 0, in the form

∫ T

0
ft(u)dS(u) =

∞∑
i=1

√
ZiUift(Ṽi)1(Ṽi ≤ t).

Combining the last three expressions proves the claimed result. �
Applying the result of the theorem to X(t) in (7.1), with ft(u) = eA(t−u)h1(s ≤ u ≤ t), yields

I
(
ft

)=
∞∑

i=1

[
μWZi + σW

√
ZiUi

]
eA(t−Ṽi)h1(Ṽi ∈ (s, t])

with Ṽi
i.i.d.∼ U (0, T] as before.
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8. Convergence of residual SDE to a Gaussian SDE

In this section we prove that the residual series of the truncated shot-noise representation of
the SDE in the previous section converges to Brownian-motion-driven SDE, as the truncation
level ε ↓ 0. Employing random Poisson truncations of the subordinator jumps Zi as before, we
can write

X(t) = eA(t−s)X(s) + Zε(s, t) + Rε(s, t),

where I(f t) = Zε(s, t) + Rε(s, t), with

Zε(s, t) =
∑

i:Zi>ε

[
μWZi + σW

√
ZiUi

]
eA(t−Ṽi)h1(Ṽi ∈ (s, t]),

Rε(s, t) =
∑

i:Zi≤ε

[
μWZi + σW

√
ZiUi

]
eA(t−Ṽi)h1(Ṽi ∈ (s, t]),

and Ṽi ∼ U (0, T]. Here, Rε(s, t) is the residual series driven by small jumps Zi < ε, which will
be approximated by a Brownian-driven SDE with matched moments. Theorem 4.1 and the
results in Section 6 are the starting point of the proof of this approximation.

We first present a lemma concerning NVM Lévy processes.

Lemma 8.1. Let (Yε(t)) denote the standardised residual NVM Lévy process as defined in
Theorem 4.1, and let (B(t)) be a standard Brownian motion. Then there exists a coupling
(Yε(t), B(t)) such that, under the conditions of Theorem 4.1, we have

E

[
sup

t∈[0,T]
|Yε(t) − B(t)|2

]
≤ CT max

{
S1/2
ε , S1/3

ε

}
,

where CT is a constant independent of ε and

Sε =μ4
W

M(4)
Zε

σ 4
ε

+ 6μ2
Wσ

2
W

M(3)
Zε

σ 4
ε

+ 3σ 4
W

M(2)
Zε

σ 4
ε

.

Proof. The process (Yε(t)) is square-integrable, with drift parameter and diffusion coeffi-
cient a = b = 0. Write QX for its Lévy measure, and define

mn(QX) :=
∫
R∗

|x|nQX(dx), n ≥ 1.

The corresponding subordinator has Lévy measure QZ , satisfying QZ({z> ε}) = 0. Note that
m2(QX) = 1. Following Theorem 4.1, the subordinator has no drift or diffusion component, so
neither does (Yε(t)). From [19, Theorem 3.1], if m4(QX)<∞, we have directly

E

[
sup
[0,T]

|Yε(t) − B(t)|2
]

≤ CT max
{
m4(QX)1/2,m4(QX)1/3},
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where CT depends on T only. Finally, writing σ 2
ε for the variance of the NVM residual process,

we can express m4(QX) as

m4(QX) =
∫ ∞

−∞
(x/σε)

4
∫ ∞

0
N (

dx;μWz, σ 2
Wz

)
QZ(dz)

= 1

σ 4
ε

∫ ∞

0
QZ(dz)

∫ ∞

−∞
x4N (

dx;μWz, σ 2
Wz

)
dx

= 1

σ 4
ε

∫ ∞

0

[
μ4

Wz4 + 6μ2
Wσ

2
Wz3 + 3σ 4

Wz2
]

QZ(dz)

=μ4
W

M(4)
Zε

σ 4
ε

+ 6μ2
Wσ

2
W

M(3)
Zε

σ 4
ε

+ 3σ 4
W

M(2)
Zε

σ 4
ε

.

Substituting this into the earlier bound yields the required result. �
Theorem 8.1. Let (Xε(t)) denote the residual NVM Lévy process as in Theorem 4.1, and write
(Ft) for the filtration it generates. Let ft(u) denote some deterministic, L2-integrable function,
and define the process (Rε(t)) via

dRε(u) = ft(u)dXε(u).

If (Xε(t)) satisfies the conditions of Theorem 4.1, then (Yε(t)), the ε-normalised version of
(Rε(t)), satisfies

lim
ε→0

E

[
sup

t∈[0,T]
‖Yε(t) − B(t)‖2

1

]
= 0,

where, centring and normalising (Xε(t)) to obtain (Yε(t)) as before, we define

Yε(t) =
∫ t

0
ft(u)dYε(u),

and also a moment-matched Gaussian process (B(t)) driven by standard Brownian motion B(t)
that can be coupled with (Yε(t)) in the sense of Lemma 8.1,

B(t) =
∫ t

0
ft(u)dB(u) .

In particular, for each fixed time t, Yε(t) converges in distribution to the Gaussian law

N
(∫ t

0
ft(u)du,

∫ t

0
ft(u)ft(u)Tdu

)
.

Proof. Consider the SDE

dRε(u) = ft(u)dXε(u),

with solution given by

Rε(t) =
∫ t

0
ft(u)dXε(u).
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Since
∥∥ft

∥∥
L2
<∞ and (Xε(t)) is a semi-martingale, its quadratic variation is well defined; see

Appendix B. Therefore, we can compute the mean and variance of Rε(t) as

E[Rε(t)] =μWM(1)
Zε

∫ t

0
ft(u)du, Var[Rε(t)] =

[
μ2

WM(2)
Zε

+ σ 2
WM(1)

Zε

] ∫ t

0
ft(u)ft(u)Tdu.

Centring and normalising (Xε(t)) to obtain (Yε(t)) as before, we now consider the process

Yε(t) =
∫ t

0
ft(u)dYε(u),

along with a matching process driven by standard Brownian motion,

B(t) =
∫ t

0
ft(u)dB(u),

where

E[B(t)] =
∫ t

0
ft(u)du, Var[B(t)] =

∫ t

0
ft(u)ft(u)Tdu.

Letting T(t) = Yε(t) − B(t), we have

‖Yε(t) − B(t)‖1 =
∥∥∥∥
∫ t

0
ft(u)dT(u)

∥∥∥∥
1
≤ sup

u∈[0,t]
||ft(u)||1 |T(t)| = sup

u∈[0,t]
||ft(u)||1|Yε(t) − B(t)|,

so that

sup
t∈[0,T]

‖Yε(t) − B(t)‖2
1 ≤ sup

t∈[0,T]
sup

u∈[0,t]
||ft(u)||21 sup

t∈[0,T]
|Yε(t) − B(t)|2,

and hence, applying Lemma 8.1, there exist coupled processes (Yε(t)) and (B(t)) such that

E

[
sup

t∈[0,T]
‖Yε(t) − B(t)‖2

1

]
≤ sup

t∈[0,T]
sup

u∈[0,t]
||ft(u)||21E

[
sup

t∈[0,T]
|Yε(t) − B(t)|2

]

≤ CT sup
t∈[0,T]

sup
u∈[0,t]

∥∥ft(u)
∥∥2

1 max
{
S1/2
ε , S1/3

ε

}
.

By our assumptions on ft(u), u ∈ [0, t], and under the condition (4.6) of Theorem 4.1, we have
limε→0 Sε = 0, and since CT is independent of ε,

lim
ε→0

E

[
sup

t∈[0,T]
‖Yε(t) − B(t)‖2

1

]
= 0,

which completes the proof. �
Building on the results in Sections 6.1, 6.2, and 6.3, Theorem 8.1 proves the Gaussian

representation of Rε(t) when the underlying process is known to converge to a diffusion.
In Sections 6.2 and 6.3 we justified the Gaussian convergence of the NTS and the GH

process residuals, respectively, and therefore Theorem 8.1 justifies the Gaussian representation
of (Rε(t)). While an exact expression for M(1)

Zε
exists in the NTS case, we can only provide

small-argument bounds for the GIG case; see Appendix D.
In Section 6.1 we showed that the NG residual process fails to converge to Brownian motion

as ε→ 0. Therefore, there is no mathematically justified reason to model Rε(t) as a diffusion
process there. While the large concentration of residual jumps near 0 shown in Figure 4 sug-
gests it might be reasonable to set Rε(t) = 0, we could alternatively model the residual process
via its mean, so that R̂ε(t) =E[R̂ε(t)], as suggested in [2].
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9. Conclusions

In this work, new theoretical properties of NVM processes were established, motivated by
the desire to investigate the application of some of the Bayesian inference algorithms intro-
duced in [23] to state space models driven by more general classes of non-Gaussian noise. We
identified natural sufficient conditions that guarantee the Gaussian convergence of the error
process associated with an NVM process subjected to random Poisson truncations of their
shot-noise series representations. We also showed that this Gaussian convergence does not
always occur, and provided sufficient conditions for cases when it fails.

Moreover, under the same Gaussian-convergence conditions, we established the process-
level convergence of a family of associated stochastic integrals, thus justifying the Gaussian
representation of the residuals of these integrals. In Section 6 we showed that Brownian motion
with drift subordinated to the residual processes of a TS or a GIG-type Lévy process con-
verges to a Wiener process. Furthermore, in Section 7.1 we established the validity of the
Gaussian representation of the residual of the stochastic integral with respect to the NTS and
GH processes (excluding the NG edge case).

Subordination to a gamma process is shown not to converge to a Gaussian limit. Therefore,
the residuals of stochastic integrals with respect to NG processes cannot be represented by
Gaussians. One alternative direction would be to investigate whether fitting a Gaussian to the
residual would still yield improved accuracy in Bayesian inference procedures such as particle
filtering. A more interesting possibility would be to explore the distribution to which the NG
residual converges, as, for any ε = h(ε̃)> 0, in Section 6.1 we showed that the residual is
non-zero and heavier-tailed than the Gaussian.

Finally, we note that the current analysis applies to one-dimensional Lévy processes and the
corresponding linear SDEs. An extension of the methodology to multivariate Lévy processes
would allow the generalisation of the ‘Lévy state space model’ [23] and the associated method-
ological tools to more general state space models, importantly allowing for more sophisticated
modelling of spatial dependencies in high-dimensional data.

Appendix A. Upper and lower bounds on Jaeger integrals

Define first the Jaeger integral [20] as parametrised in [22, Section 3]:

J(z) =
∫ ∞

0

e
− x2z

2δ2

x|H|λ|(x)|2 dx.

The integrand in the GIG Lévy measure in (2.12) depends on the value of |λ| [22]. We first

consider the region |λ| ≤ 1
2 . From [22, Theorem 3], a suitable upper bound on

[
z|H|λ|(z)|2]−1

for |λ| ≤ 1
2 is given by

1

z|H|λ|(z)|2 ≤ 1

B(z)
,

where

1

B(z)
=

⎧⎨
⎩

1
H0

(
z
z0

)2|λ|−1
, z< z0,

1
H0
, z ≥ z0,
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with z0 ∈ (0,∞) and H0 = z0|H|λ|(z0)|2. This leads to the upper bound

J(z) ≤ 1

H0z2|λ|−1
0

∫ z0

0
y2|λ|−1 exp

(
− zy2

2δ2

)
dy + 1

H0

∫ ∞

z0

exp

(
− zy2

2δ2

)
dy

= 1

H0z2|λ|−1
0

[
δ2|λ|2|λ|−1

z|λ| γ

(
|λ|, z2

0

2δ2
z

)]
+ 1

H0

[
δ√
2

z− 1
2�

(
1

2
,

z2
0

2δ2
z

)]
.

Recall the series expansion for γ (s, x) from Section 6.1 and also that for �(s, x) we have [6],
when |λ| �= 0,

�(s, x) = �(s) −
∞∑

n=0

(−1)n xs+n

n!(s + n)
.

Combining these with the previous bound, we have

J(z) ≤ 1

H0z2|λ|−1
0

{
z2|λ|

0

2

[
1

|λ| − z2
0

2δ2

1

|λ| + 1
z +O(

z2)]}

+ δ

H0
√

2

{
√
πz− 1

2 − 2z0z
1
2

δ
√

2
z− 1

2 + z3
0z

3
2

3δ3
√

2
z− 1

2 +O(
z2)}

= 1

H0z2|λ|−1
0

{
z2|λ|

0

2

[
1

|λ| +O(z)

]}
+ δ

H0

√
π

2
z− 1

2 − z0

H0
+O(z)

= δ

H0

√
π

2
z− 1

2 + z0

H0

(
1

2|λ| − 1

)
+O(z).

Finally, we refer to [22, Theorem 1] for a lower bound on the Jaeger integral for |λ| ≤ 1
2 :

J(z) =
∫ ∞

0

1

y|H|λ|(y)|2 exp
(
− zy2

2δ2

)
dy ≥ π

2

∫ ∞

0
exp

(
− zy2

2δ2

)
dy = δπ

2

√
π

2
z− 1

2 .

When |λ|> 1
2 , y|H|λ|(y)|2 is non-increasing rather than non-decreasing, and the relevant

bounds become∫ ∞

0

1

y|H|λ|(y)|2 exp
(
− zy2

2δ2

)
dy ≤ π

2

∫ ∞

0
exp

(
− zy2

2δ2

)
dy = δπ

2

√
π

2
z− 1

2 . (A.1)

From [22, Theorem 3], a suitable lower bound on z|H|λ|(z)|2]−1 for |λ| ≥ 1
2 is given by

1

z|H|λ|(z)|2 ≥ 1

B(z)
,

where B(z) is defined as above, from which we deduce that for small z ∈ [0, ε] and |λ| ≤ 1
2 ,

δ
(π

2

) 3
2

z− 1
2 ≤ J(z) ≤ δ

H0

(π
2

) 1
2

z− 1
2 + z0

H0

(
1

2|λ| − 1

)
+O(z).

Similarly, if |λ| ≥ 1
2 ,

δ

H0

(π
2

) 1
2

z− 1
2 + z0

H0

(
1

2|λ| − 1

)
+O(z) ≤ J(z) ≤ δ

(π
2

) 3
2

z− 1
2 .
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Appendix B. Derivation of SDE moments

Recall the definition of Rε(t) as

Rε(t) =
∫ t

0
ft(u)dXεu .

Since (Xεt ) is a semi-martingale, it is clear that X̃εt = Xεt − tμWM(1)
Zε

is a martingale, and

Rε(t) =μWM(1)
Zε

∫ t

0
ft(u)du +

∫ t

0
ft(u)dX̃εu .

Then, clearly, we have

E[Rε(t)] =μWM(1)
Zε

∫ t

0
ft(u)du,

and the Itô isometry yields

Var[Rε(t)] =E
[(∫ t

0
ft(u)dX̃εu

)(∫ t

0
ft(u)dX̃εu

)T
]

=E
[∫ t

0
ft(u)ft(u)Td

[
X̃ε

]
u

]
,

where
[
X̃ε

]
t is the quadratic variation of the compensated Lévy process, with expectation [12]

E
[
d
[
X̃ε

]
t

]=E
[∫
R\{0}

x2N(dt, dx)

]
=

[
μ2

WM(2)
Zε

+ σ 2
WM(1)

Zε

]
dt.

Finally, the corresponding expression for the variance of Rε(t) is also easily obtained as

Var[Rε(t)] =
[
μ2

WM(2)
Zε

+ σ 2
WM(1)

Zε

] ∫ t

0
ft(u)ft(u)Tdu.

Appendix C. Centring for NVM processes

The following lemma is probably known, but as we could not easily locate a specific ref-
erence, we provide a proof for completeness. Recall the convergent generalised shot-noise
representation of a Lévy process from Section 2.4:

X(t) =
∞∑

i=1

H(Zi,Ui)1(Vi ≤ t) − tbi, 0 ≤ t ≤ T .

Lemma C.1. For an NVM Lévy process (X(t)), the following generalised shot-noise represen-
tation converges a.s.:

X(t) =
∞∑

i=1

H(Zi,Ui)1(Vi ≤ t), 0 ≤ t ≤ T .

Proof. Recall the form of the Lévy measure of NVM processes from (2.6). An NVM
process need not be compensated, and hence we may take bi = 0 for all i in the shot-noise
representation, provided∫ ∞

−∞
(1 ∧ |x|)QX(dx) =

∫ ∞

−∞
(1 ∧ |x|)

∫ ∞

0
N

(
x;μWz, σ 2

Wz
)

QZ(dz)dx<∞. (C.1)
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Since by the Lévy measure definition
∫ ∞
−∞

(
1 ∧ x2

)
QX(dx) is finite, we must also have that∫

{|x|>1} QX(dx) is finite. So, concentrating on the interval |x| ≤ 1, we have

I :=
∫

|x|≤1
|x|

∫ ∞

0
N

(
x;μWz, σ 2

Wz
)

QZ(dz)dx

=
∫

|x|≤1

|x|√
2πσ 2

W

∫ ∞

0
z− 1

2 exp

[
− 1

2σ 2
Wz

(x −μWz)2
]

QZ(dz)dx

=
∫

|x|≤1

|x|√
2πσ 2

W

exp

(
xμW

σ 2
W

) ∫ ∞

0
z− 1

2 exp

(
− x2

2σ 2
W

z−1 − μ2
W

2σ 2
W

z

)
QZ(dz)dx

≤
∫

|x|≤1

|x|√
2πσ 2

W

exp

(
μW

σ 2
W

) ∫ ∞

0
z− 1

2 exp

(
− x2

2σ 2
W

z−1

)
QZ(dz)dx. (C.2)

Note that the unimodal function z− 3
2 exp

{− x2/
(
2zσ 2

W

)}
achieves its maximum at z = x2

3σ 2
W

.

Hence, the inner integrand may be bounded, for all z ∈ (0, 1], by

z− 1
2 exp

(
− x2

2σ 2
W

z−1

)
≤

⎧⎨
⎩

z |x|−3

(
√

3σW )3 e−3/2, |x|> 3σ 2
W ,

z exp
(− x2

3σ 2
W

)
, |x| ≤ 3σ 2

W ,

with the |x| ≤ 3σ 2
W case corresponding to the supremum lying to the right of z = 1. Therefore,

the inner integral in (C.2) over z ∈ (0, 1) can be bounded, using (2.3), by

∫ 1

0
z− 1

2 exp

(
− x2

2σ 2
W

z−1

)
QZ(dz)dx ≤

⎧⎨
⎩

C |x|−3

(
√

3σW )3 e−3/2, |x|> 3σ 2
W ,

C exp
(− x2

3σ 2
W

)
, |x| ≤ 3σ 2

W ,

where C = ∫ 1
0 zQZ(dz)<∞ is a constant that does not depend on x or ε. Moreover, using (2.3)

again, we obtain

∫ ∞

1
z− 1

2 exp

(
− x2

2σ 2
W

z−1

)
QZ(dz) ≤

∫ ∞

1
QZ(dz) = C′ <∞.

Combining the above bounds yields

I ≤ 1√
2πσ 2

W

exp

(
μW

σ 2
W

)[∫
{|x|≤(3σ 2

W∧1)
} |x|C exp

(
− x2

3σ 2
W

)
dx

+
∫
{
(3σ 2

W∧1)<|x|≤1
} |x|C |x|−3{√

3σW
}3

e−3/2dx

+
∫

{|x|≥1}
|x|C′dx

]
<∞,

establishing (C.1) and confirming that compensation is not required for NVM Lévy processes.
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Given that I is finite, the result of the lemma will follow from [39, Theorem 4.1], once we
establish that, with

A(s) :=
∫ s

0

∫
|x|≤1

xσ (r; dx)dr =
∫ s

0

∫
|x|≤1

xN (x; h(r)μW , h(r)σ 2
W )dxdr, s> 0,

the limit a := lims→∞ A(s) exists and is finite. In the definition of A(s), the term σ ( · ; · )
denotes the kernel, σ (h(r); F) =P(H(h(r),U) ∈ F) for all measurable F, which in the present
setting is a collection of Gaussian measures. Since r = QZ([z,+∞)), we have dr = −QZ(dz),
and hence

A(s) =
∫ s

0

∫
|x|≤1

xN
(

x; h(r)μW , h(r)σ 2
W

)
dxdr =

∫ ∞

h(s)

∫
|x|≤1

xN
(

x; zμW , zσ 2
W

)
dxQZ(dz).

Since we already showed that∫
|x|≤1

|x|
∫ ∞

0
N

(
x;μWz, σ 2

Wz
)

QZ(dz)dx = I <∞,

we can exchange the order of integration, and since h(s) → 0 as s → ∞ by definition, it follows
that the limit a := lims→∞ A(s) exists. Finally, we have

∣∣∣ lim
s→∞ A(s)

∣∣∣= ∣∣∣∣
∫

|x|≤1
x
∫ ∞

0
N

(
x;μWz, σ 2

Wz
)

QZ(dz)dx

∣∣∣∣
≤

∫
|x|≤1

|x|
∫ ∞

0
N

(
x;μWz, σ 2

Wz
)

QZ(dz)dx<∞,

showing that a is finite and concluding the proof. �

Appendix D. Moments for example processes

Recalling the discussion at the end of Section 8 in connection with the ‘Lévy state space
model’ [23], we provide here expressions for M(1)

Zε
and M(2)

Zε
for our example processes.

For the NG process in Section 6.1, we have

M(1)
Zε

=
∫ ε

0
zνz−1 exp

(
−1

2
γ 2z

)
dz = 2ν

γ 2
γ

(
1,

1

2
γ 2ε

)

and

M(2)
Zε

=
∫ ε

0
z2νz−1 exp

(
−1

2
γ 2z

)
dz = 4ν

γ 4
γ

(
2,

1

2
γ 2ε

)
.

Similarly, for the NTS process in Section 6.2,

M(1)
Zε

=
∫ ε

0
zAz−1−κ exp

(
−1

2
γ

1
κ z

)
dz = Aγ

κ−1
κ 21−κγ

(
1 − κ,

1

2
εγ

1
κ

)

and

M(2)
Zε

=
∫ ε

0
z2Az−1−κ exp

(
−1

2
γ

1
κ z

)
dz = Aγ

κ−2
κ 22−κγ

(
2 − κ,

1

2
εγ

1
κ

)
.
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The intractability of the Jaeger integral prohibits the derivation of an analytical expression for
the moments of the GH process. However, for sufficiently small truncation levels ε, the use
of asymptotic moment expansions provides useful approximations. For now, we restrict our
analysis to the parameter range |λ| ≤ 1

2 ; the range |λ| ≥ 1
2 yields similar results.

To obtain a lower bound on the expected value of the subordinator jumps, M(1)
Zε

, we use the

bound 1
z|H|λ|(z)|2 ≥ π

2 :

M(1)
Zε

=
∫ ε

0
z

e− γ 2z
2

z

[
max (0, λ) + 2

π2

∫ ∞

0

1

z
∣∣H|λ|(z)

∣∣2 e
− zy2

2δ2 dy

]
dz

≥ max (0, λ)
2

γ 2
γ

(
1,

1

2
γ 2ε

)
+ 1

π

∫ ε

0
e− γ 2

2 z
∫ ∞

0
e
− zy2

2δ2 dydz

= 2 max (0, λ)

γ 2
γ

(
1,

1

2
γ 2ε

)
+ δ

γ
erf

(
γ
√
ε√

2

)
.

Using the expansion for the erf function in Section 6.1 and the series expansion of the
exponential function yields the lower bound

M(1)
Zε

≥ 2 max (0, λ)

γ 2
γ

(
1,

1

2
γ 2ε

)
+ δ

γ
erf

(
γ
√
ε√

2

)

= 2 max (0, λ)

γ 2
γ

(
1,

1

2
γ 2ε

)
+ δ

γ

2√
π

∞∑
n=0

(−1)n

n!(2n + 1)

(
γ
√
ε√

2

)2n+1

,

which, for ε→ 0, is equal to

δ
√

2√
π

√
ε + max (0, λ)ε +O

(
ε

3
2

)
. (D.1)

A corresponding upper bound can be derived using the bound in Appendix A. We have

M(1)
Zε

= max (0, λ)
∫ ε

0
e− γ 2z

2 dz + 2

π2

∫ ε

0
e− γ 2z

2

∫ ∞

0

1

z
∣∣H|λ|(z)

∣∣2 e
− zy2

2δ2 dydz

≤ 2

γ 2
max (0, λ)γ

(
1,

1

2
γ 2ε

)
+ 2

π2

∫ ε

0
e− zγ 2

2

[ √
πδ

H0
√

2
z− 1

2 + z0

H0

(
1

2|λ| − 1

)]
dz

= 2

γ 2
max (0, λ)γ

(
1,

1

2
γ 2ε

)
+

√
2δ

H0π
√
π

[√
2π

γ
erf

(√
εγ√
2

)]

+ 4z0

π2γ 2H0

(
1

2|λ| − 1

)(
1 − e− cγ 2

2

)
,

where, as ε→ 0, the last expression is equal to

2δ
√

2

H0π
√
π

√
ε +

[
max (0, λ) + 2z0

π2H0

(
1

2|λ| − 1

)]
ε +O

(
ε

3
2

)
. (D.2)

Equations (D.1)–(D.2) imply that, for small ε, M(1)
Zε

is approximately bounded above and
below by

δ
√

2√
π

√
ε and

2δ
√

2

H0π
√
π

√
ε, respectively,

and we can therefore conclude that M(1)
Zε

∼ √
ε as ε→ 0, for δ �= 0 and |λ| ≤ 1

2 .
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To characterise the behaviour of M(2)
Zε

, we again use the bound 1
z|H|λ|(z)|2 ≥ π

2 , which gives

M(2)
Zε

= max (0, λ)
∫ ε

0
ze− γ 2

2 zdz + 2

π2

∫ ε

0
ze− γ 2

2 z
∫ ∞

0

1

z
∣∣H|λ|(t)

∣∣2 e
− zy2

2δ2 dydz

≥ 4

γ 4
max (0, λ)γ

(
2,

1

2
γ 2ε

)
+ 2δ

γ 3
√
π
γ

(
3

2
,

1

2
γ 2ε

)
,

where, as ε→ 0, the last expression above is

δ√
2π

(
2

3
ε
√
ε

)
+ 1

2
max (0, λ)ε2 +O(

ε
5
2
)=

√
2δ

3
√
π
ε
√
ε + 1

2
max (0, λ)ε2 +O(

ε
5
2
)
. (D.3)

For the corresponding upper bound we similarly have

M(2)
Zε

≤ max (0, λ)
∫ ε

0
ze− γ 2

2 zdz + 2

π2

∫ ε

0
ze−z γ

2

2

[ √
πδ

H0
√

2
z− 1

2 + z0

H0

(
1

2|λ| − 1

)]
dt

= 4

γ 4

[
max (0, λ) + 2z0

π2H0

(
1

2|λ| − 1

)]
γ

(
2,

1

2
γ 2ε

)
+

√
2δ

π
√
πH0

∫ ε

0
t

1
2 e−t γ

2

2 dt

= 4

γ 4

[
max (0, λ) + 2z0

π2H0

(
1

2|λ| − 1

)]
γ

(
2,

1

2
γ 2ε

)
+ 4δ

γ 3π
√
πH0

γ

(
3

2
,

1

2
γ 2ε

)
,

where the last expression above, for ε→ 0, is equal to

2
√

2δ

3π
√
πH0

ε
√
ε + 1

2

[
max (0, λ) + 2z0

π2H0

(
1

2|λ| − 1

)]
ε2 +O(

ε
5
2
)
. (D.4)

From (D.4) and (D.3) we have that, for small ε, M(2)
Zε

is approximately bounded above and
below by √

2δ

3
√
π
ε
√
ε and

2
√

2δ

3π
√
πH0

ε
√
ε, respectively,

and therefore, M(2)
Zε

∼ ε
√
ε, for all δ �= 0, |λ| ≤ 1

2 .

Finally, in the case |λ| ≥ 1
2 , the upper and lower bounds on 1

z|H|λ|(z)|2 are reversed, and hence

so are the bounds in (D.1), (D.2), (D.3), (D.4), so that M(1)
Zε

∼ √
ε and M(2)

Zε
∼ ε

√
ε, for all

δ �= 0.
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