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Abstract. The Sun’s global inertial modes are very sensitive to the solar differential rotation and
to properties of the deep solar convection zone which are currently poorly constrained. These
properties include the superadiabatic temperature gradient, the latitudinal entropy gradient, and
the turbulent viscosity. The inertial modes also play a key role in controlling the Sun’s large-
scale structure and dynamics, in particular the solar differential rotation. This paper summarizes
recent observations and advances in the (linear and nonlinear) modeling of the solar inertial
modes.
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1. Introduction

The modes of stellar oscillation are broadly classified into two categories (e.g.,
Unno et al. 1989). The spheroidal modes of oscillation are associated with both horizontal
and radial motions and include the acoustic and the gravity modes. In the presence of
rotation, toroidal modes of oscillation can also exist. The toroidal modes are associated
with horizontal motion and are described by their radial vorticity eigenfunctions. The
toroidal modes have frequencies in the inertial frequency range, i.e. of order the rotation
frequency of the star. In the special case of uniform rotation, the toroidal modes are
retrograde Rossby modes restored by the Coriolis force.
The above classification is a simplification: the actual modes of solar oscillation in

the inertial frequency range which have recently been observed are more complicated
due to the Sun’s differential rotation and, for example, the superadiabatic stratification
of its convection zone. In this paper we present an overview of recent work on these
hydrodynamic modes. Our aim is to outline progress in the observation, interpretation,
and diagnostic potential of these modes. We also present preliminary observations of
solar-cycle variations in the mode parameters.
The new field of inertial-mode helioseismology has emerged out of three key observa-

tional papers: (i) Löptien et al. (2018) , (ii) Gizon et al. (2021) , and (iii) Hanson et al.
(2022). The first paper reported the detection of equatorial (sectoral) Rossby modes on
the Sun. The second, the detection and identification of additional modes which owe
their existence to the differential rotation, among which the m= 1 high-latitude mode
and other critical latitude modes. The third paper reported modes at mid latitudes with
north-south antisymmetric vorticity. The above papers are complemented by a number
of useful observational studies by Liang et al. (2019), Proxauf et al. (2020), Mandal et al.
(2021), to name a few.
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208 L. Gizon et al.

Figure 1. Example inertial modes observed in the power spectra of near-surface horizontal
flow components at different latitudes, and the corresponding observed eigenfunctions. These
modes are among many other modes observed at any given value of m. The four columns show
(from left to right) the m= 1 high-latitude mode at −86 nHz (Gizon et al. 2021), the m= 2
mid-latitude mode at −73 nHz (Gizon et al. 2021), the m= 3 equatorial (sectoral) Rossby mode
at −269 nHz (Löptien et al. 2018), and the m= 13 high-frequency retrograde mode at −220 nHz
(Hanson et al. 2022). The data were analysed in the Carrington frame of reference (a negative
frequency indicates retrograde propagation in this frame). For clarity, the power spectra at fixed
latitudes (middle row) have a reduced frequency resolution of 12 nHz. The first three modes
from the left have uφ antisymmetric across the equator and uθ is symmetric, while the fourth
mode on the right has antisymmetric radial vorticity ζr.

Using numerical modeling, the solar inertial modes have been shown to be important
not only to probe properties of the deep convection zone that are hardly accessible to
the acoustic modes (incl. superadiabaticity and turbulent diffusivities, see Gizon et al.
2021), but also in terms of their dynamical effect on the axisymmetric flows (Bekki et al.
2024). Like acoustic modes, most inertial modes are linearly stable and stochastically
excited by turbulent convection (Philidet and Gizon 2023). Some inertial modes, however,
are linearly unstable and reach relatively large velocity amplitudes at high latitudes
(Fournier et al. 2022; Bekki et al. 2022b).

2. Observations of global modes of oscillation in the inertial
frequency range

Figure 1 shows low-frequency power spectra of solar oscillations for four particular val-
ues of the azimuthal wavenumberm. The power spectrum is computed for each colatitude
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θ according to

P (ω, θ) =

∣∣∣∣∣∣
∑
φ,t

uj(θ, φ, t)e
−i(mφ−ωt)

∣∣∣∣∣∣
2

, (1)

where uj is either the colatitudinal component of velocity (uθ) or the longitudinal compo-
nent (uφ) inferred from ring-diagram analysis near the solar surface applied to 10 years
of HMI observations. The top row shows excess power corresponding to four selected
modes, including the m= 1 high-latitude mode identified by Gizon et al. (2021) and the
m= 13 mode reported by Hanson et al. (2022). As shown in the second row, the excess
power associated with a mode is visible at the same frequency at multiple latitudes. We
are thus in the presence of global modes of oscillation. The last row of plots displays the
eigenfunctions in either uφ, uθ or the radial vorticity ζr extracted from narrow frequency
windows centered on the mode frequencies. The typical mode lifetime is half a year (for a
20 nHz linewidth). Most of the modes that have been detected have velocity amplitudes
in the range 0.5–2 m/s. The largest amplitude mode is the m= 1 high-latitude mode,
with a velocity reaching ∼ 15 m/s on average and up to 20 m/s during quiet Sun periods.
The modes are quasi-toroidal, i.e. their motion is dominantly horizontal and the two
components of velocity can be described via a streamfunction. The modes reported by
Hanson et al. (2022) have low amplitudes of a few 0.1 m/s.

3. 2D Linear analysis: families of toroidal modes

Before looking at the full problem, it is useful to consider the much simpler problem of
toroidal modes on a spherical surface. Such modes are described in terms of their stream
function

Ψ=ψ(θ)ei(mφ−ωt). (2)

We work in a frame that rotates with the Sun at the rate Ω0 (either the Carrington rota-
tion rate or the equatorial rotation rate). In this rotating frame, the governing equation
follows from the radial component of the curl of the linearized Navier–Stokes equation
(Fournier et al. 2022):

(ω−mΔΩ)Lmψ−m(2Ω0 −ΔΩ′′)ψ= iEΩ0L
2
mψ, (3)

where the quantity ΔΩ(θ) = Ω(θ)−Ω0 is the latitudinal differential rotation mea-
sured in the rotating frame, Lm is the Laplace-Beltrami operator on the unit sphere,
ΔΩ′′ = 1

sin θ
d
dθ

(
1

sin θ
d
dθ

(
ΔΩ sin2 θ

))
, and E = ν/(r2Ω0) is the Ekman number. A nonzero

E accounts for the turbulent viscosity ν, which is an essential ingredient of the problem.

3.1. Uniform rotation

In the special case of uniform rotation (Ω=Ω0, ΔΩ= 0), we obtain the classical Rossby
modes with

ψ(θ) = Pm
l (cos θ) and ω=− 2mΩ0

l(l+ 1)
− il(l+ 1)EΩ0, (4)

where the Pm
l are associated Legendre polynomial of degree l and azimuthal orderm. The

sectoral (l=m) modes are observed on the Sun to have frequencies close to the model
frequencies �[ω] =−2Ω0/(m+ 1) (Löptien et al. 2018). The condition E <∼ 2× 10−3 fol-
lows from the observed mode lifetimes (Philidet and Gizon 2023), implying a turbulent
viscosity ν <∼ 2× 1013 cm2/s of order the mixing length estimate (Muñoz-Jaramillo et al.
2011). The observed eigenfunctions are close to Pm

m (cos θ)∝ (sin θ)m, but with notable
differences due to the presence of critical latitudes (Gizon et al. 2020), as we now discuss.
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3.2. Importance of differential rotation: critical latitudes

Differential rotation means the rotation rate of the Sun is a function Ω(θ, r) of colat-
itude θ and radius r. The factor (ω−mΔΩ) in the first term of Eq. (3) leads to the
presence of critical latitudes θc where

ω

m
=ΔΩ(θc, r) in the corotating frame. (5)

In the absence of viscosity, we have a singular eigenvalue problem and the eigenfunctions
are not regular at the critical latitudes (see, e.g., Balmforth and Morrison 1995). See
also Watson (1981) and Charbonneau et al. (1999) for a discussion of stability when
E = 0. The inclusion of viscosity in Eq. (3) leads to a regular eigenvalue problem of
the Orr–Sommerfeld type (fourth-order eigenvalue problem). The top panels of Fig. 2
show the corresponding eigenvalues for E = 4× 10−4 and in the case of a smooth differ-
ential rotation profile ΔΩ(θ) =−Ω2 cos

2 θ that approximates the Sun’s angular velocity
at low latitudes. For these parameters, all the modes are linearly stable and belong to
three families of solutions in addition to the Rossby modes: the high-latitude modes, the
critical-latitude (or center) modes, and the highly-damped modes, which are analogous
to the A, P and S families of modes of a plane parabolic shear flow (see Drazin and Reid
2004; Gizon et al. 2020). The lower panels of Fig. 2 show the modes when the observed
surface differential rotation of the Sun is used instead of the two-term profile. Because
the solar rotation rate drops sharply at high latitudes, an unstable mode appears in
each of the m= 1 and m= 2 spectra. The number of unstable modes as a function of
the Ekman number was discussed by Fournier et al. (2022). The m= 1 mode R2 with
a streamfunction that resembles P 1

3 (cos θ) is unstable and has a frequency very close
to that of the largest amplitude mode in the observations (see Fig. 1, left column). The
high-latitude mode A2 has a similar frequency but is linearly stable. Neither mode has an
eigenfunction that matches the observed spiral pattern — this requires 3D modeling and
additional physics, as explained in the next section. The observed m= 2 critical-latitude
mode is in the range of frequencies corresponding to the P family (also see figure 2 in
Gizon et al. 2021). The frequencies and eigenfunctions of the equatorial Rossby mode
are satisfactorily reproduced in 2D, including their departure from sectoral spherical har-
monics (Gizon et al. 2020; Fournier et al. 2022). The 2D model however does not give
the modes reported by Hanson et al. (2022) because these modes are not purely toroidal,
see Sect. 7.

4. Linear analysis in three dimensions

4.1. Sectoral Rossby modes

For the case of uniform rotation in three dimensions, the only modes that can easily
be described analytically are the sectoral Rossby modes, which are purely toroidal. Their
streamfunction separates, Ψ= f(r)(sin θ)meimφ+2iΩt/(m+1). Combining the radial and
latitudinal components of the equation of motion, we obtain the radial dependence f(r)∝
rm+1. Proxauf et al. (2020) find that this model is not inconsistent with the radial
dependence inferred from ring-diagram helioseismology, although only the top 8 Mm
could be studied with confidence. For a more sophisticated discussion of the sectoral
Rossby modes, see Provost et al. (1981) and Damiani et al. (2020).

4.2. Quasi-toroidal modes of the solar convection zone

The Sun has radial structure and its inertial modes are not separable in terms of
radius and latitude (e.g., Baruteau and Rieutord 2013). To study the linear stability of the
eigenmodes of oscillation in the convection zone, we consider the linearized hydrodynamic
equations (conservation of mass, momentum, and energy). Here we outline the linear
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Figure 2. Eigenvalues in the complex plane for small-amplitude toroidal modes on a differ-
entially rotating spherical surface (Fournier et al. 2022). Viscosity is specified via the Ekman
number E = 4× 10−4. The top panels show the real and imaginary parts of the eigenvalues for
m= 1, 2, 3 and a differential rotation profile ΔΩ=−Ω2 cos

2 θ with Ω2/2π=−114 nHz. Using
the notations of Drazin and Reid (2004), the various families of hydrodynamic modes are labelled
R for the Rossby modes (black), A for the wall modes (in red), S for the highly damped modes
(blue), and P for the center modes (orange). The full circles mark modes with radial vorticity
that is symmetric across the equator (such as the first three modes shown in Fig. 1), and the
open circles are for modes that are antisymmetric. The bottom panels show the eigenvalues
of the symmetric modes for the differential rotation profile measured at the Sun’s surface (the
labels follow the tracks obtained by slowly tracking the modes from the top panel). The vertical
dashed lines correspond to the observed frequencies of the first three example modes from Fig. 1.

model presented by Bekki et al. (2022b). Ignoring the meridional flow for simplicity, the
governing equations in spherical-polar coordinates (r, θ, φ) are

Dρ′

Dt
= −∇ · (ρu′), (6)

ρ
Du′

Dt
= −∇p′ + ρ′g+ 2ρu′ × (Ωez)− ρr sin θ(u′ · ∇Ω)eφ +∇ ·D, (7)

Ds′

Dt
= cp

δ

Hp
u′r −

u′θ
r

∂s

∂θ
+

1

ρT
∇ · (ρTκ∇s′), (8)
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Figure 3. Comparison of the observed mode frequencies in the Carrington frame (circles) and
the real part of the mode frequencies from the 3D linear eigenvalue problem (curves). The filled
circles mark modes with radial vorticity that is symmetric across the equator while the open
circles are for modes that are antisymmetric. Black refers to the equatorial Rossby modes, red to
the high-latitude modes, orange to the critical-latitude modes, and blue to the high-frequency
retrograde mode. The observations are from Löptien et al. (2018), Gizon et al. (2021), and
Hanson et al. (2022). The model frequencies are from Bekki et al. (2022b) and Bekki (2024).

with the linearized equation of state

p′

p
= γ

ρ′

ρ
+
s′

cv
. (9)

The perturbations from the background are denoted by primes. A realistic solar back-
ground stratification is considered. The total derivative along the solar differential
rotation is given by

D

Dt
=
∂

∂t
+ΔΩ

∂

∂φ
, (10)

where ΔΩ=Ω(r, θ)−Ω0 is the rotational profile from global helioseismology
(Larson and Schou 2018). The superadiabaticity δ=−(Hp/cp)∂s/∂r describes the small
deviations from the adiabatic stratification. The latitudinal entropy gradient is esti-
mated under the assumption that the Sun’s differential rotation is in accordance with
the thermal wind balance (Rempel 2005; Miesch et al. 2006),

∂

∂θ

(
s

cp

)
=
r2 sin θ

g

∂(Ω2)

∂z
. (11)

The viscous stress tensor D is given by

Dij = ρν

[(
∂u′i
∂xj

+
∂u′j
∂xi

)
− 2

3
(∇ ·u′)δij

]
. (12)

Here, ν and κ are the (turbulent) viscous and thermal diffusivities, which are assumed
to be equal.
The above linearized equations (6)–(8) are combined into an eigenvalue problem assum-

ing that the perturbations are proportional to exp i(mφ− ωt). The computational domain
extends from the base of the convection zone (r= 0.71R�) to slightly below the photo-
sphere (r= 0.985R�). At both radial boundaries, impenetrable and stress-free boundary
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conditions are used. At the poles, all the perturbed quantities (ρ′, u′, and s′) are set to be
zero for azimuthal orders m> 1. For m= 1, the special boundary condition ∂uθ/∂θ= 0 is
used to allow for the existence of a pole-crossing flow. We numerically solve the eigenvalue
equation using a second-order finite difference method.
The modes with eigenfrequencies in the inertial frequency range |�(ω)|<∼ 2Ω0 and

with low damping rates are plotted in Fig. 3. We see that the main families of inertial
modes are identified. Gizon et al. (2021) concluded that it is essential to include the
latitudinal entropy gradient ∂s/∂θ from Eq. (11) in the model to reproduce the correct
spiral patterns of the uφ eigenfunctions of the high-latitude modes. This also requires
the conditions 〈δ〉< 2× 10−7 and 〈ν〉 ≤ 1012 cm2/s on average in the convection zone.
Both these upper limits are an order of magnitude below the mixing length estimates.
See Dey et al. (2024) for an analysis of the value of δ in the lower half of the convection
zone.

5. Excitation and damping mechanisms

Inertial modes are present in numerical simulations of rotating convection by
Bekki et al. (2022a), Matilsky et al. (2022), and Blume et al. (2023). These simula-
tions indicate that the Rossby modes are excited to significant amplitudes in these
self-consistent simulations. The high-latitude modes are not present in these simula-
tion because the latitudinal differential rotation is not strong enough. In the following
paragraphs we discuss the excitation of the modes under specific setups.

5.1. Stochastic excitation of equatorial Rossby modes

According to the studies of Sect. 4, many solar inertial modes are linearly stable,
including the equatorial Rossby modes. The observed amplitudes of these modes are the
result of a balance between the stochastic excitation of the waves by turbulent convection
and their damping by turbulent viscosity. Philidet and Gizon (2023) added a source term
on the RHS of Eq. (2) to account for the fluctuations of the divergence of the Reynolds
stress tensor of the turbulence. As summarized in this volume (Philidet and Gizon 2024),
this excitation mechanism is similar to the one used for p modes (Goldreich and Keeley
1977), except that the vorticity in the turbulence plays a major role here. Treating the
turbulent flow as a known input, based on solar surface measurements (Langfellner et al.
2015), this model reproduces the observed amplitudes of the solar equatorial Rossby
modes of ∼ 1 m/s. It should be noted that there is a qualitative transition in the shape
of the power spectrum between m<∼ 5 where the inertial modes are clearly resolved in
frequency, and m>∼ 5 where the modes overlap. This greatly complicates the interpre-
tation of the observation, and implies that a model for the whole shape of the power
spectrum is necessary to exploit the full potential of the solar inertial modes.

5.2. Low-m high-latitude modes are baroclinically unstable

Using the eigenvalue solver of Sect. 4.2, Bekki et al. (2022b) found that the low-
m high-latitude modes are very sensitive to the latitudinal entropy gradient ∂s/∂θ in
the convection zone (or the corresponding latitudinal temperature gradient ∂T/∂θ).
Although the high-latitude modes are stable in 3D in the absence of ∂s/∂θ, they become
linearly unstable with the presence of ∂s/∂θ even when the radial stratification is adia-
batic or subadiabatic. Therefore, they are baroclinically unstable. This explains why the
high-latitude modes have larger velocity amplitudes than the other inertial modes on the
Sun (Gizon et al. 2021).
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Figure 4. Results from 3D nonlinear simulations of the baroclinically-unstable modes
(Bekki et al. 2024). (a) Amplitudes of the m= 1 high-latitude mode at the surface as functions
of time. Green, red, and blue curves show the results from the simulations with weak, mod-
erate, and strong baroclinic forcing. The horizontal gray shade denote the observed value. (b)
Latitudinal differential rotation, Ωeq −Ωpole, in the middle convection zone as functions of time.
The solid and dashed curves denote the results from 3D full-spherical simulations (where the
high-latitude modes are present) and from the 2D axisymmetric simulations (where the modes
cannot exist), respectively. (c) Extracted eigenfunctions of horizontal velocities (uθ and uφ) from
the 3D nonlinear simulation (moderate case). Top and bottom rows show the meridional cuts
and the surface eigenfunctions.

We note that, with a moderate value of turbulent viscosity (ν = 1012 cm2/s), a very
small latitudinal temperature variation of ΔT = Tpole − Teq ≈ 3 K is enough to make
the low-m high-latitude modes unstable. A realistic latitudinal entropy gradient can be
estimated from Eq. (11), which implies ΔT ≈ 7 K in the middle convection zone. Once
this profile of ∂s/∂θ is included, the linear model can successfully reproduce the observed
eigenfunctions of the high-latitude modes with 1≤m< 5 (Fig. 1, left panels), as well as
their observed frequencies (Fig. 3).

6. Baroclinally unstable modes control differential rotation

6.1. 3D nonlinear mean-field simulations

To study the amplitudes of the high-latitude inertial modes, Bekki et al. (2024) carried
out a series of hydrodynamic simulations of the large-scale flows in the Sun using a mean-
field approach, where the small-scale convective motions are not explicitly solved for and
the turbulent transport effects (incl. the Λ effect) are parameterized. A parameter survey
was conducted with varying baroclinic forcings whereby a negative (positive) latitudinal
entropy gradient ∂s/∂θ is generated in the northern (southern) hemisphere.

6.2. Dynamical effect of modes on differential rotation

Bekki et al. (2024) found that the amplitudes of the low-m high-latitude modes are non-
linearly coupled to the latitudinal differential rotation in the convection zone. Figures 4a
and b show the temporal evolution of the m= 1 mode amplitude and the latitudinal
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differential rotation for three representative simulation cases where the baroclinic forc-
ing is weak (green), moderate (red), and strong (blue). When the baroclinicity is weak,
the high-latitude modes are not excited to large amplitudes. With a moderate amount
of baroclinicity, the high-latitude modes become linearly unstable and the m= 1 mode
velocity amplitude saturates at ≈ 13 m s−1, which is consistent with the solar observa-
tion. The extracted velocity eigenfunction of the m= 1 mode from this case is shown
in Fig. 4c. The observed spiral feature in uφ is nicely reproduced. When the baroclinic
forcing is even stronger, the modes are very efficiently baroclinically-excited and their
amplitudes are larger than observed on the Sun. We find that the high-amplitude modes
play a significant dynamical role in limiting the latitudinal differential rotation via a
nonlinear feedback. The reduction of the latitudinal differential rotation is dominantly
caused by the equatorward heat transport due to the high-latitude modes, which reduces
the baroclinicity and changes the meridional circulation such that the poleward transport
of angular momentum is increased. This dynamical effect is not present in axisymmetric
models where the non-axisymmetric inertial modes cannot exist (Fig. 4b). We note that
the horizontal Reynolds stresses associated with the high-latitude modes imply a trans-
port of angular momentum toward the equator (Hathaway et al. 2013; Mandowara et al.
2024), however this (direct) effect on differential rotation is not as important as the
(indirect) effect via heat transport.

6.3. Latitudinal temperature gradient

Bekki et al. (2024) find that the high-latitude modes place an upper limit on ΔT =
Tpole − Teq. Using the 3D nonlinear mean-field simulations mentioned above, a relation-
ship between ΔT and the amplitudes of them≤ 3 high-latitude modes can be established.
These simulations show that the value of ΔT cannot exceed 7 K. Interestingly, the
observed mode amplitudes imply that this maximum of 7 K is likely reached in the
Sun. This conclusion is also consistent with the value estimated from the thermal wind
balance approximation, Eq. (11).

7. Modeling high-frequency retrograde modes

The retrograde modes with l=m+ 1 radial vorticity reported by Hanson et al. (2022)
do not follow the dispersion relation of the classical Rossby modes given by Eq. (4),
but have about three times the frequencies of the sectoral Rossby modes. Hanson et al.
(2022) argued that these modes cannot be identified as magneto-Rossby modes, coupled
Rossby-gravity modes, nor thermal Rossby modes. The observations were interpreted by
Triana et al. (2022) as a particular class of inertial modes where substantial radial flows
are involved in the equatorial regions. In this sense, they may be called non-toroidal
inertial modes. Although the linear model used by Triana et al. (2022) was highly sim-
plified (e.g., assuming a fluid with constant density), this mode identification was later
confirmed by Bhattacharya and Hanasoge (2023) and Bekki (2024) using more realistic
linear models that include the solar-like background stratification.
Unlike the modes that are quasi-toroidal, non-toroidal inertial modes manifest a strong

sensitivity to the background superadiabaticity δ=∇−∇ad. Using the model described
in Sect. 4.2, Bekki (2024) showed that the mode frequencies are compatible with the
observed frequencies only when the bulk convection zone (in the model) is weakly suba-
diabatic on average. Several branches of enhanced power, with one branch corresponding
to the high-frequency retrograde modes, have been reported in non-linear rotating con-
vection simulations by Blume et al. (2023). In these simulations the branches have low
quality factors.
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Figure 5. Map of zonal velocity (top) obtained from HMI line-of-sight Doppler signals during
solar minimum showing the signature of the m= 1 high-latitude mode whose amplitude varies
with the solar cycle (bottom). The daily zonal velocity Vzonal were antisymmetrized across the
equator and combined to form a synoptic map. The m= 1 high-latitude mode of oscillation is
seen as stripes above 50◦ latitude with a period of about 34 days as viewed from Earth. The
mode amplitude averaged over the latitude range 60◦ − 75◦ is estimated from Vzonal in a 3-yr
sliding window. The mode amplitude is scaled by a multiplicative factor of 2.9 so that it is
directly comparable to the deprojected longitudinal velocity uφ shown in the bottom left panel
of Fig. 1.

8. Solar cycle variations of mode parameters

Because of the close connection between the differential rotation profile and the char-
acteristics of the inertial modes, Goddard et al. (2020) suggested that the frequencies
of the equatorial Rossby modes could vary with the sunspot cycle due to the temporal
changes in rotation (varying zonal flows or ‘torsional oscillations’). The prediction was a
positive correlation between the mode frequency shifts and the sunspot number. However,
Waidele and Zhao (2023) and Lekshmi et al. (2024) measured an anticorrelation. This
strongly suggests that the solar magnetic fields play the dominant role in the modulation
of the mode properties. Waidele and Zhao (2023) also noticed that the average power
of the equatorial Rossby modes varies in phase with the sunspot cycle. Lekshmi et al.
(2024) reach the same conclusion in this volume for the Rossby modes with 6≤m≤ 10.

Here we perform an analysis of the solar cycle dependence of the amplitude of the
m= 1 high-latitude mode using Dopplergrams as input. Because this mode is associated
with horizontal flows in the near polar regions, it is detectable in the direct Doppler data.
The top panel of Fig. 5 shows the zonal velocity computed from the HMI Dopplergrams
during solar minimum, where the zonal velocity is given by (Ulrich et al. 1988)

Vzonal(θ) =

∑
φ ΔVlos sin(φ− φc)∑

φ | sin(φ− φc)| . (13)
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In the above definition, ΔVlos(θ, φ) is the Dopplergram corrected for the background
signals and φ− φc is the longitude measured from the central meridian. The background
signals consist of a fit to the time-averaged limb shift, solar rotation, and meridional
flows. In Fig. 5, Vzonal displays tilted stripes at high latitudes (these were already visible
in the MWO data presented by Ulrich 1993, 2001). The frequency of this pattern is
measured to be 338 nHz in the Earth frame, which corresponds exactly to the frequency
of the m= 1 high-latitudes mode (−86 nHz in the Carrington frame). The middle panel
of Fig. 5 shows the velocity amplitude uφ of the mode estimated from Vzonal over the
latitude range 60◦ – 75◦ as a function of time. The amplitude in uφ varies between 10 and
20 m/s over this time period. We find that the mode amplitude is clearly anticorrelated
with the sunspot number (bottom panel of Fig. 5). These new observations imply that a
measurable interaction happens between the m= 1 mode and the Sun’s global dynamo.
Numerical modeling is needed to identify the nature of this interaction and to find out
how and where it takes place in the convection zone.

9. Outlook

9.1. Mode physics

While helioseismology with acoustic modes is very largely based on the interpretation
of the frequencies of the individual modes of oscillation using first-order perturbation
theory, the interpretation of the inertial modes cannot be separated from the study of
their amplitudes and eigenfunctions — this requires more sophisticated forward modeling.
In some regions of frequency space, the spectrum is too dense to be resolved: modes
may overlap in frequency space and make the power spectrum difficult to decipher.
Excitation and damping mechanisms include the action of turbulent convection, but also
the nonlinear interaction of the modes with their environment. Solar inertial modes are
not only important as new diagnostics of the solar convection zone, but also as regulating
agents of the global dynamics such as the Sun’s meridional flow and differential rotation.

9.2. Opportunities to better understand the solar convection zone

Figure 6 shows power spectra of the east–west velocity obtained from a recent high-
resolution numerical simulation by Hotta et al. (2022) and from two observational
studies, one from time-distance helioseismology and another from tracking the gran-
ulation pattern in intensity (see Proxauf 2021, and references therein). The order of
magnitude discrepancy at low angular degrees (large horizontal scales) between the
numerical simulation and the observations is an outstanding problem (Hanasoge et al.
2012; Gizon and Birch 2012).

This problem is connected to the apparent lack of north–south elongated convective
modes in the solar surface observations. In numerical models these so-called banana
cells are rotationally-constrained modes of rotating convection (e.g., Gilman 1977;
Miesch et al. 2008). The banana cells are robust features of the theory; they propagate
prograde and can be understood in terms of the compressional β-effect or the conservation
law of potential vorticity (e.g., Glatzmaier and Gilman 1981; Verhoeven and Stellmach
2014). They are a class of inertial modes sometimes called thermal Rossby modes.
Their properties have been studied in the linear regime (Glatzmaier and Gilman 1981;
Bekki et al. 2022b; Hindman and Jain 2022; Jain and Hindman 2023) and in nonlin-
ear rotating convection simulations (Bekki et al. 2022a; Blume et al. 2023). Modes of
mixed character sharing characteristics of prograde thermal Rossby and retrograde iner-
tial modes have also been discussed by Bekki et al. (2022b,a), Jain and Hindman (2023),
and Blume et al. (2023). The impact of missing physics, such as, e.g., the importance of
magnetic fields, should be assessed.
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Figure 6. Power spectra of the longitudinal velocity near the solar surface. The black solid
curve shows the observational upper limit of Eφ(l) at r= 0.96R� inferred by time-distance
helioseismology (Hanasoge et al. 2012) and revised by Proxauf (2021). The quantity Eφ repre-
sents the spatial power of the daily average of uφ, summed over all m values at fixed angular
degree l. The red solid curve shows Eφ at the surface obtained by local correlation tracking
of surface granulation (Proxauf 2021). These observational data are available online (Birch
2023). The blue dashed curve shows the spectrum from a numerical simulation of solar rotating
magneto-convection (Hotta et al. 2022).

The inertial modes give us new information on the physical conditions deep inside
the convection zone. In this summary paper we gave examples of what these modes
are sensitive to, including the latitudinal temperature gradient, superadiabaticity, and
the strength of the turbulent motions (through constraints on the turbulent viscosity)
in the deep convection zone. Looking further ahead, the inertial modes are likely to be
affected by – and to affect – the magnetic field of the Sun. Modes of mixed character,
gravito-magneto-inertial, also present novel opportunities and challenges to understand
the tachocline (see, e.g., Dikpati et al. 2018; Matilsky et al. 2022).
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