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A b s t r a c t . We present calculations showing how stable nonaxisymmetric magnetic fields may be 
excited in an alpha-quenched mean field dynamo in a deep spherical shell. The large scale velocity 
fields (differential rotation, meridional circulation) are determined by solving the axisymmetric 
Navier-Stokes equation, neglecting the Lorentz force but including a term parameterizing the 
turbulent Reynolds stresses. 
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1. Introduction 

Recently observational evidence has accumulated that some late type active giant 
stars with deep outer convection zones possess large scale, long lived, nonaxisym-
metric magnetic fields (see, for example, the discussion in Moss et al., 1991). Given 
the small radiative core and large effective magnetic diffusivity in such stars, it is 
very probable that such nonaxisymmetric fields are dynamo generated. However, 
for simple and arbitrary distributions of a - effect and angular velocity Ω, linear 
mean field dynamo theory predicts that axisymmetric modes are first excited as 
the relevant dynamo number is increased. (Allowing the a tensor to be strongly 
anisotropic may alter the situation, see Rüdiger and Elstner (1992), but we will not 
consider that possibility here.) Special spatial distributions of a and Ω can be found 
for which this is not true, provided that the differential rotation is not too strong, 
although it appears difficult to arrange for nonaxisymmetric modes to be signif-
icantly more easy to excite. Strong differential rotation inhibits nonaxisymmetric 
field generation, particularly in spherical geometry. 

Linear theory is in general an unreliable guide to behaviour in a strongly non-
linear regime (e.g. Brandenburg et al., 1989). Nevertheless nonlinear 'a - quenched' 
models with stable nonaxisymmetric fields have only been found for rather special 
spatial distributions of α and Ω (Rädler et al., 1990; Moss et al., 1991; Moss, 1991). 

Of course, in a more realistic model, the fluid velocities would not be prescribed 
arbitrarily, but would form part of the solution of a self consistent problem in which 
the Navier-Stokes equation, including the Lorentz force, is simultaneously solved to 
give the large scale fluid velocities that appear explicitly in the dynamo equation. 
It is quite impossible at present to solve the full dynamical and ther mo dynamical 
equations for a complete stellar convection zone. Mean field theory can be employed 
to parameterize the effects of the small scale turbulent motions in the Navier-Stokes 
equation, by including a term representing the turbulent Reynolds stresses (e.g. 
Rüdiger, 1989). The remaining problem, of solving the mean field dynamo and 
Navier-Stokes equations, is nonetheless formidable. 

A step towards self consistency can be made as follows. Solve the axisymmetric 
hydro dynamical problem, without Lorentz forces, but including the parts of the 
turbulent Reynolds stresses that directly drive a differential rotation (i.e. the Ά -
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effect', see Rüdiger, 1989). This hydrodynamic solution provides an axisymmetric 
azimuthal velocity (differential rotation) and a meridional circulation. Now solve 
the kinematic mean field dynamo equation with these large scale velocity fields 
present. When the dynamo is excited the field can be limited at finite amplitude 
by introducing a parametrization of the feedback of the magnetic field onto the 
turbulence (e.g. a - quenching). 

We describe some such calculations, and show that, contrary to the results from 
simple linear models and also from kinematic nonlinear studies (Rädler et al., 1990; 
Moss et al., 1991), stable nonaxisymmetric field structures can be generated without 
choosing a priori special spatial profiles for a or Ω. 

2. The Model 

We solve the axisymmetric incompressible mean field Navier Stokes equation in a 
spherical shell, 0 . 1 Ä < r < Ä ( r , Θ} φ are spherical polar coordinates). In the inertial 
frame it takes the form 

pDui/Dt = -dP/dxi - d{pQij)/dxj, (1) 

where 

Qij = Aijktok - Nijkiduk/dxj. (2) 

The reduced pressure, P, includes the gravitational term. The second term on the 
right hand side of (2) gives rise to the 'turbulent viscosity', ι/χ- Under the simplest 
assumptions about the anisotropy of the turbulence caused by gravity, 

AIJK = A V(TIKP9J + TJICPGI)GP, ( 3 ) 

where g is the unit vector parallel to gravity. When the turbulent correlation time 
is less than the rotation period, we can write Ay = vrV°/(r), where V° is of order 
unity. See Rüdiger (1989) and Brandenburg et al. (1991) for further details. We take 
f(r) to be unity in r > 0.3R and to go smoothly to zero at r = 0.1R. Boundary 
conditions are that the fluid be stress free with zero radial velocity component at 
r = 0.1Ä, and r = R. 

Solution of (1) yields azimuthal and meridional velocities, t>(r, θ)φ and u m ( r , Θ). 
We then solve the mean field nonaxisymmetric dynamo equation 

dB/dt = V x (u χ Β -f ctB — T? T V Χ Β), (4) 

with u = νφ -f u m , and taking a = ao/(r)cos#/( l 4- B(r, 0, τ)2), where c*o is a 
constant. Boundary conditions on the magnetic field are that it fit to a vacuum 
field in r > R and that the region r < 0.1Ä is a perfect electrical conductor. Our 
nondimensional time, r , is measured in units of R2/ητ-

We prescribe the angular momentum of the shell, and this defines the cor-
responding angular velocity Ωο of uniform rotation. The Taylor number Ta = 
(2ÇîqR?/ν?)

2 and V° are the governing parameters for the hydrodynamic problem. 
Solving equation (4) introduces a further parameter, Ca = acoR/ητ . The numerical 
code is a modification of that described in Moss et al. (1991). A NI x NJ grid is 
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used over 0.1.R < r < R, 0 < θ < π, and a modal expansion in Fourier components 
in φ. We take NI=31 or 51, NJ=61 or 101, and four φ modes were found to be 
adequate. 

Solutions of the hydrodynamic problem (equations (1), (2)) can be characterized 
by the parameters Cw = (Ü(R, π /2)-Ω(0.1Ρ, w/2))R2/rjr and Cm = UR/rfr, where 
U is the mean velocity defined by equating O.bpU2 with the mean kinetic energy 
density of the meridional motions. We describe the gross features of our dynamo 
solutions by the parameters M ( r ) = En2LX/Etot and Ρ(τ) = ( Ε - + 

where EnELX,Etot, E^s\ E^ are the energies in the nonaxisymmetric, total, 
equatorially symmetric and antisymmetric magnetic fields, respectively. 

3. Results 

Solutions of the hydrodynamical problem (equations (1) and (2)) are described 
in Barker (1993). The meridional flow consists of a single cell in each hemisphere 
and, with V° > 0, the flow at the surface is equator ward and the angular velocity 
increases outwards. Streamlines of the meridional flow and angular velocity contours 
are shown in Fig. 1, and Οω and Cm values are given in Table 1. Note that the 
definitions of Οω and C m , although fairly conventional, are not equivalent and 
that, for example, when Ta = 105 the ratio of the kinetic energy of the differential 
rotation to that of the meridional circulation is about 180. 

TABLE I 
Parameters of the hydrodynamical models and summary of the dynamo calculations. 

Ta ο ω Cm Nature of dynamo solutions 

4 1.0 0.003 Slow 'diagonal' evolution towards AO solution 
104 50.0 0.9 Almost 'diagonal' evolution towards AO solution 
ΙΟ5 150.0 1.3 Stable solution with M = 1 and Ρ « 1 
ΙΟ6 440.0 1.7 Rapid evolution to stable SO solution 

We then integrate equation (4) for initial conditions P(0), M(0), and 4 < T a < 
106, with ητ — vt> V° — +1» taking u from these hydrodynamical solutions. For 
these values of Ta the SO, AO, SI and Al modes are excited at Ca values of order 
10, with the axisymmetric modes more readily excited when Ta is greater than a 
few times 104. For smaller Ta, the situation is complicated (see Barker, 1993). In 
the following we have taken Ca = 15, a clearly but not highly supercritical value. 

For Ta=4 the evolution from an arbitrary initial state is very similar to that of 
the öl2 dynamos studied by Rädler et al. (1990) and Moss et al. (1991). After initial 
relaxation the system evolves along the diagonal in the (P,M) plane joining (1,1) 
and (-1,0), towards the AO configuration on a timescale of many diffusion times. 
When Ta=104, evolution in the (P,M) plane is again towards the AO configuration, 
but follows the diagonal rather less closely. 

In contrast, when Ta=105, evolution from an arbitrary initial state (with P«0.5, 
M=0.5) is to M=l , on a comparatively rapid timescale. When M « 1, Ρ oscillates 
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the model with Ta = 105. 

at low amplitude and the maximum and minimum values are increasing very slowly 
(this behaviour occurs for Ρ > ca. 0.96). We did not follow the solution long enough 
to decide conclusively whether the final configuration was a limit cycle with Ρ « 1 
or steady with Ρ = 1 precisely. Contours of radial field strength in the surface 
r = R are shown in Fig. 2. We also perturbed the pure parity dynamo solutions 
with M=0, P—il and, by following the subsequent evolution, showed that both 
the AO (P= -1, M=0) and the SO (P=+l , M=0) solutions are unstable. 

When Ta=106, evolution from the initial mixed parity, mixed symmetry, state 
to the stable SO configuration occurs on a timescale much shorter than a diffusion 
time. The dynamo solutions are summarized in Table 1. 

4. Conclusions 

We have taken an initial step towards constructing dynamically self consistent, 
nonaxisymmetric mean field dynamos without constrainst on symmetry properties. 
Our large scale velocity fields are not completely arbitrary, but arise from a dynam-
ical model, albeit without feedback from Lorentz forces. We find that for certain 
Taylor numbers, corresponding to a modest degree of differential rotation, these 
velocity fields together with a conventional α-effect and α-quenching, can generate 
stable nonaxisymmetric fields. For larger values of Ta (and of differential rotation) 
our results are consistent with the idea that strong differential rotation inhibits 
nonaxisymmetric field generation and that only axisymmetric solutions are then 
stable. 

Meridional circulation may play a minor role - experiments in which it was artifi-
cially turned off do give a slight reduction in the strength of nonaxisymmetric fields. 
This was also noted for linear models by Barker (1993). The sense and strength of 
the circulation and the excitation of a. nonaxisymmetric field with Ρ « 1 is in gen-

Fig. 1. Meridional streamlines (left) and contours of constant angular velocity (right) for
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Fig. 2. Contours in the surface r = R of equal radial field strength when T a = 1 0 5 . The 
top and bo t tom of the figure correspond to the north and south pole, respectively, and 
longitude φ runs horizontally from 0 to 2φ. Broken curves denote negative values. 

eral terms consistent with the Gailitis dynamo (Gailitis, 1970; Moss, 1990), but the 
effect here is certainly small. Barker (1993) demonstrated the importance of the 
latitudinal dependence of the angular velocity for nonaxisymmetric field excitation. 

Our results are somewhat at variance with those from conventional linear and 
nonlinear α2ω dynamo models. These studies have shown that nonlinear models 
can generate stable nonaxisymmetric fields, but they then require careful choice of 
a and Ω(Γ). We have not attempted a full exploration of parameter space (e.g. also 
varying Ca and V°), but are content to emphasize that we do not choose a and 
Ω(Γ) in a completely ad hoc manner, but rather allow Ω to arise from a dynamical 
model that also gives a meridional circulation. The next step is clearly to include 
the Lorentz force in the Navier-Stokes equation (1). Our preliminary results suggest 
that, for appropriate parameter values, stable nonaxisymmetric fields continue to 
be excited. 
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