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We use small-amplitude inviscid theory to study the swimming performance of a flexible
flapping plate with time-varying flexibility. The stiffness of the plate oscillates at twice the
frequency of the kinematics in order to maintain a symmetric motion. Plates with constant
and time-periodic stiffness are compared over a range of mean plate stiffnesses, oscillating
stiffness amplitudes and oscillating stiffness phases for isolated heaving, isolated pitching
and combined leading-edge kinematics. We find that there is a profound impact of
oscillating stiffness on the thrust, with a lesser impact on propulsive efficiency. Thrust
improvements of up to 35 % relative to a constant-stiffness plate are observed. For large
enough frequencies and amplitudes of the stiffness oscillation, instabilities emerge. The
unstable regions may confer enhanced propulsive performance; this hypothesis must be
verified via experiments or nonlinear simulations.
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1. Introduction

For decades research has focused on studying the fluid dynamics of biological swimmers,
both to better understand the underlying biology of aquatic animals, and to provide
inspiration for developing innovative hydrodynamic propulsion technology (Smits 2019).
A salient feature of natural swimmers is the action of muscles, which are often distributed
throughout an animal’s propulsor (Flammang & Lauder 2008; Adams & Fish 2019).
Through observations and measurements of animals, we know that swimmers can control
their fin curvature, displacement and area as well as their stiffness (Fish & Lauder 2006).
It stands to reason that swimmers may be able to utilize their muscles on the time scale of
the oscillation of their propulsors to tune performance, e.g. by dynamically changing the
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stiffness of their propulsors; however, there is no definitive observation or consensus in the
biological community that swimmers take advantage of their muscles in this way (Fish &
Lauder 2021). In this work, we will show that, from a purely hydrodynamic perspective,
time-varying stiffness leads to propulsive benefits over constant-stiffness propulsors.

The fluid dynamics of biological swimmers is rooted in the theory of rigid-wing flutter.
Theodorsen (1935) was the first to theoretically model the forces produced by oscillating
foils in a fluid, which was later extended by Garrick (1936) to analytically predict thrust
and power for a rigid oscillating foil. Although these works focused on wing flutter, the
connection to swimmers was clear. Later, Chopra & Kambe (1977) incorporated the effects
of three-dimensionality via lifting line theory. Anderson et al. (1998) used particle image
velocimetry to calculate thrust and power of harmonically oscillating foils and compared
the results with inviscid theory predictions. More recently, Floryan et al. (2017) derived
and experimentally validated propulsive scaling laws for rigid two-dimensional foils in
pure heaving and pitching motions. This was extended to combined pitch-and-heave
motions (Van Buren, Floryan & Smits 2019).

The passive flexibility (or elasticity) of an oscillating propulsor plays a key role
in its propulsive performance. In a particularly influential work, Wu (1961) was
one of the first to analytically consider passive flexibility, albeit through prescribed
kinematics. Katz & Weihs (1978, 1979) calculated the coupled fluid–structure interactions
for a two-dimensional flexible foil. Since then, many analytical, experimental and
computational studies have shown the influence of propulsor flexibility on characteristics
such as the thrust and swimming efficiency, generally finding that flexibility can
dramatically increase thrust and/or efficiency compared with a rigid propulsor (Alben
2008; Michelin & Llewellyn Smith 2009; Dewey et al. 2013; Moore 2014, 2015; Quinn,
Lauder & Smits 2014; Paraz, Schouveiler & Eloy 2016). In a particularly relevant work,
Floryan & Rowley (2018) used small-amplitude theory to explore the role of resonance in
constant-stiffness propulsors, finding that the benefits of resonance manifest in the thrust
and power, but not necessarily in the propulsive efficiency. This analysis was extended in
Goza, Floryan & Rowley (2020) to consider the role of nonlinearity in the fluid–structure
system.

Few works have explored beyond simple uniform and passive flexibility. Floryan &
Rowley (2020) considered the role of stiffness distribution, finding that concentrating
stiffness toward the leading edge produced higher thrust, but lower efficiency compared
with foils with stiffness concentrated away from the leading edge. Quinn & Lauder (2021)
studied tuneable stiffness – that is, quasi-steady changes in stiffness – where it was
shown that stiffness could be tuned to maximize desired performance parameters. To our
knowledge, only two works consider time-varying stiffness at the same time scale as the
kinematics. Hu et al. (2021) approximated a flexible plate by a rigid propulsor with a
torsional spring at its leading edge heaving actively and pitching passively, respectively.
By changing the stiffness of the torsional spring in time, both the thrust and propulsive
efficiency could be enhanced in swimming. Shi, Xiao & Zhu (2020) used a finite-volume
Navier–Stokes solver to study the effects of changing the flexibility of a nonlinear beam
in the context of micro-air vehicles. This work provides valuable comparisons with the
present study, as they also found (as we will show) that oscillating stiffness can strongly
influence thrust and weakly influence the efficiency of the oscillating propulsor. However,
they considered a smaller range of cases due to the time limitation of their solution
method. Also, the stiffness oscillations considered were dramatic, changing stiffness by
up to two orders of magnitude in a single cycle. Finally, the stiffness oscillations were
non-sinusoidal, leading to to asymmetric motions and non-zero side forces. Non-zero side
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Oscillating plates with time-periodic stiffness
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Figure 1. A two-dimensional flat plate with time-varying Young’s modulus moving through a fluid.

force is useful when considering flying as it leads to lift, however, here, our concern is
rectilinear swimming, where asymmetric motions and non-zero side force would result in
entering a manoeuvring condition.

In this work, we study the effects of time-periodic stiffness on the propulsive
performance of a flexible plate. We solve a potential flow model that strongly couples
the fluid and structural equations of motion. We use a pseudospectral method developed
in Moore (2017) to solve the equations of motion, introducing time-varying flexibility
through a Fourier series expansion in time. We then use Floquet theory to assess the
stability of the system. We will show that the oscillating stiffness can strongly influence
thrust and weakly influence the efficiency of the oscillating propulsor, indicating that
animals or human-made swimmers would benefit from this capability. It should be noted
that this paper uses external actuation at the leading edge of the plate. The model can be
seen as an oscillating lifting surface attached to an external body or driving mechanism.
This applies to thunniform swimmers, such as dolphins; flying animals and insects,
such as bats; and also many uncrewed aerial/underwater vehicle applications. Thus, this
model would not capture situations where the lifting surface is the entire body of the
swimmer/flyer, such as an eel.

2. Problem statement and solution methods

Consider a two-dimensional, inextensible plate in a fluid flow, as sketched in figure 1.
The plate has thickness d and length L, and we assume that it is thin (d � L) and that its
maximum deflection is small, with its slope |Yx| � 1.

The deflection of the plate is then governed by the Euler–Bernoulli beam equation

ρsdwYtt + E(t)IYxxxx = wΔp, (2.1)

where Y is the transverse displacement of the plate, ρs is its density, E(t) is its time-varying
Young’s modulus, I = wd3/12 is its second moment of area and w is its width. The plate
is immersed in a fluid which imparts a hydrodynamic load onto it, given by the pressure
difference across the plate, Δp. Subscript t denotes differentiation with respect to time,
and subscript x denotes differentiation with respect to the streamwise coordinate.

The fluid is inviscid and incompressible, with density ρf . Far from the plate, the fluid
moves with a free-stream velocity U = Ui, where i is the unit vector in the x direction.
Conservation of mass and momentum for the fluid leads to

∇ · u = 0, (2.2a)

ρf (ut + Uux) = −∇p, (2.2b)

where u = ui + vj is the perturbation velocity induced by the motion of the plate, and
j is the unit vector in the transverse direction. In obtaining (2.2b), we have assumed
that |u| � U, which is consistent with our assumption of small-amplitude deflections of
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the plate. The limitations of these small-amplitude assumptions are small angle deflections
and amplitudes, and attached flow.

We non-dimensionalize the equations of motion using the half-length of the plate L/2
as the length scale, the free-stream velocity U as the velocity scale and the convective time
L/(2U) as the time scale. The non-dimensional equation for the plate is

2RYtt + 2
3 S(t)Yxxxx = Δp, (2.3)

and the non-dimensional equations for the fluid are

∇ · u = 0, (2.4a)

ut + ux = ∇φ, (2.4b)

where

R = ρsd
ρf L

, S(t) = E(t)d3

ρf U2L3 , φ = p∞ − p. (2.5a–c)

The function φ is Prandtl’s acceleration potential (Wu 1961). Now x, t, Y , u and p are
non-dimensional, with x = −1 corresponding to the leading edge of the plate, and x = 1
corresponding to the trailing edge. The mass ratio R is the ratio of a characteristic mass
of the plate to a characteristic mass of fluid, and the stiffness ratio S is the ratio of a
characteristic bending force to a characteristic fluid force. The stiffness ratio, its inverse
and variations of it are sometimes called the Cauchy number (Cermak & Isyumov 1999;
de Langre 2008) or the elastohydrodynamic number (Schouveiler & Boudaoud 2006).

To close the system of equations, we specify the boundary conditions. The fluid satisfies
the no-penetration boundary condition and the Kutta condition

v|x∈[−1,1],y=0 = Yt + Yx, (2.6a)

|v||(x,y)=(1,0) < ∞. (2.6b)

We specify heaving and pitching motions h and θ , respectively, at the leading edge of
the plate, while the trailing edge is free (zero force and torque), resulting in the boundary
conditions,

Y(−1, t) = h(t), Yx(−1, t) = θ(t), Yxx(1, t) = 0, Yxxx(1, t) = 0. (2.7a–d)

Since we are interested in locomotion, we consider periodic actuation of the leading
edge; that is, h(t) and θ(t) are (zero-mean) periodic functions of t with a non-dimensional
angular frequency σ = πfL/U, where f is the dimensional ordinary frequency. Similarly,
we consider a time-periodic stiffness. With our focus on forward propulsion, the upstroke
and downstroke must be mirror images of each other in order for the mean side force to
be zero. It can be shown that this requires that the stiffness vary at twice the frequency of
the deflection of the plate. Intuitively, the stiffness must be the same during the upstroke
and downstroke, which can only be true if it varies at twice the frequency of the plate’s
deflection.

To solve the system of equations for the kinematics of the plate, we use the method
described by Moore (2017), adapting it to account for time-periodic stiffness; we describe
the method in Appendix A. The method assumes that the kinematics are time periodic,
with any transients decaying to zero. We will test this assumption by performing a
Floquet analysis. More importantly, the Floquet analysis will provide physical insight into
the problem. The Floquet analysis is adapted from the eigenvalue problem described by

959 A31-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

16
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.166


Oscillating plates with time-periodic stiffness

Floryan & Rowley (2018, 2020) and uses a key idea from Kumar & Tuckerman (1994); the
details are in Appendix B.

The motion of the plate induces a pressure difference across it. The projection of the
pressure difference onto the horizontal direction contributes – together with a suction force
at the leading edge – to a propulsive thrust force. Therefore, the energy put into the system
by actuating the leading edge is converted into propulsive thrust, given by

CT =
∫ 1

−1
ΔpYx dx + CTS, (2.8)

where CTS is the leading-edge suction, a formula for which is given by Moore (2017). The
power input is

CP = −
∫ 1

−1
ΔpYt dx. (2.9)

Finally, the Froude efficiency is defined as the ratio of the time-averaged thrust output to
the time-averaged power input (i.e. how much of the power input is converted to propulsive
thrust)

η = CT

CP
, (2.10)

where the overbar denotes averaging in time.
In this work, we restrict ourselves to leading-edge actuation and stiffnesses that are

sinusoidal in time

h(t) = 1
2 (h0 exp(jσ t)+ h∗

0 exp(−jσ t)), (2.11a)

θ(t) = 1
2(θ0 exp(jσ t)+ θ∗

0 exp(−jσ t)), (2.11b)

S(t) = S̄ + S̄
2
(S0 exp(2jσ t)+ S∗

0 exp(−2jσ t)), (2.11c)

where h0, θ0, S0 ∈ C, j = √−1 and a superscript ∗ denotes complex conjugation. The
formulation in the appendices, however, is valid for generic smooth periodic functions of
time. We will make frequent use of the parameter φS = arg(S0), the phase of the stiffness
oscillation. Note that |S0| gives the amplitude of the stiffness oscillation as a fraction of the
mean stiffness; for example, S0 = 0.5 means that the stiffness oscillates with an amplitude
that is 50 % of the mean stiffness. For a physically meaningful (i.e. positive) stiffness, we
require |S0| < 1.

Throughout, we fix the mass ratio to a low value of R = 0.01, appropriate for thin,
neutrally buoyant biological swimmers. To build intuition for the effects of time-varying
stiffness, we will extensively study the case with S̄ = 20; unless otherwise noted, this
is the value we use for the mean stiffness. We will consider cases where the plate is in
pure heave, in pure pitch and in combined heave and pitch. Throughout, we set h0 = 1
and θ0 = 0.5, although we will add a phase offset between heave and pitch for combined
motions.

A discrepancy the reader may have noted with our small-amplitude and deflection
assumptions is the high values for h0 and θ0 to 1 and 0.5, respectively. These will produce
very high deflections not consistent with the linearization of the system. The reason for
these values is the ability to easily re-scale the outputs based on the input due to the
linearity of the problem. If we want to find the kinematics for a heave input of 0.05, then
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t

Figure 2. Kinematics of a heaving plate actuated at its first resonant frequency of σ = 3.1. Shown are a plate
with constant stiffness (solid black), time-periodic stiffness in phase with the motion (φS = 0; dashed blue)
and time-periodic stiffness out of phase with the motion (φS = π; dashed red). The coloured arrows represent
the difference between the instantaneous stiffness and the mean stiffness. The absence of arrows indicates the
three plates have the same stiffness in the below snapshot. The parameters used are S̄ = 20, h0 = 1, R = 0.01
and |S0| = 0.5.

we take the deflection of this paper and multiply it by 0.05 to find the new deflection at
that input, and multiply thrust or power by 0.052 to find the new thrust or power. For pitch,
we would multiply our results by 0.05/0.5 to find the new deflections, and by (0.05/0.5)2
to find the new thrust or power. Efficiency stays the same for all scaled input cases. The
results are only valid if the rescaling satisfies the small-amplitude assumption.

3. Results and discussion

Heaving and pitching motions have fundamentally different thrust mechanisms (Floryan
et al. 2017; Van Buren, Floryan & Smits 2020), with thrust in heave coming from lift-based
circulatory forces, and in pitch coming from added-mass acceleration forces. To start,
we consider a periodically heaving plate moving through a fluid. After completing our
heave-only analysis, we will analyse pitch-only and heave-and-pitch motions.

3.1. Heave-only motions
First, we familiarize ourselves with how time-varying flexibility impacts the plate’s
kinematics. Figure 2 shows the kinematics of three plates during one cycle of motion. The
plates are all actuated at the same frequency – the first resonant frequency of the plate with
constant stiffness, σ = 3.1. The reference case with constant stiffness is compared against
a plate with time-varying flexibility that is in phase with the motion (φS = 0), meaning it is
stiff at the turnaround and flexible at mid-stroke, and a plate with time-varying flexibility
that is out of phase with the motion (φS = π), meaning it is flexible at the turnaround
and stiff at the mid-stroke. For a plate with constant stiffness, the peak deflection occurs
around the mid-stroke, where the lateral velocity is highest. For the φS = 0 case, the
pressure on the plate is reduced throughout the mid-stroke with more deflection, and the
increase in stiffness towards the turnaround causes it to catch back up to the reference
case. Conversely, the φS = π case has its stiffness reduced at the turnaround, ultimately
achieving the largest trailing-edge deflection of all heave cases, and then recovering
throughout the mid-stroke with increased stiffness. The stiffness oscillation essentially
adds a phase lag relative to the motion of the constant-stiffness plate. When φS = π, the
motion leads that of the constant-stiffness plate, whereas when φS = 0, the motion lags
that of the constant-stiffness plate.

In figure 3, we show how time-varying stiffness affects average thrust and efficiency.
The frequency range is centred about the first resonant frequency of the plate with
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Oscillating plates with time-periodic stiffness
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Figure 3. Thrust (a) and efficiency (b) for a heaving plate with gradually increasing stiffness oscillation
amplitude. The parameters used are S̄ = 20, h0 = 1 and R = 0.01.

constant stiffness. Generally, adding periodic stiffness leads to a continuous and
substantial increase in thrust as the stiffness oscillation amplitude increases, with up to
a 35 % increase in thrust when |S0| = 0.5. For φS = 0, the resonance is shifted to higher
frequencies, while for φS = π the resonance is shifted lower compared with the constant
stiffness case. Past the resonant frequency, the φS = π case yields slightly lower thrusts
than the baseline case.

For efficiency, we observe the opposite behaviour (figure 3b). Performance benefits
for φS = 0 occur below the baseline resonant frequency, while for φS = π they occur
above the baseline resonant frequency. For both phases of the stiffness oscillation, there
are frequencies yielding greater efficiency than the constant-stiffness plate, as well as
frequencies yielding lower efficiency. The effect of time-varying stiffness on the efficiency
is much more mild than it is for thrust, however, as time-varying stiffness only changes the
efficiency by Δη ≤ 0.05. This suggests that time-varying stiffness may be a strategy to
substantially increase thrust without much, if any, penalty in efficiency, as was similarly
shown in Shi et al. (2020).

To better understand the effects of time-varying stiffness, we turn to the time histories
of the performance characteristics over the course of an actuation cycle. Figure 4 shows
the instantaneous thrust, side force and power coefficients over one period of the motion.
For reference, we also plot the leading-edge kinematics and plate stiffness. The plate with
constant stiffness exhibits purely sinusoidal thrust, power and side force since frequencies
are uncoupled in the small-amplitude limit. Time-periodic stiffness, however, causes
cross-frequency coupling, leading to non-sinusoidal behaviour. Note that, because the
stiffness oscillates at twice the frequency of motion, the side force remains symmetric,
ensuring there is no mean side force (in a real system, this would lead to manoeuvring).

The plate whose stiffness oscillates out of phase with the kinematics (φS = π) produces
the most thrust at the mid-stroke. During the turnaround the plate becomes the most
flexible – this helps to relieve the power consumption which trends highest before the
plate reverses direction. The opposite happens for the plate whose stiffness is in phase
with the kinematics (φS = 0). It produces the most thrust closer to the turnaround, and
the power relief comes when the plate is most flexible at the maximum plunge velocity.
For both cases, higher thrust trends towards the times of higher stiffness, and lower
power consumption trends towards the times of lower stiffness. The phase of the stiffness
oscillation dictates when in the cycle the plate is most stiff (promoting thrust) or most
flexible (relieving power). Thus, by timing these stiffness changes at opportune times
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Figure 4. Instantaneous thrust, power and side force coefficients for a heaving plate. The parameters used are
S̄ = 20, h0 = 1, R = 0.01, σ = 3.1 and |S0| = 0.5. Shown are a plate with constant stiffness (solid black),
time-periodic stiffness in phase with the motion (φS = 0; dashed blue) and time-periodic stiffness out of phase
with the motion (φS = π; dashed red). (a) Kinematic input at the leading edge (solid black, left ordinate), and
the stiffness distribution (blue and red dashed, right ordinate) for one stroke. (b) Thrust coefficient as a function
of time. (c) Power coefficient as a function of time. (d) Side force coefficient as a function of time.

during the cycle (e.g. becoming flexible at a time when power is highest), the performance
can be significantly enhanced.

It is clear that the timing of the stiffness oscillation is important. However, until
this point, only two stiffness oscillation phases have been considered: in phase and
out of phase with the kinematics. We investigate whether there is a particular phase
that maximizes thrust or efficiency. In figure 5, thrust and efficiency are plotted on
a polar plot with frequency σ on the radial axis and stiffness phase offset φs on the
azimuthal axis. Both thrust and efficiency are shown relative to the constant-stiffness case.
Time-varying stiffness increases thrust the most when φS is between π/2 and 2π/3, and it
increases efficiency the most near φs = 3π/2. Again, the changes in efficiency are modest.
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Figure 5. Impact of stiffness phase offset (φS; azimuthal axis) and kinematic frequency (σ ; radial axis) on
thrust and efficiency for a heaving plate, relative to the constant-stiffness case. The parameters used are S̄ = 20,
h0 = 1, R = 0.01 and |S0| = 0.5.

It is important here to also highlight the importance of the kinematic frequency – for a
given phase of the stiffness oscillation, there can be performance boosts and hindrances
depending on the frequency of oscillation.

We seek to understand why time-varying stiffness confers greater thrust than constant
stiffness. For rigid and passively flexible plates, prior work has shown that the relevant
velocity scale for thrust generation is the characteristic lateral velocity of the plate –
not the free-stream velocity traditionally used in aerodynamics – and that thrust scales
quadratically with the lateral velocity scale (Gazzola, Argentina & Mahadevan 2014; Van
Buren et al. 2018). The lateral velocity scale is usually taken to be the amplitude of the
trailing edge’s velocity, proportional to σA, where A is the amplitude of the trailing edge’s
displacement. In figure 6(a) we account for varying lateral velocity scales for the cases
with time-varying stiffness by dividing the thrust by A2 (the different cases share the
same value of σ , so normalizing by A2 captures the effects of the lateral velocity scale).
By accounting for the lateral velocity scale, the curves become reasonably collapsed (cf.
figure 3), indicating that time-varying stiffness increases thrust principally by increasing
the characteristic lateral velocity. However, near the regions of plate resonance (3 < σ <

4), the rescaled thrust curves still deviate from each other. Time-varying stiffness with
phase φS = π produces more thrust than one would expect from our scaling argument,
whereas the opposite holds for φS = 0. The lateral velocity scale, therefore, does not
tell the whole story; other factors are afoot. (We tried other trailing-edge velocity scales
as well, e.g. the maximal trailing-edge velocity, but none perfectly collapsed the thrust
curves.)

To further explore the scaling breakdown, we decompose the thrust into its components
(see (2.8)): (i) the projected pressure difference; and (ii) the leading-edge suction. We
plot the two components, rescaled to account for the lateral velocity scale, in figure 6(b,c),
respectively. The thrust due to the projected pressure difference stays completely collapsed
throughout the resonance region for all cases, but the leading-edge suction deviates in the
same region as in figure 6(a). Thus, for cases with time-varying stiffness, the deviation
of thrust from the lateral velocity scaling is attributed to the leading-edge suction. The
detailed solution for the leading-edge suction can be found in Wu (1961). Based on
(21), (23b), (35) and (61) in Wu (1961), the leading-edge suction depends on the spatial
distribution of the lateral velocity along the plate and on the circulation around the plate

959 A31-9

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

16
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.166


D. Yudin, D. Floryan and T. Van Buren

0 0

1

2

3C
T/

A2

C
TS

/A
2

(∫
1 –
1
�

pY
xd

x)
/A

2

4

5

6

7

1 1

1

2

3

4

5

2 23 3

σ σ
4 45 5

0 1

1

2

3

4

5

2 3 4 5

φS = 0

S0 = 0.1

S0 = 0.2

S0 = 0.3

S0 = 0.4

S0 = 0.5

S0 = 0.1

S0 = 0.2

S0 = 0.3

S0 = 0.4

S0 = 0.5

S0 = 0

φS = π

(b)(a)

(c)

Figure 6. (a) Total thrust, (b) thrust due to projected pressure difference and (c) thrust due to leading-edge
suction, all scaled by the square of the maximum trailing-edge amplitude A.

(which itself can be related to the spatial distribution of the lateral velocity along the
plate). The lateral velocity scaling ignores the detailed spatial distribution of the lateral
velocity. We conclude that time-varying stiffness changes thrust not only by changing the
characteristic lateral velocity scale, but also by changing the detailed spatial distribution
of the lateral velocity, which acts through the leading-edge suction to alter thrust.

Before moving to more in-depth analysis, we consider the implications of these results
on real-world systems. We have shown to this point that time-varying stiffness leads to
large increases in thrust with moderate changes in efficiency. Furthermore, the changes
in thrust do not follow our traditional understanding of velocity scaling, i.e. one cannot
assume that the dynamic stiffness is merely changing the trailing-edge amplitude and a
passively flexible plate with equal trailing-edge amplitude would perform equally well. As
a result, from a technological perspective, while it may be a greater challenge to design a
system with actively changing flexibility, there may be intrinsic benefits to these types of
propulsors. Furthermore, in systems where oscillation amplitude or frequency are limited,
oscillating stiffness may be a realizable tool in biological or human-made underwater
swimmers to improve swimming speed. When considering swimming efficiency, one must
take into account that changing the stiffness of the system will require additional energy.

3.1.1. Higher resonance modes and instability
We now explore a much wider range of mean plate stiffnesses and frequencies
encompassing higher-order resonant frequencies. The change in swimming performance
due to time-periodic stiffness, with respect to the constant-stiffness case, is shown in
figure 7 for φS = 0 and π. The oscillation in stiffness modifies the resonant frequencies
from those of the constant-stiffness plate, as we saw in figure 3, leading to sharp bands
of increased and decreased thrust; these appear as adjacent narrow red and blue strips
in figure 7. In a linear time-invariant system, resonant frequencies are related to the
imaginary parts of the eigenvalues of the system, whereas in linear time-periodic systems,
they are related to the imaginary parts of the Floquet exponents (Wereley 1990). In
general, the two are different, leading to the modified resonant frequencies that we observe.
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Figure 7. Impact of time-varying stiffness on the thrust (a,c) and efficiency (b,d), relative to the
constant-stiffness case, for stiffness oscillations that are in phase with the motion (a,b), and 180◦ out of phase
with the motion (c,d). The parameters used are h0 = 1, R = 0.01 and |S0| = 0.5. (a) log CT/CTS0=0 , φS = 0;
(b) Δη, φS = 0; (c) log CT/CTS0=0 , φS = π; (d) Δη, φS = π.

Away from resonance, thrust is modified little by the oscillation in stiffness. The changes
in efficiency are much broader over the stiffness–frequency plane and have features that
align with resonant frequencies; they are, however, very mild. Generally, thrust increases
where efficiency decreases, but increasing |S0| can greatly increase the thrust production
with minimal impact on efficiency.

Perhaps the most interesting features in figure 7 are the hollowed peaks in the thrust,
resembling the eye of a needle. They are more prominent at higher frequencies. To
clarify this behaviour, in figure 8 we show the thrust and efficiency along a slice in
the stiffness–frequency plane, taking S̄ = 20 and centring the frequency range about the
second resonant frequency (this is the same parameter case as shown in figure 3). As
the stiffness oscillation amplitude is gradually increased, there is a critical value of |S0|
at which a single resonant peak in thrust bifurcates into two sharp peaks centred about
the baseline resonant frequency, with the distance between the peaks increasing as |S0|
increases. The bifurcated peaks are very sharp, indicative of natural frequencies with very
little damping.

To investigate this possibility, we perform a Floquet analysis. Representative results
from the Floquet analysis are shown in figure 9. There, we have plotted the neutral
curves in the S̄–|S0| plane on top of contours of log CT . When the stiffness oscillation
amplitude |S0| is below the neutral curves, the system is stable. Conversely, the system
is unstable when |S0| is above the neutral curves, leading to unbounded growth in the
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Figure 8. Values of log CT (a) and efficiency (b) for a heaving plate with gradually increasing stiffness
oscillation amplitude. As stiffness oscillation amplitude |S0| increases, a single resonant peak bifurcates into
two. The parameters used are S̄ = 20, h0 = 1 and R = 0.01.

plate’s deflection. We see the emergence of tongues of instability, which are characteristic
features of parametrically excited systems such as Mathieu’s equation (Nayfeh & Mook
1995) and Faraday waves (Faraday 1831; Miles & Henderson 1990). The physical
mechanism of the instability is the same as for parametrically excited oscillators: the
time-varying stiffness creates an internal forcing. When this forcing is adding energy into
the system at a higher rate than is being dissipated, this leads to a net increase of energy
in the system, i.e. an instability. Because the system is damped (due to energy lost to the
wake via a thin sheet of vorticity), the instability emerges at a non-zero value of |S0|. For
a fixed value of |S0|, as we vary the mean stiffness S̄, we cross into and then out of the
unstable region. At the boundaries, the thrust exhibits sharp peaks, which are explained
by the theory of forced linear time-periodic systems (Wereley 1990). This explains the
double resonant peaks that we observed in figures 7 and 8. (Although we vary σ at a fixed
value of S̄ in figure 8, we can see in figure 7 that we encounter double resonant peaks
whether we vary S̄ at a fixed value of σ , or we vary σ at a fixed value of S̄; physically,
the origin of the double resonant peaks is the same.) No physical significance should be
assigned to the thrust in the unstable region between the double resonant peaks since
the thrust was calculated under the assumption of a stable system. We have verified for
conditions other than those used to generate figure 9 that a splitting of one resonant peak
into two coincides with the emergence of an instability; we conjecture that every region
between double resonant peaks in figures 7 and 8 is actually unstable. While instability
usually has a negative connotation in engineering applications, these unstable regions
could potentially lead to greatly enhanced propulsive performance since an instability
would produce large deflections from small actuation. Our linear method cannot capture
the saturation of the instabilities, but we believe that exploring the unstable regions via
experiments or nonlinear simulations is a promising direction.

3.2. Pitch-only and pitch-and-heave motions
We now consider how pitching the leading edge changes the results. As stated previously,
pitching and heaving are fundamentally different in their thrust generation mechanism
(Floryan et al. 2017; Van Buren et al. 2020), with the former utilizing added-mass forces
and the latter using lift-based or circulatory forces. Additionally, combined pitching
and heaving motions are the most biologically relevant and also the best performing
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Figure 9. Neutral stability curves overlaid on contours of log CT . The parameters used are R = 0.01 to
calculate the neutral stability curves, and h0 = 1, σ = 20 and φS = 0 to calculate the thrust values.

(Wu 2011; Van Buren et al. 2019). In this section, we study two cases: (i) purely pitching,
and (ii) combined pitching and heaving with pitch lagging heave by π/2, the most
‘fish-like’ motion that is also generally the most efficient (Triantafyllou, Triantafyllou &
Yue 2000; Van Buren et al. 2019).

Figure 10 shows the kinematics for both cases during one cycle of motion. The
kinematics are qualitatively the same as for the purely heaving case in figure 2. Adding
an oscillatory component to the stiffness causes a lead/lag effect on the kinematics which
dictates at what point in the stroke thrust is generated. When the stiffness is in phase
with the motion, rapid trailing-edge motion occurs near the turnaround where the plate
transitions from flexible to stiff, whereas when the stiffness is out of phase with the
motion, the rapid trailing-edge motion occurs through the midpoint of the cycle. Even
for the pitching and heaving case – which specifically reduces the side force on the plate
(Van Buren et al. 2019) – we see the stiffness oscillations have similar impact in both
magnitude and timing.

Figure 11 shows the thrust and efficiency for the two cases in a frequency range
centred about the first resonant frequency of the plate with constant stiffness. For both
the pitch and pitch-and-heave cases, we see that the oscillating stiffness has a strong
impact on the peak thrust near resonance. The efficiency is less impacted by the stiffness
oscillation and switches from being greater than the efficiency of a constant-stiffness plate
to less than it across the resonant frequency – depending on the phase of the stiffness
oscillation – which is similar to the behaviour of the purely heaving plate in figure 3.
For the purely pitching plate, thrust is much more impacted by the oscillating stiffness
when it is out of phase with the kinematics, φS = 0. For pitching, the blue plate lags
behind the red and black plates at the turnaround, and becomes the least stiff at this
moment. The blue plate accelerates the fastest between frames 2 and 4 in figure 10, which
corresponds to the fastest angular velocity at the leading edge. The blue plate had the
highest trailing-edge amplitude, because the phase difference between the leading-edge
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Figure 10. Analogous to figure 2, but for a pitching plate (a) and a pitching and heaving plate (b). Shown are
a plate with constant stiffness (solid black), time-periodic stiffness in phase with the motion (φS = 0; dashed
blue) and time-periodic stiffness out of phase with the motion (φS = π; dashed red). The parameters used are
S̄ = 20, h0 = 1, θ0 = −0.5j, R = 0.01 and |S0| = 0.5.
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Figure 11. Thrust and efficiency of a purely pitching plate (a,b) and a pitching and heaving plate (c,d) as a
function of driving frequency σ . The parameters used are S̄ = 20, h0 = 1, θ0 = −0.5j and R = 0.01: (a) CT ,
h = 0, θ = 0.5; (b) Δη, h = 0, θ = 0.5; (c) CT , h = 1, θ = 0.5; (d) Δη, h = 1, θ = 0.5.
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Figure 12. Impact of stiffness phase offset (φS; azimuthal axis) and kinematic frequency (σ ; radial axis) on
thrust and efficiency for a pitching (a,b) and a pitching and heaving (c,d) plate, relative to the constant-stiffness
case. Note the white unit circles on the efficiency contours. They are whited out due to large negative efficiency
values, which detract from the regions of interest. The parameters used are S̄ = 20, h0 = 1, θ0 = −0.5j,
R = 0.01 and |S0| = 0.5. (a) log CT/CTS0=0 , h = 0, θ = 0.5; (b) Δη, h = 0, θ = 0.5; (c) log CT/CTS0=0 ,
h = 1, θ = 0.5; (d) Δη, h = 1, θ = 0.5.

input and the trailing-edge deflection and its lower stiffness allows the blue plate to reach
a higher trailing-edge amplitude before feeling the effects of the acceleration at the leading
edge. The blue plate then becomes stiffer as the effect of the acceleration at the leading
edge reaches the trailing edge. This combination of high acceleration, high trailing-edge
amplitude and high stiffness creates high thrust. The red plate’s stiffness distribution is
misaligned with the phase difference caused by pure pitching, and therefore reaches a
lower maximum trailing-edge amplitude, and benefits less from the high acceleration of
the leading edge between frames 2 and 4 in figure 10. For a better visualization of the
plate dynamics and how it ties into the performance enhancements, refer to the online
supplemental movies available at https://doi.org/10.1017/jfm.2023.166 where we show the
heave, pitch and heave plus pitch kinematics.

Finally, we consider the role of the phase of stiffness oscillation in more detail. Figure 12
shows the change in thrust and efficiency relative to the constant-stiffness case. For the
heaving plate, the ideal phase for thrust was approximately between π/2 and 2π/3; for
the pitching plate, however, the ideal phase is approximately π/3. The ideal phase for the
combined pitching and heaving plate is approximately π/2, directly between the isolated
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pitching and heaving cases. Generally, the efficiency has opposing behaviour to the thrust,
with increased thrust coinciding with decreased propulsive efficiency.

4. Conclusions

In this work, we explore the impact of time-periodic stiffness on an oscillating plate
in a free stream – a model for swimmers. The stiffness oscillations were varied in
amplitude and phase and consistently compared with the baseline constant-stiffness case.
The stiffness oscillation frequency is fixed at twice the kinematic frequency to enforce
zero-mean side force, which is required for rectilinear swimming. The fluid–structure
interaction model is solved using a spectral method first introduced in Moore (2017),
modified to account for time-periodic stiffness.

It is shown that the oscillation in stiffness has a significant impact on the thrust
and kinematics. The impact on thrust is most prominent, with time-periodic stiffness
increasing thrust by up to 35 % at the first resonant peak. The impact on efficiency is,
on the other hand, mild, with the efficiency changing by Δη ≤ 0.05. The changes in thrust
and efficiency are often negatively correlated. These performance changes are consistent
across heaving, pitching and combined pitch-and-heave motions.

The performance alteration due to time-varying stiffness is strongly linked to the phase
of the stiffness oscillation. This is because thrust and side forces are produced at different
stages throughout the kinematic cycle, and whether the plate is more or less stiff at
those stages either yields enhanced thrust or power reduction. This is especially evident
when comparing pure heaving motions with pure pitching motions, which have different
phase differences between the leading-edge input and the trailing-edge deflection. Further
analysis of the thrust behaviour with respect to the trailing-edge velocity scaling used
in rigid and passively flexible systems indicates that the oscillating stiffness leads to
additional physics that are not completely captured by the trailing-edge velocity scaling.
This is due to the oscillating stiffness changing the spatial distribution of the plate’s
lateral velocity, which directly leads to a difference in the circulation around the plate
and consequently the leading-edge suction.

When the kinematic frequency and amplitude of stiffness oscillation are large enough,
instabilities emerge in regions of parameter space centred about resonant frequencies
of the constant-stiffness plate. Our linear method cannot capture the saturation of the
instabilities, but we anticipate that the unstable regions of parameter space may yield
enhanced propulsive performance. Exploring the unstable regions via experiments or
nonlinear simulations is a promising future research direction.

While there may not yet be concrete evidence of biological swimmers actively changing
their stiffness on the time scale of their kinematic frequency, we have presented strong
evidence that there would be a hydrodynamic benefit to doing so. This may be a promising
avenue to pursue when designing robotic swimmers.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2023.166.
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Oscillating plates with time-periodic stiffness

Appendix A. Method of solution

We assume the kinematics Y , the hydrodynamic load q = Δp and the stiffness ratio S are
periodic in time and can be expressed as Fourier series

Y(x, t) =
∞∑

m=−∞
ŷm(x) exp( jmσ t), (A1a)

q(x, t) =
∞∑

m=−∞
q̂m(x) exp( jmσ t), (A1b)

S(t) =
∞∑

m=−∞
Ŝm exp( jmσ t). (A1c)

Substituting these expressions into (2.3) gives

∞∑
m=−∞

q̂m(x) exp( jmσ t)+ 2R
∞∑

m=−∞
m2σ 2ŷm(x) exp( jmσ t)

− 2
3

∞∑
m=−∞

∞∑
k=−∞

Ŝm−kŷ′′′′
k (x) exp( jmσ t) = 0, (A2)

where a prime denotes differentiation with respect to x. Separating the Fourier components
yields the following system of ordinary differential equations:

q̂m(x)+ 2m2σ 2Rŷm(x)− 2
3

∞∑
k=−∞

Ŝm−kŷ′′′′
k (x) = 0, ∀ m ∈ Z. (A3)

Expanding the heaving and pitching motions into Fourier series as

h(t) =
∞∑

m=−∞
ĥm exp( jmσ t), (A4a)

θ(t) =
∞∑

m=−∞
θ̂m exp( jmσ t), (A4b)

and substituting them and (A1a) into (2.7a–d) gives boundary conditions for ŷm,

ŷm(−1) = ĥm, ŷ′
m(−1) = θ̂m, ŷ′′

m(1) = ŷ′′′
m (1) = 0, ∀ m ∈ Z. (A5a–c)

We also require that all the functions are real, leading to the reality conditions

ŷm(x) = ŷ∗
−m(x), q̂m(x) = q̂∗

−m(x), Ŝm = Ŝ∗
−m,

ĥm = ĥ∗
−m, θ̂m = θ̂∗

−m, ∀ m ∈ Z,

}
(A6a–e)

where the superscript ∗ again denotes complex conjugation.
Given the hydrodynamic load q, the stiffness ratio S and the heaving and pitching

actuation at the leading edge, we can solve for the kinematics Y by solving the system of
coupled ordinary differential equations given by (A3) along with their boundary conditions
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given by (A5a–c). What remains is to couple the solid and fluid mechanics by expressing
the hydrodynamic load in terms of the kinematics, which we do next.

The pressure difference across the plate creates the hydrodynamic load, and is related to
Prandtl’s acceleration potential by

Δp = φbottom − φtop. (A7)

Taking the divergence of (2.4b) and using incompressibility shows that φ is harmonic,
implying the existence of a harmonic conjugate ψ . We define the complex acceleration
potential

F(x, y, t) = φ(x, y, t)+ iψ(x, y, t), (A8)

where i = √−1. It will be convenient to work with the complex variable z = x + iy. Note
that F is analytic in z. We conformally map the physical z plane to the exterior of the unit
disk in the ζ plane using

z = 1
2

(
ζ + 1

ζ

)
. (A9)

Because the acceleration potential F is conformally invariant under (A9), F is analytic in
ζ and can be represented by a multipole expansion

F = i

(
a0(t)
ζ + 1

+
∞∑

k=1

ak(t)
ζ k

)
, (A10)

where the coefficients ak are real (Wu 1961). The first term represents the singularity at
the leading edge, and the infinite series represents an analytic function that is regular on
and outside the unit circle, decaying in the far field (Wu 1961).

Continuing with our assumption of a time-periodic flow, we expand the coefficients in
the multipole expansion into Fourier series

ak(t) =
∞∑

m=−∞
âk,m exp( jmσ t), ∀ k ∈ W. (A11)

Substituting (A11) into (A10) yields

F = i

(
1

ζ + 1

∞∑
m=−∞

â0,m exp( jmσ t)+
∞∑

k=1

1
ζ k

∞∑
m=−∞

âk,m exp( jmσ t)

)
, (A12)

which we can rewrite as a Fourier expansion of F

F =
∞∑

m=−∞
F̂m exp( jmσ t) =

∞∑
m=−∞

i

(
â0,m

ζ + 1
+

∞∑
k=1

âk,m

ζ k

)
exp( jmσ t). (A13)

Evaluating (A13) on the unit circle (ζ = eiθ ), which corresponds to the surface of the plate
in the z plane, and separating the real and imaginary parts yields

φ|W =
∞∑

m=−∞

(
1
2

â0,m tan
θ

2
+

∞∑
k=1

âk,m sin kθ

)
exp( jmσ t), (A14a)

ψ |W =
∞∑

m=−∞

(
1
2 â0,m +

∞∑
k=1

âk,m cos kθ

)
exp( jmσ t) =

∞∑
m=−∞

Ψm(x) exp( jmσ t).

(A14b)
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Oscillating plates with time-periodic stiffness

We recognize the expression for Ψm(x) as a Chebyshev series in x

Ψm(x) = 1
2 â0,m +

∞∑
k=1

âk,mTk(x), ∀ m ∈ Z, (A15)

where Tk(x) = cos(k arccos x) is the kth Chebyshev polynomial, and x = cos θ .
The complex acceleration potential can be related to the complex velocity w = u − iv

through the momentum equation (2.4b), by

∂F
∂z

= ∂w
∂t

+ ∂w
∂z
. (A16)

Evaluating the imaginary part on the plate’s surface (z = x) and substituting the
no-penetration boundary condition (2.6a), yields

∂ψ

∂x

∣∣∣∣
y=0

= −
(
∂

∂t
+ ∂

∂x

)2

Y. (A17)

Substituting (A1a) and (A14b) into (A17) gives
∞∑

m=−∞
DΨm(x) exp( jmσ t) = −

∞∑
m=−∞

( jmσ + D)2ŷm(x) exp( jmσ t), (A18)

where D = d/dx. Separating Fourier components gives

DΨm(x) = −( jmσ + D)2ŷm(x), ∀ m ∈ Z. (A19)

Given ŷm, we expand it into a Chebyshev series and use (A19) to express the Chebyshev
coefficients of Ψm – that is, âk,m for k ≥ 1 – in terms of the Chebyshev coefficients of ŷm.
To determine â0,m, we expand the vertical velocity on the plate in a Fourier series

v|W =
∞∑

m=−∞
v̂m(x) exp( jmσ t), (A20)

and the spatial coefficients in Chebyshev series

v̂m(x) = 1
2 V̂0,m +

∞∑
k=1

V̂k,mTk(x), ∀ m ∈ Z. (A21)

We can express the no-penetration boundary condition (2.6a), as

v̂m(x) = ( jmσ + D)ŷm(x), ∀ m ∈ Z. (A22)

Given the Chebyshev coefficients of ŷm, (A22) gives the Chebyshev coefficients of v̂m.
The coefficient â0,m is then given by

â0,m = −C( jmσ)(V̂0,m + V̂1,m)+ V̂1,m, ∀ m ∈ Z, (A23)

where

C( jmσ) = K1( jmσ)
K0( jmσ)+ K1( jmσ)

(A24)

is the Theodorsen function, and Kν is the modified Bessel function of the second kind of
order ν. The expression for â0,m is derived in Wu (1961).
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With all âk,m in hand, the hydrodynamic load is given by

q̂m(x) = â0,m

√
1 − x
1 + x

+ 2
∞∑

k=1

âk,m sin kθ, ∀ m ∈ Z. (A25)

The hydrodynamic load q̂m depends linearly on ŷm.
To summarize, given the kinematics ŷm, we can calculate the coefficients âk,m, with

which we can calculate the hydrodynamic load, which alters the kinematics via (A3).
The coupled fluid–structure problem must be solved numerically. The pseudospectral
numerical method for constant stiffness is given by Moore (2017), which is relatively
straightforward to adapt to account for time-periodic stiffness; in it, the kinematics are
expanded into Chebyshev series. All infinite series are truncated to finite series; for the
results presented in this work, we have used 16 Fourier modes and 64 Chebyshev modes.
The method is fast and accurate, pre-conditioning the system with continuous operators
to avoid errors typically encountered when using spectral methods to solve high-order
differential equations. Formulas to calculate the thrust and power coefficients are given in
Moore (2017).

Appendix B. Floquet analysis

To test the stability of the solutions computed using the method in Appendix A, we perform
a Floquet analysis of the problem with homogeneous boundary conditions. This analysis
is adapted from the eigenvalue problem described by Floryan & Rowley (2018, 2020).
Following the preceding analysis, but not assuming a form for the time dependence, we
arrive at

2RYtt + 2
3 S(t)Yxxxx = Δp, (B1a)

Y(x, t) = 1
2 y0(t)+

∞∑
k=1

yk(t)Tk(x), (B1b)

Δp(x, t) = a0(t)

√
1 − x
1 + x

+ 2
∞∑

k=1

ak(t) sin kθ, (B1c)

∞∑
k=1

ak(t)T ′
k(x) = −1

2 ÿ0(t)−
∞∑

k=1

[ÿk(t)Tk(x)+ 2ẏk(x)T ′
k(x)+ yk(t)T ′′

k (x)], (B1d)

Y(−1, t) = 0, Yx(−1, t) = 0, Yxx(1, t) = Yxxx(1, t) = 0. (B1e)

Above, a dot denotes differentiation with respect to t. In (B1b), we have written Y as a
Chebyshev series in x. The expression in (B1d) derives from the no-penetration condition
(A17).

In what follows, we set S(t) = S̄ + (S̄S0/2)(exp(jωt)+ exp(−jωt)), as in (2.11c). Here,
ω is the frequency of the stiffness oscillation. Assuming the Floquet solution form

yk(t) = eλt
∞∑

m=−∞
ŷk,m exp( jmωt), (B2a)

ak(t) = eλt
∞∑

m=−∞
âk,m exp( jmωt), ∀ k ∈ W, (B2b)
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Oscillating plates with time-periodic stiffness

where λ is the Floquet exponent, gives, after separating the Fourier components, the
following set of equations:

2R(λ+ jmω)2ŷm + 2
3 S̄D4ŷm + 1

3 S̄S0D4ŷm−1 + 1
3 S̄S0D4ŷm+1 = p̂m, (B3a)

p̂m = Aâm, (B3b)

Dâm = −(λ+ jmω)2ŷm − 2(λ+ jmω)Dŷm − D2ŷm, (B3c)

V̂ m = (λ+ jmω)ŷm + Dŷm, (B3d)

â0,m = −C(λ+ jmω)(V̂0,m + V̂1,m)+ V̂1,m, ∀ m ∈ Z. (B3e)

Above, ŷm is a vector of the Chebyshev coefficients corresponding to index m in (B2a):
ŷm = [ŷ0,m ŷ1,m ŷ2,m · · · ]T; analogous expressions hold for p̂m (pressure), âm (potential)
and V̂ m (vertical velocity). The equality in (B3b) states that the Chebyshev coefficients of
the pressure are linear combinations of the Chebyshev coefficients of the potential, and D
is the differentiation operator in Chebyshev space. Putting these equations together gives

A[e1(e2 − C(λm)e1 − C(λm)e2)
T(λmŷm + Dŷm)− λ2

mD−ŷm − 2λmD−Dŷm

− D−D2ŷm] − 2Rλ2
mŷm − 2

3
D4S̄ŷm = S̄S0

3
D4[ŷm−1 + ŷm+1], ∀ m ∈ Z, (B4)

where λm = λ+ jmω, D− is the Chebyshev-space representation of the integration
operator that makes the first Chebyshev coefficient zero, and ek is the kth Euclidean basis
vector.

Because of the presence of the Theodorsen function, solving for the Floquet exponents
requires solving a nonlinear generalized eigenvalue problem. Since we are mainly
interested in delineating regions of parameter space where solutions are unstable, we
instead follow the idea of Kumar & Tuckerman (1994) to find the marginal stability curves.
Rather than calculating the Floquet exponents for given values of the parameters, we set
the value of the Floquet exponent such that Re(λ) = 0 and solve for S0. Physically, we
are trying to find the strength of the stiffness oscillation that borders regions of stability
and instability. This leads to a linear generalized eigenvalue problem where S0 is the
eigenvalue. Note that we must also set a value for Im(λ) ∈ [0, ω]; Im(λ) = 0 is called the
harmonic case, and Im(λ) = ω/2 is called the subharmonic case (Kumar & Tuckerman
1994).

As can be seen in (B4), the time dependence of the stiffness causes cross-frequency
coupling in the kinematics. We write (B4) compactly as

Bmŷm = S̄S0

3
Cmŷm, ∀ m ∈ Z, (B5)

where

Bm = A[e1(e2 − C(λm)e1 − C(λm)e2)
T(λmI + D)− λ2

mD− − 2λmD−D − D−D2

− 2Rλ2
mI − 2

3 D4S̄, ∀ m ∈ Z. (B6)

The operator Cm maps ŷm to D4(ŷm+1 + ŷm−1). This is a linear generalized eigenvalue
problem where the eigenvalues are the amplitudes of the stiffness oscillation, S0.

To proceed, we truncate all Chebyshev expansions to the upper limit N, and truncate
all Fourier expansions so that they contain frequencies up to Mω. Doing so makes ŷm a
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vector of length N + 1. We must simultaneously solve the system (B5) for all ŷm, leading
to a system of size 2M(N + 1)× 2M(N + 1). We choose N = 16 and M = 11. We reduce
the order of the Chebyshev and Fourier modes so the Floquet problem can be solved in
reasonable time.

In the harmonic (Im(λ) = 0) and subharmonic (Im(λ) = ω) cases, ŷm must obey the
reality conditions: ŷ−m = ŷ∗

m in the harmonic case, and ŷ−m = ŷ∗
m−1 in the subharmonic

case. The reality conditions allow us to rewrite the Fourier expansions in terms of
only non-negative indices. For 0 < Im(λ) < ω, positive and negative frequencies are
independent of each other, and (B2a) must be added to its complex conjugate to form
a real field.

Explicitly writing the real and imaginary components in (B5) yields

(Br
m + iBi

m)(ŷ
r
m + iŷi

m) = S̄S0

3
D4(ŷr

m−1 + iŷi
m−1 + ŷr

m+1 + iŷi
m+1), ∀ m ∈ Z, (B7)

from which we can separate the real and imaginary components to get

Br
mŷr

m − Bi
mŷi

m = S̄S0

3
D4(ŷr

m−1 + ŷr
m+1), (B8a)

Br
mŷi

m + Bi
mŷr

m = S̄S0

3
D4(ŷi

m−1 + ŷi
m+1), ∀ m ∈ Z. (B8b)

This can be rewritten in matrix form as[
Br

m −Bi
m

Bi
m Br

m

][
ŷr

m

ŷi
m

]
= S̄S0

3

[
Cm 0

0 Cm

][
ŷr

m

ŷi
m

]
, ∀ m ∈ Z, (B9)

where Cm is as before.
Finally, we incorporate the boundary conditions into (B9). The formula to evaluate a

Chebyshev series at the endpoints is

ŷm(±1) = 1
2 ŷ0,m +

N∑
k=1

(±1)kŷk,m, (B10)

which can be split into its real and imaginary parts

ŷr
m(±1) = 1

2 ŷr
0,m +

N∑
k=1

(±1)kŷr
k,m, (B11a)

ŷi
m(±1) = 1

2 ŷi
0,m +

N∑
k=1

(±1)kŷi
k,m. (B11b)

This allows us to express the boundary conditions in (B1e) in terms of the Chebyshev
coefficients. To enforce the boundary conditions, we replace the last four rows of the first
block in (B9) by the four boundary conditions on the real part, and the last four rows in
(B9) by the four boundary conditions on the imaginary part. Combining the equations for
all values of m into one large system leads to a generalized eigenvalue problem of the form
(3/S̄)Bŷ = S0CH ŷ, which is linear in S0. In the harmonic case, the matrices B and CH take
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Oscillating plates with time-periodic stiffness

the form

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Br
0 −Bi

0 0 0 0 0 · · ·
Bi

0 Br
0 0 0 0 0 · · ·

0 0 Br
1 −Bi

1 0 0 · · ·
0 0 Bi

1 Br
1 0 0 · · ·

0 0 0 0 Br
2 −Bi

2 · · ·
0 0 0 0 Bi

2 Br
2 · · ·

0 0 0 0 0 0 . . .

0 0 0 0 0 0 . . .

...
...

...
...

...
...

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (B12a)

CH =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 2D4 0 0 0 · · ·
0 0 0 0 0 0 · · ·

D4 0 0 0 D4 0 · · ·
0 D4 0 0 0 D4 · · ·
0 0 D4 0 0 0 · · ·
0 0 0 D4 0 0 · · ·
0 0 0 0 D4 0 · · ·
...

...
...

...
...

...
. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (B12b)

with the boundary conditions incorporated as previously described, and the Chebyshev
coefficients for all frequencies are stored in the vector

ŷ = [(ŷr
0)

T (ŷi
0)

T (ŷr
1)

T (ŷi
1)

T . . . (ŷr
M)

T (ŷi
M)

T]T. (B13)

For the subharmonic case, B is identical to the harmonic case, but by using the reality
condition ŷ−m = ŷ∗

m−1, CSH takes the form

CSH =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

D4 0 D4 0 0 0 · · ·
0 −D4 0 D4 0 0 · · ·

D4 0 0 0 D4 0 · · ·
0 D4 0 0 0 D4 · · ·
0 0 D4 0 0 0 · · ·
0 0 0 D4 0 0 · · ·
0 0 0 0 D4 0 · · ·
...

...
...

...
...

...
. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (B14)

Appendix C. Modelling verification and validation

There are two aspects to consider: validation and verification. Validation answers the
question: ‘Are we solving the correct equations?’ That is, it answers whether the equations
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we solve reflect physical reality. Verification asks: ‘Are we solving those equations
correctly?’

First, we want to validate the physical model. To model stiffness variation, we take
the Young’s modulus of an Euler–Bernoulli beam to be a function of time while leaving
other properties constant. The form of the partial differential equation (PDE) governing
the deflection of the beam is unchanged from the Euler–Bernoulli equation, but the term
corresponding to resistance to bending now has a time-varying coefficient due to the
time-varying Young’s modulus. To see that the form does not change, we start by forming
the Lagrangian of the system

L = 1
2ρsdwY2

t − 1
2 EIY2

xx + wΔpY. (C1)

The first term in the Lagrangian corresponds to kinetic energy, the second term
corresponds to strain energy (analogous to the potential energy stored by a stretched
spring) and the third term corresponds to work done by the external loading. Above, the
Young’s modulus is allowed to be a function of time. The corresponding Euler–Lagrange
equation is

∂L
∂Y

− ∂

∂t

(
∂L
∂Yt

)
+ ∂2

∂x2

(
∂L
∂Yxx

)
= 0. (C2)

The Euler–Lagrange equation yields the same PDE as for a beam with constant properties.
This is because the term in the Lagrangian involving the time-varying Young’s modulus
does not enter the term in the Euler–Lagrange equation that involves differentiation with
respect to time. This PDE was derived from the same Lagrangian used to derive the
classical Euler–Bernoulli beam equation, whose validity is well established. Thus, our
model for time-varying stiffness is equally valid and subject to the same limitations as the
classical Euler–Bernoulli beam equation.

With the validity of our equations established, we next address verification (i.e. whether
our numerical method is correctly solving the equations). This can be done in several ways.
Firstly, we check whether our solution methodology reproduces previously published
results We modify the fast Chebyshev method introduced by Moore (2017) to account for
time-periodic stiffness. Due to the Fourier series expansion method and the time-periodic
stiffness used here we have cross-coupling of Fourier modes. When the plate has constant
stiffness in time there is no coupling of modes; in fact, only the frequency that the plate
is actuated at is active. We verify that the results produced from our code with constant
stiffness are identical to those produced by Moore (2017). These plots are seen in figure 13.

Secondly, we check whether our numerical solutions indeed satisfy our equations; that
is, starting from a computed solution, we calculate each term that appears in the governing
equation and check whether all the terms balance. We have done so for numerous cases
and have found that our solutions indeed satisfy the governing equations.

Lastly, we check our numerical method against a different numerical method.
Specifically, we check whether solutions obtained via our harmonic balance approach
match those obtained via time stepping. This check cannot be performed on the
fluid–structure interaction problem we study here (because the modelling of the wake is
performed in the frequency domain, and there is no analogous time-domain wake model
that has been published); however, the numerical method we use (and its implementation
in code) is generic, so we can verify its correctness by checking it against any problem.
We have considered an analogous problem of a mass–spring–damper system with a
time-varying spring constant, solving for the dynamics using our harmonic balance code
and a time stepper. After transients decay, the numerical solutions obtained using the two
different numerical methods agree.
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Figure 13. Reproduction of figure 7 in Moore (2017) using our solution method: (a) CT ; (b) CP;
(c) η = CP/CT .
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