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Mathematical Notations 1

1 Introduction
1.1 Toward a Philosophy of Mathematical Notations

Mathematical notations are everywhere. Some symbols, such as ‘0’ and ‘∞’,1

have an almost mythical allure, and people often enjoy learning about some
unsuspected feature of a notation (for example, that combining two ‘V’s, rep-
resenting five in Roman numerals, one of them written upside-down, produces
the Roman numeral for ten: V + V

= X).
When using a familiar notation, we are often not aware of the notation at

all; rather we see through it, almost immediately grasping its meaning. In fact,
many people are spontaneously inclined to say that ‘3’ is the number three,
instead of the Indo-Arabic numeral that represents that number. In her famous
discussion of the difference between good and bad typography, Beatrice Warde
introduced the analogy of drinkingwine from a crystal goblet and from a golden
goblet: in the first case, we experience the wine without being distracted by the
vessel, in the second case, the vessel diverts our attention from the wine. For
Warde, good typography is like a crystal goblet.2

While parts of the analogy with a crystal goblet also work for good nota-
tions, there is one important disanalogy, namely, the presence and nature of the
wine. A common misconception about notations, or writing systems in gen-
eral for that matter, is that they are entirely derivative upon previously given
content. Accordingly, one might hear the following story: At some point in his-
tory people began to refer to numbers to express the cardinality of collections
of things and employed them for counting the objects in question. Then, in
order to facilitate these operations and to record the results, systems of numer-
als were introduced. In this way different notations emerged, which may differ
in their pragmatic consequences, but which essentially relate to the same con-
tent or subject matter, namely numbers. Although there is some truth to this
story, namely that notations can be motivated by some understanding of a
given subject matter, the derivative view of notations is not general enough
to apply to all uses of mathematical notations, perhaps not even to most of the
really interesting ones. Too little credit is given to notations under the derivative
view.3

A secondmisconception aboutmathematical notations can arise from assum-
ing too close a connection between a notation and its intended subject matter.
Because conceptual innovations often go hand in hand with new notations, the

1 Double quotation marks in this Element are used for quotations of text, and single quotation
marks are used to mention expressions.

2 Warde (1955).
3 For more discussion of the derivative view, see Tolchinsky (2003, xvii and 98).
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2 The Philosophy of Mathematics

history of mathematics can be told as a progression of increasingly sophis-
ticated mathematical notations. However, this runs the risk of portraying the
conceptual changes purely as notational changes, in other words, of giving too
much credit to the notations. For example, the current use of algebraic methods
in geometry, initiated mainly by Vieta and Descartes, is sometimes presented
as an example of a revolutionary change of notation. However, what really lies
at the heart of this revolution is a novel mapping between two different subject
matters, namely, geometry and algebra, each with its own notations. What is
indicated by y = mx + b is a geometric line only in an indirect sense. Directly,
the equation represents a set of pairs of real numbers 〈x,y〉, which are mapped
to geometric points by means of a system of coordinates.4 Thus, by heeding a
clear distinction between those aspects that depend on the notation and those
that depend on the subject matter, a clearer understanding of developments in
mathematics can be achieved.
Finally, a third misconception about notations is that one might be inclined

to think that they always evolve teleologically, toward the better and more
efficient. This view is somewhat comforting because it implies that we are
currently using the best tools available, but studies of the development of tech-
nology should give us some pause. In fact, advances in technology are not
always toward the better andmore efficient: otherwise, I would not type this text
using a keyboard with a QWERTY layout, which was motivated historically by
certain limitations of the mechanics of typewriters; it has persisted until today
due to its early adoption also for computer keyboards, despite the fact that more
efficient layouts for reducing finger movements have been proposed.
Regardless of their ubiquity, notations have not attracted the attention of

many philosophers of mathematics. Presumably, this is because they are inter-
ested in an abstract conception of mathematics that is independent of its
representations. After all, the fact that five plus seven equals twelve seems to
be independent of whether it is written as ‘5+7 = 12’ or in Roman numerals as
‘V+VII = XII’. Now, to talk about mathematical objects we need someway of
representing them, but which way we choose is irrelevant, or so the argument
goes. This attitude, however, ignores three crucial contributions of notations to
mathematics. First, to formulate any claims, to express any truths, and to arrive
at most of these truths, some kind of representation is necessary. These are not
merely names for denoting mathematical objects, but handles, which allow us
to gain insights into the objects they denote by studying their structure and by
manipulating them. Second, we actually often think in notations rather than in
terms of abstract mathematical objects (even when we do mental arithmetic,

4 Historically, this development was much more involved; see, for example, Bos (2001).
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Mathematical Notations 3

most often we manipulate numerals in our mind, rather than numbers). Third,
notations can open up or preclude conceptual possibilities, thus considerably
influencing the course of mathematical research.
Getting clearer about the roles notations can play inmathematical thought, as

mediators between the concrete and the abstract, and about how they play these
roles, are two of the main aims of a philosophy of notations. Indeed, “the illus-
tration of principles which underlie all algebraic notation” was one of the aims
explicitly formulated by Peirce (1885) in his paper “On the algebra of logic:
A contribution to the philosophy of notation,” in which he coined the phrase
“philosophy of notation.” An important step toward achieving these aims is, of
course, to clarify what notations are in the first place. To this, we turn next.

1.2 The Nature of Mathematical Notations
1.2.1 Modalities

We shall restrict our subsequent discussion of mathematical notations towritten
notations that are perceived visually. The main reasons for this are that most
mathematical notations are of this form and that it streamlines the presenta-
tion. We must not forget, however, that other modalities are possible and have
indeed been used. The Oksapmin people in Papua New Guinea, for example,
represent numerical quantities by pointing at specific parts of their bodies,5 and
the practice of finger counting is widespread across the world. In addition to
these embodied representations, there are also auditory and tactile ones, such as
number words and the Nemeth Braille Code. While we leave aside the specifics
of such notations in this Element, many observations and remarks about written
notations do also apply to other modalities, and we certainly consider the study
of the latter an important and worthwhile extension of the current project.

1.2.2 Varieties of Notations

To this day, the two-volume work A History of Mathematical Notations by
Cajori (1928a; 1929) provides the most extensive collection of symbols and
notations used throughout the history of mathematics. What is truly remarka-
ble about this work is the diversity of notations that have been employed. For
example, Cajori reports “twenty-seven or more varieties of symbols for the
calculus of radicals” in use at the end of the sixteenth century, “about thirty-
four different notations” for decimal fractions, “at least half a dozen rivals”
to denote equality, and “thirty-five different varieties of notation for partial

5 Saxe (1981).
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4 The Philosophy of Mathematics

derivatives.”6 Moreover, different notations for the same mathematical con-
cept can be found even within the writings of a single author. For example, for
the relations greater than and less than, Leibniz used

L
and

L

, and ,
V
and

V

, and L and L

in different publications.7 International efforts to unify mathematical notations
were undertaken by mathematicians in 1895, 1903, and 1908, but they were
considered unsuccessful, and in 1924 Cajori concluded: “The primitive source
of failure seemed to be the attempt on the part of each individual to secure a
perfect notation, which was, of course, the one he himself proposed, rather than
to reach an agreement on a notation.”8 A century later the situation seems to
have somewhat changed, through the internationalization of research and pub-
lication venues, and the free availability and widespread use of the typesetting
software LATEX. Further research is needed, however, to determine exactly what
has changed and what were the driving forces behind this development.

1.2.3 Mathematical Notations

Let us now introduce some definitions of the main notions in the philosophy of
notations and their terminology. Simply put:

• A notational system is a set of systematically constructed expressions.
• Expressions, in turn, are arrangements of characters.

For brevitywe shall also use notation in place of ‘notational system’ and refer to
characters and arrangements as notational elements. Since we are considering
only written notations here, the arrangement can be a linear concatenation, a
specific spatial relation (above, below, to the left, to the right, enclosed in, etc.),
or any form of juxtaposition, as will be discussed in more detail in Section 2. To
get a sense of the ways in which characters can be arranged, the reader is invited
to carefully study the following, rather simple examples – note that the point
is not to understand what they mean, but to appreciate the variety of possible
spatial arrangements:

6 Cajori (1928b, 932–934).
7 Cajori (1925, 422). To reproduce the wealth of symbols used by Leibniz, the Philiumm proj-
ect, which aims at making accessible a number of Leibniz’s unpublished manuscripts, has
proposed to add 228 new characters to the Universal Character Set as defined by the Unicode
Consortium (https://eman-archives.org/philiumm/node/125, retrieved June 30, 2024). Thanks
to David Rabouin for this reference.

8 Cajori (1928b, 935).
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Mathematical Notations 5

1
2
× 3(4+5)

n∏
i=1

ui(x)
A B

C

f

g◦f
g

A B

B C

What makes a notational system operative is the presence of rules for manip-
ulating expressions, namely, for transforming one or more expressions into
another.9 Such rules are essential for gaining insights about the subject matter
through manipulations of expressions, which is characteristic for mathematical
practice. Not all notational systems that occur in mathematics are operative,
and operative notations are also used outside of mathematics (e.g., in chem-
istry and physics). But because mathematics is the paradigmatic domain of
such notations, we shall call operative notational systems simplymathematical
notations.

1.2.4 Notations as Representations and as Languages

The relation between a notation and its subject matter can be conceptualized
in different ways, which leads to different intuitions about what notations do
and how they work. Some notational systems, for example for music or dance,
are designed to represent a given subject matter in such a way that the original
source can be recreated more or less faithfully. For such representational sys-
tems, which are the starting point of Goodman’s analysis of notations (discussed
in Section 3.1.2), the semantic relation is at the forefront; in Palmer’s terms, this
is a relation between aspects of a “represented world” and aspects of a “repre-
senting world,” both of which are functionally independent and of which the
represented world is taken to be given independently of the representation.10

For notations that are intended to represent an abstract subject matter, the
representational view is insofar problematic as it is often not clear how that sub-
ject matter can be given and accessed independently of a notation in the first
place. Moreover, from the perspective of mathematical practice, there are clear
cases where mathematicians themselves did not consider their own notations
to be fully representational. For example, for Cauchy, “the sign

√
−1 is nothing

more than a tool, a calculating instrument” and expressions containing it “taken
literally and interpreted according to generally established conventions, do not
signify anything and have no meaning.”11 Geometric diagrams that feature in
proofs by contradiction, such as in Proposition 6 of Book I of Euclid’sElements,

9 See Krämer (2003).
10 Palmer (1978, 262).
11 Cauchy (1846, 272; translation by Dirk Schlimm).
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6 The Philosophy of Mathematics

are also problematic, as they are intended to represent situations that are mathe-
matically impossible. Thus, while mathematical notations share many features
with representations, they differ from them in one crucial aspect, namely, that
not every expression has to have a referent.
An alternative conception of notations is to consider them as languages.

After all, we use languages to describe various aspects of the world, but they
also have a creative potential of allowing us to make up fictional stories, such
as those of Jane Eyre or Sherlock Holmes. The formulation of such stories does
not require an ontology in the background and depends essentially on the use
of language. Considerations such as these lie behind the philosophical position
known as mathematical fictionalism.
The conceptualizations of notations as representations and as languages echo

a fundamental duality with regard to the main function of mathematical nota-
tions, which can be either descriptive or prescriptive. This duality can also be
found in other forms of representations. For example, a system of mathematical
axioms can be understood as describing a given subject matter or as defining
a class of models;12 similarly, a painting can depict a real landscape, or it can
be purely the product of an artist’s imagination. Without having to take a firm
stand on whether a notation re-presents a given subject matter or presents a
new subject matter, it is useful to speak of the intended subject matter, that is,
what a user considers a notation to be about, while keeping in mind that this
might be different for different users, and that not every expression must have
a referent. Moreover, the intended subject matter might not be clearly defined
or understood at all. For example, when Cantor introduced a notation for sets,
the concept of set was still in the process of being established and there was
no clear delineation about which collections are sets and which are not. Cantor
himself is reported to have said, “A set I imagine as an abyss.”13

In Section 2, we will discuss various aspects of the constituents of mathemat-
ical notations (i.e., characters, expressions, and manipulations) in isolation, and
then address the use of notations in particular contexts in Section 3. But, before
that, somemore general considerations about the study of notations are in order.

1.3 The Study of Mathematical Notations
1.3.1 Syntactic and Contextual Approaches to Notations

The conceptualizations of notations as languages and as representations also
suggest a distinction between syntactic and other aspects of a notation.

12 Schlimm (2013).
13 Ewald (1996, vol. 2, 836).
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Mathematical Notations 7

Figure 1 The syntactic and contextual approaches to the study of notations
are connected through the processes of interpretation and de-semantification.

As a consequence, we can approach the study of notations from two differ-
ent points of view, which we might call syntactic and contextual (Figure 1).
Which approach to take depends in large part on the particular questions one is
interested in.
In the syntactic approach we begin with a set of meaningless characters, state

formation rules for composing them into (uninterpreted) expressions, and rules
for transforming them into other expressions. In other words, we synthesize the
notational system from its basic components. At each of these stages we can
interpret (some of ) the characters and their arrangements by attributing specific
referents to them and thereby turning characters into symbols, uninterpreted
expressions into meaningful expressions, and the entire pure notation into an
applied notation. Recall, however, that in practice such an interpretation might
be only partial, yielding a notation in which some expressions have referents
and others do not. For example, while ‘−1’ and ‘

√
’ were considered mean-

ingful by Cardano, Bombelli, and Cauchy, their combination ‘
√
−1’ was not.

In a contextual approach we typically start with the material inscriptions of
a given mathematical notation as it appears, for example, in a mathematical
textbook or in a handwritten note. Then, we analyze the way the notation is
employed, trying to identify the allowed manipulations, the structure of the
expressions, and the basic symbols that are used for their composition. Such
an analysis is not necessarily unique, as different manipulations can yield the
same results, different formation rules can determine the same class of expres-
sions, and even the identification of the basic symbols need not be uniquely
determined. For example, it is not immediately obvious whether ‘,’ should be
considered as a basic symbol or as a combination of the two basic symbols ‘=’
and ‘/’. At each stage of this analysis we can try to ignore the context (which
includes meanings, practices, and cultural background) in which the notation is
used and consider it purely syntactically. This move, which can also be made
by the practitioners themselves, has been called ‘de-semantification’.14

14 Krämer (2003); Dutilh Novaes (2012).
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8 The Philosophy of Mathematics

1.3.2 Two Difficulties in the Study of Notations

The tendency of practitioners to favor their own notation, mentioned in the
quote by Cajori at the end of Section 1.2.2, poses a great difficulty in the study
of notations: the problem of familiarity. Typically, users of a notational system
spend a considerable time learning it, and developing strategies and shortcuts
for manipulating its expressions. It is consequently much easier and faster to
use a system one is familiar with, regardless of the intrinsic features of the sys-
tem. Thus, on the one hand, the familiar system feels intuitive and natural, and,
on the other hand, it takes more effort to use an unfamiliar one. An illustra-
tion of this phenomenon is John Venn’s blunt assessment of Frege’s unusual
logical notation on the basis of his first impression: “I have not made myself
sufficiently familiar with Dr. Frege’s system to attempt to work out problems by
help of it, but I must confess that it seems to me cumbrous and inconvenient.”15

What I called the problem of familiarity has been discussed by Tolchinsky,
in the context of analyzing writing systems, as the epistemological barrier to
being able to imagine other ways of writing and to detach oneself from one’s
own familiar perspective. She suggests “to see how other systems function” as
a way of avoiding this problem.16

A second tendency that stands in the way of an unbiased discussion of nota-
tions is a narrow focus on a single criterion. When looking at two notational
systems, it is often the case that one particular difference stands out and this is
then taken to be the decisive factor in the comparison; availability and anchor-
ing biases underlie this tendency. For example, the presence of a symbol for
zero is one of themore obvious features that distinguish the Indo-Arabic system
from the Roman numerals, and this is then sometimes taken to be the deci-
sive difference, without further discussion of the actual roles of the symbol
for zero.

1.3.3 How to Study Mathematical Notations

To overcome the problems of familiarity and narrow focus, discussions of nota-
tions should begin with an analysis of the specific features of the notations in
question and then continue with an investigation of how these features relate to
aspects of the notations, such as the intended subject matter, users, and tasks.
These aspects are discussed in more detail in Section 3. Phrases such as “it is
not hard to see” or “it is obvious” might ultimately say more about the author’s
background and training than about the notation itself. It is therefore extremely

15 Venn (1880, 237).
16 Tolchinsky (2003, xxx).
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Mathematical Notations 9

useful to follow Tolchinsky’s advice mentioned earlier, namely to familiarize
oneself extensively also with alternative notations.
Notations can be studied as they have actually been used by practitioners

(in the wild)17 or, more theoretically, by considering possible uses of them.
The former approach poses additional difficulties because people tend to invent
idiosyncratic variants, shortcuts, and so on. Motivations behind actual histor-
ical developments can sometimes be found in comments by the practitioners
themselves, but even these must be taken with a grain of salt as the practi-
tioners might themselves be biased. For the theoretical study of notations, it
is advantageous to compare different notations with regard to some specific
aspects, while trying to keep the other aspects fixed. Otherwise, if one only
looks at a single notation, it is difficult, if not impossible, to determine what
actually depends on the notation itself and what depends on the other aspects,
such as the intended subject matter.

1.3.4 An Example of the Interplay between Notations and Tasks

To illustrate the study of notations with regard to a particular aspect, here the
task of recording a customer’s orders, let us consider the following simple sce-
nario: We want to keep track of howmany items of a particular kind a customer
orders at a bar and determine the total cost, using only a pen and a piece of paper
(or a coaster). Three possible ways of proceeding come to mind: First, we could
make a tally mark for each ordered item; to obtain the total cost, we have to
count the tallies and multiply them by the price of a single item. Second, we
could record the price of an item on the coaster each time an item is ordered;
at the end of the evening, we would have to add up all individual prices to get
the total cost. Third, for each order we could add the price to the previous sum,
so that the coaster always indicates the current total. Now, which of these three
approaches is the most efficient? This, of course, depends on the dimensions
we are interested in, such as (a) the space needed on the coaster, (b) the time
to add one more item, which depends on what needs to be computed and writ-
ten, or (c) the time to determine the total cost. The results of this analysis are
shown in Table 1. For adding an item, tallies are best, since they can be written
very fast and also take up the least amount of space. However, for computing
the final cost, the tallies have to be counted and a multiplication has to be per-
formed. In contrast, when the third algorithm is used, the final result can be
read off immediately from the coaster. However, this requires performing an
addition each time an item is ordered, so that the effort for adding one more

17 See Hutchins (1995).
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10 The Philosophy of Mathematics

Table 1 Simple example of the interplay of notations and tasks.

(1) Use tallies (2) Write items (3) Write sums

(a) Total space on coaster little a lot a lot
(b) Time for adding item very fast fast slow
(c) Determining total slow very slow immediate

item is considerably greater than with the tallies. To assess some kind of over-
all efficiency, we would now have to determine some weights for the space and
time components.
The upshot of this simple comparison of how three different notations fare

at a particular task is that whether a particular notation is better than another
usually depends on what resources are available (here: coasters and pens), what
specific task they are used for, what algorithms are used for these tasks, which
dimensions one is mainly interested in, and how the tasks are weighted. The
last is often the most contentious question. Changing any of these parameters
even slightly can result in a very different assessment: for example, if the task is
changed in such a way that different kinds of items with different prices can be
ordered, or if the resources are changed to include computations with a pocket
calculator.

1.4 Who Is This Element For?
A more thorough understanding of what notational systems do and how they
do it can add another layer of sophistication to philosophical reflections about
epistemology and ontology in mathematics and science. Pioneering work in
this direction in the philosophy of science was Klein’s research on the use of
“paper tools” in chemistry.18 While there have been numerous case studies on
the use of notations in mathematics and science since then, in particular by
philosophers of mathematical practice,19 the main purpose of this Element is
to lay the groundwork and to sketch the program for a systematic approach to
the study of mathematical notations. It is written for everyone who is curious
about the world of symbols that surrounds us.
When I taught about the philosophy of notations in the past, I frequently

encountered the following pattern: First, students are somewhat skeptical that
there is much to say about notations other than some historical facts, for exam-
ple, who invented what and when. After a while, however, this gives way to

18 Klein (2002).
19 See Carter (2024).
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Mathematical Notations 11

an astonished realization that many interesting questions, including traditional
philosophical ones, can be asked about notations. Studying the nature of nota-
tions and their interrelations with an intended subject matter, their users, and
applications, provides us with many opportunities to hone our philosophical
skills and to address problems regarding ontology, knowledge, language, his-
tory, and thought. In particular, studying notations often requires questioning
our intuitive, and sometimes well-entrenched, views in regard to the difference
between a subject matter and the way we represent it to ourselves. Addressing
the problems of familiarity and narrow focus (Section 1.3.2) requires paying
careful attention to details and conceptual distinctions. Some specific questions
that should be of interest to philosophers of mathematics and science are dis-
cussed in Section 5. Moreover, notations are not only epistemic tools but also
cognitive tools, so that their study should also benefit cognitive scientists and
philosophers of mind, as well as historians and mathematics educators.
Unlike some of the other Elements in this series, which aim at an in-depth dis-

cussion of a particular topic, this Element is intended as a general introduction,
giving the reader an overview of the field of the philosophy of mathematical
notations by introducing the main concepts and terminology for the analysis of
notations, and by raising the main questions to be asked. Rather than present-
ing a particular philosophy of notations (such as Peirce’s semiotics), it provides
a toolbox and some general suggestions for the further study of mathematical
notations. By equipping the reader with methodological and conceptual tools
to fruitfully investigate and discuss mathematical notations, this Element will
also, hopefully, open up new lines of inquiry for future investigations.

2 Components of Mathematical Notations
In this section we take a closer look at the basic building blocks of mathematical
notations, namely, characters and symbols, their structural arrangements, and
their manipulations.

2.1 Characters and Symbols
2.1.1 On the Nature of Characters

Regardless of whether we define a notation syntactically or whether we ana-
lyze a given mathematical notation, in order to understand and use a notation
we must be able to identify what counts as a character and to discriminate the
individual characters from each other. In other words, we must be able to iden-
tify character tokens (inscriptions) as belonging to different character types.
The requirements that allow us to make recognizable copies of the expres-
sions of a notation are identified as disjointness and finite differentiation by
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12 The Philosophy of Mathematics

Goodman (1968). In other words, no inscription may belong to two separate
characters, and it must be possible to determine to which character an inscrip-
tion belongs, if it does at all. Although these requirements might seem trivial
at first, they nevertheless rule out the use of certain characters, for example
ones that would be defined by their absolute size, as well as notations that
have uncountably many characters. Our usual alphabets, numerals, and other
symbols typically satisfy these criteria.
As desirable as it would be to have a general context-free definition of char-

acters, this seems impossible, as there is always some degree of background
knowledge necessary to individuate them. Even in the case of formal languages
the user must know in advance how to identify the characters of the underlying
alphabet. In the contextual approach to given mathematical notations, charac-
ters can be understood as the smallest syntactic units that make a difference
for the way the notation is used. For example, if letters are used differently
depending on their colors, then a black and a red letter ‘A’ constitute two dif-
ferent characters; otherwise, we should consider them as tokens of the same
character type. Because of the atomic nature of characters, transformation rules
must refer to characters only as a whole and cannot be applied to their parts.
This is also the case for composite characters that result from combining dif-
ferent shapes, such as ‘≦’ and ‘,’, despite the fact that their shapes might be
further decomposed into suggestive elements (e.g., into ‘<’ and ‘=’).20 How-
ever, whether a particular combination constitutes a single composite character
or two individual characters depends on the role of this combination within
the mathematical notation system. For example: on the one hand, if adding a
primemerely creates new names, such as a,a′,a′′, . . . , then these are composite
characters; on the other hand, if the prime is used to denote the successor func-
tion, as in 0,0′,0′′, . . . , then ‘0′’ is an expression that results from the linear
arrangement of the characters ‘0’ and ‘′’.

2.1.2 Cognate Characters

The shapes of characters of a notation can, at least in principle, be chosen arbi-
trarily. In practice, however, this is rarely the case, as we shall discuss later
when looking at the design of notations (Section 4.2.3). Of particular impor-
tance in this respect is the use of cognate characters. Cognate characters are
perceptually similar to each other in ways that are easily recognizable, due to
either formal or conventional similarities. These similarities can be exploited

20 Composite characters differ from complex symbols, which can be decomposed into individual
characters (Section 4.2.5).
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Mathematical Notations 13

to suggest some similarity in meaning, thereby yielding considerable cognitive
advantages for the use of a notation (Section 4.2.4).
Cognate characters are often related through reflection, rotation, similarity

in shape, composition, or by belonging to the same alphabet or font. Size and
upper/lower case can be used to further distinguish between cognate characters.
First, the similarities underlying cognate characters can be purely formal.

The following table shows some cognate characters that are related by vertical
and horizontal reflections, as well as rotations:

( E A ∨ ⊥ ∪ & & +

) E A ∧ > ∩ & & ×

Cognate characters can also be similar in shape:

) } ] ∨ ∪ U ≈ = ≡ + † ·|·

Formal similarities can also exist between composite characters:

A ÛA A′ A1 A2 3A 4A

δ Ûδ δ′ δ1 δ2 3δ 4δ

These examples also illustrate how characters can be cognate to others in
more than one way: We easily recognize that both the characters in the rows in
the preceding display and the characters in the columns are cognate.
Second, in addition to the purely perceptual similarities between characters,

characters can also be cognate on the basis of some well-established conven-
tions, such as belonging to the same typographical family, like the letters of an
alphabet or the digits of a system of numerals. Characters that differ in one of
the parameters that are used in defining typefaces are also usually recognized
as bearing some kind of similarity to each other, even if they appear in differ-
ent fonts, weights, letter cases, or even alphabets. For example, consider the
following characters:

A A a a A α

B B b b B β

C C c c C γ

The characters in a column are cognate, because they belong to the same alpha-
bet, case, font, and so on, but the characters in a row are also cognate, because
they are different representations of the same letters.21 Thus, just as we have
seen with the examples of composite characters, basic characters can also be

21 This remark assumes that it makes sense to speak of the same letters across different alphabets,
such as the Latin and Greek alphabets.
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14 The Philosophy of Mathematics

related to each other in various ways that are independent of each other. This
allows us to further establish various layers of similarities, which is a feature
often used in mathematical notations. For example, in the following general
form of a circle equation,

x2 + y2 − Ax − By − C = 0,

we can easily distinguish the letters that appear in lower case from those that
appear in upper case and attribute different meanings to them: by convention,
the lower-case letters (x, y) are variables and the upper-case letters (A, B, C )
are the parameters of the equation. (Historically, the use of parameters instead
of fixed values was introduced by Vieta in 1591 and the convention of using
letters from the end of the alphabet as variables was introduced by Descartes
in 1637.)

2.2 Structured Expressions
In order to form an expression in a notation, the characters must be arranged
in such a way that we can recognize the result as a well-formed expression.
Syntactically, this can be achieved by explicitly stating formation rules, but
in practice these are often left implicit and communicated through examples,
which leaves plenty of room for ambiguities and notational variants.
Regarding the arrangements of characters, a distinction is sometimes made

in the literature between one- and two-dimensional notations, for example, to
distinguish sentential from diagrammatic notations. However, I consider this
terminology to be more problematic than useful. After all, every inscription
must be two-dimensional to be visible to the eye, and even typical senten-
tial expressions extend spatially in two dimensions, for example, using sub-
or superscripts. More fruitful for the discussion of notations is the distinction
between linear and non-linear notations, as well as the methods of grouping,
ordering, and nesting.

2.2.1 Linear Notations

Themost commonway of arranging symbols into expressions is by simply con-
catenating them to form a string of characters. This procedure is very familiar,
because this is howwe commonly join letters to formwords, and words to form
sentences. In general, however, not every string that can be formed from a set
of characters will count as a well-formed expression, just as not every concat-
enation of letters forms an English word. Thus, the composition of expressions
is usually restricted by explicit or implicit formation rules. When learning a
given mathematical notation, extracting these formation rules from examples
is a crucial, but sometimes difficult, prerequisite for using it correctly.
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Mathematical Notations 15

Expressions that are obtained purely by concatenation are linear or sequen-
tial. In a linear expression that consists of more than one symbol token, every
symbol has at most two adjacent symbols, and exactly two symbols (called
end symbols) have only one adjacent symbol. This allows us to parse a linear
expression in two unique ways by beginning with one of the end symbols and
moving from one adjacent symbol to the next; typical reading conventions limit
the parsing to a single direction. Here are three examples of linear expressions
that could be found in a mathematical text:

(12 + 2)i 3.14 × 10(10
10) + 4 x27 − y5 = 0.

We immediately notice in the second and third examples that a linear expres-
sion can extend spatially in different directions through the use of subscripts
or superscripts. Nevertheless, for parsing a linear notation correctly it is suffi-
cient to individuate symbol occurrences and to understand adjacency (here as
‘immediately to the left of’ and ‘immediately to the right of’) as the result of
concatenation.
By extending the repertoire of characters and spatial relations in which they

can be arranged, we can obtain quite complex layouts. For example, we can add
curves as characters together with the relation ‘encloses,’ so that the characters
do not need to be written next to each other, but can also be used around each
other. In this case, the following can also be an expression in a linear notation:

B A

For a linear reading of expressions that are based on the relations immediately
to the right of and encloses to be possible, a vertical stacking of subexpressions
must be excluded, because otherwise we could not determine which of these is
to the right of the other.

2.2.2 Non-linear Notations

If the symbols are arranged in such a way that there is not a unique predecessor
and successor for each symbol, the notation is non-linear. For example:

x23
3x + 4

x

n∑
i=0

i.

In these expressions it is possible to move through all symbols from differ-
ent starting points and in different directions. Examples of more complex
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16 The Philosophy of Mathematics

non-linear notations are diagrams (discussed later in Section 3.1.3) and tab-
ular arrangements, such as matrices.22 As is to be expected, these additional
degrees of freedom bring with them some advantages and disadvantages: nota-
tions of this kind typically use fewer characters and are thus easier to parse at
a glance; but the lack of designated end symbols and the fact that there is not
a unique parsing order can also make them more difficult to parse, especially
if the expressions are more complex (in such cases, the use of variable-length
symbols and symbol size can be used to perceptually structure the expressions
as illustrated in the second and third examples at the beginning of this section).
By the addition of parentheses or rearranging the symbols, non-linear nota-

tions can be syntactically linearized:

(x3)2 (3x + 4)/x Σi=0
n i.

Alternatively, non-linear notations can also be pragmatically linearized by
the addition of reading conventions; for example, by requiring that in the case
of the presence of both subscripts and superscripts, the former are to be read
first. When discussing such notations, however, we should consider them as
two different, but related, notations, one non-linear and the other linear.

2.2.3 Grouping

If a notation is used to represent operations of some kind, it is often necessary to
distinguish the order in which these operations are performed; for example, if
an operation is not associative (like material implication in propositional logic)
or different operations are used (like addition and multiplication). Grouping
can be achieved by characters and their arrangement, or by conventions. In
our familiar logical and algebraic notations we typically use parentheses for
grouping:

A → (B → C) vs. (A → B) → C, 3 + (4 × 2) vs. (3 + 4) × 2.

With the use of conventions for binding and operator precedence, such as left-
associativity or PEMDAS (parentheses, exponents, multiplication/division,
addition/subtraction), some of the parentheses can be dispensed with, but not
all. For example, with these conventions the preceding expressions can be
simplified to the following:

A → (B → C) vs. A → B → C, 3 + 4 × 2 vs. (3 + 4) × 2.

If such conventions are used, the number of symbols in an expression is reduced
at the cost of more complex parsing rules that have to be memorized.

22 Schlimm (2022).
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Mathematical Notations 17

Alternative means of grouping subexpressions in a linear notation are the use
of dots and over- or underlines (vincula), as in

3 + 4 × 2 and 3 + 4 × 2.

Instead of introducing an extra character just for the grouping, symbols of var-
iable length can also be used for grouping subexpressions, such as circles, the
vinculum for fractions, or the common symbol for root extraction. For example:

3 + 4
2

√
3 + 4 × 2.

2.2.4 Order of Operations and Arguments

In the previous examples, the binary operator symbols were always written
between their arguments, which is called infix notation. Alternatively, they can
also be put in front or behind their arguments, resulting in the so-called prefix
(Polish) or postfix (reverse Polish) notations. For example, 5+12 is represented
in prefix and postfix notations by

+ 5 12 and 5 12 +.

Because here the subexpressions all have the same form, namely an operation
symbol followed by two arguments (or two arguments followed by an oper-
ation symbol), these notations do not require any parentheses or other means
of grouping. This generally reduces the number of characters in an expression.
For example, (5 + 12) × 7 is represented by

× + 5 12 7 and 5 12 + 7 ×.

in prefix and postfix notation, respectively. These notations have various prac-
tical advantages in certain tasks, which was the reason for them being used as
input format for various computers and pocket calculators (e.g., they require
fewer button presses and allow for computations using a stack). However, we
also notice the need for some means other than the operation symbol (here,
space) to separate the arguments from each other.
The order inwhich operations and arguments are represented can also impose

restrictions on the number of arguments: an infix notation works well for binary
operations, since one argument appears in front of the operation symbol and
the other after it, but it cannot be easily generalized to more arguments. The
prefix (and postfix) notations, on the other hand, can be applied to more than
two arguments, e.g., + 1 2 3 4 = 10. As long as the number of arguments is
kept fixed, nothing changes. However, if the arity of the operation is variable,
then the form of subexpressions is no longer fixed and it becomes necessary to
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18 The Philosophy of Mathematics

indicate which arguments belong to which operation, thereby eliminating the
advantage that these notations do not require other means of grouping.

2.2.5 Nested Notations

As we have already seen in some of the expressions shown earlier, mathemat-
ical notations sometimes make use of expressions of other notational systems
to form their own expressions. In particular, numerals and primes are often
used as subscripts or superscripts if one wants to express an ordering or sim-
ply have an unlimited supply of symbols. For example, the first derivative of
f is often written as f ′, the second as f ′′. This works well, as long as only the
first few derivatives are used: they can be read at a glance and it avoids the
ambiguity caused by using superscripts to indicate powers. Similar cumulative
notations were also used by Leibniz to indicate different quantities, such as
n, (n), ((n)), . . . .23 If more items are needed, say for variable names, constant
symbols, or function symbols, then numerals are often used as subscripts (as in
x0, A3, and f2(x)). What can easily be overlooked in these examples is that here
the main use of the numerals is not to represent numbers, but to syntactically
disambiguate different variables. This becomes obvious when noticing that no
numerical properties of such subscripts are being used (the subscripts are not
added, etc.), which is similar to using numerals as phone numbers or as names
for bank accounts. This is not to say that subscripts cannot be used as numerals:
in the formulation of the recursion theorem, φf (n) = φn, they are, in fact, used
in this way.
Another example of nesting notations is the use of set-theoretic expres-

sions within other notational systems, such as for logic, as in ∀x ∈ N : x =
x. Such nestings of notations typically allow for concise notations and are
straightforward for experienced users, but can be difficult for novices.

2.2.6 Variants and Families of Notations

The individuation of mathematical notations can be difficult, in particular when
they are not given syntactically, but only through examples. For a most fine-
grained analysis, if two notational systems differ in some feature that makes
a difference in how they are used, then we should consider them as different
notations. For example, when writing long numerals people often group the
digits into smaller groups: Fibonacci (1202) used arcs to partition the numer-
als, (O982721); Tonstall (1522) used dots (98Û2721);24 the German DIN-5008
norm suggests using spaces or periods (982.721); in English, it is common to

23 Knobloch (2016, 233).
24 See Cajori (1928a, 58–59).
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Mathematical Notations 19

use commas (982,721). While this practice does not change the number that is
being represented, it does dramatically increase readability and verbalization
(more on this in Section 3.2). Nevertheless, there are many features that these
notations have in common, which suggests to consider them to be variants.
Notational variation can be achieved in different ways, which can also be

combined with each other: (a) Syntactic variants arise by replacing some char-
acters by others. (b) Augmented variants result from adding blank spaces,
parentheses, colors, and so on to a notation. (c) In reduced variants certain
characters, such as parentheses or operation symbols, are omitted, mainly to
shorten the expressions and avoid clutter; this is often achieved by introducing
conventions.
Notational variants that have underlying structural principles in common are

frequently classified together as families of notational systems. In the case of
numeral systems, for example, nearly every notational system relies on some
way of representing the powers of a base and the multiples of these powers
(and possibly also multiples of a subbase). In our familiar decimal place-value
system, the base-powers are indicated by the position (place) in the expres-
sion, while the multipliers are represented by the digits. Other systems that are
built on these same principles can also be considered to belong to the family of
positional systems, such as the binary system and the Babylonian sexagesimal
system. Developing such classifications of notational systems is an important
task in the philosophy of notations and it is discussed further in Section 5.2.1.

2.2.7 Conventions

Conventions are an essential, but thorny, ingredient for the use of many nota-
tions. Like the formation and manipulation rules of a mathematical notation,
they pose a special kind of difficulty in the study of notations because of their
immaterial nature. After all, one cannot look at a notation and see the conven-
tions. Rather, either they have to be known explicitly by the user, or they have to
be extrapolated from the way a notation is used. Thus, on the one hand, they add
to the cognitive load necessary for using a notation, in particular for novices. On
the other hand, they can also reduce the cognitive load by reducing the length
and complexity of expressions, by strengthening the associations between syn-
tactic and semantic elements (as in the example of grouping numerals shown in
the previous section), and by being applicable in different notational systems.
We can distinguish between semantic and pragmatic conventions. The

former are crucial for the proper understanding of expressions, such as the
conventions mentioned earlier regarding associativity and operator prece-
dence (Section 2.2.3), which were introduced to reduce the number of paren-
theses in an expression. Conventions of this kind are, in a sense, similar
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20 The Philosophy of Mathematics

to the formation rules of expressions (see Figure 1) and so they must be
considered as constitutive elements of a notational system. Pragmatic conven-
tions can facilitate the reading and general use of a notation but do not affect
the meaning of the expressions. For example, the consistent use of letters at
the end of the alphabet for variables (x,y, z) and of letters at the beginning of
the alphabet for constants (a,b,c) across different notational systems makes
them easier to use, because knowledge about one system can be transferred to
another. Conventions can also be both semantic and pragmatic. The dropping
of outer parentheses of expressions, for example, affects which expressions are
considered to be well-formed, but is also employed both in algebra and in logic.

2.3 Manipulations
2.3.1 Manipulations as Characteristic for Mathematical Notations

The considerations discussed so far apply to notational systems in a very gen-
eral sense, including those that are intended to be merely representational, such
as musical scores and notations for dancing. What distinguishes mathematical,
or operational, notations from these is that they are also intended to be manip-
ulated in such a way that new insights about the subject matter can be obtained
through the transformation of expressions into others. For example, we can use
numerals not only to represent quantities, but also to perform calculations; we
can use equations not only to express relations between quantities, but also to
obtain new relations through algebraic manipulations; we can use logical for-
mulas not only to represent logical relations, but also to formulate proofs; and
so on. It is this availability of rules for manipulating expressions that underlies
mathematical reasoning, according to Babbage’s On the influence of signs in
mathematical reasoning (1826). Manipulations are also crucial in more recent
discussions of notations as “epistemic actions,” “paper tools,” and underlying
“thinking in symbols.”25

Not all notations used in mathematics are operative, even if they are used in
proofs. Diagrams are an illustrative example. On the one hand, there are dia-
grams that are used mainly to visualize relations between various entities: once
they are set up, they are read or “chased,” for example, in category theory. This
can be fruitful for revealing or justifying hitherto unknown relationships, but
the diagrams themselves are not necessarily transformed further into others. In
Euclidean geometry, on the other hand, diagrams themselves are manipulated
in the course of a proof, so that they are indeed mathematical notations in the
operative sense.

25 See De Cruz and De Smedt (2010), Klein (2001), and Tolchinsky (2003).
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In principle, it is also possible to manipulate notations that were originally
intended to be only representational. For example, Bach famously applied
syntactic transformations on notation for music in some of his compositions,
and it is not difficult to imagine a choreographer inventing new dance moves
on the basis of a notation for dancing. Thus, we can consider the notion
of an operative notation to come in degrees, or simply speak of mathemati-
cal uses of notations that are generally not used in this way. Notice that in
these cases the manipulations could yield expressions that fail to denote ele-
ments of the intended subject matter, either because they cannot be played
on an instrument or because they would require one to overcome the limita-
tions of how human bodies can move. This observation further supports the
argument made in Section 1.2.4 that mathematical notations are not purely
representational.

2.3.2 Agglomerative and Discursive Manipulations

The example of Euclidean diagrams as a mathematical notation suggests a prin-
cipled distinction we can draw between two different kinds of manipulations.
Following the terminology introduced by Stenning, we call them agglomera-
tive and discursive modes of reasoning.26 Reasoning is agglomerative, if an
expression is transformed into another through direct alteration, for exam-
ple, when a line is added to a given diagram; discursive reasoning, on the
other hand, generates a new, distinct expression from a given one, for exam-
ple, when the equation x = 2 + 3 is simplified to x = 5. The outcomes of
these manipulations are, in the first case, a single expression (namely the aug-
mented diagram), and, in the second case, two expressions (namely, ‘x = 2+3’
and ‘x = 5’). Thus, discursive reasoning keeps a history of the outcomes of
performed manipulations, whereas agglomerative reasoning only yields the
final resulting expression. In principle, however, any agglomerative sequence
of reasoning steps can be represented discursively as a series of individual
steps.

2.3.3 Efficiency Depends on Resources and Algorithms

The ease and efficiency with which manipulations can be carried out in a nota-
tion is often used as the main criterion of its assessment (see Section 4.3.2).
A fact that is often overlooked in the literature and is thus worth emphasizing
here, is that, in addition to the structure of the notation, computational effi-
ciency also depends on the available computational resources. For example,

26 Stenning (2000, 2002).
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22 The Philosophy of Mathematics

the Indo-Arabic decimal system has been developed for human use, but most
digital computers represent numbers nowadays in a binary system. The lat-
ter is indeed a matter of efficiency of implementation and not a necessity due
to the digital nature of computers: historically, some computers were built
with a decimal system for the representation of numbers, such as the ENIAC
and the IBM 702.27 Thus, any meaningful comparison of notational systems
in terms of their computational efficiency must take into consideration the
computational resources that are used and, ideally, be made on the basis of
a common set of basic operations. The particular choice of such operations,
however, can also affect the outcome of the comparison, in particular, if the
notations were not originally designed to be manipulated by the operations in
question.
Even with a fixed set of basic operations, manipulations can generally be

carried out according to different algorithms, which can dramatically affect the
efficiency of the manipulations. For example, if one searches sequentially for
an entry in an old-fashioned phone book page by page, this is considerably less
effective than performing a binary search (i.e., opening the book in the middle
and repeating this procedure in the half that contains the desired entry). These
particular algorithms can also be studied theoretically using complexity theory,
resulting in the two different complexity classes of linear and logarithmic time
complexity. However, in general, the concepts of complexity theory are too
coarse to allow for a meaningful comparison of algorithms that are used by
human beings. In particular, humans apply manipulations only to data of a rel-
atively small size, whereas statements about complexity classes are typically
‘in the limit.’28

With experience, humans are often quite ingenious in coming up with short-
cuts and more efficient ways of performing symbolic manipulations. Just ask
several people (especially mathematicians) how exactly they perform certain
mental calculations, and you might be surprised by the variety of different
answers you will get. Moreover, efficient algorithms for specific tasks can
be different from those used in everyday life: For example, a method re-
commended for performing quick mental additions in Miracle Math (1992)
proceeds from left to right.29 Thus, human subjects might vary considerably
when performing certain tasks that involve notations, depending on whether
the subjects are novices or experts, and on their overall familiarity with the
notations in question. Because of the difficulty involved in controlling for all of

27 Haigh and Ceruzzi (2021, 14 and 57).
28 See Pantsar (2021) for different notions of cognitive and computational complexity.
29 Lorayne (1992).
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these factors, experimental work on the efficiency of notations in actual practice
is rare and we are often left only with anecdotes and questionable arguments.

3 Mathematical Notations in Practice
In the previous section, the building blocks of mathematical notations (char-
acters and their arrangement into expressions, and manipulations on them)
were presented outside of any particular context of use. We now relate these
components to aspects that arise in practical contexts.
Figure 2 shows an overview of the six main aspects of notations that we shall

consider in each of the following subsections: (1) the subject matter (seman-
tics), (2) verbalization (language), (3) users and their resources (cognition),
(4) tasks (applications), (5) thematerial basis, and (6) the tradition or historical
context (other notations). The arrows in the figure indicate the main connec-
tions between these aspects, although there are also others. Each individual
use of a notation in practice can influence and be influenced by any and all of
the aspects. This can make the analysis of notations somewhat confusing and
unsystematic, if one does not make the effort first to treat these aspects sepa-
rately, consider their trade-offs, and then weigh their relevance for a particular
application.

Figure 2 Aspects of mathematical notations in practice.
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24 The Philosophy of Mathematics

3.1 Subject Matter and Primitives
3.1.1 Notational Elements and Their Meanings

Relating a notation, namely a set of structured expressions, to an intended
subject matter involves two main steps: First, we must identify relevant primi-
tives of the intended subject matter, which can be objects, concepts, relations,
operations, and so on. Second, we must map these primitives to the notational
elements, that is, to the characters and their arrangements.
To make the primitives and the mapping explicit, it is useful to represent the

relation between the notational elements and the intended subject matter in a
table, as shown for algebraic expressions, such as ‘( y × x) + y’, in Table 2.
In some cases, a primitive can be mapped directly to a notational element,

but in most cases some more complex, and often recursive, rules are necessary.
In the previous example the use of parentheses is tied to the infix arrangement
of the operators and applies also to subexpressions. Such rules are also called
the syntax of the notation. Thus, in many cases a simple table can only be a first
approximation. Nevertheless, starting the analysis of a notation in this way is a
good practice for getting clear about and making explicit the relations between
the notational elements and their role in relating to an intended subject matter.
What we should keep in mind is that choosing a notation always involves

conceptualizing the subject matter in a certain way and thereby possibly also
imposes certain restrictions on it and on the use of the notation itself. For exam-
ple, deciding to represent arithmetical addition by ‘+’ using infix notation, as
shown earlier, implies a conception of addition as a binary operation (because
only two terms ‘x’ and ‘y’ can be arranged in this way as ‘x + y’) and requires
some way of grouping (e.g., with parentheses) and laws of associativity to rep-
resent the addition of three terms. However, in principle, addition could also

Table 2 Mapping between notational elements and intended subject matter
for simple algebraic expressions, such as ‘( y × x) + y’.

NOTATIONAL ELEMENTS INTENDED SUBJECT MATTER

Characters Arrangements Primitives

lowercase letters variables
+ linear, infix addition
× linear, infix multiplication
parentheses order of operations
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be conceptualized as an n-ary operation without any intrinsic order among the
terms, for example, written as

∑{x1, . . . ,xn} – although this might not occur
naturally to us due to our familiarity with the notation that represents it as
a binary operation (see Section 1.3.2). Then again, writing several addends
underneath each other, as is often done in paper-and-pencil computations,
might also be closer to a conception of addition as an n-ary operation.
The choice of primitives might seem straightforward in a clear and well-

defined domain (e.g., if we are looking for a notation to represent whether a key
on a piano is pressed or not) or for those notations that we are already familiar
with, but it is much less so when we are dealing with new and abstract mate-
rial. Examples from the development of symbolic logic illustrate the variety of
choices: Boole (1854) represented the propositional connectives conjunction,
disjunction, and negation in his notation, while Frege (1879) chose negation
and the conditional as basic; Sheffer (1913) and Nicod (1917) famously used
only a single binary connective (NOR and NAND, respectively),30 and in a
contemporary presentation of propositional logic we often find a redundant set
of primitives, namely, negation, conjunction, disjunction, conditional, and the
biconditional being used.31 There are good reasons for each of these choices,
but none of them is dictated by the intended subject matter. Rather, it is the
particular tasks that one wants to employ the notation for that justify the choice
of primitives.
As the previous example of algebraic expressions also illustrates, the par-

ticular structure of a notation might itself influence the number and kind of
primitives that are chosen. For a different example, if the natural numbers are
presented in the Indo-Arabic decimal place-value notation, we need ten differ-
ent numbers (the numbers from zero to nine) to be represented by an individual
symbol and we use the position in the numeral expression to represent the pow-
ers of the base; but in a tally notation only two primitives suffice: the number
one and the operation of addition, represented by ‘|’ and concatenation, respec-
tively. In the way natural numbers are often represented in formal logic, the
primitives consist of zero and the successor function, yielding the sequence
of expressions: 0, S0, SS0, SSS0, and so on.32 Note that in the last example
concatenation does not represent addition, but the application of the successor
function.
The previous examples also show that some primitives are represented by

characters, while others are represented by the way the characters are arranged

30 As Elkind and Zach (2023, 27) found out, this work was anticipated by Stamm (1911).
31 See, for example, Enderton (2001, 14).
32 See, for example, Enderton (2001, 187–188).
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26 The Philosophy of Mathematics

(such as concatenation and the position in a string). Further analysis of the
relations between notational elements and intended subject matter reveals that
every relevant primitive must be represented in a notation, but neither must
every primitive correspond to a unique notational element, nor must every nota-
tional element correspond to a unique primitive. In other words, a primitive can
be represented by more than one notational element, and a notational element
can stand for none, one, or more than one primitive element of the subject mat-
ter: the mapping between primitives and notational elements does not need to
be one-to-one. That some notations use different characters and arrangements
to represent the same primitive illustrates the first claim. For example, in the
expression ‘2 ·3x’, multiplication is represented both by the character ‘·’ and by
the juxtaposition of ‘3’ and ‘x’. These different uses might express a difference
between the kinds of factors (e.g., two numbers, or a number and a variable)
or a difference in the order of precedence. To illustrate the second claim, char-
acters can also be notational elements that serve only the purpose of providing
a framework for the relative positioning of other characters, such as the hor-
izontal lines (staff) in contemporary musical notation. In addition, characters
can also be used for two different purposes: in the expression ‘

√
3 + x + 4’, for

example, the variable-length radical symbol ‘
√

’ indicates both the operation
of taking the root and its scope, that is, the grouping together of the radicand
‘3 + x’. Similarly, in the analysis of the Roman numeral system presented in
Section 5.2.1, an occurrence of ‘C’ indicates both the value 100 and the fact
that this value is to be taken once, so that two occurrences stand for 200.

3.1.2 Expressions and Their Meanings

The nature of the relation between expressions and their intended subject mat-
ter is the topic in the philosophy of notations that has received by far the most
attention from philosophers. In particular, the works of Peirce and Goodman
have been very influential, so that they deserve a brief discussion. But let me
first point out some differences between their approach and the present one:
First, both Peirce and Goodman consider meanings (conceived mainly as ref-
erents) to be constitutive for a notational system, and, second, both consider
the intended subject matter to be neatly partitioned and given independently
from the notation. Thus, for them, notations are representations, and they do not
consider the possibility of expressions having no referents (see Section 1.2.4).

Peirce and Iconicity

Charles Sanders Peirce carried out one of the first and most influential studies
on the relation between signs and their meanings, which developed into the field
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of semiotics, and, as we saw, he also coined the phrase ‘philosophy of notation.’
Peirce’s fundamental notion is that of a sign, which is very broad, encompass-
ing anything that can stand for anything else, ranging from the smoke of a fire,
over individual letters, to differential equations. He characterized such signs as
symbols, indices, and icons, depending on how they relate to their referents, but
these are not mutually exclusive. For Peirce, symbols are arbitrary and conven-
tional, and they allow for the generality of signs. (Note that this terminology
is different from that introduced in Section 1.3.1, according to which a symbol
is a meaningful character, regardless of the nature and origin of its meaning.)
Indices, for Peirce, are signs that are “really connected,”33 for example in a
physical way, to their objects, and they determine the subject of a discourse;
finally, icons are mainly characterized as signs that resemble their objects. For
Peirce, this resemblance underlies our use of signs as a calculus and our ability
to reason with them. Moreover, the relation of resemblance can be so strong as
to make it difficult to distinguish the sign from the object it denotes, as in the
case of geometric diagrams.
While Peirce’s further extensive and idiosyncratic reflections about signs

have remained mainly a topic for Peirce scholars, his notion of iconicity has
become a staple in the discussion of notations. Some cases are fairly obvious,
for example, that the expressions ‘,’ and ‘:-)’ resemble a human face, albeit
invoking different primitives (namely, contour, eyes, and mouth in the first,
and eyes, nose, and mouth in the second). However, how a character or an
expression, such as ‘3’ or ‘III’, can resemble an abstract subject matter, such
as the number three, is less clear. Different ways of fleshing out the notion
of iconicity have been proposed to account for the relation between signs and
their objects, including operational iconicity, resemblance in qualities, resem-
blance in structure, indirect resemblance, exemplar iconicity, and systematic
iconicity.34 The idea behind operational iconicity is that more information can
be extracted from an expression than was necessary to construct it.35 This has
been further elaborated by Shimojima in the context of diagrams under the label
‘free ride.’36

Goodman and Isomorphism

Nelson Goodman’s seminal Languages of Art (1968) has not sparked the same
amount of research as Peirce’s writings, but it had a substantial impact on the

33 Peirce (1885, 181).
34 See Schlimm (2021) for an overview.
35 See Stjernfelt (2007, 90–92).
36 Shimojima (2015).
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28 The Philosophy of Mathematics

philosophical study of symbolic notations nonetheless. His discussion had both
positive and negative effects on the further study of notations: On the one hand,
Goodman offered a sharp theoretical analysis of the notion of a notational sys-
tem. On the other hand, he explicitly excluded certain aspects of notations
from his analysis, such asmaneuverability and graphic suggestiveness, as being
merely “engineering matters,” although admitting that these might be “to some
degree even necessary for any practicable notation” and their study possibly
“fascinating and profitable.”37 The aim of his own investigations was to estab-
lish criteria that “are categorically required for any even theoretically workable
notational system.”38

According to Goodman, a notational scheme consists of characters (which
are classes of inscriptions) and modes of combining them. In the terminology
introduced in Section 1.2.3 a scheme corresponds to a notational system, but for
Goodman such a scheme becomes a notational system only if it is correlated to
a field of reference, that is, a class of things that the notation is about. To focus
his investigation, Goodman turns his attention toward what he considers to be
the primary function of notational systems. For the case of a musical score, for
example, he identifies the primary function as “the authoritative identification
of a work from performance to performance,”39 while considering facilitating
transposition, comprehension, or compositions only as secondary functions.
Thus, a score must define all of its instantiations and provide means to mark
off those performances that do not instantiate it. For this to be possible at all,
Goodman identifies five criteria that any notational systemmust satisfy: it must
be unambiguous, and satisfy disjointness and finite differentiation, both with
regard to its characters (syntactically) and its field of reference (semantically).
Ultimately, for a notational system to work, Goodman requires a one-to-one
correspondence (isomorphism) between characters and their referents (classes
of objects). While he captures crucial aspects of characters in his analysis (see
Section 2.1.1), Goodman’s general approach, which derives by and large from
his analysis of notations in music and art, does not fit too well to mathematical
notations, which are not purely representational and where the manipulation of
expressions is an integral part.

3.1.3 Diagrams

A special and frequently discussed kind of mathematical notation is diagrams.
These are often characterized as consisting in essential ways of line or curve

37 Goodman (1968, 155).
38 Goodman (1968, 156).
39 Goodman (1968, 128).
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segments, or as simply being two-dimensional, but more sophisticated char-
acterizations have also been proposed in the literature.40 However, we do not
need to settle on an exact definition of what constitutes a diagram here, as all
of these characterizations can be fitted under our conception of a notation as
a systematic set of expressions consisting of arrangements of characters. Also,
further taxonomies of diagrams that have been proposed, for example, in terms
of whether geometric and topological features of the arrangement are consid-
ered, can easily be accommodated, and properties attributed to diagrams, such
as overspecificity or allowing for free rides, can be carried over to notations.41

For the sake of our discussion we can consider diagrams to be those notational
systems that have lines, open or closed curves, or arrows as characters, which
are typically, though not necessarily, arranged in a non-linear fashion. In gen-
eral, diagrams seem to have a greater variability among the inscriptions that are
recognized as belonging to the same character type than, say, letters. A more
detailed analysis of diagrams certainly deserves its own, separate treatment,
so we shall consider them here only as particular examples of mathematical
notations.
It is worth pointing out that our characterization of notations also includes

ones that have both letters and graphical elements as characters. For example,
Euclidean diagrams with letters as labels for some points or lines can be seen
as a nested notational system. Other notations, such as Cheng’s truth diagrams
and the bracket notation for knots,42 have caused some bewilderment among
philosophers (“more like hieroglyphics, a form of picture writing”),43 but in our
treatment of notations they do not pose any particular difficulties. For example,
the bracket polynomial

〈 -|- 〉 = A〈 )( 〉 + A−1〈 )( 〉

is simply an expression of a linear notation in which some of the characters are
more graphic and iconic than others.

3.1.4 Notational Artifacts

So far, we have focused mainly on the fit between a notation and its intended
subject matter, but there are also important issues arising from a mismatch

40 See, for example, the articles in Allwein and Barwise (1996), and Stenning (2000). Some
confusion in the literature arises from Peirce’s use of the term ‘diagram’ for some iconic
representations, because his notion also encompasses linear symbolic notations, for example,
algebraic formulas.

41 See, for example, De Toffoli (2023, 13) and Carter (2021).
42 See Cheng (2020) and Kauffman (2001, 28 ff.).
43 Brown (2008, 93).
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between these two. In particular, some design choices can have unintended
implications for themapping between a notation and its intended subject matter,
giving rise to notational artifacts.
Parentheses can be seen as notational artifacts that arise from using a lin-

ear notation together with an infix arrangement of operations and arguments
(Sections 2.2.1 and 2.2.4). A pair of matching parentheses does not have an
independent meaning in terms of the intended subject matter, but they are
necessary for certain notations to establish a correct mapping between subex-
pressions and the order in which operations are carried out. This order can be
represented without the use of parentheses in non-linear notations or in linear
notations with a prefix ordering. Notational artifacts typically augment the total
number of characters in an expression, potentially cluttering it up, but they can
also enhance the readability of expressions, for example, when parentheses of
different sizes or shapes are used.
The choice of a linear notation not onlymakes parentheses necessary in some

cases, but also imposes an order on the symbols in an expression: two sym-
bols ‘X ’ and ‘Y ’ have to appear as either ‘XY ’ or ‘YX ’. Because of this, we
get two different arithmetical expressions ‘3 + 5’ and ‘5 + 3’, and two logi-
cal formulas ‘A ∧ B’ and ‘B ∧ A’, for which the question arises whether they
have the same meaning or not. That the subject matter of logic does not un-
equivocally settle the question is made manifest by Peirce’s Existential Graph
notation, in which a closed curve (‘cut’) indicates the negation of what is inside
the curve and juxtaposition represents conjunction.44 Here, the logical expres-

sions ‘AB’, ‘BA’, and ‘AB’ are read as different tokens of the same expression
type, which denotes the conjunction of A and B. Thus, we notice that the ques-
tion of whether an aspect of a notation is intended, whether it is a free ride,
or whether it is an artifact, is not always easy to determine, in particular when
we consider only a single notational system. Taking alternative notations into
consideration can help in clarifying the issue. We return to this philosophi-
cal matter in Section 5.1.2, noting here that in contemporary mathematics and
logic, the expressions shown previously are usually treated as different and as
requiring a proof of their equivalence. This, however, is not the only way to
deal with a situation where the ordering of terms appears as a notational arti-
fact. In an informal treatment of set theory, for example, it is clear from the
understanding of the intended subject matter that the two expressions ‘{a,b}’
and ‘{b,a}’ stand for the same set. In other words, the ordering on the elements
that is imposed by the linearity of the notation is considered an artifact that

44 Interpreted as an Existential Graph, the rightmost expression shown in Section 1.2.3 can be
read as the logical formula: ¬(A ∧ B ∧ ¬(B ∧ ¬C)). See also Figure 4 for other examples.
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is not mathematically relevant. In terms of the type/token distinction, we can
express this by saying that ‘{a,b}’ and ‘{b,a}’ ( just as the Existential Graphs
‘AB’ and ‘BA’) are interpreted as two tokens of the same formula type, but that
in contemporary logic ‘A ∧ B’ and ‘B ∧ A’ are tokens of two different formula
types.
Over time, notational artifacts can also have an effect on the intended sub-

ject matter itself. For example, the introduction of the number zero is intimately
connected with the use of notational artifacts that had been in use long before
the view emerged that they actually represent a number. The most common
versions of a place-value system allow for ‘empty’ places to indicate pow-
ers of the base that do not factor in the value of the represented number. For
example, in one of the oldest place-value systems, the ancient Babylonian
base-60 system, these places were initially simply marked by a space.45 While
we might be inclined to disparage this practice for its potential to lead to ambi-
guity, it persisted nonetheless for several centuries until a particular placeholder
character was introduced to mark an empty place. This character was clearly
a notational artifact, since it had no independent numerical meaning and was
only used within the notation to indicate the lack of specific factors. In our
familiar Indo-Arabic notation this role is played by the symbol ‘0’, which we
now also use to represent a number, for example, the result of subtracting 3
from 3. However, these two roles are independent of each other and they do
not have to be played by the same symbol.46 Indeed, while the Babylonians
used a symbol to mark empty places, they had no symbol to mark the indi-
vidual number zero, and in Digges’ Stratioticus (1579) we find the symbol ‘◦’
used within Indo-Arabic numerals, but the symbol ‘ϕ’ to indicate the number
zero.47 The fact that we use the same symbol to indicate the number zero and
empty places in the Indo-Arabic notation may have led to the often-repeated
claim that the number zero is necessary for a place-value system. This claim is
already refuted by the Babylonian place-value systems, but these still employ a
mark for an empty place, either a space or a character. A more thorough study
of place-value notations, however, reveals that even an empty-place marker is
not necessary: It is possible to design place-value notations in which there are
no empty places and every character has a nonzero value.48

Notational artifacts can also arise from the application ofmanipulations, Car-
dano’s already mentioned introduction of the roots of negative numbers being

45 See Figure 5 for an example of a Babylonian base-60 numeral expression.
46 Further roles of ‘0’ can be distinguished, see Schlimm and Skosnik (2011) for a discussion.
47 Cajori (1928a, 171–172).
48 Foster (1947).
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the most famous example. Here, a term corresponding to ‘
√
−1’ occurred as a

subexpression when certain values were used in a general formula for the solu-
tion of polynomial equations. However, while negative numbers and roots of
positive numberswere deemed unproblematic, the term expressing their combi-
nation was not considered to have an independent numerical meaning. Similar
examples are Boole’s use of expressions such as ‘x + x’ in his symbolic logic,
which he himself considered as ‘uninterpretable’ in logic and for which he was
severely criticized by later logicians; this despite the fact that he made sure
that these kinds of expressions would only appear within a computation, but
never as the result. The expressions ‘ 10 ’ and ‘ 00 ’ look syntactically correct in
our usual arithmetic, but because they do not have a meaningful interpreta-
tion, they are not allowed, while ‘ 01 ’ is perfectly fine. In other words, we can
consider the former as notational artifacts that are barred from being used in
arithmetic.49

In addition to the somewhat general considerations discussed in this section,
the relation between a notation and its intended subject matter also gives rise
to more fundamental philosophical questions regarding the subject matter. We
shall take these up again in Section 5.

3.2 Reading and Language
Manymathematical notations are introduced for an intended subject matter that
can already be expressed in various languages. For example, it seems plausible
that some number words existed before the introduction of written numeral sys-
tems, and certainly some Latin and English words played a logical role before
the logical connectives were expressed symbolically. However, notations are
not purely derivative of verbalizations, but they can also influence the language
in which they are verbalized. Thus, we can ask: (a) How does reading influence
a notation? And, (b) how does the notation influence reading?
Although we can copy and share written notations without expressing them

in words, reading and verbalizing a notation makes it easier to use, commu-
nicate, and understand. Since languages are spoken in time, this requires the
parsing of expressions in a linear order, for which there might not be an obvious
way in the case of non-linear notations. To solve this problem, we frequently
adopt reading conventions. For example, the formula

n∑
i=0

i

49 Notational artifacts thus share some commonalities with Lakatos’ ‘monsters’, an observation
that is worth further explorations (Lakatos, 1976).
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is typically read as something like: ‘The sum of the is from i equal zero to n’
or ‘… where i ranges from zero to n’. In this example we also notice how lan-
guage can influence the choice of characters that are being used: The sum is
expressed by the Greek letter ‘Σ’, which corresponds to the Latin ‘S’, the first
letter of the word ‘sum’ (analogously, we use the Greek ‘Π’ (pi) to symbol-
ize products). In fact, the technique of mnemonics, that is, the use of the first
letter(s) of the name of the mathematical entity one intends to denote, is very
popular and helps with memorizing the meaning of the symbol – albeit indi-
rectly, through its verbalization. Examples abound, such as early symbols for
addition and subtraction, ‘p’ and ‘m’ (plus and minus), and the common use of
the variable ‘t’ to represent time. Such mnemonics are not restricted to letters,
but can also involve the use of symbols with already established meanings: for
example, Hilbert used ‘&’ for logical conjunction, appealing to the established
use of the ampersand for ‘and’.
At this point it is also useful to issue a warning: Not every plausible explana-

tion for the choice of a character must indeed be the original motivation. Rather,
such an explanation might well be given retrospectively, for easier memoriza-
tion. For example, although one frequently finds the claim that the symbol ‘∨’
for logical disjunction originates from the Latin vel, this does not seem to find
support in the textual record.50

Exploiting prior verbalizations of the intended subject matter is not restricted
to the shapes of individual characters, but it can also influence the structure of
the respective notation. For example, the use of spacing to separate consecutive
blocks of digits of long Indo-Arabic numerals was already mentioned above
(Section 2.2.6). This partitioning into blocks of three digits appears very natural
to English speakers, because it accords well with the verbal segmentation of
number words into thousands, millions, and so on:

15143982721 vs. 15 143 982 721 vs. 151 4398 2721.

That the notational convention is indeed tied to the verbalization becomes
obvious when taking other languages into consideration. For example, num-
ber words in Mandarin are segmented into ten-thousands, hundred millions,
and so on. Accordingly, speakers of Mandarin typically separate a long digit
into groups of four. Thus, they would find the third example above to be
the more intuitive notation. A better match between the structures of a spo-
ken language and a notation also has effects on the learning process. For
example, because Mandarin number words are formed more regularly than

50 Elkind and Zach (2023).
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those of most European languages (and are also shorter), children who speak
Mandarin typically learn the Indo-Arabic numerals faster than their European
peers.51

In addition to the ease of readability in a spoken language, the partitioning
of longer expressions also reduces the number of symbols that must be pro-
cessed at the same time in order to read an expression. To determine how many
objects one is presented with, empirical findings about the limitations of human
perception mostly agree that we can immediately grasp the numerosity of up
to four objects without counting (subitizing). Thus, to determine the value rep-
resented by a tally, such as ‘| | | | | | | |’, all individual strokes have to be counted;
but, in an expression in Roman numerals, such as ‘VIII’, the three occurrences
of the same symbol are perceived at a glance. Accordingly, the segmentation
of Indo-Arabic numerals into groups of three (or four) not only fits well with
their verbalization in English (or Mandarin), but is also cognitively advanta-
geous. (As this feature is relative to the cognitive resources of human users of
a notation, it will be taken up again in Section 3.3)
Cases in which a notation influences the language are more rare, because

some kind of verbalization is often in place before the adoption of a notation.
However, sometimes such a verbalization might not cover all cases. Fibonacci,
for example, when introducing the Indo-Arabic numerals to his readers in 1202,
took the time to explain how they are systematically read, such that “you will
be able to read a number, no matter how many figures”; his example is the
15-figure numeral O678O935O784O105 296, which is to be read as “six hundred
and seventy-eight thousand thousand thousand thousand, nine hundred thirty-
five thousand thousand thousand, seven hundred and eighty-four thousand
thousand, one hundred and five thousand, and two hundred and ninety-six.”52

Number words like ‘million’ were introduced in English only over a century
later.
In addition, here are some more considerations in this direction, namely how

the structure of operations (see Section 2.2.4) can interact with the ease of ver-
balizing algebraic expressions. The infix notation ‘5 + 7’ might at first seem
most convenient to us, because the order of the characters corresponds to the
verbalization ‘five plus seven.’ However, the prefix and postfix notations can
also be verbalized in a straightforward way: ‘+ 5 7’ as ‘the sum of 5 and 7,’
and ‘5 7 +’ as ‘5 and 7 added.’ Indeed, in many everyday situations speaking of
‘the sum of …’ might be the more natural formulation. When the expressions
are nested, another issue arises that affects the ease of verbalization, namely
grouping. Consider the following three cases:

51 Miller et al. (2005).
52 Sigler (2002, 20).
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Notation Verbalization

3 × (5 + 7) Three times five plus seven.
× 3 + 5 7 The product of three with the sum of five and seven.
5 7 + 3 × Five and seven added and with three multiplied.

Here, the first verbalization is more concise, but it is ambiguous with regard to
the order in which the operations are to be carried out. To remove this ambi-
guity we usually add a pause between ‘times’ and ‘five plus seven,’ saying
‘three times – five plus seven.’ Pauses like this, however, appear to be more
of an artifact of trying to read the expression from left to right than a natu-
ral way of speaking. In fact, it could well be that the verbalization ‘five plus
seven’ became common only in response to the practice of writing arithmeti-
cal expressions in a particular way. If this were the case, a justification of the
order of operations in our algebraic notation with the naturalness of verbaliza-
tion would obviously be circular. As the verbalization of the prefix expression
does not require any artificial pauses, it is possibly clearer and easier to under-
stand. However, with more levels of nesting any form of verbal expression
will quickly become too difficult to understand. For the time being, some of
the claims made in this paragraph remain speculative, and more linguistic, his-
torical, and empirical research is necessary to study the interrelations between
notations and language.
Opportunities for coining new verbalizations occur when new mathematical

notions are introduced. A clear-cut case in which the language was influenced
by a choice of representation has been documented byCarter (2010). In her case
study of a proof in free probability theory, she found that the mathematicians
in question introduced a graphical notation for the representation of certain
permutations in which some lines crossed each other. This graphical property
led to the terminology of ‘crossing’ pairs (as well as ‘neighboring’ pairs and
‘removing’ a pair from the diagram), even though the graphical notation did
not appear at all in the published paper and the definitions were introduced in
purely algebraic terms.53

3.3 Users and Their Cognitive Resources
To be employed in a meaningful way, a notation has to be learned and under-
stood. These are complex processes that depend in part on the characters and
structure of the notation and in part on the users’ cognitive resources and
prior experience. Thus, discussions of the users of notational systems rely to a

53 Carter (2010, 11).
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considerable extent on results from research in psychology and cognitive
science. In addition, since users live in a society at a specific time, sociological,
cultural, and historical considerations can also come into play when evaluating
notations.

3.3.1 Learning

To appreciate the effort involved in learning a new notation, a brief sketch of
how children learn to understand and use the Indo-Arabic notation for numbers,
which has been studied extensively by developmental psychologists, is reveal-
ing in many ways.54 Typically, a child begins by learning a sequence of number
words, say ‘one, two, three,…’ in English. At this point, no particular meanings
are yet associated with the sounds, it is simply a fixed sequence, such as ‘eeny,
meeny, miny, moe’. Then, the child learns to repeat the sequence while pointing
at individual objects of a certain kind, thereby creating a one-to-one correlation
between the number words and the objects. The next step is to associate the last
used word with the quantity of the counted objects. Developmentally, this step
is learned in different subsequent stages, one for each number word from ‘one’
to ‘four’, after which the child has typically mastered the cardinality principle
for all number words that it knows. Furthermore, to apply the basic arithmeti-
cal operations, one has to correlate the number words to numerals and to learn
addition and multiplication tables by heart, or invent shortcuts to reconstruct
them using a counting-on procedure. After learning the basic written arithmetic
operations for single-digit numerals, these are extended to multidigit numerals,
where the order in which the columns have to be processed, the handling of
empty places, and the tracking of carries and borrows pose additional difficul-
ties. Mistakes that are systematically made during this learning phase often
reveal the lack of a thorough understanding of the place-value structure of the
notation.55

What the preceding account shows is that the learning of both the notation
and the subject matter, namely cardinal numbers and basic arithmetic, goes
hand in hand and that the structure of the numeral system is learned in part by
performing written operations with it.

3.3.2 Understanding

We have seen in the case of learning basic arithmetic that verbalization plays a
crucial role and we have discussed how this is connected to various features of
a notation in Section 3.2. However, we do not only seek to verbalize a notation,

54 See Pantsar (2024) for an overview and further discussion.
55 See Schlimm (2018) for an overview and further references.
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but also to understand it. This involves not only being able to name the expres-
sions, but also knowing how the basic symbols relate to their referents, how the
structure of the notation contributes to themeaning of complex expressions, and
how to correctly manipulate the expressions.
In particular, understanding the structure of expressions is often much more

difficult than being able to name expressions and basic symbols. For exam-
ple, while children at a certain stage of their development might be able to
name ‘18’ as ‘eighteen’, they can still lack the understanding that the ‘1’ stands
for ten and the ‘8’ stands for eight.56 For them, asking what the ‘1’ means in
‘18’ is analogous to asking what the letter ‘t’ means in the word ‘ten’. Thus,
by learning the Indo-Arabic notation, prior conceptions of numbers are refined:
The characterization of numbers in terms of powers of a base emerges, as does
the conviction that every number, no matter how large, has a canonical repre-
sentation or name – note that this is not the case for verbal numeral systems,
which are all limited.
Another behavioral pattern that reveals a lack of understanding of the struc-

ture of a notation is the common mistake of beginners of calculus to cancel out
the ‘d’ in ‘ dxdy ’, as they would do if this was an algebraic expression.

57

Once we are familiar with a particular notation these matters all appear to us
as being straightforward, and we wonder how somebody could have difficul-
ties with them. However, we thereby frequently forget how long and tedious
the learning process was and how many difficulties we had with it ourselves.
This makes it quite difficult to imagine how it was when we did not under-
stand the notation. Acknowledging these difficulties is particularly important
for mathematics educators.

3.3.3 Novices and Experts

The discussion of some of the difficulties involved in learning a new notation
illustrates that there is often a wide gap between novices and experts when
it comes to learning, understanding, and using a mathematical notation. More
specifically, there are features of notations that can make them easier to learn
but more cumbersome to be used by experts, and vice versa. For example, the
numerical value represented by small Roman numerals, for example, ‘III’, can
be accessed in three different ways: first, by counting the occurrences of ‘I’ in
the expression; second, by immediately recognizing that there are three ‘I’s in
the expression (subitizing); and, third, by considering ‘III’ as a single, complex
symbol, whose meaning has to be memorized. These different paths available

56 Schlimm (2018, 204–207).
57 Thanks to Jessica Carter for sharing this example.
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in the Roman numeral system can be exploited by users with different levels
of expertise, thus making the system generally more accessible. In contrast, the
only way to access the meaning of the Indo-Arabic numeral ‘3’ is to memorize
it. But here the information is represented by a single symbol, rather than with
three, which is advantageous for other tasks. Thus, when discussing the use
of a notation it is crucial to keep in mind who it was designed for and who is
using it.

3.3.4 Thinking in Symbols

After learning and understanding a notational system, we are in a position to
employ it for specific tasks, a process we might be inclined to call ‘thinking
with symbols’ and which is discussed in Section 3.4. From the perspective of
extended cognition, a popular position in the philosophy of mind, such uses of
notations are indeed also cognitive tasks that interact with the users’ internal
cognitive resources, such as memory, attention span, and so on. In addition, I
agree with Tolchinsky that learning and understanding a notation amounts to a
cognitive ‘transformation’,58 which also changes our internal mental represen-
tations. More recently, this process has been characterized as “the integration
of cognitive tools into our cognitive systems as a process of enculturation.”59

In other words, we also think in symbols, which justifies the two-way arrow
between notations and users shown in Figure 2.
The best evidence for the internalization of notations comes from the most-

studied notational system, namely the Indo-Arabic numerals. Various empirical
results about size comparisons and mental calculations can be explained best
as representational effects that indicate that the mental processes are carried
out in a notation and not on some other kind of homogeneous internal repre-
sentation, such as an analog magnitude system or a mental number line. For
example, when shown one of these two pairs of numerals and asked which of
the numerals represents a greater number,

42 <?> 57 47 <?> 62

people tend to give faster andmore accurate responses when they are shown the
first pair rather than the second, despite the fact that the difference (or distance)
between 47 and 62 is the same as that between 42 and 57. This phenomenon is
called the “unit-decade compatibility effect.”60 The difference in reaction times

58 Tolchinsky (2003, xix).
59 Menary and Gillett (2022, 363).
60 Nuerk et al. (2001).
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cannot be explained by the relevant size of the represented numbers. Instead,
in the first case, both the units and the tens of the numeral ‘42’ are less than
those of ‘57’, but in ‘47’ the tens are less, but the units are more than in ‘62’. In
other words, the mental comparison between the values relies on distinguish-
ing between units and tens, which is a property of the numerals, but not of the
numbers – after all, abstract numbers are not composed of digits. Other results
that support this conclusion have been found in many other experiments
involving transcoding tasks and mental arithmetic.61

Empirical results such as those just mentioned led cognitive scientists to
include the structure of the Indo-Arabic numerals into their models of mental
representations of numbers. While Dehaene’s 1992 triple-code representation
of numbers explicitly included only the visual representation of the Indo-Arabic
numerals in addition to a verbal representation and the analog magnitude
system,62 Nuerk and his colleagues have explicitly added a “structural rep-
resentation of the symbolic number system (place-value representation)” into
their more recent model of our internal representations.63 Extensive research
in neuroscience supports this claim: The structural representation is learned
and then internalized. Accordingly, users who grew up knowing only Roman
numerals presumably would also have a different internal representation of
numbers.

3.3.5 Values

A rarely addressed issue, which also depends on the users of a notation, is the
values associated with a notation that are independent of its practical uses.64

For example, the medieval Arabic mathematician Al-Uql̄idis̄i remarks that the
decimal place-value system was generally frowned upon because it was typ-
ically used on a dust abacus, which “is indeed ugly to see in the hands of
the scribe” and “which is rather unbecoming from the point of view of many
people.” To save the scribe from “the misinterpretation of the populace” he
suggests to replace the characters and use them with ink and paper.65 The fact
that the Indo-Arabic numerals were adopted fairly late by Western European
merchants and bankers, despite their use in calendrical and astronomical cal-
culations, is explained by Durham not by any practical advantages, but with
reference to Renaissance culture and education, which ultimately led to the

61 See Nuerk et al. (2015) for an overview.
62 Dehaene (1992, 31).
63 Nuerk et al. (2015).
64 I thank Roi Wagner for sharing an unpublished draft where some of the observations and the

references that follow are discussed.
65 Saidan (1978, 35–36, 310).
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Roman numerals being discredited.66 Regarding the general adoption of the
Indo-Arabic numerals, Chrisomalis adds material and social factors, such as
the “advent of widespread literacy and the printing press, and the integration
of local economies and social institutions into global systems.”67 Other values,
such as nationalist sentiments can also influence the evaluation of notational
systems, for example, in the famous dispute between Newton and Leibniz on
the origin of the calculus and the adoption of Leibnizian methods in England.
Nationalistic and ideological perspectives on mathematics can also be found
in the nineteenth and twentieth centuries, although they seem to have been
directed more against groups of mathematicians or mathematical styles, rather
than particular notation systems.68 Nevertheless, when it comes to the adoption
of a notation, prestige, status, national pride, and other values that are associated
with a particular system should not be neglected.

3.4 Tasks and Algorithms
3.4.1 Representational Tasks

By addressing the question ‘What are notations used for?’ we shift our attention
to the particular tasks for which notations are employed. Some tasks con-
cern all notations, such as learning and understanding a notation; we have
already discussed the task of reading, in relation to their users (Section 3.3),
and we shall look at the writing of notations in relation to their materiality in
Section 3.5. Other tasks that notations are commonly used for include those
typical for external representations, such as encoding information about the
intended subject matter in such a way that it can be recorded and communi-
cated to others.69 That the way information is stored affects its retrieval should
be obvious. Just imagine a library in which the books are not ordered by topic
and author’s last name, but by title, or by year of publication, or by the color
of the cover, or by the size of the book. This would require very different (and
possibly quite inefficient) algorithms for finding a particular book, although it
could also prove to be quite effective for certain tasks (e.g., finding the smallest
book).
The ease and availability of information is closely linked to how the prim-

itives of the intended subject matter are mapped to notational elements and
to the distinction between explicit and implicit representations. At first sight,
these notionsmight seem straightforward as concerning the distinction between

66 Durham (1992).
67 Chrisomalis (2020, 121–122).
68 See, for example, Siegmund-Schultze (1991).
69 See also Kirsh (2010) for a general discussion of the uses of external representations.
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notational elements that one can see immediately and those one cannot, but the
matter is more subtle. After all, something external always has to trigger the
interpretation of an expression, and one always has to know something (inter-
nal) to interpret it. Kirsh (1990) convincingly criticized a naive characterization
of explicitness and proposed to regard it from a computational perspective on
the usability of information, as the interplay “between the procedures avail-
able to the agent and the forms the content is encoded in.”70 Let us look at
some simple examples of common algebraic expressions for multiplication and
exponentiation:

2 · x 2x 2x 2x exp(2,x).

These expressions pose no difficulties for a mathematical reader, but they differ
with respect to which notational elements indicate the operation andwhat a user
has to know in order to understand them. If the primitive (i.e., the operation)
is represented by a specific string of characters, such as ‘·’ and ‘exp’, it can
easily be located. Nevertheless, there are differences even in this case: that the
dot stands for multiplication has to be memorized, but the meaning of ‘exp’ is
already hinted at by the term itself, since it is a mnemonic for ‘exponentiation’;
moreover, ‘exp’ is located at one of the endpoints of the expression, which
are perceptually more salient. In the cases of ‘2x’ and ‘2x’ there is no specific
character that stands for the operation, but it is represented by the arrangement
of characters. In ‘2x’, the operation of multiplication is indicated simply by the
juxtaposition of the characters; juxtaposition is used in all examples to form the
strings, but in ‘2x’ it also refers to a primitive of the intended subject matter.
This has to be inferred by the reader, who has to learn that the juxtaposition of
a numeral and a variable stands for multiplication. The operation in ‘2x’ can be
inferred by the raised ‘x’, which is further emphasized by the use of a smaller
font for the variable in ‘2x’. In practice, the ease of reading these expressions
depends on the time to access and process their notational elements. Accord-
ing to Kirsh, this can lead to situations in which the structural immediacy and
the process immediacy of information do not line up, as the latter depends on
“individual capacities for memory, learning, and other cognitive skills.”71

In general, the more a notation relies on characters, the easier it is to learn,
because the learner can exploit more visible cues. However, the more such cues
need to be accessed and processed, the longer it generally takes to interpret and
use the notation; then again, less reliance on such cues can make a notation
more immediate and faster to process for an expert.

70 Kirsh (1990, 345).
71 Kirsh (2003, 480).
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3.4.2 Operational Tasks

In addition to the tasks of reading, writing, and encoding information, which
apply to most representational systems, a particular notation is usually also
employed for very specific tasks. For example, numerals are not only used
to represent a quantity (e.g., the population of a country) or to simply pro-
vide unique names for a sequence of objects (e.g., in street addresses), but
also to calculate with them and thereby to gain insights into the relations
between numbers, the intended subject matter of arithmetic. Algebraic equa-
tions are often transformed into other equations, so that we can learn something
about the abstract relationships that they express. Expressions for functions
are expanded, and expressions for their derivatives and integrals are obtained.
Logical inferences are applied to formulas to form proofs, which tell us how
premises are linked to a conclusion. These are just a handful of examples that
illustrate the crucial role of the operative component of mathematical notations.
The accomplishment of each individual task that a notation is employed for

depends in part on the notational elements themselves and the particular algo-
rithm that is employed, but in part also on other aspects of a notation, such as
the resources that are provided by the user and the material basis of the nota-
tion. This makes the analysis of how suited a notation is for a particular task
more difficult than one might expect.
A very influential approach to assess representations with regard to specific

tasks was proposed by Larkin and Simon (1987). After introducing the dis-
tinction between informational equivalence and computational equivalence
of representations, they went on to investigate the computational differences
between external representations, such as a diagram illustrating several weights
and pulleys and a sentential representation with the same informational content.
In particular, they abstracted from the specific nature of the representations by
identifying certain operations that can be performed quickly on the respective
representations and used these to formulate algorithms for specific tasks. The
efficiency of these algorithms was then used as a proxy for the computational
efficiency of the representation.72

A more refined analysis of distributed cognitive tasks involving mathe-
matical notations was given by Zhang and Norman (1995), who distinguish
between the contribution of external representations, whose informational con-
tent can be accessed through perception, and internal representations, whose
information has to be retrieved from (long-term or short-term) memory. Empir-
ical findings about the limitations of human cognition mostly agree that we can

72 See Waszek (2024) for a discussion of Larkin and Simon’s approach.
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keep seven plus or minus two elements in our working memory. Notational
systems that demand more than these would put an excessive strain on our cog-
nitive resources. In addition to the retrieval of information, the perceptual and
mental processes must also be coordinated, which is done by a central control,
which also “executes arithmetic procedures, allocates attentional resources, and
performs other processes that are necessary for the completion of the task.”73

Consider, for example, the complexity of a task that many are still quite familiar
with, namely adding several numerals using paper and pencil. To accomplish
this, one has to learn the values of the individual digits and a certain algo-
rithm, then process the numerals column-wise, starting from the units, recall
the addition table for each individual single-digit addition, write the unit value
of the result in the appropriate position and remember the value of the tens
to carry over to the next column on the left. Thus, despite the fact that this
is an algorithm performed on written numerals, it requires some information
to be stored in long-term memory (symbol values, algorithm, addition facts)
and other in short-term memory (position of focus of attention, intermediate
results, carries). Due to the load on working memory, Zhang and Norman assert
that “the more information needs to be retrieved from internal representations,
the harder the task.”74 Other algorithms, however, might externalize the inter-
mediate sums and thereby require less information to be kept in short-term
memory, at the cost of having to write more symbols. This illustrates again
that the assessment of notations in terms of operational tasks does not only
depend on the structure of the notation, but is also very sensitive to the particular
algorithms employed.

3.5 Materiality and Writing
The shapes of the characters and the structure of a mathematical notation
depend in part on how the expressions are produced. In the case of written
notations this means where and how they are written.
While we can imagine a particular inscription on any kind of surface, the

choice of a particular writing surface, such as paper, parchment, sand, clay, or
stone, affects the design and use of a notation. For example, the form of the
writing material can influence the layout of the writing, and the cost of the
writing material can determine the content that is deemed worthy of recording.
The writing material also restricts what utensils can be used for the writing,
which affects the shape, size, or colors of the characters. For example, ancient
Babylonian inscriptions were made with a reed stylus on clay tablets, which

73 Zhang and Norman (1995, 290).
74 Zhang and Norman (1995, 287).
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restricts the characters to combinations of a few simple shapes. Similarly, we
can expect a different notational design depending on whether it is intended to
be written by hand with a pen, or with a typewriter. The ease of writing by hand
is often used by authors to argue in favor of their own choice of characters. For
example, one of Jevons’ reasons for preferring to express the negation of ‘A’
with a lowercase ‘a’ instead of adding a prime, ‘A′’, is that “it is written with
one pen-stroke less, which in the long run is a matter of importance.”75 When
comparing his own choice of using the character ‘−<’ instead of Schröder’s ‘≦’
for logical consequence, Peirce comments that the latter “cannot be written
rapidly enough.”76 He further adds the advantages of his character both for
printing and handwriting: “It is easily made in the composing room from a
dash followed by <, and in its cursive form is struck off in two rapid strokes,
thus .”77

The advent of printing, in particular with movable types, added another layer
of constraints to the production of writing. Instead of inventing new characters,
which would require the production of new types, it was muchmore convenient
to combine readily available types, such as Peirce’s ‘−<’, or to rotate already
existing types (leading to cognate characters, see Section 2.1.2).78 Characters
that would require extra vertical space would also make the production more
expensive, which is why Peano recommended to write fractions in a single line,

that is, as ‘a/b’ instead of ‘
a
b ’.

79 In contemporary typesetting, the size of the

letters is often reduced to avoid extra spacing between lines, as in ‘ ab ’. Another
effect of printing is that the use of color has decreased, due to the added costs.
In the case of texts in electronic format, however, adding color no longer incurs
any additional costs and we notice the return of the colored texts on our screens.
The material basis of notations can also affect the design of algorithms for

manipulating expressions. For example, marks on a dust abacus can easily be
erased and replaced by others without leaving a trace, whereas this is not possi-
ble when calculations are performedwith ink on paper. Here, superfluousmarks
must be crossed out, so that the individual steps of a calculation remain visible;
this requires more space, but also makes it possible to retrace the individual
steps.

75 Jevons (1896, xiv–xvi).
76 Peirce (1870, 2).
77 Peirce (1897, 187–188).
78 See also the characters used by Leibniz, shown on p. 4.
79 See Schlimm (2021, 112–113) for a discussion of Peano’s concerns regarding printing costs

and typographical convenience.
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3.6 Notational Traditions
By the time one introduces a new notation one typically has already learned
to use other notations, so that these affect the design of the new notation. This
influence can extend to the choice of characters and the structure of the expres-
sions, but it can also go so far as including an earlier notation in the new design,
leading to nested notations (see Section 2.2.5).
The deliberate use of characters from other notations can have several rea-

sons. First, it could be just amatter of employing a familiar notation for a related
notion. For example, a raised ‘2’ can be used to indicate the twofold applica-
tion of an operation, even if this operation is not multiplication, for which the
superscripts were originally used. Second, since learning new symbols, struc-
tural arrangements, or methods of grouping is typically difficult, appealing to
familiar principles also increases the likelihood of acceptance of a new nota-
tion. Finally, using already established notational elements can be intended to
express some relation of affinity between the two notational systems. Boole,
for example, used the characters ‘+’ and ‘×’ for logical disjunction and con-
junction to highlight the structural similarity of the underlying laws, and so his
readers felt quite familiar with the new notation. Moreover, later logicians who
worked in the algebra of logic tradition that Boole started, such as Schröder,
also tended to employ the characters that he used. Tracing such notational tra-
ditions can yield information about the authors’ conceptions of the intended
subject matter, an issue that we will take up again in Section 5.1.1.

4 The Design of Mathematical Notations
Many discussions of notations revolve around the questions of what makes a
notation good or whether one notation is better than another. Designing and
assessing notations seem to be two sides of the same coin. After all, when we
design a notation we want it to be a good notation, and by assessing a notation
we find out whether it is good or not. However, there is also an asymmetry:
When designing a notation, we often have some particular users and tasks in
mind, but when assessing a notation, more general considerations can come
into play. Specifically, we might want to assess a versatile notation without
knowing for which purpose it was originally designed. The various aspects of
notations introduced in Section 3 provide us with an overview of the consid-
erations that can be brought to bear in the assessment of a notation. Moreover,
rather than assessing a notation individually it is often more fruitful to compare
two notations, as this allows us to identify those features of the notations that
make a difference.
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While one might think that some notations are better than others tout
court – and indeed one can frequently read claims that one notation is superior
to another – we must keep in mind that the goodness of a notation is relative
to specific tasks and users. This was already illustrated with the example of
keeping track of beverage orders in the Introduction (Section 1.3.4). An over-
all assessment can then only be obtained by weighing the relevance of these
different tasks. This, of course, bears the risk of emphasizing those tasks in
which one’s favorite notation does better, without attempting to further justify
this choice. Instead, a more nuanced and less subjective analysis can often be
given by discussing the trade-offs between different notations without insisting
on providing an overall judgment.
When it comes to general design criteria, one might at first think of simplicity

(or economy). However, without further specification this is not really helpful,
as the idea that a good notation should be simple can be cashed out in various
ways: for example, in terms of syntax, that expressions should be concise; in
terms of semantics, that we should represent only fundamental notions as prim-
itive; and in pragmatic terms, that the notation should be easy to use. Given that
usability typically includes reading, writing, and other tasks that the notation
can be employed for, it should not come as a surprise that the aim of devising
a simple notation can lead to different, and possibly conflicting, recommenda-
tions about what the notation should look like. Thus, again, we should keep in
mind that the design choices for a particular notation are generally based on
trade-offs and compromises.

4.1 Expression Length and Number of Symbols
4.1.1 Length of Expressions

The conciseness or terseness of expressions has been one of the most frequently
mentioned aims in the design of notations for at least the past two centuries: It
is listed as one of the main desiderata for a notation in Babbage’s 1830 entry
on ‘Notation’ in the Edinburgh Encyclopedia:

The great object of all notation is to convey to the mind, as speedily as pos-
sible, a complete idea of operations which are to be, or have been, executed;
since every thing is to be exhibited to the eye, the more compact and con-
densed the symbols are, the more readily they will be caught, as it were, at a
glance.80

If an expression is short, Babbage argues, it can be read faster and more infor-
mation can be taken in at the same time. That this contributes to achieving

80 Babbage (1830, 412); see also Dutz and Schlimm (2021).
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a better overview is echoed in the twentieth century on the first pages of
Whitehead and Russell’s Principia Mathematica (1910): “The terseness of the
symbolism enables a whole proposition to be represented to the eyesight as
one whole, or at most in two or three parts divided where the natural breaks,
represented in the symbolism, occur.”81

While the conciseness of expressions seems to be an uncontroversial design
goal, its implementation is not always straightforward. For example, Roman
numerals are, on average, about 2.6 times longer than the corresponding Indo-
Arabic numerals, but some are in fact shorter (e.g., ‘M’ vs. ‘1000’). Moreover,
instead of simply averaging the lengths of a certain range of expressions, it
could be more appropriate to also take into account the frequency in which
expressions are actually used in a particular practice. A simple search on the
Internet for the number of occurrences of the expressions ‘999’ and ‘1000’
reveals that the latter occurs almost ten times as often. Thus, having a shorter
expression for it could in fact reduce the overall lengths of actually used numer-
als. Frege also appealed to the frequency in actual usage to argue for his choice
of primitives in logic.82 One lesson to be learned here is the crucial importance
that particular uses can play in an overall assessment of a notation, even if we
just consider the length of expressions.

4.1.2 Number of Basic Symbols

Conciseness of expressions alone cannot be the sole criterion for the good-
ness of a notation. Otherwise, we would always prefer notations in which most
expressions consist of a single symbol, which, in turn, would yield a substantial
increase in the number of basic symbols of the notation. This points at a trade-
off between the conciseness of expressions and the number of basic symbols
to be used, both of which can affect any of the aspects of a notation discussed
in Section 3, including the number of primitive notions of the intended subject
matter that can be represented, the amount of information (symbols, formation
rules, etc.) that has to be memorized, and the readability of expressions.
Minimizing the number of basic symbols may be hailed as a theoretical

achievement (such as Sheffer’s reduction of propositional logic to a single
connective), but it typically also increases the length of expressions (such as
representing logical formulas using only the Sheffer stroke, or representing
numbers by tallies). Therefore, this is often not taken to be the most decisive
criterion in notational design. Instead, some sort of balance between the number
of basic symbols and the length of expressions is usually sought after.

81 Whitehead and Russell (1910, 3).
82 See Schlimm (2018, 71).
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4.2 Users and Intended Subject Matter
4.2.1 Learning and Proficiency

For human users, understanding a notation is crucial. After all, in order to
be used, a notational system must be understood. This involves knowing the
meaning of the symbols, the implicit conventions, and how the structure of
an expression contributes to its meaning. Learning these aspects of a nota-
tion involves getting acquainted with new symbols and expressions as well
as algorithms for their manipulations. Most of this information has to be mem-
orized, and carrying out the manipulations frequently puts additional load on
our short-termmemory. The underlying mechanisms, studied in developmental
psychology and cognitive science, and the perceptual and cognitive resources
needed for becoming proficient with a notational system can be an important
factor in its assessment.
The ease of learning a notation can also make a difference in the case of

diagrammatic notations. Consider, for example, the two expressions for knots
shown in Figure 3. Presumably, they differ only in the way they represent which
strands pass above another in the crossings. I assume that most readers will have
enough familiarity with such representations to correctly interpret Figure 3(a),
but are perhaps confused about the diagram in Figure 3(b). Accordingly, we
might be tempted to consider the left notation to be more ‘natural’. However,
what we see at a crossing of the form ‘ - | - ’ are really three separate line seg-
ments and to interpret two of them as being connected and passing under the
other has to be learned. Similarly, the meaning of the dots has to be learned, but
that is not too difficult either. As Alexander explains his notation: “The con-
vention will be to place the dots in such a manner that an insect crawling in the
positive sense along the ‘lower’ branch through a crossing point would always
have the two dotted corners on its left.”83 We could also imagine the two dots
as plier tips that grasp the strand between them and pull it up. Considering the

Figure 3 Two notations for the trefoil knot.

83 Alexander (1928, 277).
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material production of these figures, either by hand or in printing, Alexander’s
notation might well be more convenient and it might also be read more reliably,
because the dots are easier to recognize than the missing piece of curved line.
Thus, we notice again how the consideration of various aspects of a notation
complicates an unambiguous assessment.
If one is only interested in how a notation is employed by expert users, then

all considerations and difficulties of learning the notation can be neglected.
This, however, complicates the analysis of notations further, because it is
difficult to know what exactly experts bring to the table when using a notation
(see the problem of familiarity in the study of notations, Section 1.3.2). For
this reason, to level the playing field, psychological experiments on the use of
notations are often based on the artificial symbol learning paradigm, where a
novel notation is first learned and then used. If notations are intended to be pro-
cessed by computers, then the tasks of learning and understanding are replaced
by parsing the expressions and translating them into some data structure.

4.2.2 Informational Equivalence and Choice of Primitives

To achieve a fair comparison between different systems of representation,
Larkin and Simon suggested to compare only representations that are infor-
mationally equivalent.84 However, given that a subject matter can be carved
up into different primitives (see Section 3.1.1), we should really distinguish
between determining the primitives of a subject matter and choosing a nota-
tion for those primitives. The latter, of course, depends on the former, but the
questions of what to represent and how to represent it should be kept separate
in an analysis of notations. (But this is not always easy: For example, in the
case of the Sheffer stroke at the end of Section 4.1.2, we should really have
said that the reduction of basic symbols was achieved through a reduction of
the number of primitives that were represented; the change of notation was a
consequence of a change of subject matter.) The reason for the keeping apart
of subject matter and notation is that some properties of a notation can depend
to a large extent on the choice of primitives, regardless of other design choices.
For example, the average length of expressions in a notation for propositional
logic that represents only negation and implication will certainly be longer
than a notation that also represents additional connectives (such as conjunc-
tion, disjunction, and bi-implication), because the latter have to be expressed
in terms of the former. A general criticism of Frege’s Begriffsschrift notation
for logic in terms of the length of its expressions, as was put forward by his

84 Larkin and Simon (1987). See also Section 3.4.2.

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009472128
Downloaded from https://www.cambridge.org/core. IP address: 3.145.176.106, on 20 Feb 2025 at 01:26:15, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009472128
https://www.cambridge.org/core


50 The Philosophy of Mathematics

colleague Schröder, is therefore independent of Frege’s choice of characters
and their arrangements, and could easily be responded to by adding symbols
for additional logical primitives.85

The notion of informational equivalence is indeed often more thorny than
it might at first seem. For example, consider again the two notations for knots
shown in Figure 3. I discussed them in the previous section only in relation
to how they represent the location of strands at a crossing, but upon further
reflection we notice that the two notations also differ in what they represent:
On the one hand, Alexander’s instructions on how to read the dots referred to
a specific direction in which the insect would crawl on the branches. Thus, the
dot notation also codifies a sense, or direction, of the curve, which the other
notation does not. In short, the two notations do not carry exactly the same
information. And, in fact, Alexander and Briggs introduce the dot notation as
a “better notation for our present purposes,” because they also refer to the dots
in the mathematical reasoning itself by distinguishing between two different
kinds of incident relation between a point and a region, namely “incident with,
or without a dot.”86 On the other hand, in the notation shown in Figure 3(a), the
closed curve clearly appears as being separated into three different arcs. Imag-
ining these components as being colored in different ways yields the notion of
a colored (or labeled) knot diagram, which leads to the notion of tricolorabil-
ity of knot diagrams, which in turn is a knot invariant and is used to prove the
existence of different knot types. Of course, these notions can also be defined
in terms of Alexander’s dot notation, but in a less direct and visibly compelling
way. Thus, the two notations differ with regard to both their representational
and their operational aspects.

4.2.3 Symbol Shapes and Their Meanings

From the perspective of a notation as merely representational, the particular
shapes of the characters are in principle arbitrary, which underlies Peirce’s
notion of a symbol (see Section 3.1.2). In practice, however, notations are
always introduced and used in a context (see Section 3) and the shapes of char-
acters can bemotivated, for example, by employing previously used characters,
by their function within an expression (e.g., to combine an operation with its
scope or to attract the reader’s attention), or by external factors, such as printing
costs or the availability of the typesetter. Certain shapes can also contribute to
the usability of a notation for human users by being easier to read and write,
and by facilitating memorizing their intended meanings.

85 For a detailed analysis and discussion of Frege’s Begriffsschrift notation, see Schlimm (2018).
86 Alexander and Briggs (1926, 570).
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To facilitate the association between a character and its meaning, various
strategies can be pursued. If a verbalization already exists, the symbol can
relate to the word that expresses the meaning (mnemonics; see Section 3.2).
The meanings can also be indicated in relation to a cognate symbol, for exam-
plewhen using ‘⊥’ for the negation of ‘>’, or Carnap’s use of ‘D’ for the domain
of a binary relation and the inverted symbol ‘ D’ for its range.87 In addition, the
shape of the character can be chosen to indicate the meaning through some sort
of resemblance (iconicity; see Section 3.1.2). For example, the union of two sets
is commonly represented by ‘∪’, which resembles a cup in which the contents
of the two sets can be collected; incidentally, it is also cognate to ‘∩’, which is
commonly used for the intersection of sets. Properties of a character can also
allude to properties of what is denoted. For example, a symmetric character can
indicate the commutativity of the represented operation, and, in fact, empirical
studies have found the cognitive effectiveness of such a connection.88

Characters can also be selected intentionally to highlight certain analogies
between different notational systems. For example, as we have already seen
in the discussion of notational traditions (Section 3.6), Boole deliberately used
the familiar arithmetical symbols ‘+’, ‘−’, and ‘×’, for logical connectives, to
emphasize the analogy between the laws of arithmetic and logic. This practice
also invites the transfer of reasoning from a familiar domain to an unfamil-
iar one, which is advantageous if the reasoning is indeed correct, but can also
lead to errors in the case that the transfer is invalid. In logic, for example, con-
junction and disjunction are distributive in both directions, while in arithmetic
multiplication distributes over addition, while not the other way around. To
hint at the analogy without using exactly the same symbol, later logicians used
slight modifications of the arithmetical symbols (see Section 5.1.1).
The practice of using the same symbol with different meanings is common

in computer science. In the context of computer programming languages, for
example, the practice of denoting functions of different types by the same char-
acters is called ‘operator overloading’ and is used mainly for the convenience
of the users. If the same code is used in the definitions of such operators, one
speaks of ‘polymorphism,’ which has the advantage of reusing the same code in
different circumstances, thereby reducing the possibilities of mistakes. These
examples stand in contrast to the desideratum that each character should have
a clear, determinate, and unique meaning. Nevertheless, this property of uni-
vocity is frequently mentioned, for example by Frege, as a requirement for
notational systems. Of course, if ‘+’ could mean both addition and subtraction

87 Carnap (1929, 44).
88 Wege et al. (2020).
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within the same arithmetical system, it is hard to conceive how this ambiguous
notation would be of much use. As usual, however, things are often more subtle
in actual practice, where practical considerations often override philosophical
concerns.

4.2.4 Syntactic and Semantic Alignment

The view that a good notation exhibits a systematic connection between nota-
tional elements and intended subject matter is not limited to the characters,
but extends also to sets of characters and their arrangements in expressions.
Ubiquitous in the design of notation is what we might call the ‘similarity prin-
ciple’: Cognate symbols should reflect similarities in meaning. In other words,
syntactic similarities (differences) should reflect semantic similarities (differ-
ences).We recognize applications of this principle in all our common notational
systems: symbols for grouping have the same shapes, we use letters for vari-
ables with different fonts to represent different sorts, and operation symbols are
frequently cognate.
A second general principle for the design of a notation concerns the structural

arrangement of characters:What belongs together should also appear together.
According to this ‘togetherness principle,’ elements of an expression should
be grouped together according to their semantic reference, which makes it eas-
ier to parse an expression at a higher level of abstraction. For example, the
lower and upper bounds of an integral are commonly shown close together,
as in

∫ ∞
0

x2+x
3 dx. This allows us to identify the expression as an integral with

its bounds and then to shift our attention to the formula itself. Alternatively,
we could also think of a notation in which the bounds appear at the beginning
and end of the expressions, as in:

∫
0

x2+x
3 dx

∫ ∞. Here, however, the values of
the bounds are less convenient to parse, because the eye has to move from the
beginning to the end of the expression. The use of variable-length symbols,
such as the fraction bar (vinculum), also helps the eye to perceive the numera-
tor and denominator as individual units. Being able to quickly grasp an entire
expression is indeed an advantage of a notation that is frequently mentioned
(see the quotations by Babbage, and Whitehead and Russell at the beginning
of Section 4.1.1).
The importance of the togetherness principle has also been validated empir-

ically by research in cognitive science. In a series of experiments, Landy and
Goldstone have shown that students intuitively write characters closer together
if they are semantically connected and, conversely, are more likely to interpret
syntactic closeness also as semantically relevant. For example, despite the fact
that multiplication binds stronger than addition, the expression ‘5 × 3+2’ is
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often interpreted erroneously as ‘5 × (3 + 2)’ instead of ‘(5 × 3) + 2’ because
of the different spacing around the operators.89

4.2.5 Complex Symbols

In addition to making it easier to parse an expression, the practice of grouping
symbols together that are semantically related can also have the effect that such
a group can be treated as a single complex symbol. In the literature on the psy-
chology of expert reasoning, such meaningful units formed from collections
of simpler elements are called ‘chunks.’90 Through chunking, for example, the
numerator and the denominator of a fraction that are separated by a horizontal
line, as in x2+x

3 , can be seen and treated as two units. Thus, to form the recip-
rocal fraction, 3

x2+x , we can simply switch the entire subexpressions as if they
were individual symbols. In fact, when solving arithmetical equations we often
treat a sequence of digits as a single numeral, namely as a complex symbol, to
be operated on, as in the rule of ‘adding on both sides of an equation.’
Another striking example of how a notation lends itself to the formation of

complex symbols is Frege’s Begriffsschrift notation for logic, in which the log-
ical connectives and the non-logical symbols are spatially separated within an
expression, whereas they appear mixed together in the common linear logical
notation. Compare, for example, the following two formulas, where the nega-
tion of ‘X ’ is expressed in common notation by ‘¬X ’ and in Frege’s notation
by ‘ X ’, andwhere ‘X ’ implies ‘Y ’ is expressed by ‘X → Y ’ and ‘ Y

X
’,

respectively:

B

A

¬(A → ¬B)

We notice that the logical symbols appear as a single group in Frege’s nota-
tion: we can easily draw a straight line separating the logical symbols from the
non-logical ones, that is, ‘A’ and ‘B’. After realizing that the preceding formu-
las are logically equivalent to conjunction, we can identify ‘ ’ as a single

complex symbol denoting logical conjunction. In the formula on the right, the
negation and implication symbols (‘¬’ and ‘→’) are interrupted by a parenthe-
sis and a non-logical symbol ‘A’, which makes it more difficult to treat the pat-
tern of logical symbols as a single entity.91 The presence of complex symbols

89 See Landy et al. (2014) for an overview of these results.
90 See Miller (1956) and Chase and Simon (1973).
91 For a discussion of complex symbols in Frege’s Begriffsschrift, see Schlimm (2018).
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in a notation allows for its expressions to be parsed in different ways, a property
of notations that has been discussed in the literature as ‘multiple readability.’92

4.2.6 Extendability

When praising notation systems of the past, the fact that a system can be
extended is often brought forward. For example, the Indo-Arabic numerals,
originally intended to represent natural numbers, can be extended with a ‘−’
sign to represent negative numbers and with a decimal point to represent non-
integer rational numbers. In other words, it is considered to be an advantage if
a notation can easily be extended to cover subject matters for which it was not
designed. This feature of a notation, however, is most often discovered only
after the notation has been in use, which means that it could not have played
a role in the adoption of the notation in the first place. Thus, when discussing
the introduction of notations we have to distinguish between features that were
considered at the time of the adoption and those that emerged only afterward,
as a fluke, so to speak. In the latter case, a notation can open up unforeseen
conceptual possibilities and thus play a role in the further advancement of a
science, a philosophical issue we shall return to later, in Section 5.2.3.
When weighing the importance of the extendability of a notation, it is again

crucial to consider the tasks that one wants to employ the notation for. For
example, the fact that in Leibniz’s notation for derivatives the variable of dif-
ferentiation is given explicitly, for example, in dx

dt , allows one to extend its range
of application to cases where it is different from t. Such an extension is not pos-
sible in Newton’s original notation, Ûx, where the variable of differentiation is
left implicit. From a theoretical point of view, this speaks in favor of Leibniz’s
notation. However, if such an extension is not needed, because all one is inter-
ested in are derivatives of a function with respect to time (as is often the case
in physics), then Newton’s notation is more concise and therefore preferable.
As other examples before, this brief discussion shows how important it is to
relativize the assessment of notational systems to specific tasks.

4.3 Ease of Manipulations and Computational Efficiency
4.3.1 Ease of Manipulations

Since the manipulation of expressions is an integral component of mathe-
matical notations, they are often designed in such a way to make it easier to
perform some specific manipulations. As we have seen, the grouping of char-
acters into complex symbols facilitates the parsing of expressions, but also

92 Schlimm and Waszek (2020).
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their manipulations, as complex symbols can be treated as a single unit. In the
following, some examples will be discussed to show how the desire to facilitate
manipulations can affect notational design.
Examples from symbolic logic are particularly illustrative, because here the

inference rules (i.e., the rules for manipulating expressions) are often formu-
lated explicitly. Some aspects of Frege’s Begriffsschrift notation for logic can
indeed be explained by his aim of analyzing logical reasoning into simple rules.
Thus, instead of directly representing the logical connectives for ‘and’ and ‘or,’
which are frequent in natural languages, he chose negation and implication as
primitives for his system, because then one could use just a single inference
rule, namelymodus ponens (together with substitution). Note, that this is a deci-
sion on how to carve up the subject matter, and thus which primitives to use
for the notation, but does not yet determine the particular mapping between the
primitives to characters and their arrangements. However, Frege’s non-linear
representation of the conditional makes inferences by modus ponens particu-
larly perspicuous, as it simply amounts to cutting off the lower branch of a
formula:

Premises Conclusion

Contemporary notation: A A → B B
Frege’s Begriffsschrift: A B

A
B

The fact that the main connective is always the leftmost one in a Begriffsschrift
formula, whereas its location is not fixed in a contemporary formula (i.e., it is
not always in the middle of the expression as the simple example shown here
might suggest), makes the difference between these two notations even more
striking in the case of more complex formulas.
Among the popular contemporary notations in logic are adaptations of

Gentzen’s Natural Deduction and Sequent Calculus.93 Here, there are at least
two inference rules (introduction and elimination) for each connective. Again,
this approach depends on how to carve up the subject matter of logic but does
not determine other aspects of notational design. The main notational differ-
ence between these two logical calculi concerns how the assumptions in a
proof are arranged: In Natural Deduction they occur on top of a branch in
the proof tree, and in the Sequent Calculus they are represented explicitly in
every expression in which they are used. Without going more into the details,
it should be intuitively clear that expressions in the Sequent Calculus are longer
(because they always contain copies of the assumptions), but that this makes it

93 Gentzen (1935).
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easier to track the assumptions in complex proofs. This is a notational trade-off
that results from different approaches to manipulating the logical formulas in
proofs.
Some choices of notations for numbers and their operations have also been

guided by the kind of manipulations that one wants to perform on them. For
example, the predominant use of binary representations for numbers in digital
computers can be explained by the relative ease in which arithmetical opera-
tions on binary numerals can be performed using simple logic gates that can be
implemented with transistors. Indeed, the ease with which arithmetical oper-
ations can be carried out in the binary system was already pointed out by
Leibniz.94 Another example is the use of postfix (or reverse Polish notation,
RPN) for some pocket calculators, because it lends itself to efficient evalua-
tion. When evaluated from left to right, as soon as an operand is encountered,
the intermediate value can be computed on the basis of previous computa-
tions, which can be implemented easily with a stack data structure. For the
same reason, early computer implementations to determine logical tautologies
represented formulas in a structure like the Polish notation.95

4.3.2 Computational Efficiency

Since there is an open-ended number of tasks that notations can be employed
for, one frequently restricts the study of notations to some very specific ones
that are deemed more relevant or insightful than others. We should be aware,
however, that any such choice can already stack the odds against one notation
over another.
To illustrate some of the complexities involved in assessing notations in

relation to a specific task, let us briefly compare the addition of two numbers
represented with Indo-Arabic and (non-subtractive) Roman numerals:96

LII + XVIII vs. 52 + 18

For the uninitiated reader, the case of Roman numerals might look daunting at
first, since there are clearly more symbols to be processed and the value of the
numerals might not be immediately obvious. For the addition task, however, all
that needs to be done is to collect all symbols together (‘LIIXVIII’), sort them
by increasing order of their value (‘LXVIIIII’), and simplify the occurrences
of five ‘I’s to a ‘V’ (‘LXVV’) and the resulting occurrences of two ‘V’s to an
‘X’, which yields the final result ‘LXX’. Now, to perform the corresponding

94 Strickland and Lewis (2022, 196).
95 Bauer (2002).
96 In the non-subtractive Roman numerals, four is represented by ‘IIII’ instead of ‘IV’. Through-

out history, both subtractive and non-subtractive variants were used side by side.
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addition with the Indo-Arabic numerals, we have to process them separately
by their powers (i.e., first the units then the tens). To add ‘2’ and ‘8’, we have
to have memorized the result (i.e., no simple moving around the symbols ‘2’
and ‘8’ will give us ‘10’). Of this result we keep the digit in the unit position
and add the digit in the tens position to the two other digits in the tens position
of our original problem (5 + 1 + 1). Again, the result, ‘7’, has to be retrieved
from memory and put into the tens position of the sum, yielding ‘70’.
This simple example shows what the addition of two numerals requires in

the Indo-Arabic system: splitting up the numerals by their powers and process-
ing them separately in a fixed order (from right to left), having memorized an
addition table, and taking care of carries when the numeral that results from
a single-digit addition is greater than 9. In the case of Roman numerals, less
mental effort (both in long-term and working memory) is required, as more
manipulations (such as collecting and sorting) can be carried out directly on
the symbols: we only need to memorize the order of the symbols, and for each
symbol a simplification rule (e.g., five ‘I’s make a ‘V’). As a consequence,
learning to perform additions is easier in the case of Roman numerals than it is
in the case of Indo-Arabic numerals. However, once the relevant facts and algo-
rithms have been memorized and mastered, the calculation in the Indo-Arabic
system is more concise, as it involves fewer symbols, but the algorithms can
be more complex, as they need to keep track of the position of the digits.97

To extend this line of comparative inquiry, we could now look at further
arithmetical operations and other tasks, such as writing a list of numbers,
extending and generalizing the systems to include negative numbers and frac-
tions, and so on. To assess the use of notational systems ‘in the wild,’ we
could also try to find out what tasks they are actually used for in practice and
which manipulations are most frequently employed. In light of the problem
of familiarity, it is imperative to avoid cherry-picking the tasks and examples
that support one’s favorite notation. In general, the more systematic and com-
prehensive an assessment is carried out, the more meaningful it is – though
perhaps also less sensationalist.

5 Notations and Philosophy
Now that we have a characterization of mathematical notations in place, dis-
cussed their components and have seen how they play a role in practice, and
also went over considerations regarding their design and assessment, we now

97 For a more nuanced comparative assessment of computations with Roman and Indo-Arabic
numerals, see Schlimm and Neth (2008) and Lengnink and Schlimm (2010).
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turn to the relation between the study of notations and more traditional philo-
sophical questions. Philosophers have often neglected notations because there
is a sense in which they are arbitrary. After all, so the argument goes, it is
difficult to imagine how arithmetic would be different if the symbol ‘#’ had
been adopted instead of ‘8’. Then again, if some role is attributed to notational
systems, this is often in the context of claiming superiority of contemporary
notations, where the exact role of the notation is often a matter of speculation
rather than based on actual evidence (e.g., one can frequently read the claim that
decisive mathematical advances were possible only after the Roman numerals
had been replaced by the Indo-Arabic ones – despite the fact that basic compu-
tations are also possible with Roman numerals and that a place-value system
was available in Mesopotamia before the Roman numerals). We have seen that
notations can be motivated by and have an effect on many aspects of mathe-
matics, so that their arbitrariness concerns only the relation to an abstract and
idealized notion of mathematical truth. Once we leave the latter aside, many
philosophical questions arise in relation to mathematical notations.
The discussions in the previous sections have hinted at various ways in which

notations are intertwined with particular conceptualizations of their intended
subject matter, and here I bring together some of these observations to discuss
their relevance for ontological and epistemological issues (Section 5.1) as well
as methodological ones (Section 5.2). In the former discussion we consider
notations as static, in the latter as changing dynamically over time.

5.1 Notations, Ontology, and Epistemology
5.1.1 Notations Influence and Reflect Ontological Conceptions

In the earlier discussions about the relation between a notation and its intended
subject matter, we have seen that choosing a notation requires the determination
of the primitives of the subject matter that are to be represented. This, in turn,
amounts to carving up the subject matter in a certain way. While one might be
inclined to think that there is a particularly natural or intuitive way of doing
so, we should be wary that this sentiment might simply originate from a strong
familiarity with one particular notation. The possibility of alternative notations,
each with its own specific advantages with regard to users and tasks, questions
the ideal of a unique, best, and most natural representation.98

A quick look at different numeral systems illustrates the point just made:
Our familiar Indo-Arabic place-value notation is based on a segmentation of

98 That there isn’t one single best notation for the natural numbers has not escaped some
philosophers, for example, Grosholz (2007, 266) and Kripke (2023).
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numbers into multiples of powers of ten, which maps reasonably well to the
structure of many languages and allows for reasonably concise expressions
and their manipulations; a binary representation, on the other hand, has longer
expressions, so that its algorithms typically have to execute more steps, but they
typically require much less memorization; common formal representations of
numbers are based on an initial element and a successor function (see p. 25),
which facilitates recursive definitions of arithmetical operations and proofs by
induction; finally, Euclidean representations of numbers as collections of units
allow for spatial arrangements according to which we can classify numbers, for
example as squares and triangular numbers:

Squares: ◦ ◦◦ ◦ ◦ ◦ ◦◦ ◦ ◦◦ ◦ ◦
. . . Triangular numbers: ◦ ◦◦ ◦ ◦ ◦◦ ◦◦

. . .

Just as learning expressions in a foreign language that have no obvious
counterpart in one’s native language extends one’s way of looking at and of
experiencing the world,99 learning a new notation can change one’s concep-
tion of the intended subject matter. For example, due to the irregularities of
many verbal numeral systems, the base-10 structure of the verbal system is not
immediately apparent (e.g., ‘eleven’ or ‘twelve’ in English), and children often
realize it only after learning the base-10 Indo-Arabic numerals. Similarly, due
to the fact that for every verbal numeral system there is a largest number that
it can name,100 many people are not aware of the possibility of naming every
natural number before learning the Indo-Arabic numeral system. Of course,
literate adults are so familiar with their current system of numerals that it is
very difficult to even imagine conceptions of numbers that are independent of
the Indo-Arabic system. Historically, however, conceptions of numbers have
changed, even among mathematicians. Euclid, for example, considered natu-
ral numbers to be collections of units and since an individual unit does not yet
constitute a (proper) collection, he did not consider 0 or 1 to be numbers. If
natural numbers are conceptualized as ordinal, or counting numbers, it makes
more sense to start with 1, rather than with 0, as Dedekind did in his seminal
work Was sind und was sollen die Zahlen? (1888). Under a cardinal concep-
tion of natural numbers, say as cardinalities of concept extensions,101 it makes
sense to consider 0 to be a number, namely the cardinality of empty concepts,
such as ‘elephants in my fridge’ or ‘round square.’
Thus, while a notational system is often based on a certain conception of the

intended subject matter, learning such a system can also change a user’s prior

99 For English speakers, these include the Danish hyggelig and the German Schadenfreude.
100 Greenberg (1978, 253).
101 Frege (1884).

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009472128
Downloaded from https://www.cambridge.org/core. IP address: 3.145.176.106, on 20 Feb 2025 at 01:26:15, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009472128
https://www.cambridge.org/core


60 The Philosophy of Mathematics

Table 3 Comparison of different notations for linear and substructural logics.

Girard Avron Troelstra Paoli
(1987) (1988) (1992) (2002)

negation ⊥ ∼ ∼ ¬
implication ⊸ → ⊸ →
conjunction & ∧ u ∧
disjunction ⊕ ∨ t ∨
fusion/times ⊗ ◦ ⋆ ⊗
dual of fusion/par

&

+ + ⊕
unit for

& ⊥ f 0 0
unit for fusion 1 t 1 1
top > > > >
bottom 0 ⊥ ⊥ ⊥

conception. For this reason the arrows between notational system and subject
matter in Figure 2 (p. 23) point both ways.
For the philosophy of mathematical practice, the study of notational sys-

tems can yield fruitful information about the authors’, or users’, conceptions
of the intended subject matter. Informative examples that show how notations
can reveal their authors’ conceptions are given in Table 3. Similar tables are fre-
quently given in works on linear logic and, more generally, substructural logics,
which shows that the authors use their symbols deliberately.102 Even without
any understanding of the meanings of the connectives in question, the use of
cognate symbols indicates which connectives the authors consider to be related.
For example, Avron, Troelstra, and Paoli consider conjunction and disjunction
(‘∧’ and ‘∨’, ‘u’ and ‘t’), and top and bottom (‘>’ and ‘⊥’) to be related,
whereas Girard’s notation suggests a close relationship between disjunction
and fusion (‘⊗’ and ‘⊕’), and conjunction and par (‘&’and ‘

&

’). Additional
nuances in the authors’ ways of carving up the intended subject matter can
be found out by taking a closer look at the notations. Notice also that while
the symbols for negation and implication do not reveal any connections within
the notational systems themselves, they were also chosen intentionally to mark
analogies to and differences from other systems of logic.
In addition to the relations between primitives within a notational system,

the choice of characters can also express a relation to other systems. This is the
case, for example, in Boole’s use of arithmetical symbols (‘+’, ‘×’, etc.) for

102 See, for example, Avron (1988, 161), Troelstra (1992, 21–22), Paoli (2002, 42). Thanks to
Pierre Saint Germier for these references and to Sophie Marchand for bringing this topic to my
attention.
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his logical connectives to highlight the affinity between logic and arithmetic,
which we have already seen above. Later writers, who wanted to show their
indebtedness to Boole without also maintaining a strong connection between
arithmetic and logic, changed their characters slightly. For example, instead of
using Boole’s ‘+’ Peirce added a comma to the symbol (‘+, ’), while Jevons
created a plus-like shape (‘·|·’). Like Boole, also Dedekind used the famil-
iar arithmetical symbols in his symbolization of the greatest common divisor
and least common multiple to indicate structural commonalities between these
operations.103

5.1.2 Notations Raise Ontological Questions

What some of the discussions of the previous examples show is that some
questions about the nature of the intended subject matter originate from con-
siderations about particular notations. For example, taking up the discussion of
notational artifacts in Section 3.1.4, arithmetical operations and logical connec-
tives, such as ‘+’ and ‘∧’, are typically introduced as binary, which requires the
use of parentheses and the law of associativity; furthermore, a linear represen-
tation also forces an order of the arguments, which requires the commutativity
law. But, is this really the most appropriate way of characterizing the subject
matter? In the notation of Peirce’s Existential Graphs, in contrast, logical con-
junction is an n-ary operationwithout any particular order among its arguments.
The graph ‘ABC’, for example, represents formulas such as those expressed by
‘(A ∧ B) ∧ C’ or ‘(C ∧ A) ∧ B’ in a contemporary linear notation. These exam-
ples illustrate how different notations can incorporate different assumptions
about the intended subject matter. And, given the abstract nature of the subject
matter, it can be difficult to identify and assess these ontological assumptions
independently of any notation.
Another simple, but perplexing, example of a philosophical question that is

raised by the adoption of a particular notation also comes from classical prop-
ositional logic. Here, the expressions ‘A’ and ‘¬¬A’ have the same truth value.
But, assuming that we take propositional logic to be about propositions, do
these expressions also represent the same proposition? To answer this question
we would need a conception of propositions that is independent of their par-
ticular representations. By looking at Frege’s reflections we can see that the
question is indeed a difficult one. For him, logical formulas have a truth value
(their reference) and express a thought (their sense). A criterion that emerges
from his writings about whether two thoughts are the same is that “a speaker

103 See Haffner (2021, 19).
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who understands both of them and assents to one must, on pain of incoher-
ence, also be disposed to assent to the other.”104 So far, so good. But, does this
settle the question about the thoughts expressed by double negation formulas?
Frege himself appears to be of twominds: In Part I of his Logical Investigations
(1918–19) he speaks of ‘A’ and ‘the negation of the negation of A’ as being two
thoughts, albeit with the same truth value, but in Part II (1923–26) he writes
that “‘not(not B)’ has the same sense as ‘B’.”105

In the absence of an alternative notation for logical negation one might won-
der how the situation with double negations could be otherwise. But, in fact,
there are logical notations for which the preceding question does not arise. In an
early work on symbolic logic from 1847, DeMorgan uses ‘a’ for the contrary
of ‘A’, and ‘A’ for the contrary of ‘a’.106 Thus, in this notation the difference
between a formula and its double negation cannot even be expressed!
A quick look at a discussion by Jevons of the advantages and disadvantages

of De Morgan’s notation is instructive. The practical problem of not being able
to apply negation to complex formulas can be overcome by considering only
normal forms in which only literals can be negated, something that Jevons did.
When comparing his choice with that of MacColl, who uses a prime (‘′’) to
indicate negation, Jevons writes:

In one point, no doubt, his notation is very elegant, namely, in using an accent
as a sign of negation. A′ is the negative of A; and as this accent can be applied
with the aid of brackets to terms of any degree of complexity, there may
sometimes be convenience in using it. […] but it is not often needed. In the
case of single negative terms, I find experimentally that DeMorgan’s Italic
negatives are the best. The Italic a is not only far more clearly distinguished
from A than is A′, but it is written with one pen-stroke less, which in the long
run is a matter of importance.107

This quote is very instructive for the philosophy of notations, as it illustrates
how a typical assessment of a notation by an experienced user does not focus
on one single aspect, but weighs different aspects against each other. First of
all, we notice that Jevons does not bring up any foundational considerations
that are related to the intended subject matter, but only practical ones. Second,
‘elegance’ seems to be understood as conciseness, but is not givenmuch weight
in the assessment. The generality of the notation, namely that negation can
be applied to any terms and not just individual variables, is acknowledged,

104 Blanchette (2012, 33).
105 Frege (1984, 389 and 399).
106 De Morgan (1847, 55–56). An analogous notation was proposed by Ramsey, who suggested

to form the negation of an expression by writing it upside-down (Ramsey 1927, 161–162).
107 Jevons (1896, xv).
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but downplayed with reference to the frequency of these applications. So, here
Jevons appeals to the uses in particular tasks, but leaves it open what exactly
these tasks are. His choice of notation for negation is ultimately based on his
own experience with using the notation. In particular, he points out the ease
of reading (i.e., distinguishing ‘A’ from ‘a’ is easier that distinguishing ‘A’
from ‘A′’) and writing. Interestingly, Jevons does not mention the additional
parentheses that are required for MacColl’s negation when applied to complex
terms, nor the need to use a canonical form when using his own notation. To
summarize in terms of the aspects of notations discussed in Section 3, it is the
tasks and users that are given most weight by Jevons. That this assessment is
in the end relative and ultimately a matter of personal preference is made clear
by his statement immediately following the preceding quote: “The student, of
course, can use A′ for a whenever he finds it convenient.”108

5.1.3 Notational Invariance and Plurality

The possibility of alternative notations, and thus also of alternative conceptu-
alizations of a certain subject matter, has not escaped completely the attention
of philosophers. And while some have seen this as an opportunity to argue for
the superiority of a particular system, others have incorporated this into their
philosophical methodology. As an example for the latter, Wittgenstein writes
in his Tractatus:

3.342 In our notations there is indeed something arbitrary, but this is
not arbitrary, namely that if we have determined anything arbitrarily, then
something else must be the case. (This results from the essence of the
notation.)

3.3421 A particular method of symbolizing may be unimportant, but it is
always important that this is a possible method of symbolizing. And this
happens as a rule in philosophy: The single thing proves over and over again
to be unimportant, but the possibility of every single thing reveals something
about the nature of the world.109

Here Wittgenstein claims that what really matters is what is invariant across
different notations. Accordingly, if one is interested in investigating a subject
matter, one should study different notations for it.
Wittgenstein’s view is based on a particular understanding of what a sub-

ject matter is and on the availability of expressively equivalent notations, both
assumptions which are debatable. Nevertheless, he has a point in the useful-
ness of studying equivalent notations, which can be illustrated by the following

108 Jevons (1896, xvi).
109 Wittgenstein (1922, italics in original).
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simple examples. A unique way of representing rational numbers is to use
irreducible fractions, that is, fractions in which the numerator and denomina-
tor do not have any integer factor greater than 1 in common. However, since
this complicates the definition of arithmetical operations, rational numbers are
typically represented by ordinary fractions, where different expressions end
up referring to the same number, such as ‘1/2’, ‘2/4’, ‘3/6’, and so on.110

In a mathematical setting, we could use equivalence classes of such expres-
sions to identify the rational numbers. In addition, rational numbers can also
be represented by decimal expansions, such as ‘0.5’ and ‘0.333 . . . ,’ at the cost
of introducing the need for infinite expressions; this can be avoided by using
some notation for repeating sequences of digits, such as ‘0.3’ for ‘0.333 . . . ’.
The length of these repeating sequences, which is primarily an artifact of this
particular notational system, can then be used to classify and further study
the rationals. Thus, each of these notations brings out some aspects of the
rational numbers, and by understanding the relationships between them, a more
comprehensive notion of rational numbers is obtained. This plurality of pos-
sible notations can also be interpreted in support of the open-endedness of
mathematical concepts.111

The plurality of notations for a mathematical notion is also nicely illus-
trated by different notations used in the study of knots, which have received
a considerable amount of attention as examples of the use of diagrams in math-
ematics.112 Without going into the various issues raised in these discussions,
I want to highlight here the fact that many of these notations are not informa-
tionally equivalent (see Section 4.2.2). However, instead of interpreting this
as evidence that the notations are about different subject matters, we can also
see them as rendering the same subject matter at different levels of representa-
tional granularity.113 As Brown, who interprets this in support of mathematical
platonism, puts it: “Each picks out different things. Of course, they overlap to
some extent, but there are properties that one notation can describe that others
cannot.”114

Another example for the plurality of notations, even when used by a sin-
gle author, are the different variants of Peirce’s Existential Graphs, such as
the non-linear versions shown in Figure 4 as well as linearized versions using
different kinds of parentheses and brackets, such as ‘A(CD(G(P(R)(Q))(N)))’,

110 A similar situation arises with decimal expansions of real numbers, where different represen-
tations ‘1.000 . . . ’ and ‘0.999 . . . ’ refer to the same number.

111 Waszek (2024).
112 See Brown (2008) and De Toffoli and Giardino (2014).
113 Manders (1996).
114 Brown (2008).
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Figure 4 Non-linear variants of Peirce’s Existential Graphs.

‘A(CD[G{P(R)(Q)}{N}])’, and ‘A(CD[G(P[R][Q])(N)])’. In all of these
examples, the inclusion relations, which indicate the negation of an expres-
sion, are the same. In the second linear version, different kinds of parentheses
are used for easier detection of matching parentheses. To reason with these
expressions, one must distinguish further between cases where a subexpression
is enclosed an even or an odd number of times. This information is implicit in
the first two linear expressions and in Figure 4(a), but is represented explicitly
in the third linear version, where the shape of the parentheses indicates odd or
even inclusions, and also in Figure 4(b), where odd inclusions are written on
the right side of a box. A careful study of these variants reveals a number of
trade-offs between these different notational variants.

5.1.4 Notations and Norms of Reasoning

Moving away from considerations about the subject matter, the study of math-
ematical notations in practice can also reveal norms of reasoning that are
characteristic for particular practices.115 Through their reliance on specific
representations and conventions, these might differ from generally accepted
contemporary norms of mathematical rigor. Particularly influential in this
regard has been Manders’ analysis of reasoning in ancient Euclidean geom-
etry.116 While intuitive diagrammatic reasoning was criticized in the late
nineteenth century for its danger of unwarranted inferences, this practice has
shown to be remarkably stable. By studying the interplay between text and dia-
gram, Manders identified two kinds of properties of Euclidean diagrams: exact
and co-exact properties. The latter, such as inclusions or points of intersection,

115 See Waszek (2024) for a discussion.
116 Manders (2008).
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are invariant through a range of deformations and thus not as sensitive to fea-
tures of the drawing, such as exact angles and lengths. The information that
Euclidean geometric practice takes from diagrams is always co-exact, which,
according to Manders, is the basis for the reliability of the practice. This
work has fueled a renewed interest in diagrammatic and informal reasoning
in mathematics.

5.2 Notations and Methodology
5.2.1 Classifications and Notational Developments

An important part of a philosophy of notations is the classification of notational
systems, because this allows for their systematic comparison and for the iden-
tification of trends in the historical development of notational systems. Such
classifications, or typologies, depend on the nature of the intended subject mat-
ter, the notational elements of the systems that are used in the classification, a
ranking of these elements (in the case of hierarchical typologies), and on the
particular purpose of the classification itself.117

As an illustration for the classification of notational systems, let us con-
sider numeral systems, which have attracted considerable scrutiny not only
from historians and philosophers, but also from cognitive scientists and math-
ematics educators. The following typology is intended to offer a systematic
overview of the ways in which the values of expressions are determined using
the representation of the base and multipliers as main notational elements.118

Abstractly, we can represent the value n of a numeral expression in a system
with base b as the sum of products of multipliers mi (ranging between 0 and
b − 1) with powers of the base:

n = (mk × bk) + · · · + (m1 × b1) + (m0 × b0).

For example, the value of the numeral ‘959’ in the Indo-Arabic system is
(9 × 102) + (5 × 10) + (9 × 1). On the basis of this analysis, we can distin-
guish numeral systems according to how the values of the base powers and
multipliers are represented. In the typology shown in Figure 5, the powers of
the base can be represented by their position (as in the case of Babylonian and
Indo-Arabic numerals), by an explicit symbol (as in the case of the numer-
als in the Texcocan Kingsborough Codex and Chinese numerals), or by being
integrated in the same symbols that are used to represent the multipliers (as
in the case of the Roman and Greek alphabetic numerals). The representation

117 See Widom and Schlimm (2012).
118 Widom and Schlimm (2012), based on an earlier typology by Chrisomalis (2010).
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Figure 5 A typology for numeral systems based on the representations of the
base and the multipliers.

of the multipliers can be cumulative, by repeating a symbol (as in the case of
Roman and Babylonian numerals as well as those in the Texcocan Kingsbor-
ough Codex), or ciphered, by using a distinct symbol for each multiplier (as in
the case of the Greek alphabetic, Chinese, and Indo-Arabic numerals). Another
typology, by Zhang and Norman (1995), which is frequently referred to in the
literature onmathematical cognition, uses the ‘dimension’ of a numeral system,
namely whether the system has a base or subbase, as the single most important
notational element, because the authors consider this to be most relevant for
calculations.
Using such a classification of numeral systems, Chrisomalis studied the his-

torical development of most extant systems of numerals and identified various
regularities regarding the change of numerical notations over time, such as ‘No
ciphered system has a subbase’ and ‘Cumulative systems do not develop from
noncumulative ancestors’ (Chrisomalis, 2010, 368, 384). Thus, we see here
how a classification of notational systems, together with a historical study of
their changes, can lead to general insights into the development of notational
systems. These, in turn, can further be studied in terms of their motivations,
such as the cognitive resources they require and the tasks that they were
employed for.

5.2.2 Patterns of Notational Change

Particularly frequent patterns of notational change are grouping and symboli-
zation (or ciphering). For example, to increase the readability of a sequence
of tallies, ‘| | | | | | | |’, we can group them into smaller collections, as in ‘| | | | |
| | |’. In Sections 2.2.6 and 3.2 we have also seen how the grouping of Indo-
Arabic digits facilitates the parsing and verbalization of numeral expressions.
These groups can be perceived and treated as a single unit, thus having
all the advantages of complex symbols (Section 4.2.5). If, instead of sim-
ply grouping together subexpressions, we replace them by a new charac-
ter, we speak of symbolization. In the tally example this can be ‘ |||| ’ or a
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single character, such as ‘V’. While grouping generally increases the length of
expressions, symbolization decreases it – at the cost, however, of introducing
a new character whose meaning has to be memorized. By repeated group-
ing and symbolization, notations become more and more concise, and more
expressively powerful, but at the same time more cognitively demanding.
In the history of symbolic logic we can also identify certain notational trends,

both with regard to the structure and the characters employed in logical formu-
las: The equational form and the use of arithmetical symbols introduced by
Boole slowly disappeared and were retained in the twentieth century only by
some logicians in the algebra of logic tradition. The dot-notation for grouping,
introduced by Peano and popularized by Russell and Whitehead’s Principia
Mathematica (1910), was replaced in subsequent decades by the use of paren-
theses. Following Heyting’s introduction of the symbol ‘¬’ for negation (to
distinguish syntactically between classical and intuitionistic negation),119 this
slowly replaced the earlier ‘∼’, just as ‘∧’ seems to have replaced Hilbert’s ‘&’
for conjunction, although all of these symbols are still in use today. As of
today, identifying further trends, possibly in terms of traditions and schools,
and addressing questions regarding their motivations remains an open and
underexplored area of research.120

5.2.3 Blocking Off and Opening Up Conceptual Possibilities

In her groundbreaking study of the development of notations in chemistry,
Klein convincingly argued that “paper tools, like laboratory tools, are resources
[…]whose application generates new goals, objects, inscriptions, and concepts
linked to them.”121 This insight has been carried over also to mathematics
by Grosholz, who wrote that “the study of mathematical rationality cannot
dispense with the study of representations.”122 In short, any study of method-
ology in science and mathematics should include some discussion of the role
of notations.
We have seen in the example of DeMorgan’s symbolism for negation that

his notation does not allow one to express the double negation of a formula.
In other words, the equivalence of a formula and its double negation is baked
into the notation, and, as a consequence, questions regarding the difference
between ‘A’ and ‘¬¬A’ simply do not arise for users of DeMorgan’s notation.
Systems of intuitionistic logic, where the meaning of negation is different from

119 Heyting (1930, 43).
120 As examples of such work, see Bellucci et al. (2018) and Schlimm (2018).
121 Klein (2002, 3).
122 Grosholz (2007, xiii).
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Table 4 Representations of powers of an unknown quantity in the history
of algebra.

Contemporary: x x2 x3 x4 mne. num. mod.

Diophantus: ς ∆Y KY ∆Y∆ ✓
Xylander, 1575: N Q C ✓

Bombelli, 1572: (1 (2 (3 ✓
Stevin, 1594: 1 2 3 ✓

Vieta, 1591: A Aq Ac Aqq ✓ ✓
Harriot, 1631: a aa aaa ✓

Hérigone, 1634: a a2 a3 a4 ✓ ✓
Descartes, 1637: x xx x3 x4 ✓ ✓

Note: The columns on the right indicate whether the notation uses mnemonics (mne.) or
numerals (num.) for the powers of the unknown and whether the powers are represented
by a modification (mod.) of a symbol for the unknown.

that in classical logic, so that the inference from ‘¬¬A’ to ‘A’ is not valid, could
thus not be formulated with DeMorgan’s notation, but would require a different
way of representing negation. Thus, a simple move toward intuitionistic logic
is not available for users of DeMorgan’s notation. The notation blocks off this
conceptual possibility.
Let us now look at some examples from algebra to illustrate how notations

can open up or block off further conceptual developments. In particular, we
shall focus on representations of the powers of an unknown (see Table 4).123

Early algebraists used only a single unknown in an equation, which, in the case
of the third-century Greek mathematician Diophantus, was written as ‘ς’.124

For the second and third powers of the unknown, Diophantus uses ‘∆Y’ and
‘KY’, which are derived from the first letters of the Greek words for square
(δύναµις) and cube (κύβoς). Thus, we notice the mnemonic origins of these
symbols, but, and this is more important for our discussion, there is no direct
connection between the symbols for the unknown and the value of their pow-
ers. The same is true when the work was translated into Latin, for example,
by Xylander, who used ‘N’, ‘Q’, and ‘C’, mnemonics for the Latin numerus,
quadratus, and cubus.125

123 For an account of the emergence of these symbolic devices, see Wagner (2017, 39–58).
124 The exact shape and origin of this symbol is disputed in the literature; see Heath (1910, 32–35).

We here follow Heath’s usage.
125 Heath (1910, 38).
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A change of notation with far-reaching consequences occurred when
numerals began to be used for the powers of the unknown, for example, by
Bombelli and Stevin. However, these had to be distinguished symbolically
from ordinary numerals, since the latter were also used for the coefficients of
these powers. To do so, Bombelli put the powers above a semicircle and Stevin
enclosed them within a circle. Once the powers are associated with numbers,
it becomes possible to express concisely relations between powers in terms of
relations between numbers, such as (in modern notation) x2 × x3 = x(2+3), as
well as general laws about them, such as xa × xb = x(a+b). In addition, this use
of numerals can easily be extended further in two ways: First, we can use the
notation to represent any power without having to introduce new names and
symbols, and, second, we can replace the representations of whole numbers by
other kinds of numbers, including zero and rational numbers. Indeed, this is
what Stevin did, for example, by using 0 for terms that do not depend on the
unknown and 1/2 for square roots of the unknown. In this case, an exponent
can be interpreted as repeated multiplication, as the vanishing of the unknown,
or as taking the square root. This use of numerals can be seen as an exam-
ple of what Grosholz called “productive ambiguity” and which she argued is
a powerful methodological principle for driving progress in mathematics and
science.126 The move away from the traditional mnemonics is also a further
step away from associating the powers with a geometrical interpretation and
thus a step toward a reconceptualization of the intended subject matter.
An even more decisive development in the history of algebra was the intro-

duction of a systematic notational connection between the unknown and its
powers. Vieta, in particular, while retaining the mnemonic for the powers,
used ‘A’ for the unknown, ‘Aq’ for its square, and so on. Harriot, who had
introduced a similar practice earlier, simply used a cumulative notation to indi-
cate the powers: ‘a’, ‘aa’, ‘aaa’, and so on. Harriot’s and Vieta’s moves help to
keep track of more than one unknown quantity in an equation, thus making it
easier to extend the range of relationships that could be expressed by algebraic
equations. The move is analogous to Leibniz’s already-mentioned introduction
of an explicit notation for the variable of differentiation, for example in dx

dt ,
as opposed to Newton’s dot-notation (Ûx), with a single implicit variable of
differentiation.
The move from ‘aaa’ to ‘a3’ is worth pointing out because it can be observed

as another general pattern in the development of various notational systems (see
Section 5.2.2). For example, while an abacus was traditionally used by simply

126 Grosholz (2007).
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putting the desired number of pebbles on a line, such as ‘◦ ◦ ◦’, Gerbert of
Aurillac introduced labeled tokens, such as ‘ 3 ’. Similarly, in order to shorten
and generalize expressions with n parentheses, such as ‘))…))’, the logician

Herbrand used a single parenthesis with a numerical label, such as ‘
n
]’, and he

also wrote ‘[m]’ to indicate a group of m dots.127 In this pattern of notational
change, which wemight call numeralization, cumulative arrangements of char-
acters (which are easy to perceive for small quantities) are replaced by a single
character with a numerical or variable label (which are more concise and can
easily accommodate any number).
The two extensions of Diophantus’ notation, first, by introducing a symbolic

connection between the unknown and its powers and, second, by representing
the powers by numerals, were developed independently of each other; but ulti-
mately they were combined in the notations of Hérigone and Descartes, both of
which are very similar to our contemporary notation. Further extensions of the
notation, for example, by generalizing from ‘3’ to ‘n’, or by exploring the use
of ‘−3’ and ‘ 13 ’ instead of ‘3’, illustrate again how the adoption of a notation
can open up novel conceptual developments.
Another way in which a notation can lead to hitherto unthought-of possibil-

ities is by allowing, as a notational artifact, a combination of primitives that is
meaningless under the original interpretation. For this to happen, the operative
nature of mathematical notations is essential. Notational artifacts have already
been discussed in Section 3.1.4, so the reader is reminded here only of the most
famous example in which the manipulation of meaningful expressions resulted
in meaningless expressions that precipitated the introduction of a new mathe-
matical notion, namely complex numbers. Once the use of negative numbers
and the operation of taking roots had been adopted by early algebraists, their
study of algorithms for the solution of polynomial equations led them to situa-
tions in which they had to take the root of a negative number. For example, in
the 1545 edition of Cardano’s Ars Magna we find him having to multiply the
two terms 5. p.R.m. 15. and 5.m.R.m. 15. resulting in 25.m.m. 15, that is, 40.
(In modern notation, the two terms are 5+

√
−15 and 5−

√
−15. In their product,

25 + 5
√
−15 − 5

√
−15 + 15, the terms involving the factor

√
−15 cancel each

other out, leaving a result of 40.) More generally, through the application of
previously accepted rules for manipulating their expressions, mathematicians
were confronted with expressions, such as ‘R.m. 15’, for which they had no
meaningful interpretation. After all, how could the multiplication of a number
with itself yield a negative number? While many remained uneasy with these

127 Goldfarb (1971, 220).
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expressions, they were nevertheless used in the calculations, as long as they
canceled out eventually and thus did not appear in the solution of a problem.
Such expressions had been used successfully, albeit somewhat reluctantly,128

for centuries before complex numbers were accepted as bona fidemathematical
entities.
We should be careful of not oversimplifying the historical development of

algebraic notations as leading to better notations. The focus of the preceding
discussion was only on considerations regarding the way in which notations
can implicitly suggest generalizations and further conceptual developments.
However, whether these considerations should be the main factor in the eval-
uation of a notation is debatable, as the goodness of any notation depends on
what we want to use the notation for. A more thorough discussion of the his-
tory of these notations should involve an identification of the tasks they were
actually used for and a study of particular methods that were employed. The
fact that notational changes, even if they appear obvious and straightforward in
retrospect, take time to be implemented and that new notations are not adopted
quickly, suggests that the adoption of a notation might have been based on
considerations that are different from those we currently deem most important.
We have also seen that the notations in question are not all expressively equiv-
alent and should therefore be understood as ultimately referring to different
intended subject matters. While the preceding examples illustrate some ways
of opening up and blocking off conceptual possibilities, only a more detailed
analysis can reveal whether the notations were the actual driving force behind
later developments, or whether they were introduced to express conceptual
advances; what I suspect to be the most common case is that notational and
conceptual innovations go hand in hand.

6 Concluding Remarks
6.1 Summary

In the previous pages we have seen an outline of a philosophy of notations.
First, we gave a characterization of mathematical notation systems: They
consist of

characters that are systematically arranged into expressions,
which can be manipulated into other expressions by transformation rules.

In other words, the combination of character shapes, their structural arrange-
ments, and operations on expressions determine a particular notational system.

128 See, for example, the quote by Cauchy on p. 5.
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The main conceptual and terminological distinctions of these components of
notations were presented in Section 2.
To guide and focus the investigation of the use of notational systems in

practice, six different aspects were introduced and discussed in Section 3 (see
Figure 2 for an overview):

(1) the intended subject matter, (2) verbalization, (3) users and their
resources, (4) tasks and applications, (5) the material basis, and (6) the
historical context.

As these aspects are heavily intertwined and any particular application can
involve any of them, it is crucial for a systematic discussion of notational
systems to try to deal with them separately.
Some of the key insights regarding the nature of mathematical notations

are the following. While mathematical notations share many properties with
systems of representations, they are not purely representational, because it is
possible that some expressions in a notational system do not represent anything
from the intended subject matter. This is a consequence of the operational, cre-
ative aspect of mathematical notational systems, which they share with natural
and formal languages. In analogy with languages, learning a notational sys-
tem transforms the users’ cognition, so that notations do not merely express
thoughts, but they can be constitutive for thoughts: We can think in symbols.
Considerations about practical aspects can also guide the design and com-

parative assessment of notational systems, as discussed in Section 4. Here, it
is important to keep in mind that notational design is ultimately a matter of
trade-offs and compromises. On the basis of these discussions, we turned, in
Section 5, to more traditional philosophical questions regarding the epistemo-
logical, ontological, and methodological roles of notations. Here, we identified
grouping, symbolization, and numeralization as general patterns of notational
change. In addition, we have seen how design choices made for a particular
notation can open up new conceptual possibilities as well as block off oth-
ers. Thereby, the formulation of a notational system can sharpen and transform
our understanding of a subject matter and, through its unanticipated and unin-
tended consequences, it can also contribute in an essential way to the further
development of the science.

6.2 On the Study of Notations
Because discussions of notations are often biased toward the most familiar
notations, it is important to be aware of this difficulty. Methodologically, fol-
lowing the advice of Tolchinsky and Wittgenstein, the best way to attend to the
problem of familiarity is to get very well acquainted with alternative notations
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and to look out for trade-offs that arise when studying different aspects of a
notation. Due to familiarity and narrow focus, details can easily be overlooked,
and plausible, but unwarranted, explanations taken for granted (e.g., the empha-
sis on the role of a symbol for zero and its relation to place-value systems for
numbers). While it might be tempting to investigate sophisticated notations for
advanced subject matters (e.g., Feynman diagrams for the interactions between
subatomic particles, diagrams for quantum processes, or computer program-
ming languages), the complexities of the subject matter and the necessary
background knowledge can make it more difficult to identify what exactly are
the contributions of the notation and what results from a specific conceptualiza-
tion of the subject matter. In contrast, we have seen that even simple examples,
such as those from arithmetic and propositional logic used throughout this
Element, provide a rich and fruitful resource for philosophical reflections.
Since the present introduction to the philosophy of notations is also intended

to provide a practical toolbox for philosophical inquiries about notations, here
are twenty-five questions to reflect upon when studying notations. They are
organized around the different aspects shown in Figure 2: (1)What are the char-
acters, arrangements, and manipulation rules of the notation? (2) What is the
nature of the relation to the intended subject matter? (3) How does the notation
carve up the subject matter into primitives? (4) How are the primitives of the
subject matter mapped onto the notational elements? (5) What new conceptual
possibilities are opened up by the notation? (6) What conceptual possibilities
are blocked off by the notation? (7) What is the relation to prior verbaliza-
tions of the subject matter? (8) How is the notation verbalized? (9) Who are
the intended users of the notation? (10) How difficult is the notation to learn?
(11) Which perceptual and cognitive resources are required for understanding
the notation? (12)What are the main intended tasks for the notation? (13)What
other tasks can it be used for? (14) What algorithms can be applied to solve the
tasks? (15) How do the notational features influence the execution of these
algorithms? (16) What are the complexities of these algorithms in terms of
time, space, and required perceptual, cognitive, and computational resources?
(17)What is the intendedmaterial basis for the notation and how does this affect
the other aspects? (18) What is the complexity of producing inscriptions (writ-
ing)? (19)What are the notational traditions in play? (20) How can the notation,
and similar ones, be classified into families of notations? (21) What is the his-
torical development of the notation? (22) What pressures lead to changes in
notations? (23) What factors, for example, pragmatic, cognitive, or sociologi-
cal, contributed to the acceptance of notations? (24) Did the notational change
follow a change in subject matter, or was it the other way around? (25) What
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are alternative (ideally, informationally equivalent) notations and how are the
preceding questions answered for those?

6.3 Interdisciplinary Outlook
The conceptual clarification of the nature of notations and their components is
a distinct part of the philosophy of notations. In addition, we have seen that
the study of the design and use of notations also engages with and profits from
insights from other areas of philosophy and other disciplines. This can be seen,
on the one hand, from the fact that we included language, users, inscriptions,
and historical context among the aspects of notations in practice, and, on the
other hand, from the questions suggested at the end of the previous section.
Thus, while ontological considerations are an important aspect in the philoso-
phy of notations, the systematic study of mathematical notations is really a truly
interdisciplinary enterprise. To conclude this Element, let me briefly sketch
some of these connections.
In addition to the philosophy of mathematics and science, the study of nota-

tional systems, understood as specifically regimented languages, clearly bears
upon the philosophy of language and linguistics. And, because of the close
connection between notations and thought, a better understanding of notations
can also be relevant for discussions in the philosophy of mind, in particular
in regard to theories of extended mind and enculturated cognition, for exam-
ple, regarding the notion of derived content.129 Taking seriously the idea of
notations as cognitive tools, the study of notations is also related to considera-
tions regarding the effective visualization of information, such as the work of
Tufte,130 and the design of material artifacts, such as Norman’s The Design of
Everyday Things (2013).
The interplay between notations and cognition has been studied in psychol-

ogy, cognitive science, and mathematics education. The sequence of numerals
is frequently credited for contributing to the learning of arithmetic in develop-
mental psychology, but there is a lacuna with regard to its exact role, including
the differences that various systems of numerals can make. Similar points can
be made in regard to learning the relation between symbols and their meanings.
The spontaneous associations between shapes and sounds (e.g., zigzag shapes
and ‘kiki’ versus curvy shapes and ‘bouba’) are well-established topics in cog-
nitive science research,131 but those between shapes and other semantic content

129 See Vold and Schlimm (2020).
130 See, for example, Tufte (2001).
131 Ramachandran and Hubbard (2001).
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(e.g., symmetric symbols and commutativity of the denoted relation) are still to
be explored further.132 This research, together with the impact of the structure
of notations on the learning and understanding of mathematics, can have impor-
tant consequences for mathematics education.133 In Polya’s influential guide to
mathematical problem solving, an oft-used piece of advice is: “Introduce suit-
able notation.”134 For spelling out the notion of suitability invoked by Polya, it
is indispensable to be familiar with the principles underlying notational design.
As concepts are abstract and intangible, their development can only be traced

through their representations. Thus, the historical developments of notations
can be an invaluable resource for the study of the history of ideas and practices.
An intentionally crafted notation can encapsulate some of the considerations
that went into its design and can inform the historian about a user’s philosoph-
ical assumptions and thought processes. Notational changes are often due to
some kind of pressure, which can be different in the case of individuals or in
the case of more large-scale changes, and from the design choices of notations
we can reason about their intended applications and uses. To avoid the dangers
of familiarity and of drawing conclusions too hastily, a good understanding of
the aspects and issues discussed in this Element will be helpful in the further
systematic study of mathematical notations.

132 Wege et al. (2020).
133 See, for example, Lengnink and Schlimm (2010).
134 Polya (1954, 150).
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