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Bundles on Pn with vanishing lower
cohomologies

Mengyuan Zhang

Abstract. We study bundles on projective spaces that have vanishing lower cohomologies using their
short minimal free resolutions. We partition the moduliM according to the Hilbert functionH and
classify all possible Hilbert functions H of such bundles. For each H, we describe a stratification of
MH by quotients of rational varieties. We show that the closed strata form a graded lattice given by
the Betti numbers.

Introduction

In this paper, we study bundles (i.e. locally free coherent sheaves) E on Pn such
that

H i(E (t)) = 0, ∀t ∈ Z, ∀1 ≤ i ≤ n − 2.(†)

�ese include all bundles on P2 in particular. Note that (†) is an open condition on a
family of bundles by the semicontinuity of cohomologies. A rank r bundle E on Pn

satisfying (†) admits a resolution by direct sums of line bundles of the form

0→ l

⊕
i=1

OPn(−a i) φÐ→ l+r

⊕
i=1

OPn(−b i)→ E → 0.

A minimal such resolution is unique up to isomorphism, and the integers a =
(a1 , . . . , a l) and b = (b1 , . . . , b l+r) are invariants of E called the Betti numbers.

�e main results in this paper are the following:
In Section 1, we classify all Betti numbers of rank r bundles on Pn satisfying (†),

generalizing results from Bohnhorst and Spindler [3] for the case r = n. Accordingly,
we classify all possibleHilbert functions of such bundles, and introduce a compactway
to represent and to generate them. We show that there are only finitely many possible
Betti numbers of bundles satisfying (†) with fixed first Chern class and bounded
regularity, generalizing the observation of Dionisi and Maggesi [4] for r = n = 2. We
then give examples to show that the semistability of such a bundle is not determined
by its Betti numbers in general, in contrast to the case when r = n discussed in [3].

In Section 2, we define natural topologies on VB
†
Pn(H) and VB

†
Pn(a, b), the set

of isomorphism classes of bundles on Pn satisfying (†) with Hilbert function H
and with Betti numbers (a, b) respectively. �e topologies are induced from the
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rational varieties of matrices whose ideals of maximal minors have maximal depth.
We show that all Betti numbers of bundles in VB

†
Pn(H) form a graded lattice under

the partial order of canceling common terms. �is lattice is downward closed and
infinite in general, where the subposet of Betti numbers up to any given regularity is a
finite graded sublattice. Finally, we describe the stratification of VB†

Pn(H) by various
subspaces VB†

Pn(a, b). We show that the closed strata intersect along another closed
stratum, and that they form a graded lattice dual to the lattice of Betti numbers. An
open subsetVB†

Pn(H)ss ofVB†
Pn(H) is a subscheme of the coarsemoduli spaceM(χ)

of semistable torsion-free coherent sheaves with Hilbert polynomial χ, and similarly
for an open subset VB†

Pn(a, b)ss of VB†
Pn(a, b). �e same description applies to the

stratification of VB†
Pn(H)ss by VB†

Pn(a, b)ss on the level of topological spaces.
�e study of vector bundles on algebraic varieties is central to algebraic geometry.

In particular, the study of bundles on projective spaces already presents interesting
challenges. We do not attempt to give a survey of the subject here. Instead, we provide
some historical perspectives to motivate the investigations in this paper.

Maruyama [18] proved that the coarsemoduli space of rank two semistable bundles
on a smooth projective surface exists as a quasi-projective scheme. In the same paper,
it was shown that the coarse moduli spaceMP2(2, c1 , c2)s of stable rank two bundles
onP2 with givenChern classes is smooth and irreducible. Following this development,
Barth [2] showed that MP2(2, c1 , c2)s is connected and rational for c1 even, and
Hulek [17] did the same for c1 odd. �eir arguments contained a gap which was
pointed out and partially fixed in [20] and independently in [8]. �e existence of the
coarse moduli space of semistable torsion-free sheaves of arbitrary rank on a smooth
projective variety was finally established by Maruyama [19]; see [20] for another
exposition.

Despite the progress in the theory of moduli, there are many basic questions about
bundles on projective spaces that are unanswered; see [16] for a problem list. For
example, Hartshorne’s conjecture [15] states that a rank r bundle on Pn is the direct
sum of line bundles when r < 1

3n. In particular, the conjecture predicts that rank two
bundles on Pn are split when n ≥ 7. On the other hand, the only known example (up
to twists and finite pullbacks) of an indecomposable rank two bundle on P4 and above
is the Horrocks–Mumford bundle [11]. It is fair to say that bundles of small rank on
Pn remain mysterious.

�is paper is motivated by two main objectives in the study of bundles.
(1) To classify certain invariants of bundles on Pn .
To expand on this point, the Hilbert polynomial is an important invariant of a

bundle that is constant in a connected flat family, and thus indexes the connected
components of the moduli space (of some subclasses of bundles, e.g. semistable).
Note that the Hilbert polynomial can be computed from the Chern polynomial
and vice versa. �us the classification of Hilbert polynomials is equivalent to the
classification of Chern classes.�eHilbert function eventually agrees with the Hilbert
polynomial, and thus provides finer information. Furthermore, the Hilbert function
can be computed from the Betti numbers of a free resolution of (the section module
of) a bundle. �erefore the Betti numbers are even finer invariants of a bundle.
Consequently, the classification of Betti numbers of bundles will lead to a classification
of the Hilbert functions and Hilbert polynomials (equivalently Chern classes). In this
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paper, we take the first step by classifying the Betti numbers of bundles when their
resolutions are short. It turned out that this condition implies that these bundles have
rank greater than the dimension of the ambient projective space with the exceptions
of direct sums of line bundles.

(2) To provide examples of bundles with given invariants.
In the best scenario, the moduli space or the space of isomorphism classes of

bundles with given invariants is unirational, in which case the image of a random
point in the projective space will give us a “random” bundle with given invariants. For
example, Barth’s parametrization ofMP2(c1 , c2)s using nets of rank two quadrics [2]
allows us to produce “random” rank two bundles on P2 with given Chern classes. Here
we can see the importance of using finer invariants. SinceMP2(c1 , c2)s is irreducible,
a general bundle produced using Barth’s parametrization will be presented by a
matrix of linear and quadratic polynomials by the main theorem in [4]. �erefore
producing a bundle that is presented by a matrix of forms of other degrees, which
is special in the moduli MP2(c1 , c2)s , is like looking for a needle in a haystack. On
the other hand, if we stratifyMP2(c1 , c2)s using the finer invariants of Betti numbers
(a, b), then each piece MP2(a, b)s is still unirational and we can thus produce a
“random” bundle that is presented by a matrix of forms of given degrees whenever
possible.

�e results in this paper are implemented in the Macaulay2 [12] package
BundlesOnPn [22], which generates all Betti numbers of bundles satisfying (†) up to
bounded regularity as well as “random” bundles with given Betti numbers.

1 Free Resolutions of Bundles

�roughout, we work over an algebraically closed field k. We fix R ∶= k[x0 , . . . , xn] to
denote the polynomial ring of Pn . For a coherent sheafF on Pn , we writeH i

∗(F ) for
the R-module⊕t∈Z H

i(F (t)). We write VB†
Pn for the set of isomorphism classes of

bundles on Pn satisfying (†).
We start with a standard observation on the relation between the vanishing of lower

cohomologies of a coherent sheaf and the projective dimension of its section module.

Proposition 1.1 Let M be a finitely generated graded R-module. �en pdimRM ≤ 1 iff
M ≅ H0

∗(M̃) and H i
∗(M̃) = 0 for all 1 ≤ i ≤ n − 2.

Proof Let H i
m(−) denote the ith local cohomology module supported at the homo-

geneous maximal idealm of R. �ere is a four-term exact sequence

0→ H0
m(M)→ M → H0

∗(M̃)→ H1
m(M)→ 0

along with isomorphisms H i+1
m (M) ≅ H i

∗(M̃) for 1 ≤ i ≤ n. By the vanishing cri-
terion of local cohomology, we have depth M = inf{i ∣ H i

m(M) ≠ 0}. Finally, the
Auslander–Buchsbaum formula states that pdimM = n + 1 − depthM.�e statement
follows. ∎
Definition 1.2 Let E be a rank r bundle on Pn satisfying (†). By �eorem 1.1,
the R-module H0

∗(E ) admits a unique (up to isomorphism) minimal graded free
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R-resolution

0→ l

⊕
i=1

R(−a i) ϕÐ→ l+r

⊕
i=1

R(−b i)→ H0
∗(E )→ 0.(⋆)

We always arrange the numbers a1 ≤ ⋅ ⋅ ⋅ ≤ a l and b1 ≤ ⋅ ⋅ ⋅ ≤ b l+r in ascending order,
and write a and b for brevity. We call (a, b) the Betti numbers of E .

Note that E is isomorphic to a direct sum of line bundles iff H0
∗(E ) is a free R-

module iff l = 0 and the sequence a is empty.
�e resolution (⋆) of graded R-modules sheafifies to a resolution

0→ l

⊕
i=1

OPn(−a i)
φÐ→ l+r

⊕
i=1

OPn(−b i)→ E → 0(⋆⋆)

of E by direct sums of line bundles. Conversely, a resolution (⋆⋆) of E by direct sums
of line bundles gives rise to a free resolution (⋆) of the R-module H0

∗(E ) under the
functor H0

∗(−). With this understanding, we shall speak of these two resolutions of
modules and sheaves interchangeably. In particular, themorphism φ is calledminimal
iff the corresponding map of R-modules ϕ is minimal, i.e. ϕ ⊗R k = 0.

1.1 Betti numbers

In this subsection we classify the Betti numbers of bundles in VB
†
Pn .

For a pair (a, b) of finite sequences of integers in ascending order, we write
VB

†
Pn(a, b) for the set of isomorphism classes of bundles with Betti numbers (a, b).

For a sequence of integers d ∶= (d1 , . . . , d l), we define

L(d) ∶=
l

⊕
i=1

R(−d i) and L(d) ∶=
l

⊕
i=1

OPn(−d i).

�eorem 1.3 Let a = (a1 , . . . , a l) and b = (b1 , . . . , b l+r) be two sequences of integers
in ascending order for some l ≥ 0 and r > 0. �e set VB†

Pn(a, b) is nonempty iff a is
empty or

r ≥ n and a i > bn+i for i = 1, . . . , l .(A)

In this case, the cokernel of φ represents the class of a bundle inVB†
Pn(a, b) for a general

minimal map φ ∈ Hom(L (a),L (b)).

�is generalizes the results of Bohnhorst and Spindler [3] for r = n. Likewise, we say
a pair of ascending sequences of integers (a, b) is admissible if it satisfies the equivalent
conditions of �eorem 1.3.

�e fact that a bundle E satisfying (†) that is not a direct sum of line bundles
must have rank r ≥ n also follows from the Evans–Griffith splitting criterion [9,
�eorem 2.4].

In order to prove �eorem 1.3, we need two lemmas regarding depth of ideals
generated by minors of matrices.
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Let S denote a noetherian ring and let ϕ ∶ S p → Sq be a map between two free
S-modules. For any integer r, the ideal Ir(ϕ) of (r × r)-minors of ϕ is defined as the
image of the map ∧rS p

⊗S (∧rSq)∗ → S, which is induced by the map ∧rϕ ∶ ∧rS p →
∧
rSq .
Similarly, let φ ∶⊕p

i=1 OPn

A
(−a i)→⊕q

i=1 OPn

A
(−b i) be a morphism of sheaves on

Pn
A over a noetherian ring A. Set S ∶= A[x0 , . . . , xn] and let ϕ ∶⊕p

i=1 S(−a i)→
⊕q

i=1 S(−b i) denote the corresponding morphism of graded free S-modules given by
H0
∗(φ). For any integer r, we define Ir(φ) = Ir(ϕ) as an ideal in S.
�e depth of a proper ideal I in a noetherian ring S is defined to be the length of a

maximal regular sequence in I.�e depth of the unit ideal is by convention+∞. Recall
that if S is Cohen–Macaulay, then depth I = codim I for every proper ideal I.

Lemma 1.4 Let A be a finitely generated integral domain over k, and let S be a finitely
generated A-algebra. Suppose ϕ ∶ Sq → S p is a morphism of free S-modules with p ≥ q.
For a prime P of A, let ϕP denote the morphism ϕ ⊗A k(P) of free modules over the fiber
ring S ⊗A k(P). For any integer d, the set of primes P in A such that depth Iq(ϕP) ≥ d
is open in A.

Proof Note that Iq(ϕ) = Iq(ϕ∗). Let K●(ϕ∗) be the Eagon–Northcott complex
associated to ϕ∗ as in [6]. Note that the formation of the Eagon–Northcott complex
is compatible with taking fibers, i.e. K●(ϕ∗)⊗A k(P) =K●(ϕ∗ ⊗A k(P)). For each
prime ideal P of A, we have depth Iq(ϕ∗P) ≥ d iff K●(ϕ∗)⊗A k(P) is exact a�er
position p − q + 1 − d by the main theorem in [6].�e statement of the lemma follows
from the general fact that the exactness locus of a family of complexes is open; see
E.G.A IV 9.4.2 [13]. ∎

Lemma 1.5 Let S be a standard graded finitely generated k-algebra, that is, S is
graded by N and generated by S1 over S0 = k. Let ϕ ∶⊕q

i=1 S(−a i)→⊕p
i=1 S(−b i) be

a morphism of graded free S-modules with p ≥ q, and assume that ϕ is minimal, i.e.
ϕ ⊗S k = 0. Suppose that relative to some bases, the matrix of ϕ has a block of zeros of
size u × v. �en codim Iq(ϕ) ≤ p − q + 1 − inf(u + v , p + 1) + inf(u + v , q).

Proof For the case of generic matrices over a field, this is a result of Giusti–
Merle [10]. We fix, once and for all, bases of the domain and target of ϕ, and let
Z ⊂ {1, . . . , p} × {1, . . . , q} be the u × v rectangle where the matrix of ϕ has zero

entries. Consider the polynomial ring A ∶= k [{x i j}1≤i≤p1≤ j≤q] /(x i j ∣ (i , j) ∈ Z), which
is the coordinate ring of the affine space of (p × q)-matrices with a zero block of
size u × v in position Z. Let ψ ∶ A(−1)q → Ap be the morphism given by the generic
matrix (x i j). �en codim Iq(ψ) = p − q + 1 − inf(u + v , p + 1) + inf(u + v , q) by [10,
�eorem 1.3].

�e general case follows from Serre’s result on the superheight of prime ideals in a
regular local ring. �e map ϕ corresponds to a morphism of k-algebras A→ S, where
x i j is sent to the entry of the matrix of ϕ relative to the fixed bases. In particular,
note that Iq(ϕ) = SIq(ψ). Let m and m′ denote the homogeneous maximal ideals of
A and S respectively. Since all entries of ϕ are inm′ by assumption, we have an induced

https://doi.org/10.4153/S0008414X20000292 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X20000292


998 M. Zhang

morphism on the localizations Am → Sm′ where Sm′m ⊂ m′. Let P be a prime above
Am Iq(ψ) of the least codimension. Since Sm′P ⊂ m′, Serre’s result on superheight on
prime ideals in a regular local ring [21] implies that codim Sm′P ≤ codim P. Now Iq(ψ)
and SIq(ψ) are homogeneous, and Sm′ Iq(ψ) ⊂ Sm′P. �erefore we conclude that

codim SIq(ψ) = codim Sm′ Iq(ψ)
≤ codim Sm′P

≤ codim P

= codim Am Iq(ψ)
= codim Iq(ψ)
= p − q + 1 − inf(u + v , p + 1) + inf(u + v , q). ∎

�e following is a simple fact that allows us to translate between bundles and
homogeneous matrices whose ideals of maximal minors have maximal depth.

Proposition 1.6 Let a = (a1 , . . . , a l) and b = (b1 , . . . , b l+r) for some l > 0 and r ≥ 0.
For a map φ ∈ Hom(L (a),L (b)), the cokernel of φ is a rank r bundle on Pn iff
depth I l(φ) ≥ n + 1. In this case, we have a resolution of E ∶= coker φ by direct sums
of line bundles

0→L (a) φÐ→L (b)→ E → 0.

Proof �e rank of coker φ is r iff Ir(φ) is nonzero iff φ is injective at the generic
point of Pn iff φ is injective. �e ideal Ir(φ) cuts out points on Pn where coker φ is
not locally free of rank r. �us coker φ is a rank r bundle iff Ir(φ) is the unit ideal
or is m-primary, where m is the homogeneous maximal ideal of R. In either case
depth Ir(φ) ≥ n + 1. ∎

Proof of �eorem 1.3 If a is empty, then E ∶=L (b) has Betti numbers (a, b).
Suppose a is nonempty and (a, b) satisfies condition (A). Consider the minimal map
φ ∶L (a)→L (b) given by the following matrix
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Since φ drops rank nowhere on Pn , we conclude that E ∶= coker φ is a rank r bundle
with a resolution by direct sums of line bundles

0→L (a) φÐ→L (b)→ E → 0

by Proposition 1.6. Since φ is minimal, it follows from Proposition 1.1 that E ∈
VB

†
Pn(a, b).
Conversely, suppose VB†

Pn(a, b) is nonempty and a is nonempty. �en there is a
minimal map φ ∈ Hom(L (a),L (b)) where coker φ is a rank r bundle E . Since φ
is minimal, it follows that I l(φ) ⊂ I1(φ) ⊂ m is a proper ideal. By Proposition 1.6, we
have depth I l(φ) = n + 1. By the main theorem in [6], we have depth I l(φ) ≤ l + r −
l + 1 = r + 1. It follows that wemust have r ≥ n. Now suppose on the contrary that there
is an index 1 ≤ i ≤ l where a i ≤ bn+i . Since φ is minimal, we see that the (n + i , i)th
entry in the matrix of φmust be zero. In fact, since a and b are in ascending order, we
must have a block of zeros of size (l + r − n − i + 1) × i as follows:

By�eorem 1.5, we conclude that

depth I l(φ) ≤ l + r − l + 1 − inf(l + r − n + 1, l + r + 1) + inf(l + r − n + 1, l)
= r + 1 − (l + r − n + 1) + l
= n.

�is is a contradiction to the fact that depth I l(φ) = n + 1.
Now we prove the last statement. It is obvious when a is empty, so we assume a

is nonempty. �e set Hom(L (a),L (b)) has the structure of the closed points of
an affine space AN . �e subset of minimal maps is an affine subspace AM . �ere is a
tautological morphism Φ ∶⊕l

i=1 OPn×AM(−a i)→⊕l+r
i=1 OPn×AM(−b i), where the fiber

ΦP for a closed point P of AM is given by the minimal map that P corresponds to. By
Lemma 1.4, the setU of points inAM where depth I l(ΦP) ≥ n + 1 is open. Since there
is a morphism φ ∈ Hom(L (a),L (b)) whose cokernel is a bundle E ∈ VB†

Pn(a, b),
by Proposition 1.6 the map φ corresponds to a closed point in U. It follows that U is
open and dense in AM . ∎

Recall that the category of bundles on Pn is a Krull–Schmidt category [1], i.e. every
bundle E admits a decomposition E ≅ E0 ⊕L , unique up to isomorphism, whereL

is the direct sum of line bundles and E0 has no line bundle summands.
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Corollary 1.7 Let E ∈ VB†
Pn(a, b) for some a nonempty. If E ≅ E0 ⊕L is the Krull–

Schmidt decomposition of E , then n ≤ rank E0 ≤max{ j ∣ a l > b l+ j}.

Proof Set s ∶=max{ j ∣ a l > b l+ j} and define b′ ∶= b1 , . . . , bs . Let π ∶L (b)→L (b′)
be the coordinate projection. If φ ∈ Hom(L (a),L (b′)) is a minimal map whose
cokernel is a bundle E , then we claim that φ′ ∶= π ○ φ is a minimal map in
Hom(L (a),L (b)) whose cokernel is a bundle E

′. To see this, observe that since
a l ≤ b l+i for s < i ≤ r and φ is minimal, the last (r − s) rows of the matrix repre-
senting φ relative to any bases are zero. In particular, we have I l(φ) = I l(π ○ φ). By
Proposition 1.6, the cokernel of φ′ is a bundle. It follows from the snake lemma that
E ≅ E

′
⊕L , where L is the kernel of the projection π. �is shows that rank E0 ≤ s.

Observe that E0 also satisfies (†) and thus rank E0 ≥ n by�eorem 1.3. ∎

1.2 Finiteness

In this subsection, we show that there are only finitely many possible Betti numbers
of bundles in VB

†
Pn with given rank, first Chern class and bounded regularity.

Recall that a coherent sheaf F on Pn is said to be d-regular if H i(F (d − i)) = 0
for all i > 0.�eCastelnuovo–Mumford regularity ofF is the least integer d such that
F is d-regular. By the semicontinuity of cohomologies, being d-regular is an open
condition for a family of coherent sheaves on Pn . �e notion of regularity also exists
for graded R-modules. See [7] for an exposition.

If E ∈ VB†
Pn(a, b), then reg E =max(b l+r , a l − 1). Since the regularity depends

only on the Betti numbers, we define reg (a, b) ∶=max(b l+r , a l − 1) for any admissible
pair (a, b).

Proposition 1.8 �ere are only finitely many possible Betti numbers (a, b) of rank r
bundles on Pn satisfying (†) with fixed first Chern class c1 and regularity ≤ d.
Proof Since c1 = ∑l

i=1 a i −∑l+r
i=1 b i , the statement is evidently true for direct sums

of line bundles. �us we may consider the case l > 0. Since a i and b i are bounded
above by d + 1, we only need to show that l is bounded above and b1 is bounded below.
Consider the following inequalities:

l ≤
l

∑
i=1

(a i − b i+n)

= c1 +
n

∑
i=1

b i +
l+r

∑
i=l+n+1

b i

≤ c1 + r ⋅ d .
And similarly,

b1 = −c1 −
n

∑
i=2

b i −
l+r

∑
i=l+n+1

b i +
l

∑
i=1

(a i − b i)

≥ −c1 − (r − 1) ⋅ d + l . ∎

�is generalizes the observation of Dionisi–Maggesi [4] for the case n = r = 2.
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1.3 Hilbert functions of bundles

In this subsection, we classify the Hilbert functions of bundles inVB†
Pn . We introduce

an efficient way to represent and generate them.
Recall that theHilbert function of a bundle E on Pn is the function HE (t) ∶ Z→ Z

given by HE (t) = dimk H
0(E (t)). For any function H ∶ Z→ Z, we define VB†

Pn(H)
to be the subset of VB†

Pn consisting of isomorphism classes of bundles with Hilbert
function H.

Definition 1.9 �e numerical difference of a function H ∶ Z→ Z is a function ∂H ∶
Z→ Z given by ∂H(t) ∶= H(t) −H(t − 1). We inductively define ∂ i+1H ∶= ∂∂ iH.

Note that if H ∶ Z→ Z is a function such that H(t) = 0 for t ≪ 0, then H can be
recovered by its ith difference ∂ iH for any i ≥ 0.

�eorem 1.10 A function H ∶ Z→ Z is the Hilbert function of a rank r bundle E ∈
VB

†
Pn if and only if

(1) ∂nH(t) = 0 for t ≪ 0 and ∂nH(t) = r for t ≫ 0,
(2) ∂nH(t + 1) < ∂nH(t) implies that ∂nH(t + 1) ≥ n.

Proof Let µ(d , t) denote the number of times an integer t occurs in the sequence d.
(Ô⇒): Suppose E is a rank r bundle in VB

†
Pn(H). �e Grothendieck–Riemann–

Roch formula states that

χ(E (t)) = ∫
Pn

ch(E (t)) ⋅ td(TPn).

A routine computation shows that the leading coefficient of the Hilbert polynomial
χ(E (t)) is r ⋅ tn/n!. Since the Hilbert function H eventually agrees with the Hilbert
polynomial, we see that ∂nH(t) = 0 for t ≪ 0 and ∂nH(t) = r for t ≫ 0.

Let (a, b) be the Betti numbers of E . If a is empty, then E is a direct sum of line
bundles and ∂nH is monotone nondecreasing and thus satisfies both conditions. We
prove the case where a is nonempty. Consider the minimal free resolution

0→ L(a)→ L(b)→ H0
∗(E )→ 0.

A simple calculation shows that ∂n+1H(R(−a), t) is the delta function at a. It follows
from theminimal resolution that ∂n+1H(t) = µ(b, t) − µ(a, t). Suppose ∂nH(t + 1) <
∂nH(t) for some t, then ∂n+1H(t + 1) < 0 and thus µ(a, t + 1) > 0. Let j be the largest
index where a j = t + 1. By�eorem 1.3, we have a j > b j+n and therefore

∂nH(t + 1) = ∑
i≤t+1

∂n+1H(i) = ∑
i≤t+1

(µ(b, i) − µ(a, i)) ≥ j + n − j = n.

(⇐Ô): Conversely, suppose H satisfies the conditions of the theorem. We define
the ascending sequences of integers α and β by the property that for all t ∈ Z,
µ(α, t) =max{0, ∂nH(t − 1) − ∂nH(t)}, µ(β, t) =max{0, ∂nH(t − 1) − ∂nH(t)}.
By the first condition on H, the sequences α and β are finite. Furthermore, if α has

length l then β has length l + r. �e second condition on H implies that a i ≥ b i+n for
all 1 ≤ i ≤ l . Since α and β share no common entries by construction, it follows that
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a i > b i+n for all 1 ≤ i ≤ l . By �eorem 1.3, there is a rank r bundle E on Pn satisfying
(†) with Betti numbers (α, β). �e Hilbert function of E is H by the reasoning of the
previous direction. ∎

�e above theorem suggests that we use the finitely many intermediate values of
∂nH to encode the infinitely many values of the Hilbert function H.

Definition 1.11 A finite sequence of integers B = B1 , . . . , Bm for some m ≥ 1 is called
a bundle sequence of rank r if it satisfies the following:

(1) B i > 0 for 1 ≤ i ≤ m;
(2) Bm = r and Bm−1 ≠ r;
(3) B i+1 < B i implies B i+1 ≥ n.

If E is a rank r bundle in VB
†
Pn(H) for some Hilbert function H, then we set

s0 ∶= inf{t ∣ ∂nH(t) ≠ 0}, s1 ∶= sup{t ∣ ∂nH(t) ≠ r}.
�e sequence ∂nH(s0), ∂nH(s0 + 1), . . . , ∂nH(s1 + 1) is a bundle sequence of rank r
by�eorem 1.10, which we call the bundle sequence of H and of E .

By �eorem 1.10, there is a one-to-one correspondence between the set of Hilbert
functions of rank r bundles in VB

†
Pn up to shi� and the set of bundles sequences of

rank r. �e ambiguity of shi� disappears if we deal with normalized bundles.

Definition 1.12 We say a rank r bundle on Pn is normalized if −r < c1(E ) ≤ 0. Since
c1(E (t)) = c1(E ) + r ⋅ t, it follows that every bundle can be normalized a�er twisting
by the line bundle O(−⌈c1(E )/r⌉).

We define the degree of a bundle sequence B = B1 , . . . , Bm , denoted by degB, to be
the sum B1 + ⋅ ⋅ ⋅ + Bm .

Proposition 1.13 If a normalized rank r bundle E ∈ VB†
Pn has bundle sequence B, then

reg E ≥ ⌈degB/r⌉ − 2.
Proof Suppose E has Betti numbers (a, b) and Hilbert function H. We set c ∶=
max(a l , b l+r) and s1 ∶= sup{t ∣ ∂nH(t) ≠ r}. It follows from the short exact sequence

0→ L(a) → L(b) → H0
∗(E ) → 0

that s1 < c. We have

c1(E ) = l

∑
i=1

a i −
l+r

∑
i=1

b i = −∑
t
t ⋅ ∂n+1H(t) = −∑

t
t ⋅ (∂nH(t) − ∂nH(t − 1))

= ∑
t≤s1+1

t ⋅ ∂nH(t − 1) − ∑
t≤s1+1

t ⋅ ∂nH(t)
= ∑

t≤s1

∂nH(t) − (s1 + 1) ⋅ r = degB − (s1 + 2) ⋅ r ≥ degB − (c + 1) ⋅ r.
Since E is normalized, wemust have c ≥ ⌈degB/r⌉ − 1. Finally, regularity E is c or c − 1
depending on whether b l+r ≥ a l − 1 or not. ∎
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Proposition 1.14 If B = B1 , . . . , Bm is a bundle sequence of rank r and degree d, then
B′ = B2 , . . . , Bm is a bundle sequence of rank r and degree d − B1.

It follows from Proposition 1.13 and Proposition 1.14 that we can inductively
generate, in the form of bundle sequences, all Hilbert functions of normalized bundles
satisfying (†) up to any bounded regularity. �e generation is reduced to a partition
problem with constraints.

Example 1.15 �e following are all bundles sequences of rank 4 and degree 9 on P3

{(15 , 4), (13 , 2, 4), (12 , 3, 4), (1, 22 , 4), (2, 3, 4), (5, 4)}.
Here we use t j to denote the sequence of j copies of t.

1.4 Semistability

In this subsection, we address the following question. Do the Betti numbers determine
the semistability of a bundle in VB

†
Pn ? If so, what is the criterion?

Here we use µ-semistability, where µ(F ) ∶= c1(F )/rank(F ) for any torsion-free
coherent sheaf F on Pn . �e results are similar for Hilbert polynomial semistability
as in [19].

For r < n, all rank r bundles E satisfying (†) are direct sums of line bundles by
�eorem 1.3, which are not semistable except for O(d)r . �e main result in [3] states
that ifE satisfies (†) and has rank r = n, thenE is semistable iff its Betti numbers (a, b)
satisfy b1 ≥ µ(E ) = (∑l

i=1 a i −∑l+n
i=1 b i)/n.�e latter condition is obviously necessary.

�e following example demonstrates that for r > n, the semistability of a bundle in
VB

†
Pn is not determined by its Betti numbers in general.

Example 1.16 For any r > n, consider (a, b) where
a1 = 2, b i = { 0 1 ≤ i < r

1 r ≤ i ≤ r + 1.
Let φ and ψ be two maps in Hom(L (a),L (b)) defined by the matrices

(0, . . . , x20 , . . . , x2n−1 , xn , 0)T , (0, . . . , x20 , . . . , x2n−2 , xn−1 , xn)T
respectively. �en E1 ∶= coker φ and E2 ∶= coker ψ are rank r bundles satisfying (†)
with Betti numbers (a, b) by Proposition 1.6. Furthermore, it is easy to see that
E1 ≅ E

′
1 ⊕O(−1)⊕O

r−n−1 and E2 ≅ E
′
2 ⊕O

r−n for some rank n bundles E
′
1 and E

′
2

respectively. Since µ(E1) = µ(E2) = 0, it is clear that E1 is not semistable. On the other
hand, the bundle E

′
2 is semistable by the criterion for the case r = n stated above. Since

both E
′
2 and O

r−n are semistable bundles with µ = 0, it follows that so is E2.

�e main reason to discuss semistability is that we might hope for a coarse moduli
structure on the set VB†

Pn(a, b). However, the above example illustrates the difficulty.
In Section 2.2 we will define a topology on VB

†
Pn(a, b), where the semistable bundles

form an open subspace VB†
Pn(a, b)ss . �e space VB†

Pn(a, b)ss supports the structure
of a subscheme of M(χ), the coarse moduli space of semistable torsion-free sheaves
with Hilbert polynomial χ, whose existence is established by Maruyama [19].
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2 The Betti Number Stratification

�e set VB†
Pn is the disjoint union of VB†

Pn(H) for all possible Hilbert functions H
which are classified by �eorem 1.10. In this section we define a natural topology
on VB

†
Pn(H) and study how VB

†
Pn(H) is stratified by bundles with different Betti

numbers. In the following, we fix a Hilbert function H satisfying the conditions of
�eorem 1.10.

2.1 The graded lattice of Betti numbers

In this subsection we show that all possible Betti numbers of bundles in VB
†
Pn(H)

form a graded lattice, such that those with bounded regularity form a finite sublattice.

Definition 2.1 We define Betti(H) to be the set of Betti numbers (a, b) of bundles
in VB

†
Pn(H). �ere is a gradingBetti(H) = ⊔q Betti

q(H), where
Bettiq(H) ∶= {(a, b) ∈ Betti(H) ∣ a and b have exactly q entries in common}.
We remark that Betti(H) is infinite in general without restrictions on regularity.

�is is due to the fact that the Hilbert function H only bounds regularity from below
(see Proposition 1.13) but not above, as the following example demonstrates.

Example 2.2 Let (a, b) ∈ Betti(H). For some arbitrarily large integer c, regarded as
a singleton sequence, the pair (a, b) + c, defined as in Definition 2.4, is admissible by
�eorem 1.3. Note that any bundle with Betti numbers (a, b) + c must admit a line
bundle summand by Corollary 1.7.

Proposition 2.3 �ere is a unique element in Betti0(H), which we denote by (α, β).
Proof �e construction of an element in Betti0(H) is given in the proof of �e-
orem 1.10. Recall from the proof of �eorem 1.10 that ∂n+1H(t) = µ(α, t) − µ(β, t).
�e uniqueness of (α, β) follows from the fact that either µ(α, t) = 0 or µ(β, t) = 0
by assumption. ∎

We now define a partial order on all pairs of increasing sequences of integers.

Definition 2.4 Let a, b, c be three finite sequences of integers in ascending order.
�e sum a + c is defined be the sequence obtained by appending c to a and sorting in
ascending order. It is clear that this operation is associative.

We define (a, b) + c to be the pair (a + c, b + c). If (a′ , b′) = (a, b) + c for some c,
then we say (a, b) is a generalization of (a′ , b′) and write (a, b) ⪯ (a′ , b′).

A direct consequence of �eorem 1.3 is that admissibility is stable under general-
ization.

Lemma 2.5 If (a, b) ⪯ (a′ , b′) and (a′ , b′) is admissible, then so is (a, b).
Proof By induction, it suffices to prove the case where a′ and b′ have a common
entry c at index p and q respectively, and that (a, b) is obtained from (a′ , b′) by
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removing a′p and b
′
q . We may assume that p and q are the largest indices where a′p = c

and b′q = c respectively. For i < p, we have a i = a′i . But i + n < q and b i+n = b′i+n for
i < p since q > n + p by�eorem 1.3.�erefore a i > b i+n for i < p. In this case, b l+n =
b′l+n and a l > b l+n . For i > p, we have a i−1 = a′i > c. In this case, either i + n ≤ q, in
which case b i+n−1 ≤ c < a i−1; or i + n > q, and b i+n−1 = b′i+n and thus b i+n−1 < a i−1.
We conclude that (a, b) is also admissible. ∎

Corollary 2.6 Every (a, b) in Betti(H) is of the form (α, β) + c for some c.

�emain theorem of this subsection is the following.

�eorem 2.7 �e setBetti(H) has the structure of a graded lattice given by the partial
order ⪯ and the grading Betti(H) = ⊔q Betti

q(H).
For clarity of the proof, we establish the following two lemmas.

Lemma 2.8 If c and d are two distinct integers (considered as singleton sequences) such
that both (a, b) + c and (a, b) + d are admissible, then so is (a, b) + c + d.
Proof �e lemma is simple, but the notationsmaymake it appear more complicated
than it is. Nonetheless, we include a proof here for the sake of completeness.

For an ascending sequence d and an integer t, let p(d , t) denote the largest index
i where d i = t. We may assume c < d, and write (a′ , b′) ∶= (a, b) + c, (a′′ , b′′) ∶=(a, b) + d and (a′′′ , b′′′) ∶= (a, b) + c + d.

Since (a′ , b′) is admissible, we have p(a′ , c) < p(b′ , c) − n. Since c < d, it fol-
lows that p(a′′′ , c) = p(a′ , c) and p(b′′′ , c) = p(b′ , c). We conclude that p(a′′′ , c) <
p(b′′′ , c) − n. Since (a′′ , b′′) is admissible, we have p(a′′ , d) < p(b′′ , d) − n. Since c <
d, it follows that p(a′′′ , d) = p(a′′ , d) + 1 and p(b′′′ , d) = p(b′′ , d) + 1. We conclude
that p(a′′′ , d) < p(b′′′ , d) − n. Finally, we show that (a′′′ , b′′′) is admissible. For i <
p(a′′′ , d), we have i + n < p(b′′′ , d) and thus a′′′i = a′i > b′i+n = b′′′i+n . For p(b′′′ , c) −
n < i, we have p(a′′′ , c) < i and thus a′′′i = a′′i−1 > b′′i+n−1 = b′′′i+n . For p(a′′′ , d) ≤ i ≤
p(b′′′ , c) − n, we have a i ≥ d > c ≥ b i+n . ∎

Lemma 2.9 If c is an integer sequence and d is an integer (considered as a singleton
sequence) not appearing in c, such that both (a, b) + c and (a, b) + d are admissible,
then so is (a, b) + c + d.
Proof By Lemma 2.5 and Lemma 2.8, the pair (a, b) + c1 + d is admissible. Applying
Lemma 2.8 again with (a, b) + c1 in place of (a, b), we see that (a, b) + c1 + c2 + d is
admissible. By induction it follows that (a, b) + c + d is admissible. ∎

Proof of �eorem 2.7 If (a′ , b′) ∈ Betti i(H) and (a, b) ∈ Betti j(H) such that(a′ , b′) = (a, b) + c for some c, then obviously i ≥ j. �e cover relations inBetti(H)
are given exactly by adding singleton sequences. It follows that (Betti(H), ⪯) is a
graded poset.
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Suppose (a, b) and (a′ , b′) are inBetti(H). By Corollary 2.6, there are sequences
c and c′ such that (a, b) = (α, β) + c and (a′ , b′) = (α, β) + c′. We define min(c, c′)
to be the descending integer sequence where an integer t occursmin(µ(c, t), µ(c′ , t))
times, and similarly for max(c, c′).

Clearly (a, b) +min(c, c′) ⪯ (a, b) + c and thus is admissible by Lemma 2.5. It
follows that (a, b) +min(c, c′) is the meet of (a, b) and (a′ , b′) inBetti(H).

We claim that (a, b) +max(c, c′) is admissible, and thus it is the join of (a, b) and(a′ , b′) in Betti(H). To see this, we may replace (a, b) by (a, b) +min(c, c′) and
assume that c and c′ have no common entries. By Lemma 2.9, we see that (a, b) +
c + c′1 is admissible. Applying Lemma 2.9 again with (a, b) + c′1 in place of (a, b), we
conclude that (a, b) + c′1 + c + c′2 is admissible. By induction, it follows that (a, b) +
c′ + c is admissible. ∎

For any integer d, let Betti(H)≤d denote the subset of Betti numbers of bundles
that are d-regular. �e set Betti(H)≤d inherits a grading⊕q≥0Betti

q(H)≤d , where
Bettiq(H)≤d ∶= Bettiq(H) ∩Betti(H)≤d .
Corollary 2.10 For any integer d, the setBetti(H)≤d is a finite graded lattice isomor-
phic to the lattice of subsequences of some sequence c.

Proof If (a, b) ⪯ (a′ , b′), then reg(a, b) ≤ (a′ , b′). If (a′′ , b′′) is the join of (a, b)
and (a′ , b′) in Betti(H), then the regularity of (a′′ , b′′) is the maximum of those
of (a, b) and (a′ , b′) by the construction in the proof of �eorem 2.7. It follows that
Betti(H)≤d is a graded lattice.�e finiteness ofBetti(H)≤d follows fromProposition
1.8. �us there is a maximum element of the form (α, β) + c for some sequence c. By
Lemma 2.5, we see that

Bettiq(H)≤d = {(α, β) + c′ ∣ c′ is a subsequence of c of length q}. ∎

Example 2.11 Let H be the Hilbert function of a normalized bundle on P3 with
bundle sequence (5, 4). With the same notation as in Example 1.15, the minimal
element of Betti(H) is given by α = (0) and β = (−15). �e maximum element of

Betti(H)≤2 is (α, β) + c, where c = (0, 1, 2). In particular,

Bettiq(H)≤2 = {(α, β) + c′ ∣ c′ is a subsequence of (0, 1, 2) of length q}
andBetti(H)≤2 is isomorphic to the lattice of subsequences of (0, 1, 2).

2.2 The stratification

In this subsection, we define a natural topology on VB
†
Pn(H). We then describe the

stratification of VB†
Pn(H) by locally closed subspaces VB†

Pn(a, b).
Definition 2.12 Let (a, b) ∈ Betti(H). LetA(a, b) denote the structure of the affine
space on the vector space Hom(L (a),L (b)). �e minimal maps form an affine
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subspaceA0(a, b) inA(a, b).We define the subset ofmatriceswhosemaximalminors
have maximal depth

M(a, b) ∶= {φ ∈ A(a, b) ∣ depth I l(φ) ≥ n + 1},
M0(a, b) ∶= {φ ∈ A0(a, b) ∣ depth I l(φ) ≥ n + 1}.

As in the proof of�eorem 1.3, the subsetM(a, b) andM0(a, b) are open subvarieties
of A(a, b) and A0(a, b) respectively. For A = A(a, b) and A0(a, b), the tautological
morphism

Φ ∶
l

⊕
i=1

OPn

A
(−a i) → l+r

⊕
i=1

OPn

A
(−b i)

gives a tautological family of sheaves E ∶= coker Φ overA, which pulls back to a family
of bundlesE (a, b) andE

0(a, b) satisfying (†) overM(a, b) andM0(a, b) respectively
by Proposition 1.6.

Let G(a, b) denote the algebraic group Aut(L (a)) ×Aut(L (b)). �e natural
action ρ ∶ G(a, b) ×Hom(L (a),L (b)) → Hom(L (a),L (b)) given by ( f , g) ×
φ ↦ f ○ φ ○ g is a morphism of algebraic varieties. �e action ρ leaves the subspace
of minimal maps invariant. Since the change of coordinates does not change the ideal
of maximal minors, it follows that the open subvarieties M(a, b) and M0(a, b) are
stable under the G(a, b)-action.
Lemma 2.13 Two maps φ,ψ ∈M(a, b) are in the same G(a, b)-orbit iff coker φ ≅
coker ψ.

Proof Clearly if φ,ψ are in the same G(a, b)-orbit then coker φ ≅ coker ψ. Con-
versely, let E ∶= coker φ and E

′
∶= coker ψ. �en the isomorphism of the R-modules

H0
∗(E ) ≅ H0

∗(E ′) li�s to an isomorphism of free resolutions

It follows that φ, φ′ are in the same G(a, b)-orbit. ∎

Proposition 1.6 and Lemma 2.13 imply that the set VB†
Pn(a, b) supports the struc-

ture of the quotient topological spaceM0(a, b)/G(a, b). Similarly, we letVB†
Pn(a, b)⪯

denote the subset of VB†
Pn consisting of isomorphism classes of bundles E that admit

a (not necessarily minimal) free resolution of the form

0→ L(a) → L(b) → H0
∗(E ) → 0.

�en Lemma 2.13 also implies that the set VB
†
Pn(a, b)⪯ supports the structure

of the quotient topological space M(a, b)/G(a, b). Clearly the inclusion of sets
VB

†
Pn(a, b) ⊆ VB†

Pn(a, b)⪯ is an inclusion of topological spaces.
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Lemma 2.14 If (a, b) ⪯ (a′ , b′) in Betti(H), then VB
†
Pn(a, b)⪯ is a subspace of

VB
†
Pn(a′ , b′)⪯. In particular, VB†

Pn(a, b) is a subspace of VB†
Pn(a′ , b′)⪯.

Proof Let (a′ , b′) = (a, b) + c for some c. Consider an injective morphism ι ∶
M(a, b) →M(a′ , b′) given by φ ↦ φ ⊕ IdL (c). It is not hard to see that the ideal
of maximal minors does not change under this map, and thus ι is well defined.
Suppose φ,ψ are two morphisms in M(a, b) such that φ ⊕ IdL (c) and ψ ⊕ IdL (c)

are in the same G(a′ , b′)-orbit. It follows that coker φ ⊕ IdL (c) ≅ coker ψ ⊕ IdL (c).
Since coker φ ≅ coker φ ⊕ IdL (c) and coker ψ ≅ coker ψ ⊕ IdL (c), we conclude that
coker φ ≅ coker ψ. It follows from�eorem 2.13 that φ and ψ are in the sameG(a, b)-
orbit. �is shows that the composition

M(a, b) →M(a′ , b′) → VB
†
Pn(a′ , b′)⪯

induces an injection of topological spaces on the quotient VB
†
Pn(a, b)⪯ ↪

VB
†
Pn(a′ , b′)⪯. ∎

For each integer d, the set Betti(H)≤d is a lattice by Corollary 2.10 and thus has a
maximum element (a′ , b′). It follows from Lemma 2.14 that every d-regular bundle
E in VB

†
Pn(H) admits a (not necessarily minimal) free resolution of the form

0→ L(a′) → L(b′) → H0
∗(E ) → 0.

Let VB†
Pn(H)≤d be the subspace of VB†

Pn(H) consisting of isomorphism classes of
d-regular bundles.�en by Lemma 2.13, the set VB†

Pn(H)≤d supports the structure of
the quotient topological spaceM(a′ , b′)/G(a′ , b′).

It follows from Lemma 2.14 and the construction above that if d < d′, then
VB

†
Pn(H)≤d is a subspace of VB

†
Pn(H)≤d′ . Finally, we define a topology on

VB
†
Pn(H) by

VB
†
Pn(H) = limÐ→

d

VB
†
Pn(H)≤d .

Proposition 2.15 For each integer d, the subspace VB†
Pn(H)≤d is open in VB

†
Pn(H).

Proof We need to show that VB†
Pn(H)≤d is open in VB

†
Pn(H)≤d′ for d′ ≫ 0. Let(a′ , b′) be the maximum element in Betti(H)≤d′ , and consider the quotient map

π ∶M(a′ , b′) → VB
†
Pn(H)≤d′ . By the semicontinuity of cohomologies, the fibers of the

tautological family E (a′ , b′) are d-regular over an open subset ofM(a′ , b′). It follows
thatVB†

Pn(H)≤d is the image of this open subset under π, and thus is an open subspace
of VB†

Pn(H)≤d′ . ∎

Proposition 2.16 �e topological space VB†
Pn(H) is irreducible and unirational.

Proof For d ≫ 0, the subspaceVB†
Pn(H)≤d is dense inVB†

Pn(H). SinceVB†
Pn(H)≤d

is the quotient of M(a′ , b′), where (a′ , b′) is the maximum element of Betti(H)≤d ,
it follows that VB†

Pn(H)≤d is irreducible and unirational, and so is VB†
Pn(H). ∎

�emain result of this subsection is the following.
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�eorem 2.17 �e closed strata VB
†
Pn(a, b) in VB

†
Pn(H) form a graded lattice dual

to Betti(H) under the partial order of inclusion. Furthermore, the intersection of two

closed strata VB
†
Pn(a, b) and VB

†
Pn(a′ , b′) is again a closed stratum VB

†
Pn(a′′ , b′′),

where (a′′ , b′′) is the join of (a, b) and (a′ , b′) in the latticeBetti(H).
�e theorem needs several standard lemmas on the behavior of resolutions in

families with constant Hilbert functions. We include proofs here for the lack of
appropriate references.

Lemma 2.18 Let E
′ ∈ VB†

Pn(a′ , b′) and suppose (a, b) ⪯ (a′ , b′). �en there is a
family of bundles E on Pn over a dense open set U ⊂ A1 containing the origin 0 ∈ A1,
such that E0 ≅ E

′ and Et ∈ VB†
Pn(a, b) for any closed point 0 ≠ t ∈ U.

Proof Suppose (a′ , b′) = (a, b) + c. By �eorem 2.5, the pair (a, b) is admissible.
Letψ ∈M0(a′ , b′) be aminimal presentation of E ′, and let φ ∈M0(a, b) be aminimal
presentation of a bundle E . Set φ′ = φ ⊕ IdL (c) and consider the morphism Φ ∶

L (b′) ×A1 →L (a′) ×A1 whose fiber over a closed point t ∈ A1 is given by Φt ∶=
ψ + t ⋅ φ′. By Lemma 1.4, the morphism Φt ∈M(a′ , b′) for all closed points t in an
open dense set U ⊂ A1 containing 0. �is shows that coker Φt ∈ VB†

Pn(a, b)⪯ for
t ∈ U . We show that in fact coker Φt ∈ VB†

Pn(a, b) for all 0 ≠ t ∈ U . Let t ≠ 0 be any
closed point ofU. Since ψ is minimal and φ′ induces an isomorphism on the common

summand L (c) ∼Ð→L (c), it follows that Φt also splits off the common summand

L (c) tÐ→L (c). Since φ does not split off any common summands other than those
of L (c), neither does Φt by Nakayama’s lemma. It follows that the free resolution

0→ L(a′) Φ tÐ→ L(b′) → H0(Et) → 0

contains a minimal one of the form

0→ L(a) → L(b) → H0
∗(Et) → 0. ∎

Lemma2.19 LetE be a family of bundles onPn satisfying (†) parametrized by a variety
T, such that all fibers have the same Hilbert function H. �en general fibers have the
same Betti numbers (a, b), where (a, b) ⪯ (a′ , b′) for the Betti numbers (a′ , b′) of any
fiber Et .

Proof Let t ∈ T be a closed point.Wemay base change to SpecOT ,t and reduce to the
case where T is an affine local domain. Let m be the maximal ideal of T with residue
field k and set RT ∶= T[x , y, z] and R ∶= k[x , y, z]. �e module E ∶=⊕l∈Z H

0(E (l))
is finitely generated over RT since E is a bundle. Since the fibers over T have the same

Hilbert functions, it follows thatE is flat overT. If⊕l+r
i=1 R(−b′i)

dÐ→ E ⊗T k is aminimal
system of generators, then by Nakayama’s lemma over generalized local rings, it li�s

to a system of generators⊕l+r
i=1 RT(−b′i)

dTÐ→ E. Since E is flat over T, so is ker dT and
thus (ker dT)⊗T k ≅ ker d. Applying this procedure again, we find a free resolution
of E
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F● ∶ 0→ l

⊕
i=1

RT(−a′i)→ l+r

⊕
i=1

RT(−b′i)→ E → 0

that specializes to a minimal free resolution of E ⊗T k. It follows that F● ⊗T k(T) is
a free resolution of the generic fiber which contains a minimal free resolution of the
form

0→ j

⊕
i=1

RT(−a i)⊗T k(T)→ j+r

⊕
i=1

RT(−b i)⊗T k(T)→ E ⊗T k(T)→ 0.

We conclude that the general fibers Et have the Betti numbers (a, b) ⪯ (a′ , b′). ∎

Lemma 2.20 For (a, b), (a′ , b′) ∈ Betti(H) the following are equivalent:
(1) (a, b) ⪯ (a′ , b′);
(2) VB

†
Pn(a, b) ⊇ VB†

Pn(a′ , b′);
(3) VB

†
Pn(a′ , b′) ∩VB†

Pn(a, b) ≠ ∅;
(4) VB

†
Pn(a, b) ⊆ VB†

Pn(a′ , b′)⪯.
Here all closures are taken within VB

†
Pn(H).

Proof (1) Ô⇒ (2): Suppose (a′ , b′) = (a, b) + c. Let φ ∈M0(a, b) and ψ ∈
M0(a′ , b′). Consider the line Φ ∶ A1 ↪ A(a′ , b′) defined Φ(t) ∶= ψ + t ⋅ φ′, where
φ′ = φ ⊕ IdL (c). For an open set U ⊂ A1 containing 0, the image Φ(t) is contained
inM(a′ , b′). By Lemma 2.18, the image of Φ(t) in the quotient VB†

Pn(a′ , b′)⪯ lies in
VB

†
Pn(a, b) for t ≠ 0. It follows that the image of ψ inVB†

Pn(a′ , b′) is contained in the
closure of VB†

Pn(a, b) inside the space VB†
Pn(a′ , b′)⪯. Since ψ represents an arbitrary

point of VB†
Pn(a′ , b′), we conclude that VB†

Pn(a′ , b′) is contained in the closure of
VB

†
Pn(a, b) in VB

†
Pn(a′ , b′)⪯, and therefore the same is true inside VB†

Pn(H).
(2)Ô⇒ (3) is trivial.
(1)Ô⇒ (4) is proved in Lemma 2.14.
(3) Ô⇒ (1): Let d ∶=max(reg(a, b), reg(a′ , b′)). Let (a′′ , b′′) denote the maxi-

mum element ofBetti(H)≤d . Let π ∶M(a′′ , b′′)→ VB
†
Pn(H)≤d be the quotient map

and set V to be the preimage of VB†
Pn(a, b) under π, endowed with the structure of

a (reduced) subvariety ofM(a′′ , b′′). Let E be the pullback of the tautological family

of bundles E (a′′ , b′′) on M(a′′ , b′′) to V. Since VB†
Pn(a, b) is dense in VB

†
Pn(a, b),

it follows that the fiber Ev over a general point v ∈ V has Betti numbers (a, b). If p is a
point in VB

†
Pn(a′ , b′) that is in the closure of VB†

Pn(a, b), and q is a point in π−1(p),
then q ∈ V and Eq has Betti numbers (a′ , b′). Finally, an application of Lemma 2.19
to the family E gives (a, b) ⪯ (a′ , b′).

(4)Ô⇒ (1): If E is a bundle with a free resolution of the form

0→ L(b′)→ L(a′)→ H0
∗(E)→ 0,

then it contains as a summand the minimal free resolution of E

0→ L(b)→ L(a)→ H0
∗(E)→ 0
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with a direct complement of the form

0→ L(c) ∼Ð→ L(c)→ 0

for some (a′ , b′) = (a, b) + c. It follows that (a, b) ⪯ (a′ , b′). ∎

Proof of �eorem 2.17 �e first statement follows directly from Lemma 2.20.

For the same reason, it is clear that VB†
Pn(a′′ , b′′) is in the intersection of VB†

Pn(a, b)
and VB

†
Pn(a′ , b′). Let p be a closed point in the intersection of VB†

Pn(a, b) and
VB

†
Pn(a′ , b′).We assume p ∈ VB†

Pn(c, d) for some (c, d) ∈ Betti(H) sinceVB†
Pn(H)

is the disjoint union of these subspaces. By Lemma 2.20, it follows that (a, b) ⪯
(c, d) and (a′ , b′) ⪯ (c, d). Since (a′′ , b′′) ⪯ (c, d) by the definition of join, another

application of Lemma 2.20 shows that p ∈ VB†
Pn(a′′ , b′′). ∎

Last but not least, we discuss the semistable case where the description of the
stratification holds within the coarse moduli space.

By [20, �eorem 4.2], semistablity is open for a family of torsion-free sheaves.
Furthermore, the set of semistable torsion sheaves with a given Hilbert polynomial
χ is bounded in the sense of Maruyama, and thus has bounded regularity by [20,
�eorem 3.11]. Let VB†

Pn(H)ss and VB
†
Pn(a, b)ss denote the subset of isomorphism

classes of semistable bundles in VB
†
Pn(H) and VB

†
Pn(a, b) respectively. It follows

that VB†
Pn(H)ss and all VB†

Pn(a, b)ss are contained in VB
†
Pn(H)≤d for some large

enough integer d. Since VB†
Pn(a, b)ss is open in VB

†
Pn(a, b) and VB

†
Pn(H)ss is open

in VB
†
Pn(H) by the similar reasoning as in Proposition 2.15, it follows that the

stratification of VB†
Pn(H)ss by VB

†
Pn(a, b)ss has the same description as given in

�eorem 2.17.
LetM(χ) denote the coarse moduli space of semistable sheaves on Pn with Hilbert

polynomial χ. We show that the spaces VB†
Pn(H)ss and VB†

Pn(a, b)ss are subschemes
ofM(χ). LetM0(a, b)ss denote the open subscheme ofM0(a, b) overwhich the fibers
of the tautological family of bundles E

0(a, b) are semistable. By the property of the
coarse moduli space, there is a map p0 ∶M

0(a, b)ss →M(χ) inducing the family of
semistable bundles. By Lemma 2.13, the isomorphism classes of the fibers are exactly
given by the G(a, b)-orbits. �erefore VB†

Pn(a, b)ss is a subscheme ofM(χ) with the
image subscheme of p. Similarly, the space VB†

Pn(H)≤d is also a subscheme ofM(χ).
SinceVB†

Pn(H)ss is an open subspace ofVB†
Pn(H)≤d for some d ≫ 0, the same is true

for VB†
Pn(H)ss .
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