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Abstract. Observations of HI 21cm transition line is a promising probe into the Dark Ages
and Epoch-of-Reionization. Detection of this redshifted 21cm signal is one of the key science
goal for several upcoming low-frequency radio telescopes like HERA, SKA and DARE. Other
global signal experiments include EDGES, LEDA, BIGHORNS, SCI-HI, SARAS. One of the
major challenges for the detection of this signal is the accuracy of the foreground source removal.
Several novel techniques have been explored already to remove bright foregrounds from both
interferometric as well as total power experiments. Here, we present preliminary results from
our investigation on application of ANN to detect 21cm global signal amidst bright galactic
foreground. Following the formalism of representing the global 21cm signal by ’tanh’ model, this
study finds that the global 21cm signal parameters can be accurately determined even in the
presence of bright foregrounds represented by 3rd order log-polynomial or higher.
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1. Introduction
The cosmological 21cm signal is going to be an excellent probe and could be a powerful

diagnostic to test cosmological theories. The 21 cm line of neutral hydrogen presents a
unique probe of the evolution of the neutral intergalactic medium (IGM), and cosmic
reionization. There are many advantages of using the HI line for this purpose Furlanetto
et al. (2006). We always try and draw analogies and point out the differences from some
already known studies. In this case, a constant comparision is made with the CMB stud-
ies, wherever applicable. The HI line provides rich information of the evolution of cosmic
structure. The interplay between the CMB temperature, the kinetic temperature and the
spin temperature, along with radiative transfer, lead to very interesting physics of the
21cm signal. The HI 21cm observations can be used to study evolution of cosmic struc-
ture from the linear regime at high redshift (i.e., density-only evolution), through the
non-linear regime associated with luminous source formation Barkana and Loeb (2005).

The 21cm H1 line: The hyperfine transition line of atomic hydrogen (in the ground
state) arises due to the interaction between the electron and proton spins. The spin
temperature, TS , primarily determines the intensity of the 21cm radiation. In radio as-
tronomy, the measured quantity is the brightness temperature or more accurately called
the differential brightness temperature δTb ≡ Tb −Tγ . Substituting the various quantities
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into the equation for brightness temperature and rearranging, we obtain,

δTb ≈ 27(1 − xi)
(

Ωb,0h
2

0.023

)(
0.15

Ωm,0h2

1 + z

10

)1/2 (
1 − Tγ

TS

)
(1.1)

This equation is used to estimate the global ’all sky-averaged’ redshifted 21cm signal
from Cosmic Dawn and Epoch of Reionization.

Foregrounds: There are two major challenges faced while trying to detect the global
signal. One involves foregrounds and the other involves calibration. Radio emission from
our galaxy as well as terrestrial radio emission dominate the feeble signal we are trying to
detect. This foreground includes galactic and extragalatic sources. The expected signal
is about 104 times weaker than the foreground emission.

For global experiments, these foregrounds are well represented by a polynomial Harker
(2015) in ln(T )-ln(ν).

ln TF G =
n∑

i=0

ai [ln(ν/ν0)] (1.2)

Here, ν0 is a pivot scale and a0 is recast as a0 = log T0 to emphasise that the zeroeth
order coefficient has units of temperature. It has been shown that a polynomial of atleast
of order 3 is necessary to remove the foreground.Pritchard et al. (2015)

2. Overview - Artificial Neural Network
Artificial neural networks(or ANNs) are machine learning algorithms which mimic the

functioning of the human brain. The basic building blocks of the neural nets are the neu-
rons. The most simple ANN usually consists of a multi-layer network comprising of the
input layer, the hidden layer and the output layer. The number of neurons in the hidden
layers and the number of hidden layers can be both chosen as per requirement-initially
arbitrarily, but then deciding upon the final structure after validating the architecture
of the ANN.

The basic neural network model is described as a series of functional transformations.
Let us consider that there are D inputs (x1 , x2 , ..., xD ). Each neuron in the input layer
is connected to the next layer, that is the hidden layer and a weight and a bias (both
are initially randomly chosen) is associated with the connection. The input to a single
neuron in the hidden layer is a linear combination of all the input neurons with their
respective assigned weights and biases, and is written as:

aj =
D∑

i=1

w
(1)
j i xi + w

(1)
j0 (2.1)

where, wji
′s are the weights and wj0

′s are the biases associated with each input. The
superscript (1) denotes that these corresponding parameters are in the first layer of the
network. These a′

j s, are known as activation. Each of the activations is transformed
using a non-linear activation function h(), such that, zj = h(aj ). These quantities z′j s
correspond to the outputs of the neurons in the hidden layer. These values (z′j s) are again
linearly combined along with their weights and biases to give the inputs to each neuron
in the output layer, also called the output unit activations, a′

k s, given by:

ak =
M∑

j=1

w
(2)
kj zj + w

(2)
k0 (2.2)
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here, the superscript (2) corresponds to the second layer of the network. Finally the
output unit activations are again transformed using an appropriate activation function,
to give a a set of network outputs yk .These y′

k s are the end outputs of the feed-forward
process, where we had given a input vector X and obtained an output vector Y. Now,the
outputs are compared with the inputs with which the network was fed. The purpose of
training the ANN is to find out the set of weights that ensures that the output produced
by the network is sufficiently close to the desired output values. Thus the weights needs
to be appropriately adjusted to obtain the desired outputs. This adjustment of weights
is done iteratively, by computing an error function or a cost function and minimizing
it. The error function is usually chosen to be the standard mean squared error function,
which is written as: √

1
Ntrain

N∑
(
ypred − yori

yori
)2 (2.3)

There are two more important steps: the parameter optimization and the other is the
back-propagation step which heavily influence the success of the network output. In-
terested readers are encouraged to look into the references given in Shimabukuro and
Semelin (2017)

3. Application of ANN to extract Global 21cm Signal
Here, we have used ANN to extract faint 21cm global signal in presence of significantly

dominant foreground. The training process for an ANN is an iterative procedure that
begins by collecting the data and preprocessing it to make training more efficient. In this
type of network, the information flow is unidirectional that takes place with the help of
an activation function between each layer.
First, we create a set of models for 21cm global signal using ARES (Mirocha et al. 2015)
within frequency range of 20-160 MHz or redshift range of 8 to 68. The foreground model
is created using equation 1.2 and added to the signal models. We have not included any
instrumental white noise in the training datasets so that we can test the efficiency of
the network by introducing increasing noise in the test dataset. The network then uses
back-propagation as the learning technique where the output values are compared with
the input values to compute the value of an error-function. The root mean-squared error
(RMSE) is used as the predefined error-function here. The error is then fed back through
the network. Using this information, the algorithm adjusts the weights of each connection
in order to reduce the value of the error function iteratively. After sufficient iterations,
the training process usually converges such that the network has learned a certain target
function. To adjust weights properly, we use the ’adam’ (Kingma and Ba (2014)) opti-
mizer for non-linear optimization. In this work, the data was normalized using min-max
normalization and was split in 7:3 ratio in training and testing sets out of which the
training set was further split into 7:3 ratio in actual training set and validation set. As
the test data, we supplied a data-set comprised of a different signal model along with the
foreground and relevant instrumental noise.
Here, we have used a network with a 1024 neurons in the input layer corresponding to
the number of frequency channels we plan to work with. It is a feed-forward network,
which means each neuron in a particular layer is connected to all other neurons in the
next layer (along one particular direction). Next in the hidden layer we have chosen 14
neurons activated by the sigmoid function. Finally,in the output layer. we have 11 output
neurons corresponding to each parameter we are interested to find out.
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Figure 1. (Left) Quality of the reconstructed global 21cm signal with the change in integration
time.(Right) RMSE varying with different test datasets. This confirms the robustness of the
prediction for one of the Signal parameters (Jref , Mirocha et al. (2015))

4. Implications
For the simplest case, we just take the 21cm signal along with the model foreground

(assuming perfect instrument). The training datasets are constructed using the following
relation: Ttrain (mK) = (T21 + TF G ). The network is trained using this data, and fitted
for the 7 signal parameters and 4 foreground parameters. Next, we create a test dataset,
which include thermal noise (depends on the observing time) for the instrument in ad-
dition to the components in Ttrain . Initial results are presented in figure 1.

Our preliminary results looks encouraging to continue our work with the ANNs in ex-
tracting global 21cm signal. We will extend this work for different instrumental response
scenario and more realistic observing strategies. The final results of this work are ex-
pected to be reported in a refereed journal publication in early 2018. In future, we plan
to extend this work for power spectrum estimation of 21cm fluctuations measurements
with HERA and SKA.
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