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Abstract. We show that robustly transitive endomorphisms of a closed manifold must
have a non-trivial dominated splitting or be a local diffeomorphism. This allows to get
some topological obstructions for the existence of robustly transitive endomorphisms. To
obtain the result, we must understand the structure of the kernel of the differential and the
recurrence to the critical set of the endomorphism after perturbation.
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1. Introduction
Throughout this paper, unless specified, M denotes a d-dimensional closed Riemannian
manifold and End1(M) the set of all C1-maps from M into itself endowed with the
C1-topology. The elements of End1(M) are called endomorphisms. Some of them exhibit
critical points, that is, points on which the derivative is not a linear isomorphism; and
the other ones, endomorphisms without critical points, are local diffeomorphisms or
diffeomorphisms.

An endomorphism f is said to be robustly transitive if there exists a neighborhoodUf

of f in End1(M) such that every g ∈ Uf is transitive, where transitive means the existence
of a dense forward orbit.
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It should be pointed out that we are actually defining C1 robust transitivity. The Cr

robust transitivity could also be defined using the Cr -topology. Our approach cannot
be extended for Cr robust transitivity since many of the techniques used here do not
work in Cr -topology and, in [15], an example is constructed of a C2-robustly transitive
endomorphism which is not C1-robustly transitive.

The main purpose of this paper is to show that dominated splitting is a necessary
condition for the existence of robustly transitive endomorphisms displaying critical points.
Concretely, we prove the following result.

THEOREM A. Every robustly transitive endomorphism displaying critical points admits a
non-trivial dominated splitting.

An endomorphism f admits non-trivial dominated splitting of indexκ if for every orbit
(xi)i , that is, a sequence of points (xi)i in M such that f (xi) = xi+1 for each i ∈ Z,
there are two non-trivial families (E(xi))i and (F (xi))i of κ and (d − κ)-dimensional
subspaces, respectively, satisfying the following:

Invariant splitting. For each i ∈ Z, one has that

Txi
M = E(xi) ⊕ F(xi), Df (E(xi)) ⊆ E(f (xi)),

and Df (F(xi)) = F(f (xi));

Domination property. There is an integer � > 0 independent of any orbit such that

‖Df �(u)‖ ≤ 1
2‖Df �(v)‖

for every unit vectors u ∈ E(xi) and v ∈ F(xi).

We will sometimes abuse notation and call the families of subspaces by E and F
subbundles (cf. Remark 2.1). Further, we denote the domination property by E ≺ F or
E ≺� F if we want to emphasize the role of �. See §2 for further details about dominated
splitting.

The authors believe that, in general, robustly transitive endomorphisms displaying
critical points require more than just dominated splitting. It is feasible that the dominated
splitting E ⊕ F provided by Theorem A admits the finest dominated splitting such as
E ⊕k

i=1 Fi where the derivative Df restricted to the extremal subbundle Fk is volume
expanding. (E1 ⊕ · · · ⊕ Ek is the finest dominated splitting if E1 ≺ E2 ≺ · · · ≺ Ek and
none of the invariant subbundle Ei admits a dominated splitting.) It was proved for a
surface endomorphism in [17]. For higher dimension, it would be a similar result as that
obtained for diffeomorphisms in [8] which states, in [8, Theorem 4], that every C1-robustly
transitive diffeomorphism admits a finest dominated splitting such that the derivative
Df restricted to the extremal subbundles are volume contracting and volume expanding,
respectively. See §1.1 for further discussion.

As a consequence of the main result, we obtain the following topological obstruction.
The proof is in §3.

COROLLARY 1.1. Even-dimensional spheres do not admit robustly transitive endomor-
phisms.
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Note that the existence of robustly transitive diffeomorphisms in S3 is a well-known
open problem, and a negative answer is expected (see e.g. [11]). It makes sense to ask
if examples of robustly transitive endomorphisms in S3 may exist, while we expect this
question to be difficult.

We introduce now the following result that will be useful to prove Theorem A.

THEOREM B. Let f0 be a robustly transitive endomorphism displaying critical points and
a neighborhood U0 of f0 in End1(M) such that every f in U0 is transitive. Then, there
exist an integer � ≥ 1, a number α > 0, and subset F ofU0 such that the following hold:
(a) f0 is accumulated by the endomorphisms in F; and
(b) every f ∈ F admits a dominated splitting E ⊕ F such that E ≺� F and the angle

between E and F is greater than α. (It means that �(u, v) ≥ α, for all vectors
u ∈ E(xi), v ∈ F(xi), for each xi along the orbit (xi)i ∈ �f . For details, see §2.)

Theorem B implies uniformity of the dominated splitting for endomorphisms inFwhich
will allow us, since f0 is accumulated by F, to extend the dominated splitting to f0.

1.1. A brief history of robust transitivity. Robust transitivity has been well studied in
the diffeomorphism context. The first examples were given by Shub on T

4 in [25] and by
Mañé on T

3 in [19], which have an underlying structure weaker than hyperbolic, known
as partially hyperbolic. However, Mañé proved for surface diffeomorphisms in [20] that
robust transitivity implies hyperbolicity and, in particular, the only surface that admits
such systems is the torus, T2.

Bonatti and Díaz, in [7], construct a powerful geometric tool (called a blender) to
produce robustly transitive partially hyperbolic diffeomorphisms. Later, in [9], Bonatti
and Viana construct the first examples of robustly transitive diffeomorphisms with
dominated splitting which are not partially hyperbolic. In [8, 11], Bonatti et al prove
for a diffeomorphism on three- and higher-dimensional manifolds that robust transitivity
requires some weak form of hyperbolicity.

In view of this, a natural question arises. In general, do robustly transitive endomor-
phisms require some weak form of hyperbolicty?

In the local diffeomorphisms scenario, there are several advances. Based on the
examples of robustly transitive diffeomorphisms, robustly transitive non-expanding endo-
morphisms were constructed. In [16], necessary and sufficient conditions for robustly
transitive local diffeomorphisms were obtained. In particular, it is not necessary any weak
form of hyperbolicity for the existence of a robustly transitive local diffeomorphism;
a trivial example is an expanding linear endomorphism with complex eigenvalues,
which does not admit a dominated splitting. That result shows a difference between the
diffeomorphisms and local diffeomorphisms setting. We note however that one can think
of an endomorphism as having a strong stable bundle consisting on pre-orbits, and with
this point of view, the results bear a closer analogy to those of diffeomorphisms.

In the endomorphisms displaying a critical points setting, the first examples were
given in [3, 14]. Although these examples exhibit some form of weak hyperbolicity and
are homotopic to a hyperbolic linear endomorphism on T

2, any result about necessary
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conditions was established only recently. In [17], it was proved for surface endomorphisms
that a weak form of hyperbolicity is needed for robust transitivity, so-called partial
hyperbolicity. Furthermore, it was also proved that only the Torus and the Klein bottle
support a robustly transitive endomorphism exhibiting critical points; and that the action
of such a map on the first homology group has at least an eigenvalue with modulus greater
than one. Later, new classes of examples of robustly transitive endomorphisms were given
in [18]. The examples are homotopic to an expanding linear endomorphism on the torus
or the Klein bottle; and an example of a robustly transitive endomorphism of zero degree.
In higher dimension, the first examples of robustly transitive endomorphisms displaying
critical points were constructed only recently in [22].

1.2. Comments about some previous approaches. Here, we briefly comment on the main
ingredients used to show that some (weak) form of hyperbolicity is a necessary condition
for the existence of robust transitivity.

1.2.1. Key obstructions for robust transitivity. In a broad sense, an obstruction for robust
transitivity is some phenomenon which is incompatible with this feature.

Here, we discuss these phenomena which play an important role in the proof that robust
transitivity requires some weak form of hyperbolicity. These phenomena are in some sense
related to ‘the candidate for dominated splitting’. Let us define them.
• Source. A periodic point p for f, where np ≥ 1 denotes its period, such that Df

np
p is a

matrix having all the eigenvalues with modulus greater than one.
• Sink. A periodic point p for f, where np ≥ 1 denotes its period, such that Df

np
p is a

matrix having all the eigenvalues with modulus less than one.
The set of all critical points of an endomorphism f will be denoted by Cr(f ) and its

interior in M denoted by int(Cr(f )).
• Full-dimensional kernel. There exist a point x ∈ Cr(f ) and an integer n ≥ 1 such that

dim ker(Df n
x ) = d .

1.2.2. Key obstructions versus dominated splitting for diffeomorphisms. Here, we
discuss the role of sources and sinks as obstructions to obtain that a robustly transitive
diffeomorphism admits a dominated splitting. First, it is easy to see that transitive
diffeomorphisms do not admit neither sources nor sinks, otherwise there is a small
neighborhood such that its image by some (backward or forward) iterate goes into itself,
which is incompatible with transitivity.

Let Uf be a neighborhood of f in End1(M), where all endomorphisms in Uf

are transitive diffeomorphisms. Let us start commenting on the approaches for surface
diffeomorphisms in [20] and on the higher-dimensional manifold in [8, 11].
• In [20], the fact that sources and sinks are obstructions for transitivity is used to

prove that the set of all the periodic points of any surface diffeomorphism in Uf

is hyperbolic, and so, it has a ‘natural’ splitting given by the stable and unstable
directions. Later, it is proved that the lack of domination property allows to create,
up to a perturbation, sinks or sources contradicting the robust transitivity. Finally, the
classical result is used, the so-called closing lemma, to extend the dominated splitting
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to the whole surface. Consequently, every robustly transitive surface diffeomorphism
admits a dominated splitting (weak hyperbolicity). More precisely, the following
dichotomy is proved.

THEOREM [20]. Let M be a closed surface. Then there is a residual subset
R ⊆ Diff1(M) (that is, the set of all the diffeomorphisms Diff1(M)), R = R1 	 R2,
such that every f ∈ R1 is an Axiom A and every f ∈ R2 has infinitely many sources
and sinks.

In particular, every robustly transitive surface diffeomorphism is an Anosov diffeo-
morphism.

Note that in higher-dimensional manifolds, even if each periodic point is hyperbolic,
they could have different indexes (that is, unstable directions of different dimensions)
which hamper the choice of a ‘natural’ splitting over the set of all the periodic points.
Thus, the approach followed in [8, 11] was slightly different.
• In this context, they consider a hyperbolic saddle point p of the diffeomorphism f and

its homoclinic class, denoted by H(p, f ). Then, one defines ‘naturally’ a splitting
using the stable and unstable directions over H(p, f ) and proves that if such splitting
is not dominated, one can create a source or a sink for some perturbation of f. Since any
diffeomorphism inUf admits neither sources nor sinks, one has that H(p, f ) admits
a dominated splitting. Finally, using classical results such as the closing lemma and
connecting lemma, they extend the splitting to the whole manifold, proving that robust
transitivity for diffeomorphisms requires dominated splitting (weak hyperbolicity).In
fact, the result above follows as a consequence of the following.

THEOREM [8]. Let p be a hyperbolic saddle of a diffeomorphism f defined on M.
Then:
– either the homoclinic class H(p, f ) of p admits a dominated splitting; or
– given any neighborhood U of H(p, f ) and any integer � ≥ 1, there exists g

arbitrarily C1-close to f having � sources or sinks arbitrarily close to p, whose
orbits are contained in U.

Even more, it was proved that every robustly transitive diffeomorphism is volume
hyperbolic, which is a consequence of the following result.

THEOREM [8, 11]. Let �f (U) be a robustly transitive set and E1 ⊕ · · · ⊕ Ek ,
E1 ≺ E2 ≺ · · · ≺ Ek , be its finest dominated splitting. (A compact set � is a robustly
transitive set for f if it is the maximal f-invariant set in some neighborhood U and if,
for every gC1-close to f, the maximal g-invariant set �g(U) = ⋂

n∈Z gn(U) is also
compact and g : �g → �g is transitive.) Then, �f (U) is a volume hyperbolic set,
that is, there exists an integer � ≥ 1 such that Df � uniformly contracts the volume in
E1 and uniformly expands the volume in Ek .

1.2.3. Key obstructions versus dominated splitting for non-invertible endomorphisms.
For the case of non-invertible endomorphisms, the situation changes dramatically. On
the one hand, the existence of a source no longer is an obstruction, we can consider,
for example, an expanding map. On the other hand, as it was said before, there are
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examples of local diffeomorphisms on surfaces without dominated splitting. Moreover,
when endomorphisms having critical points are considered, the full-kernel obstruction
(which was first introduced in [17]) plays an essential role.

KEY OBSTRUCTION LEMMA. There are no robustly transitive endomorphisms exhibiting
a full-dimensional kernel.

To prove this, we use the following classical tool in C1-perturbative arguments intro-
duced by Franks in [12] for diffeomorphisms that can be easily adapted for endomorphisms
as follows.

FRANKS’ LEMMA. GivenU open set in End1(M) and f ∈ U, there exist ε > 0 such that
for every finite collection of distinct points � = {x0, . . . , xn} in M, and linear maps

Li : Txi
M → Tf (xi )M such that ‖Li − Dfxi

‖ < ε for 0 ≤ i ≤ n,

there exist an endomorphism f̂ ∈ U, a neighborhood B of �, and a family of balls {Bi}ni=0
contained in B, where Bi is centered at xi , verifying

f̂ (xi) = f (xi) and f̂ |Bi
= Li for each 0 ≤ i ≤ n;

and f̂ (x) = f (x) for every x ∈ M\B,

where, by abuse of notation, f̂ |Bi
= Li means the action of f̂ in each Bi is equal to the

linear map Li .

Thus, we can conclude that the Key Obstruction Lemma follows from Franks’ Lemma
applied to � = {x, f (x), . . . , f m−1(x)} and Li = Dff i(x) for each i = 0, 1, . . . , m − 1,
where ker(Df m

x ) is d-dimensional. Hence, there is an endomorphism f̂ arbitrarily close
to f so that f̂ is equal to Li = Dff i(x) around f i(x) for each i = 0, 1, . . . , m − 1. In
particular, f̂ m is equal to Df m

x around x and hence the image of such neighborhood of x
by f̂ m is exactly one point which contradicts transitivity. Therefore, f cannot be a robustly
transitive endomorphism.

1.2.4. Two-dimensional endormorphisms with critical points. Let us quickly comment
about the approach in [17]. For a robustly transitive surface endomorphism f displaying
critical points having non-empty interior, one can define the set � consisting of all the
orbits (xi)i which get into the interior of the critical set infinitely many times for the past
and the future. That is, (xi)i ∈ � if and only if xi ∈ int(Cr(f )) for infinitely many i < 0
and infinitely many i > 0. To simplify the notation, let us also denote by f the map on
the space of all the orbits defined by (xi)i �→ (f (xi))i = (xi+1)i . Then, one has that � is
f -invariant and, moreover, one can define for every (xi)i in � an invariant splitting of the
tangent bundle over � as follows:

E(xi) = ker(Df
τ+
i +1

xi
) and F(xi) = Im(Df

|τ−
i |

x
i+τ

−
i

), (1.1)
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where τ+
i ≥ 0 is the time that xi takes to enter in the critical set for the first time, and

τ−
i < 0 is the time that xi takes to go back to the critical set along the orbit (xi)i for the

first time. In particular, we have xi+τ+
i

and xi+τ−
i

in Cr(f ).
The splitting E ⊕ F is well defined over � because the full-dimensional kernel

obstruction guarantees that ker(Df n
xi

) is at most one-dimensional for any n ≥ 0. In
particular, E is one-dimensional and Df -invariant. Furthermore, the definition of τ−

i

is used together with the fact that dim ker(Df n
xi

) ≤ 1, for all n ≥ 1, to show that F is
Df -invariant. Then, to get that E ⊕ F is a dominated splitting, it is proved in [17] that
the absence of domination property allows to create a point having full-dimensional kernel
for some C1-perturbation of f which is incompatible with robust transitivity. Thus, E ⊕ F

is a dominated splitting and it can be extended to the closure of � which is the whole
space. Finally, we use that every robustly transitive endomorphism displaying critical
points is approximated by such kinds of endomorphisms having dominated splitting, which
allows us to push the domination splitting to the limit to conclude Theorem A for surface
endomorphisms.

In higher dimension, the kernel of Df n may have distinct dimensions depending on n,
even if the kernel of Df has constant dimension. Moreover, the subbundles E and F on �

may not have constant dimension along the orbit on �.
In the sequel, we explain our strategy to figure out that obstacle and then prove

Theorem A.

1.3. Sketch of the proof of Theorem A. Let f0 be a robustly transitive endomorphism
displaying critical points and U0 a neighborhood of f0 in End1(M) such that every
endomorphism in it is (robustly) transitive. Up to shrink U0, we can find 1 ≤ κ < d as
the smallest integer satisfying

dim ker(Df m) ≤ κ for all f ∈ U0, m ≥ 1, (1.2)

where dim ker(Df ) = maxx∈M dim ker(Dfx). Otherwise, we could find f ∈ U0 and
m ≥ 1 such that dim ker(Df m) = d , which by Key Obstruction Lemma is absurd since
f is also a robustly transitive endomorphism.

Since κ is chosen as the smallest integer satisfying (1.2), it follows that f0 can be
approximated by f ∈ U0 satisfying the equality for some m ≥ 1. Let us define mf as
the smallest positive integer m such that:
• {x ∈ M : dim ker(Df m

x ) = κ} has non-empty interior; or
• if such a subset above has an empty interior, then we take mf as the smallest one such

that dim ker(Df m
x ) = κ for some x ∈ M .

To avoid any confusion, we point out that the second item must be considered if and
only if the interior of {x ∈ M : dim ker(Df m

x ) = κ} is empty.
From now on, let us define Crκ(f ) as the set {x ∈ M : dim ker(Df

mf
x ) = κ}. This

set plays an important role in our approach. Furthermore, we denote the set of all
endomorphisms f inU0 where Crκ(f ) has non-empty interior by F0.

It should be noted that F0 is non-empty and accumulates at f0. Indeed, given
x ∈ Crκ(f ) for some f close to f0, we can apply Franks’ Lemma to � = {x, f (x), . . . ,
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f mf −1(x)} and Li = Dff i(x), for each i = 0, 1, . . . , mf − 1, to get an endomorphism
f̂ C1-close to f and, therefore, close to f0, such that ker(Df̂

mf
y ) is κ-dimensional for every

y near x. Then, we conclude that Crκ(f̂ ) has non-empty interior and, moreover, m
f̂

≤ mf .
We now define the set � and the splitting E ⊕ F in our context of higher dimension.

For f ∈ F0, we define

�f =
{
(xi)i ⊆ M

∣∣∣∣ xi+1 = f (xi) for all i ∈ Z, and there exists (in)n ⊆ Z such that
xin ∈ Crκ(f ) for infinitely many in < 0 and in > 0

}

(∗)

and

E(xi) = ker(Df
mf +τ+

i
xi

) and F(xi) = Im(Df
|τ−

i |
x
i+τ

−
i

), (∗∗)

where

τ+
i = min{n ≥ 0 : xi+n ∈ Crκ(f )} and τ−

i = max{n ≤ −mf : xi+n ∈ Crκ(f )}.
Note that τ−

i and τ+
i are slightly different from those in [17] (recall definition in (1.1)).

However, it should be noted that mf is the time that ker(Df n) have maximal dimension
in U0 and Crκ(f ) is the set such that the kernel of Df mf has maximal dimension. In
particular, if f is a surface endomorphism, we have that mf = 1, κ = 1, Cr1(f ) is the
critical set of f, and τ±

i are the same as in [17].
We remark that (up to taking a subset) F0 is the natural candidate to prove Theorem B.

Then, it remains to show that there is an integer � > 0 and a number α > 0 such that
E ⊕ F is an (α, �)-dominated splitting. To prove that, we will see in Lemma 3.1 that �f ,
given by (∗), is dense in the inverse limit space (see §2) and, in Proposition 2.10, E ⊕ F

can be extended to the closure of �f once provided that E ⊕ F is an (α, �)-dominated
splitting.

To prove such uniform behavior, we state a technical dichotomy as follows. However,
before doing it, we would like to emphasize that to define E and F in (∗∗), only the fact
that �f = ∅ is used and dim ker(Df m) ≤ κ for all m ≥ 1.

THEOREM C. Let f0 be an endomorphism displaying critical points. Assume that there is
an integer 1 ≤ κ < d and a set F consisting of endomorphisms converging to f0 such that
every f ∈ F satisfies that �f = ∅ and dim ker(Df m) ≤ κ for all m ∈ Z. Then, only one
of the following statements hold:
• either there exist � > 0 and α > 0 such that for each f ∈ F, the splitting E ⊕ F is an

(α, �)-dominated splitting over �f ; or
• f0 is accumulated by endomorphisms g, where ker(Dgm) has dimension greater than

κ for some m ≥ 1.

We have already shown that F0 satisfies the hypothesis of Theorem C and f0 cannot
be approximated by endomorphisms whose kernel has dimension greater than κ . Then,
Theorem B follows from Theorem C since Lemma 3.1 implies the density of �f , and in
Proposition 2.10, we prove that the dominated splitting can be extended to the closure of
�f which is the space of all the orbits.
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1.3.1. Novelties and new techniques. We want to emphasize the new approaches brought
by the present paper that differ with those developed for diffeomorphisms and surface
endomorphisms having critical points.
• The kernel of Df is used at the critical set (that could be multidimensional and

have different dimension at distinct points) to build a candidate for a dominated
splitting on a dense set. On the one hand, this is substantially different from how the
splitting is built for the case of diffeomorphisms where the splitting over the periodic
points is used. On the other hand, the strategy goes beyond the approach for surface
endomorphisms where the kernel of Df n has dimension one for any point in the
critical set and any iterated n.

• A dominated splitting defined on an invariant non-compact set could not be extended
to the closure (see Example 2.3). Therefore, a fine control on the angle between
multidimensional subbundles has to be brought into consideration, an issue that is
not present in previous approaches.

1.4. How the paper is organized. In §2, we discuss the notion of dominated splitting and
some related properties, the equivalence of dominated splitting via cone criterion. In §3,
we use Theorem B to prove Theorem A. Finally, §4 is devoted to the proof of Theorem C
and to recall that Theorem B follows from Theorem C.

2. Weak form of hyperbolicity for endomorphisms
In this section, the notion of dominated splitting will be formalized in terms of invariant
splitting for endomorphisms displaying critical points. Further, we will present some
fundamental properties that will be useful throughout this paper.

Due to the fact that for an endomorphism, a point may exhibit more than one preimage,
it is natural to consider the inverse limit space of M with respect to f,

Mf = {(xi)i : xi ∈ M and f (xi−1) = xi for all i ∈ Z}. (2.1)

It is a compact metric space and the natural projection (xi)i �→ x0 is continuous.
Moreover, an endomorphism f ∈ End1(M) induces a homeomorphism on Mf defined by
(xi)i �→ (f (xi))i = (xi+1)i , and whenever there is no confusion, it will also be denoted
by f. The points in Mf are called the orbits of f. A subset � of Mf is said to be f-invariant
or simply, invariant if f −1(�) = �.

The concept of dominated splitting is established in the context of endomorphisms
without critical points (that is, local diffeomorphisms and diffeomorphisms) and its
definition is the following.

We say that an f -invariant set � ⊆ Mf admits a dominated splitting of indexκ for f if for
all (xi)i ∈ �, there exist two families (E(xi))i and (F (xi))i of κ and (d − κ)-dimensional
subspaces satisfying the following properties.

Invariant splitting. For each i ∈ Z, one has that

Df (E(xi)) = E(f (xi)), Df (F(xi)) = F(f (xi)),
and Txi

M = E(xi) ⊕ F(xi);
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Domination property. There exists � ≥ 1 such that for each i ∈ Z and unit vectors u ∈
E(xi) and v ∈ F(xi), one has that

‖Df �(u)‖ ≤ 1
2‖Df �(v)‖.

When f is a diffeomorphism, M is used instead of Mf in the definition above. Recall
that the domination property is denoted by E ≺ F or E ≺� F if we want to emphasize the
role of �.

Remark 2.1. The families E and F are actually subbundles of the vector bundle of Mf

defined by T Mf = {((xi)i , v) : v ∈ Tx0M}. Moreover, the bundle E depends only on the
forward orbit while F depends only on the backward orbit of a point in Mf . This implies
that the bundle E induces a subbundle of T M and this will be used in the proof of
Corollary 1.1.

Remark 2.2. Let W be any inner product space and 	 : W → W be a linear map. For a
subspace V of W, we denote 	 restricted to V by 	 |V and respectively define the norm
and conorm of 	 |V by

‖	 |V ‖ = max
v∈V \{0}

‖	(v)‖
‖v‖ and m(	 |V ) = min

v∈V \{0}
‖	(v)‖

‖v‖ . (2.2)

When V is the whole space, we simply say that ‖	‖ and m(	) are the norm and conorm
of 	.

From now on, by Remark 2.2, we rewrite the inequality in the domination property:

‖Df � |E(xi) ‖ ≤ 1
2 m(Df � |F(xi )).

Some differences should be pointed out when the derivative is not invertible every-
where. For instance, suppose that E ⊕ F is a splitting over an f -invariant set � ⊆ Mf

verifying all the properties of the definition above. Note that if uE + uF ∈ ker(Dfxi
),

where uE ∈ E(xi) and uF ∈ F(xi), then Df (uE) is parallel to Df (uF ) which affects the
invariance property. Moreover, if uF ∈ ker(Dfxi

), then the domination property implies
that E(xi) is contained in ker(Dfxi

), and so neither E(xi) nor F(xi) are invariant.
Therefore, to extend the notion of dominated splitting, we require the following:

ker(Df n
xi

) ⊆ E(xi) for each xi in (xi)i ∈ � and each n ≥ 1.

In addition, we also require that the angle between E and F is uniformly away from
zero. This will allow to extend the dominated splitting to the closure of �, see Proposition
2.10. Otherwise, an orbit (xi)i may exist such that E(xi) = ker(Dfxi

), and the angles of
E(xi) and F(xi) go to zero as i goes to +∞ then, somewhere on the boundary of �, the
extensions of E and F have some intersection. See the following example.

Example 2.3. Let (An)n be a sequence of square matrices defined by

An =
(

0 1
0 (n + 1)−1

)
for all n ≥ 1.
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Take E := En and Fn as the subspaces generated by v = (1, 0) and vn = (1, 1/n),
respectively. Then, En ⊕ Fn is a dominated splitting for (An)n since An(En) ⊆ En+1 and
An(Fn) = Fn+1. Moreover,

‖An|En
‖ = 0 ≤ 1

2‖An|Fn
‖

for each n ≥ 1. However, En and Fn converge to the same subspace E.
This example shows the existence of a dominated splitting along an orbit which cannot

be extended to the closure.

Thus, before proposing the definition of dominated splitting for an endomorphism
displaying critical points, we should introduce the notion about the angle between
subspaces.

The angle between the non-zero vectors v, w ∈ TxM with respect to the metric 〈·, ·〉
(where, for simplicity, we ignore the dependence of the inner product on x in M) is defined
as the unique number �(v, w) in [0, π ] satisfying cos �(v, w) = 〈v, w〉/‖v‖‖w‖. Then,
given V and W, two non-trivial subspaces of TxM , we define the angle between them by

�(V , W) = min
v∈V \{0} min

w∈W\{0} �(v, w). (2.3)

The angle between two subspace is a number contained in [0, π/2]. We also write
�(Rv, W) to refer to the angle between the space generated by a non-zero vector v and
the subspace W.

We would like to emphasize that �(V , W) = 0 does not mean that V = W , it just means
that the intersection between V and W is non-trivial; and �(V , W) > α for some α > 0
means that V and W are far away from each other. This notion of angle between two
subspaces will be useful to extend the definition of dominated splitting in the context of
endomorphisms displaying critical points. Furthermore, that angle allows us to define a
distance on Grassr (TxM), called the r-dimensional Grassmannian ofTxM , which consists
of all the r-dimensional subspaces of TxM . For all V and W in Grassr (TxM), we define
the distance between them by

dist(V , W) = cos �(V ⊥, W), (2.4)

where V ⊥ denotes the orthogonal complement of V. It is well known that the Grassman-
nian endowed with this distance is a compact metric space. For more details about the
distance, see [6, Appendix A.1]

Now, we are able to define a dominated splitting for endomorphisms exhibiting critical
points.

Definition 2.1. Let f ∈ End1(M) be an endomorphism displaying critical points. An
invariant subset � of Mf admits a dominated splitting of index κ for f if for all (xi)i ∈ �,
there exist two families (E(xi))i and (F (xi))i of κ and (d − κ)-dimensional subspaces
such that the following properties hold.

Invariant splitting. For each i ∈ Z, one has that

Df (E(xi)) ⊆ E(f (xi)), Df (F(xi)) = F(f (xi)),

and Txi
M = E(xi) ⊕ F(xi).
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Uniform angle. There exists α > 0 such that �(E(xi), F(xi)) ≥ α for each i ∈ Z.

Domination property. There exists � ≥ 1 such that E ≺� F .

We will say that E ⊕ F is an (α, �)-dominated splitting if we want to emphasize the role
of � and α. When � = Mf , we also say that f has a dominated splitting. For simplicity, we
will write E ≺ F instead of E ≺� F when there is no confusion.

Remark 2.4. Observe that if E and F satisfy the items in Definition 2.1, then Df |F is an
isomorphism and ker(Df n

xi
) ⊆ E(xi) for each (xi)i ∈ � and n ≥ 1.

Remark 2.5. No uniform angle property is required to define dominated splitting for
endomorphisms displaying critical points in the introduction. The uniformity of the angle
follows from the fact that the manifold is compact and the subbundles are continuous.

More generally, an invariant subset � of Mf admits a dominated splitting of index κ for
f if for all (xi)i ∈ �, there exist non-trivial families (E(xi))i and (Fj (xi))i , 1 ≤ j ≤ r ,
of κ and dj -dimensional subspaces with d1 + d2 + · · · + dr = d − κ satisfying the
following properties.

Invariant splitting. For each i ∈ Z, one has that

Df (E(xi)) ⊆ E(f (xi)), Df (Fj (xi)) = Fj (f (xi)), and Txi
M = E(xi) ⊕r

j=1 Fj (xi).

Uniform angle. There exists α > 0 so that �(E(xi), ⊕r
j=1Fj (xi)) ≥ α for each i ∈ Z.

Domination property. E ≺ F1 ≺ F2 ≺ · · · ≺ Fr .

2.1. Dominated splitting properties. Throughout this section, we adapt some of the
main properties about dominated splitting which appear in [10] in the diffeomorphisms
context to the context of endomorphisms displaying critical points.

Let f be an endomorphism displaying critical points and E ⊕ F be a dominated splitting
over f -invariant subset � of Mf .

The uniqueness of the dominated splitting is guaranteed by the following.

PROPOSITION 2.6. If G ⊕ H is a dominated splitting over � for f, which holds
dim E = dim G, then E(xi) = G(xi) and F(xi) = H(xi) for all xi in the orbit (xi)i ∈ �.

The proof needs some preliminaries.

LEMMA 2.7. If G ⊕ H is a dominated splitting over � for f with dim E(xi) ≤ dim G(xi)

for all (xi)i ∈ �, then E(xi) ⊆ G(xi). In particular, E ⊕ (G ∩ F) ⊕ H is a dominated
splitting over � for f.

Proof. We can, without loss of generality, choose � ≥ 1 such that E ≺� F and G ≺� H .
Moreover, it follows from Remark 2.4 that Df |H is an isomorphism and ker(Df m

xi
) must

be contained in E(xi) and G(xi), for each (xi)i ∈ � and m ≥ 1.
To conclude the proof of the proposition, it remains to show that if u ∈ E(xi) such

that Df m(u) = 0, for every m ≥ 1, then u ∈ G(xi). Then, for every u ∈ E(xi), one
can decompose u = uG + uH in a unique way where uG ∈ G(xi) and uH ∈ H(xi).
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Analogously, one can decompose uH = u′
E + u′

F , where u′
E ∈ E(xi) and u′

F ∈ F(xi).
Then u′

F must be zero. Otherwise, we get that

‖Df k�(u)‖ ≥ ‖Df k�(uH )‖ − ‖Df k�(uG)‖ ≥
(

1 − 1
2k

)
‖Df k�(uH )‖

≥
(

1 − 1
2k

)
(‖Df k�(u′

F )‖ − ‖Df k�(u′
E)‖)

≥
(

1 − 1
2k

)2

‖Df k�(u′
F )‖,

implying that ‖Df k�(u)‖ and ‖Df k�(u′
F )‖ have the same growth, which is impossible.

Therefore, uH ∈ E(xi) ∩ H(xi) and uG ∈ E(xi) ∩ G(xi). Symmetrically, we deduce that
if v ∈ G(xi) whose v = vE + vF , then vE ∈ G(xi) ∩ E(xi) and vF ∈ G(xi) ∩ F(xi).
Moreover, since dim E(xi) ≤ dim G(xi), we have that either G(xi) = E(xi) or G(xi) ∩
F(xi) = {0}.

Take non-zero vectors u ∈ E(xi) ∩ H(xi) and v ∈ G(xi) ∩ F(xi). Then, as G ≺ H ,
we deduce that ‖Df �(u)‖ grows faster than ‖Df �(v)‖, which contradicts the fact that
E ≺ F . Thus, at least one of these intersections E(xi) ∩ H(xi) and G(xi) ∩ F(xi) is
trivial. Thus, we obtain that E(xi) ∩ H(xi) = {0}. It implies that E(xi) is contained in
G(xi). To conclude the proof, we should observe that G(xi) ∩ F(xi) is invariant and
E(xi) ≺ G(xi) ∩ F(xi) ≺ H(xi).

As a direct consequence of the previous lemma, we conclude the first part of the
uniqueness of the dominated splitting.

COROLLARY 2.8. If G ⊕ H is a dominated splitting over � for f such that
dim E = dim G, then E(xi) = G(xi) for all xi in the orbit (xi)i ∈ �.

To complete the proof of Proposition 2.6, we state the following.

LEMMA 2.9. If E ⊕ F and E ⊕ H are dominated splittings over � for f, then
F(xi) = H(xi) for all xi in the orbit (xi)i in �.

Proof. First, we assume that (xi)i ∈ � with xi /∈ Cr(f ) for all i ∈ Z. Then, since Dfxi
:

Txi
M → Txi+1M is an isomorphism, one has that for every unit vectors u ∈ E(xi) and

v ∈ F(xi),

‖Df −�(u)‖ ≥ 1
‖Df �|E‖ ≥ 2

1
m(Df �|F )

≥ 2‖Df −�(v)‖.

In particular, F ≺� E for Df −1 along the orbit (xi)i and, similarly, H ≺� E for
Df −1. Therefore, applying Corollary 2.8, one concludes that F(xi) = H(xi) since
dim F = dim H .

In the general case, for a non-zero vector u ∈ F(xi), one deduces that there are two
vectors w ∈ E(xi) and v ∈ H(xi), with v = 0, such that u = w + v. Assume without
loss of generality that i = 0. Then, using that Df |F and Df |H are isomorphisms, we
can find the sequences (uj )j≤0 ⊆ F\{0}, (wi)j≤0 ⊆ E, and (vj )j≤0 ⊆ H\{0} such that
uj = wj + vj and Df (uj−1) = uj . Note that if Df m(wj−1) = 0, for some 1 ≤ m ≤ |j |,
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there is nothing to be proved since it directly implies that u ∈ H(xj ). Hence, we can
assume that Df (∗i−1) = ∗i , where ∗ = u, v, and w and ∗0 = ∗.

Denote Vi = span{wi , vi} as the span of wi , vi ; and define Ai : Vi−1 → Vi as the
restriction of Dfxi−1 to Vi−1 for each i ≤ 0. Observe that defining An

i : Vi → Vi+n by
An

i = A−1
i+n · · · A−1

i for every n ≤ 0, we can repeat the previous arguments to show that
Vi admits two dominated splittings for A−1

i , which are Vi = span{ui} ⊕ span{wi} with
span{ui} ≺� span{wi}, and Vi = span{vi} ⊕ span{wi} with span{vi} ≺� span{wi} since
ui ∈ Vi and the following holds:

‖Ai |span{wi }‖ ≤ ‖Df |E‖, ‖Ai |span{ui }‖ ≥ m(Df |F ), and

‖Ai |span{vi }‖ ≥ m(Df |H ).

Therefore, we repeat the argument in the proof of Lemma 2.7 to get that v0 and u0 are
parallel. This completes the proof.

We can use the uniqueness of the dominated splitting to show the continuity and extend
it to the closure.

PROPOSITION 2.10. The subbundles E and F depend continuously with the point
(xi)i ∈ � and the closure � in Mf admits a dominated splitting which coincides with
E ⊕ F in �. (Continuity means that when considering local coordinates so that the
tangent bundle becomes trivial, the bundles depend on the point continuously as subspaces
of Rd .)

Proof. The proof is a standard argument once we have shown the uniqueness of the
dominated splitting and the uniformity of the angle. This can be found in [10].

Remark 2.11. It is well known and follows from the proof of uniqueness that if E ⊕ F is a
dominated splitting, then the subbundle E only depends on the forward orbits. That is, for
all points (xi)i and (yi)i in �, one has that

E(xi) = E(yi) for all i ≥ 0, whenever x0 = y0. (2.5)

In particular, by Propositions 2.6 and 2.10 together with (2.5), the subbundle E of T Mf

induces an invariant continuous subbundle of T M which will also be denoted by E.

2.2. Cone criterion. In this section, we will show that the existence of dominated
splitting for endomorphisms displaying critical points can also be characterized in terms
of cone fields as well as in the diffeomorphisms context.

A cone-field C of dimension k on M is a continuous family of convex closed
non-vanishing cones C(x) in TxM such that the subspaces of maximal dimension inside
of C(x) are k-dimensional. The closure of the complement of C(x) in TxM is a cone
of dimension d − k, called a dual cone at x and denoted by C ∗(x). We will call a dual
cone-field of C the family C ∗ = {C ∗(x) : x ∈ M}. We say that a cone-field C is invariant
by an endomorphism f if there is an integer � > 0 such that Df �(C(x)) is contained in
int(C(f �(x))) ∪ {0}, where int(C(x)) denotes the interior of C(x) in TxM . We also can
say that C is �-invariant if we want to emphasize the role of �.
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We next state an equivalent notion of dominated splitting for endomorphisms
f : M → M exhibiting critical points.

PROPOSITION 2.12. Let E ⊕ F be a dominated splitting for f with κ = dim E. Then there
is a (d − κ)-dimensional invariant cone-field C such that E(x) ∩ C(x) = {0} for each
x ∈ M .

In the proof, we will first define the cone-field, and then will prove that it is invariant
and transversal to the kernel.

By Remark 2.11, E is an invariant continuous subbundle of T M and, by Remark 2.4,
we have that ker(Df n

x ) is contained in E(x) for all x ∈ M . Then, for every x ∈ M , we can
define a cone-field CE on M of dimension κ and length η > 0 by

CE(x, η) = {(u1, u2) ∈ E(x) ⊕ E(x)⊥ : ‖u2‖ ≤ η‖u1‖}. (2.6)

Note that u = (u1, u2) ∈ E(x) ⊕ E⊥(x) satisfies that

tan �(Ru, E⊥(x)) ≤ tan �(u, u2) = ‖u1‖
‖u2‖ ,

then, using that cosine is decreasing on [0, π/2], the cone-field can be rewritten as

CE(x, η) = {u ∈ E(x) ⊕ E(x)⊥ : �(Ru, E⊥(x)) ≥ arctan η−1}.
From now on, since arctan : (0, +∞) → (0, π/2) is a homeomorphism preserving the

orientation, we will make an abuse of notation rewriting, for each η ∈ (0, π/2),

CE(x, η) = {u ∈ E(x) ⊕ E(x)⊥ : �(Ru, E⊥(x)) ≥ π/2 − η}. (2.7)

Recall that the dual cone-field of CE(x, η) is the closure of TxM\CE(x, η) which is a
(d − κ)-dimensional cone-field and will be written as

C ∗
E(x, η) = {u ∈ E(x) ⊕ E(x)⊥ : �(Ru, E(x)) ≥ η}. (2.8)

It is clear that E(x) ⊆ CE(x, η) for each x ∈ M and η ∈ (0, π/2). Thus, we
can conclude that ker(Df n

x ) ∩ C ∗
E(x, η) = {0} for each x ∈ M and n ≥ 1, since

ker(Df n
x ) ⊆ E(x).

Therefore, to conclude the proof of Proposition 2.12, we state the following.

Claim. There is α > 0 such that the dual cone-field C ∗
E = {C ∗

E(x, α) : x ∈ M} is
invariant.

Indeed, since the angle between E and F is bounded away from zero, there is a number
α > 0 small enough satisfying �(F (xi), E(xi)) ≥ 2α, for each i ∈ Z in all the orbit (xi)i .
In particular, we have that the direction F(x0) associated to any orbit (xi)i with x0 = x

is contained in C ∗
E(x, α). Moreover, there is a constant c > 0 (depending only on α) such

that any decomposition of a vector w ∈ C ∗
E(x, α) as w = wE + wF with wE ∈ E(x) and

wF in direction F at x satisfies ‖wF ‖ ≥ c‖wE‖. Otherwise, w cannot belong to C ∗
E(x, α).

Thus, we obtain that
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‖Df k�(wE)‖ ≤ ‖Df k�|E‖‖wE‖ ≤ ( 1
2

)k
m(Df k�|F )‖wE‖

≤ ( 1
2

)k‖Df k�(wF )‖‖wE‖
‖wF ‖ ≤ ( 1

2

)k
c−1‖Df k�(wF )‖

and hence, we can take k > 0 large enough such that C ∗
E(x, α) is k-invariant for every

x ∈ M . Taking C as the dual cone-field C ∗
E , we conclude the proof.

Conversely, we will show that the existence of an invariant cone-field transversal to the
kernel is sufficient to get a dominated splitting. More precisely, we state the following.

PROPOSITION 2.13. If C is an invariant (d − κ)-dimensional cone-field by f such that
ker(Df n

x ) ∩ C(x) = {0} for each x ∈ M and n ≥ 1, then there exist two non-trivial
subbundles E and F on Mf such that E ⊕ F is a dominated splitting for f, where E is
κ-dimensional.

To prove Proposition 2.13, some preliminaries are needed. For a linear transformation
	 : V → W , where V and W are d-dimensional vector spaces with an inner product, we
denote by 	∗ : W → V its adjoint. It is well known that if the kernel of 	 is r-dimensional,
then there are {v1, . . . , vd} and {w1, . . . , wd} orthonormal bases of V and W, respectively,
such that 	(vi) = 0, 	∗(wi) = 0 for each 1 ≤ i ≤ r; and 	(vi) = σiwi , 	∗(wi) = σivi

with σi > 0 for each r < i ≤ d . Moreover, we have that σi = ‖	(vi)‖ = ‖	∗(wi)‖ for
each i = 1, . . . , d .

We call the σi terms the singular values of	. Note that the singular values of 	 are
the eigenvalues of

√
	∗	 associated to the eigenvectors vi , and we will order them as the

following:

σ1 = · · · = σr = 0 < σr+1 ≤ · · · ≤ σd .

When the kernel of 	 is trivial (that is, r = 0), we have 0 < σ1 ≤ σ2 ≤ · · · ≤ σd .
Note that the σi terms are also the singular values of 	∗. Moreover, the singular values

are typically ordered from largest to smallest, but we are taking the opposite convention.
For more information, see [13, Theorem 7.3.2].

We would also like to introduce a useful ‘minimax’ characterization of the singular
values, which appears in [6, Appendix A]:

σj = min{‖	 |P‖ : P ∈ Grassj (V )}; and

σj+1 = max{m(	 |U) : U ∈ Grassd−j (V )}, (2.9)

where Grassr (V ) denotes the r-dimensional Grassmannian of V.
From now on, we denote by σ1(x, n) ≤ · · · ≤ σd(x, n) the singular values of Df n

x

and by {en
1(x), en

2(x), . . . , en
d(x)} an orthogonal basis of TxM so that ‖Df n(en

i (x))‖ =
σi(x, n) for all x ∈ M , n ≥ 1 and 1 ≤ i ≤ d . To simplify notation, we omit the depen-
dence on x and write ei instead of ei(x).

To prove Proposition 2.13, we define En(x) as the subspace of TxM spanned by the
vectors en

i on the basis such that ‖Df n(en
i )‖ = σi(x, n) < σκ+1(x, n); and E⊥

n (x) as the
orthogonal complement of En(x). It should be noted that En(x) is at most κ-dimensional
and E⊥

n (x) is the fastest direction of Df n, which means that m(Df n|E⊥
n (x)) ≥ ‖Df n(v)‖

for every unit vector v /∈ E⊥
n (x).
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Since the cone-field C is (d − κ)-dimensional and ker(Df n
x ) ∩ C(x) = {0} for each

x ∈ M and n ≥ 1, we obtain that dim ker(Df n
x ) ≤ κ for each x ∈ M and n ≥ 1. Oth-

erwise, the intersection between ker(Df n
x ) and the cone C(x) would be non-trivial.

Moreover, as dim ker(Df n
x ) = r implies that σi(x, n) = 0 for each 1 ≤ i ≤ r , we can

conclude that ker(Df n
x ) is contained in En(x).

We will prove that for all n ≥ 1, the subspaces En(x) are κ-dimensional, implying that
they are in Grassκ(TxM). After that, we will show that the family (En)n is a Cauchy
sequence and, recalling that Grassκ(TxM) is a compact space with the usual distance (2.4),
we will get the limit E(x) for each x ∈ M . Finally, we will prove that E is Df -invariant.

Note that the subspace E(x) which is limit of En(x) satisfies that ker(Df n
x ) ⊆ E(x) for

each n ≥ 1. Indeed, since ker(Df n
x ) ⊆ En(x) and ker(Df

j
x ) ⊆ ker(Df

j+1
x ), we have that

ker(Df
j
x ) ⊆ En(x) for each 1 ≤ j ≤ n and, then, we get that ker(Df

j
x ) ⊆ E(x) for each

j ≥ 1.
To define the direction F, we observe that the assumptions

Df �
x (C(x)) ⊆ int(C(f �(x))) and ker(Df n

x ) ∩ C(x) = {0}

for each x ∈ M and each n ≥ 1, allow us to claim the following, for which the proof can
be found in [10].

Claim 1. For each orbit (xi)i , there is a (d − κ)-dimensional subbundle F defined by

F(xi) =
⋂
n≥0

Df n�(C(xi−n�)).

Moreover, it is contained in int(C(xi)) and is also Df �-invariant.

To complete the proof of Proposition 2.13, we will prove that the subbundle E is
transversal to the cone-field, implying that E ∩ F = {0}; and, finally, we will show that
E ≺ F .

These arguments will be divided into a series of lemmas. Before stating the first one,
we need to introduce some notation.

Since the subbundle F, as in Claim 1, is in the cone-field C away from the boundary,
we can choose δ0 > 0 small enough such that for every orbit (xi)i , the family of
(d − κ)-dimensional cones {K(xi , δ0) : i ∈ Z},

K(xi , δ0) := {(u, v) ∈ F⊥(xi) ⊕ F(xi) : ‖u‖ ≤ δ0‖v‖},

satisfies that K(xi , δ0) is contained in the interior of C(xi) for each i ∈ Z.
We are getting this alternative family of cones because that family is centered in the

direction F along the orbit (xi)i , which does not necessarily happen for the cone-field C,
and this will be useful to make the computation.

Now, we state the first lemma toward the proof of Proposition 2.13. Roughly speaking,
the lemma guarantees that the directions out of the cone K(xi , δ) are dominated by the
direction F.
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LEMMA 2.14. For every 0 < δ < δ0 and ε > 0 small enough, there is an integer N > 0
such that every orbit (xi)i holds

Df N�(K(xi , δ)) ⊆ int(K(xi+N�, ε)) ∪ {0}. (2.10)

Moreover, for every 0 < λ < 1 and every 0 < δ < δ0 small enough, we can choose N > 0
such that if w /∈ K(xi , δ) with ‖w‖ = 1, then at least one of the following holds:
(i) Df N�(w) ∈ K(xi+N�, δ); or

(ii) ‖Df N�(w)‖ ≤ λ m(Df N�|F(xi )).

Proof. Since K(xi , δ) ⊆ C(xi) along the orbit (xi)i and by the definition of F, we have
that for every 0 < ε < δ, there is a large number N > 0 such that

Df N�(K(xi , δ)) ⊆ Df N�(C(xi)) ⊆ K(xi+N�, ε)

for each i ∈ Z. This proves the first part of the lemma.
To prove the second part, let us fix any ε where 0 < ε < (δ/(1 + δ))(δλ/(1 + δλ))

and N > 0 satisfying (2.10). We suppose by contradiction that there is a unit vector
w /∈ K(xi , δ) such that

‖Df N�(w)‖ ≥ λ m(Df N�|F(xi )) and Df N�(w) /∈ K(xi+N�, δ).

Then, we will prove that (2.10) does not happen, contradicting the first part of the lemma.
Indeed, write Df N�(w) = au1 + bv1, where u1 ∈ F⊥(xi+N�) and v1 ∈ F(xi+N�) are

unit vectors such that |a| ≥ δ|b|. Then, we can bound |a| from below and |b| from above
as follows:

|a|
(

1 + 1
δ

)
≥ |a| + |b| ≥ ‖Df N�(w)‖ and ‖Df N�(w)‖ ≥ |b|,

which gives

|a| ≥
(

δ

1 + δ

)
‖Df N�(w)‖.

Take a unit vector v ∈ F(xi) satisfying ‖Df N�(v)‖ = m(Df N�|F(xi )) and choose a
number c ∈ R such that w′ = cw + v belongs to the boundary of K(xi , δ), which is
contained in C(xi). Note that the constant c satisfies |c| ≥ δ, since w is a unit vector out of
the cone K(xi , δ) and v is a unit vector in F(xi).

We now decompose Df N�(w′) = cau1 + cbv1 + m(Df N�|F(xi ))v0, where v0 =
Df N�(v)/‖Df N�(v)‖ ∈ F(xi+N�) and then we can get that

‖acu1‖
‖bcv1 + m(Df N�|F(xi ))v0‖ ≥ |a||c|

|b||c| + m(Df N�|F(xi ))

≥
(

δ

1 + δ

) ‖Df N�(w)‖|c|
‖Df N�(w)‖|c| + m(Df N�|F(xi ))

≥
(

δ

1 + δ

)( |c|
|c| + λ−1

)

≥
(

δ

1 + δ

)(
λ|c|

λ|c| + 1

)
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≥
(

δ

1 + δ

)(
λ

λ + |c|−1

)

≥
(

δ

1 + δ

)(
λ

λ + δ−1

)
≥

(
δ

1 + δ

)(
δλ

1 + δλ

)
> ε.

Therefore, we obtain that Df N�(w′) does not belong to K(xi+N�, ε) which contradicts
(2.10) and therefore completes the proof of the lemma.

From now on, we fix λ, δ, and ε as in Lemma 2.14 and, to simplify notation, we will
assume that N = 1.

We will prove that there is an ‘exponential gap’ which means the quotient between
σκ(x, n) and σκ+1(x, n) decreases exponentially fast to zero. It will be useful to prove that
(En(x))n is a Cauchy sequence.

LEMMA 2.15. There is c > 0 such that

σκ(x, n) < cλnσκ+1(x, n)

for all x ∈ M and n ≥ 1.

Proof. We will first prove the lemma for n multiples of �.
We will prove for an orbit (xi)i that

σκ(xi , n�) ≤ λnσκ+1(xi , n�) (2.11)

for every n ≥ 1.
Consider P0 = En�(xi) and Pj = Df j�(En�(xi)) for each 1 ≤ j ≤ n. We will first

show that Pj ∩K(xi+j�, δ) = {0} for each 0 ≤ j ≤ n and, by invariance of the family
{K(xi , δ) : i ∈ Z}, it is enough to show this for Pn. Note that Pn is orthogonal to
Df n�(E⊥

n�(xi)) by definition and, since dim E⊥
n�(xi) = dim Df n�(E⊥

n�(xi)) is at least
the dimension of the cone, it is enough to show that Df n�(E⊥

n�(xi)) ⊂ K(xi+n�, δ).
If this were not the case, we would find a unit vector v ∈ E⊥

n�(x) which does not
belong to the cone K(xi , δ) such that Df n�(v) /∈ K(xi+n�, δ). We have that ‖Df n�(v)‖ ≥
σκ+1(xi , n�) ≥ m(Df n� |F(xi )) by definition of En�(xi)

⊥. Then, a computation similar
to that in Lemma 2.14 gives the contradiction that Df n�(K(xi , δ)) is not contained in
K(xi+n�, ε)).

To prove (2.11), we use the ‘minimax’ characterization in (2.9), which says

σκ(xi , n�)

σκ+1(xi , n�)
= min{‖Df n�|P ‖ : P ∈ Grassκ(Txi

M)}
max{m(Df n�|U) : U ∈ Grassd−κ(Txi

M)}

≤ ‖Df n�|En�(xi )‖
m(Df n�|F(xi ))

≤ �n−1
j=0

‖Df �|Pj
‖

m(Df �|F(xi+j�))
.

Thus, for every w ∈ Pj , we have that Df �(w) /∈ K(xi+j�, δ) and, by Lemma 2.14, we
obtain that ‖Df �|Pj

‖ ≤ λ m(Df �|F(xi+j�)).
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Finally, by continuity of C and by ker(Df j ) ∩ C = {0}, we can get a uniform constant
c > 0 such that

max{‖Df
j
x ‖ : x ∈ M}

min{m(Df
j
x |U) : U ∈ Grassd−κ(Tx) and U ⊆ C(x)}

< c

for each 1 ≤ j < � and then conclude that σκ(xi , n) ≤ cλnσκ+1(xi , n).

The following result follows as immediate consequence of the previous lemma, since
σκ(x, n) < σκ+1(x, n) for every n large enough and x ∈ M .

COROLLARY 2.16. We have that En(x) is κ-dimensional for every n large enough
independently on x ∈ M . Consequently, E⊥

n (x) is (d − κ)-dimensional.

Let us remind the reader what we have done so far to prove Proposition 2.13. By
Corollary 2.16, we can suppose without loss of generality that En(x) is κ-dimensional for
all n ≥ 1 and we will next show that the sequence (En(x))n is of Cauchy on Grassκ(TxM)

endowed with the distance (2.4).
We now state the following result (see [6, Lemma A.4] and also see [4, 24, 26] for

related results).

LEMMA 2.17. The sequence (En(x))n is of Cauchy.

Before the proof of the lemma, we first need two useful lemmas.

LEMMA 2.18. For large n, we have that Df n(E⊥
n (x)) ⊆ C(f n(x)) for every x ∈ M .

Proof. The proof will follow from item (ii) in Lemma 2.14. Indeed, suppose by contradic-
tion that Df n(E⊥

n ) is not contained in the cone. In particular, there is a vector v ∈ E⊥
n (x)

such that Df j�(Df r(v)) does not belongs to the cone with n = j� + r and 0 ≤ r ≤ � − 1,
satisfying:

‖Df n(v)‖ ≤ λj m(Df j�|F(x))‖Df r(v)‖.

Thus, since j goes to +∞ as n goes to +∞, we can get n large enough such that
‖Df n(v)‖ < m(Df j�|F(x)). This contradicts the definition of E⊥

n (x) to be the fastest
direction of Df n.

LEMMA 2.19. There is a constant K1 > 0 such that for every x ∈ M and n large, the
following inequality holds:

min{‖Dff n(x)‖σκ+1(x, n), ‖Dfx ||σκ+1(f (x), n)} ≥ σκ+1(x, n + 1) ≥ K1σκ+1(x, n).

Proof. We take the constant K1 = min{‖Df |C(x)‖ : x ∈ M}. Since the cone-field C

depends continuously on x and is transversal to ker(Df n
x ) for all n ≥ 1, we have that

K1 > 0.
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We will first prove that

‖Dff n(x)‖σκ+1(x, n) ≥ σκ+1(x, n + 1) ≥ K1σκ+1(x, n).

For that, we take V as the subspace of TxM generated by En(x) ∪ {en
κ+1}. Then,

‖Dff n(x)‖σκ+1(x, n) ≥ ‖Df n+1
x |V ‖

= σκ+1(x, n + 1)

≥ m(Df n+1
x |E⊥

n (x))

≥ m(Dff n(x)|Df n(E⊥
n (x))) m(Df n

x |E⊥
n (x)).

Thus, we conclude the proof using that Df n
x |E⊥

n (x) is contained in C(f n(x)) given by
Lemma 2.18.

To complete the proof, it is sufficient to show that ‖Dfx‖σκ+1(f (x), n) ≥ σκ+1(x,
n + 1), since we have already known that σκ+1(x, n + 1) ≥ K1σκ+1(x, n).

To do that, we will use that

σj (f (x), n) = min{‖(Df n)∗|P ‖ : P ∈ Grassj (Tf n+1(x)M)}; and

σj+1(f (x), n) = max{m((Df n)∗|U) : U ∈ Grassd−j (Tf n+1(x)M)}.
We consider two orthogonal bases {en

1 , . . . , en
d} of Tf (x)M and {wn

1 , . . . , wn
d } of

Tf n+1(x)M satisfying Df n(en
j ) = σj (f (x), n)wn

j and (Df n)∗(wn
j ) = σj (f (x), n)en

j .
After that, taking P = {wn

1 , . . . , wn
κ+1}, we can verify that ‖Dfx‖ = ‖(Dfx)

∗‖ and

‖(Dfx)
∗‖σκ+1(f (x), n) ≥ ‖(Dfx)

∗‖‖(Df n
f (x))

∗|P ‖
≥ ‖(Df n+1

x )∗|P ‖ ≥ σκ+1(x, n + 1).

Finally, we can prove that (En(x))n is a Cauchy sequence.

Proof of Lemma 2.17. Suppose n < m and observe that

dist(Em(x), En(x)) ≤
m−n∑
j=1

dist(En+j−1(x), En+j (x)).

Then, to prove the lemma, it is sufficient to show that the distance dist(En+1(x), En(x))

tends to zero exponentially fast with n and uniformly in x.
We will omit the point x and simply rewrite En and E⊥

n throughout the proof. To
estimate the distance between En and En+1, we take w ∈ En as the farthest unit vector
from En+1 and decompose w = u + v in a unique way where u ∈ En+1 and v ∈ E⊥

n+1.
Then, we obtain that cos �(En, E⊥

n+1) = cos �(w, v) = ‖v‖.
On the one hand, since the images of En+1 and E⊥

n+1 by Df n+1 are orthogonal, we
have that

‖Df n+1(w)‖ = ‖Df n+1(u)‖ + ‖Df n+1(v)‖
≥ ‖Df n+1(v)‖ ≥ σκ+1(x, n + 1)‖v‖.
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On the other hand,

‖Df n+1(w)‖ ≤ K‖Df n(w)‖ ≤ Kσκ(x, n),

where K = supx ‖Dfx‖ < ∞. Thus, by Lemmas 2.19 and 2.15, one concludes that

dist(En+1(x), En(x)) = cos �(E⊥
n+1(x), En(x))

= ‖v‖ ≤ Kσκ(x, n)

σκ+1(x, n + 1)

≤ K
σκ(x, n)

K1σκ+1(x, n)
≤ Kc

K1
λn.

It should be noted that (En(x))n is a Cauchy for every x ∈ M . Thus, we can define a
continuous κ-dimensional subbundle of T M by

E(x) = lim En(x) for all x ∈ M .

Recall that ker(Df
j
x ) ⊆ E(x) for all x ∈ M and all j ≥ 1 since ker(Df

j
x ) ⊆ En(x) for

each 1 ≤ j ≤ n.
We next prove that E is transversal to the cone-field C and is a Df -invariant subbundle.

LEMMA 2.20. For each x ∈ M , we have that E(x) ∩ C(x) = {0} and Df (E(x)) ⊆
E(f (x)).

Proof. We first prove that E(x) ∩ C(x) = {0}. For that, recall that Df n(En(x)) and
Df n(E⊥

n (x)) are perpendicular and, by Lemma 2.18, Df n(E⊥
n (x)) is contained in C(x).

Then, the intersection between Df n(En(x)) and the cone-field is trivial, implying that
En(x) ∩ C(x) = {0}. Thus, we can conclude that the intersection between E(x) and C(x)

is also trivial.
To show the invariance property, we will prove that the distance between Df (En+1(x))

and En(f (x)) goes to zero as n tends to infinity. Before, we fix ρ > 0 such that

‖Df (v)‖ ≥ ρ‖v‖

for every v ∈ ker(Dfx)
⊥ for every x ∈ M .

We start the proof of invariance, taking v ∈ E(x) such that Df (v) = 0. Then, clearly,
Df (v) ∈ E(f (x)).

Now, we take a unit vector v ∈ ker(Dfx)
⊥ ∩ E(x) and choose a sequence of unit vectors

vn ∈ En+1(x) ∩ ker(Dfx)
⊥ such that vn → v. Then, we write Df (vn) = un + zn, where

un ∈ En(f (x)) and zn ∈ E⊥
n (f (x)).

Consider two orthogonal bases {en
1 , . . . , en

d} and {wn
1 , . . . , wn

d } of Tf (x)M and
Tf n+1(x)M , respectively, so that, for each 1 ≤ i ≤ d , Df n

f (x)(e
n
i ) = σi(f (x), n)wn

i and
(Df n

f (x))
∗(wn

i ) = σi(f (x), n)en
i . Take a vector z̃n ∈ span{wn

κ+1, · · · , wn
d } such that

(Df n
f (x))

∗(z̃n) = zn and then, ‖zn‖ ≥ σκ+1(f (x), n)‖z̃n‖. Thus, fixing K = sup ‖Dfx‖
and using Lemma 2.19, we obtain that
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cos �(RDf (vn), zn) = 〈Dfx(vn), zn〉
‖Dfx(vn)‖‖zn‖

= 〈Dfx(vn), (Df n
f (x))

∗(z̃n)〉
‖Dfx(vn)‖‖zn‖

= 〈Df n+1
x (vn), z̃n〉

‖Dfx(vn)‖‖zn‖
≤ ‖Df n+1

x (vn)‖‖z̃n‖
‖Dfx(vn)‖‖zn‖

≤ σκ(x, n + 1)

σκ+1(f (x), n)
· ‖vn‖
‖Df (vn)‖ .

Then, by Lemmas 2.14 and 2.19, we obtain that

cos �(RDf (vn), zn) ≤ σκ(x, n + 1)

σκ+1(f (x), n)
· ‖vn‖
‖Df (vn)‖

≤ σκ(x, n + 1)

σκ+1(x, n + 1)/K
· 1
ρ

≤ 1
ρ

Kcλn+1.

Since cos �(RDf (vn), E⊥
n (f (x))) ≤ cos �(RDf (vn), zn), we have that Df (vn) and

E⊥
n (f (x)) are getting perpendicular when n tends to infinity. Thus, Df (v) = lim Df (vn)

is perpendicular to E(f (x))⊥ and, consequently, Df (v) belongs to E(f (x)).

So far, we have shown that E ⊕ F is non-trivial splitting on T Mf . Finally, we will next
show that it is a dominated splitting for f and so prove Proposition 2.13.

Proof of Proposition 2.13. We have proved so far that under the assumption of Proposition
2.13, the splitting E ⊕ F satisfy for each orbit (xi)i that Df (E(xi)) ⊆ E(f (xi)) and
Df �(F (xi)) = F(f �(xi)). Moreover, as the intersection between E and the cone-field C

is trivial, we conclude by item (ii) in Lemma 2.14 (recall that we are assuming N = 1) that

‖Df n�
xi

|E(xi)‖
m(Df n�

xi
|F(xi ))

< λn.

Thus, E ⊕ F is a dominated splitting for f �.
To complete the proof, we use that E ⊕ Df (F) is also a dominated splitting for f � and

get that Df (F) = F by the uniqueness of dominated splitting (see Lemma 2.9).

Remark 2.21. It should be emphasized that the existence of a dominated splitting is an
open property in the C1 topology. That is, if f admits an invariant cone-field C transversal
to the kernel, then there exists a neighborhoodU of f in End1(M) such that the cone-field
C is so for each g ∈ U.

3. Proof of Theorem A
Let us recall that f0 : M → M is a robustly transitive endomorphism displaying critical
points and F0 is a subset of U0 which accumulates on f0 and for each f ∈ F0, has
int(Crκ(f )) = ∅.

We next prove that �f is dense in Mf for every f ∈ F0.
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LEMMA 3.1. If f is a transitive endomorphism and int(Crκ(f )) = ∅, then �f is a
non-empty set. Moreover, �f is a dense subset of Mf .

Proof. On the one hand, the transitivity of f on M implies that f : (xi)i �→ (f (xi))i is
a transitive homeomorphism on Mf (see [1, Theorem 3.5.3]). Then, considering a base
of open sets {Bn}n of Mf , we have that A+

n = ⋃
j≥0 f j (Bn) and A−

n = ⋃
j≥0 f −j (Bn)

are dense open sets in Mf , for each n. By the Baire category theorem, we get that⋂
n(A

+
n ∩ A−

n ) is a residual set in Mf which consists of the points where their backward
and forward orbits are dense in Mf . On the other hand, since Crκ(f ) has non-empty
interior, we have that any orbit in

⋂
n A+

n ∩ A−
n visits the interior of Crκ(f ) infinitely many

times for the past and the future and, hence, it belongs to �f . Thus, �f is non-empty and
dense in Mf .

We are now assuming that Theorem C holds. Then, we have that there are α > 0 and
an integer � > 0 such that Ef ⊕ Ff is an (α, �)-dominated splitting over �f for every
f ∈ F0. Since �f is dense on Mf by Lemma 3.1, we use Proposition 2.10 to conclude that
Ef ⊕ Ff is an (α, �)-dominated splitting over Mf . This implies Theorem B, as we have
already mentioned.

Now we will prove Theorem A. To do this, we will need to push the domination on
f ∈ F0 to f0.

By the equivalence in Proposition 2.12, we can use the uniformity of the dominated
splitting to obtain the cone-field CEf

:= {CEf
(x, α) : x ∈ M} where its dual cone-field

C ∗
Ef

is �-invariant uniformly in f ∈ F0, up to increasing the constant �. Then, we consider
a sequence of fn ∈ F0 converging to f0, and we define E0(x) and C ∗

E0
(x, α) respectively

as the limit of En(x) and C ∗
En

(x, α), which satisfy E0(x) ∩ C ∗
E0

(x, α) = {0}.
Finally, it remains to show that C ∗

E0
(x, α) is invariant and ker(Df m

0 ) ⊆ E0(x) for every
x ∈ M and m ≥ 1. For that, we first use that C ∗

En
(x, α) is �-invariant for every n to

conclude that C ∗
E0

(x, α) is also �-invariant. Second, to show that ker(Df m
0 ) at x ∈ M is

contained in E0(x), it is enough to prove that if u ∈ ker(Df m
0 ) at x ∈ M , then u ∈ En(x)

for large n ≥ 1 since E0(x) is the limit of En(x). Thus, suppose that u /∈ En(x) for
infinitely many n. Considering En ⊕ Fn as an (α, �)-dominated splitting for fn, we can
conclude that for k large enough, ‖Df k�

n (u)‖ ≈ m(Df k�
n |Fn), which is away from zero

independently on n. This contradicts the fact that Df k�
n (u) must have to converge to

Df k�
0 (u) = 0 for k� ≥ m.

3.1. Proof of Corollary 1.1. Let M = S2n be an even-dimensional sphere and a robustly
transitive map f : M → M . Let E ⊆ T M be a κ-dimensional subbundle, that is, a map
E : M → Grassκ(T M) so that E(x) ∈ Grassκ(TxM) for every x ∈ M . Note that we can
associate an Euler class to E which is an element of Hκ(M), the κth-dimensional de
Rham cohomology of M. Suppose E = T M (or equivalently, κ = 2n = dim(M)), then
we have that its Euler class is zero since all intermediate homologies vanish on spheres.
However, we have that E⊥ is another subbundle of dimension 2n − κ complementary to
E in T M , then it follows that E ⊕ E⊥ = T M . Therefore, the Euler class of T M (which
is the Euler characteristic of M times the class of the volume form M in H 2n(M)) is
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the product of the Euler classes of E and E⊥. Hence, the Euler characteristic of M is
zero, but this is a contradiction since the Euler characteristic of an even-dimensional
sphere is 2. This argument shows that even-dimensional spheres do not admit non-trivial
subbundles. This argument is classical and is taken from [2], but it can be also found in
[21, Property 9.6].

Now, we can apply Theorem A which implies that if an endomorphism f is robustly
transitive, then it cannot have critical points as it would imply the existence of a non-trivial
subbundle. Therefore, we conclude that it is a local diffeomorphism (covering map) on M.
However, since M is simply connected, the endomorphism f should be a diffeomorphism.
We can use now [8] to conclude the corollary.

4. Proof of Theorem C
Here, let f0 be an endomorphism displaying critical points and F be a family of
endomorphisms converging to f0 satisfying:

�f = ∅ and dim ker(Df m) ≤ κ for all f ∈ F and m ≥ 1. (4.1)

First, let us recall that for each f ∈ F and for each xi in the orbit (xi)i ∈ �f , we have
defined the candidate to dominated splitting by

E(xi) = ker(Df
mf +τ+

i
xi

) and F(xi) = Im(Df
|τ−

i |
x
i+τ

−
i

),

where

τ+
i = min{n ≥ 0 : xi+n ∈ Crκ(f )} and τ−

i = max{n ≤ −mf : xi+n ∈ Crκ(f )}.
The next statement will be useful to prove that E and F are invariant subbundles

over �f .

LEMMA 4.1. If x ∈ Crκ(f ) and n ≥ mf , then ker(Df n
x ) and Im(Df n

x ) are κ- and
(d − κ)-dimensional, respectively. Moreover, if xj = f j (x), for each 0 ≤ j ≤ n with

n ≥ mf such that x0, xn ∈ Crκ(f ), then Txj
M = ker(Df

mf +n−j
xj

) ⊕ Im(Df
j
x0) for each

mf ≤ j ≤ n.

Proof. By the assumption (4.1) and Df m+n
y = Df m

f n(y) · Df n
y , we can get that

max{dim ker(Df n
y ), dim ker(Df m

f n(y))} ≤ dim ker(Df m+n
y ) ≤ κ . (4.2)

Then, when y or f n(y) belongs to Crκ(f ), we have that

dim ker(Df
mf +n
y ) = κ for all n ≥ 0.

In particular, ker(Df m
x ) is κ-dimensional for every x ∈ Crκ(f ) and m ≥ mf , and

so, Im(Df m
x ) is (d − κ)-dimensional by the theorem of kernel and image. To prove

the second part, we assume that there exists a non-zero vector v ∈ Tx0M such that
u = Df

j
x0(v) is a non-zero vector in ker(Df

mf +n−j
xj

) ∩ Im(Df
j
x0). Note that v /∈ ker(Df

j
x0)

and v ∈ ker(Df
mf +n
x0 ). It contradicts the assumption (4.1) since ker(Df

mf +n
x0 ) contains

ker(Df
j
x0) ⊕ span{v} that is (κ + 1)-dimensional for any mf ≤ j ≤ n.
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LEMMA. (Invariance property) The following statements hold:
(i) the subbundles E and F are κ and (d − κ)-dimensional, respectively;

(ii) for every orbit (xi)i ∈ �f , one has that Txi
M = E(xi) ⊕ F(xi) for all i ∈ Z;

(iii) the subbundles E and F are invariant.

Proof. The statements (i) and (ii) follow from Lemma 4.1 since for each xi in the orbit
(xi)i , we have that xi+τ−

i
, xi+τ+

i
belong to Crκ(f ) and |τ−

i | ≥ mf .

To prove statement (iii), we shall observe that τ−
i = τ−

i+1 + 1 and |τ−
i+1| = |τ−

i | + 1 if
xi+1−mf

/∈ Crκ(f ). Thus,

Df (F(xi)) = Df (Im(Df
|τ−

i |
x
i+τ

−
i

)) = Im(Df
|τ−

i |+1
x
i+1+τ

−
i+1

) = F(xi+1).

However, if xi+1−mf
∈ Crκ(f ), then τ−

i+1 = −mf and hence τ−
i < τ−

i+1. By Lemma 4.1,
we have that

Tx
i+1+τ

−
i+1

M = ker(Df
|τ−

i+1|
x
i+τ

−
i+1

) ⊕ Im(Df
|τ−

i |+1−mf

x
i+τ

−
i

)

since xi+1+τ−
i+1

= xi+1−mf
= f |τ−

i |+1−mf (xi+τ−
i
). Therefore,

Df (F(xi)) = Im(Df
|τ−

i |
x
i+τ

−
i

) = Df mf (Im(Df
|τ−

i |+1−mf

x
i+τ

−
i

)) = F(xi).

The invariance of E follows from the assumption (4.1) and from the fact that E is
κ-dimensional.

The following lemma will be often used throughout this paper.

LEMMA 4.2. There exists a small real number ε > 0 such that if f ∈ U, whose �f = ∅,
then for every finite collection � in (xi)i ∈ �f , say � = {x0, . . . , xn−1}, and every
collection of linear maps Li : Txi

M → Tf (xi )M for i = 0, 1, . . . , n − 1, satisfying the
following two conditions:

there exists v ∈ F(x0) such that Ln · · · L1(v) ∈ E(xn) and ‖Li − Dfxi−1‖ < ε,

there exists an endomorphism f̂ ∈ U and a neighborhood B of {x0, . . . , xn−1} so that
dim ker(Df̂ m) ≥ k + 1 for some positive integer m.

Proof. Let ε > 0 be given by Franks’ Lemma. Then, up to shrinking the neighborhoodU,
let us recall the orbit (xi)i ∈ �f hits on Crκ(f ) infinitely many times for the past and for
the future. Hence, assume without loss of generality that τ−

0 and τ+
0 , defined for the orbit

(xi)i , satisfy τ−
0 ≤ 0 < n ≤ τ+

0 . Also by Franks’ Lemma, there exists f̂ ∈ U such that the
neighborhood B of � verifies

B ∩ {xτ−
0

, . . . , x0, . . . , xn−1, . . . , xτ+
0
} = �.

Then, there is w ∈ F(xτ−
0
) such that Df |τ−

0 |(w) = v, and taking m = mf + τ+
0 + |τ−

0 |,
we get that
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Df̂ m(w) = Df mf +τ+
0 +−nLn · · · L1Df |τ−

0 |(w)

= Df τ+
0 −nLn · · · L1(v) ∈ Df mf +τ+

0 −n(E(xn)) = Df mf (E(xτ+
0
)) = {0}.

Therefore, E(xτ−
0
) ⊕ span{w} is contained in ker(Df̂ m). This completes the proof.

From now on, to prove Theorem C, we suppose that there is a neighborhood U0 of f0

such that

dim ker(Df m) ≤ κ for all f ∈ U0 and m ≥ 1. (4.3)

In other words, we are assuming that the second item of Theorem C cannot happen.
Furthermore, we can also assume that

sup
(x,v)∈T M ,‖v‖=1

‖Dfx(v)‖ ≤ K for all f ∈ U0. (4.4)

Throughout the rest of this paper, we fix ε0 > 0 as in Lemma 4.2, and choose α > 0
small enough so that for all rotation R on Tf (x)M of angle smaller than α satisfies:

‖R ◦ Dfx − Dfx‖ < ε0 for all f ∈ U0. (4.5)

We would like the reader to keep in mind that the existence of a family of rotations
R1, . . . , Rn of angles smaller than α such that Li = Ri ◦ Dfxi−1 for 1 ≤ i ≤ n, satisfying
the hypothesis of Lemma 4.2, is incompatible with (4.3). In the course of this section, we
will evoke this incompatibility.

We now are devoted to prove the first item in Theorem C. More precisely, we will prove
there are � > 0 and α > 0 such that E ⊕ F is an (α, �)-dominated splitting over �f for
every f ∈ F.

LEMMA. (Uniform angle) For every f ∈ F and each (xi)i ∈ �f , it holds that

�(E(xi), F(xi)) ≥ α for all i ∈ Z.

Proof. Otherwise, there is a unit vector w ∈ F(f (x)) for some x in (xi)i ∈ �f , so that
�(Rw, E(f (x))) < α. Thus, we take a rotation R : Tf (x)M → Tf (x)M of angle < α

such that R(w) ∈ E(f (x)), which contradicts the assumption (4.3) since � = {f (x)} and
L1 = R ◦ Dfx satisfy the hypothesis of Lemma 4.2.

To conclude the proof of Theorem C, it remains to show the following.

LEMMA. (Uniform domination property) There exists an integer � > 0 such that for every
f ∈ F, the splitting E ⊕ F over �f satisfies E ≺� F .

The proof of this lemma, in some sense, carries the same ideas used in the context
of diffeomorphisms, where the lack of domination property allows us to create a point
exhibiting some obstruction for the robust transitivity. However, for endomorphisms
displaying critical points, the proof is more subtle.

Let us make some comments to clarify how we are proceeding with the proof of the
domination property lemma. We will assume by contradiction that the splitting E ⊕ F
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does not satisfy the domination property, and hence there are some unit vectors v ∈ E(x)

and w ∈ F(x) so that for some point x and large positive integer �, the following holds:

‖Df j (v)‖ ≥ 1
2‖Df j (w)‖

for each 1 ≤ j ≤ �. Note that as Df j (w) = 0, we have that Df j restricts to the
bidimensional subspace V0 = span{v, w} an isomorphism onto its image, Vj ⊆ Tf j (x)M .
Let us call Df |Vj−1 : Vj−1 → Vj by Aj . Then, we provide some control over the norms
of Aj and A−1

j for each 1 ≤ j ≤ � to apply Lemma 4.9 to mix the subbundles E and F to
increase the dimension of the critical set, which is incompatible with (4.3). However, the
control over the norms of Aj and A−1

j for each 1 ≤ j ≤ � is the subtle part of the proof
since Df −1 is not necessarily defined due to the existence of critical points.

To obtain such norm control of Df −1, we divide our approach into two cases. For
the first one, we assume that dim ker(Df0) = r < κ . In this case, up to shrinking the
neighborhood of f0, we have that dim ker(Df ) ≤ r for every f ∈ U0. Then, we can find
a large N > 0 such that

1
N

≤ ‖Dfx |�‖ ≤ N (4.6)

for all x ∈ M and all κ-dimensional subspace � of TxM . Then, we can conclude that
1/N ≤ ‖Aj‖, ‖A−1

j ‖ ≤ N for each 1 ≤ j ≤ �.
For the second case, we assume that dim ker(Df0) = κ . Then,

Crκ(f0) = {x ∈ M : dim ker(Df0
mf0
x ) = κ} is non-empty and mf0 = 1.

This allows us to conclude that every f ∈ F satisfies that mf = 1 since mf ≤ mf0 .
Then, to obtain the control of ‖Aj‖ and ‖A−1

j ‖, we will show that there is a neighborhood
U of Crκ(f0) in M such that if f ∈ F, then Crκ(f ) ⊆ U and the piece of the orbit {f j (x) :
1 ≤ j ≤ �} along which there is a lack of domination property is away from U. This will
imply a similar inequality as in (4.6) since dim ker(Df ) < κ out of U.

The next lemma deals with this subtle part of the proof.

LEMMA 4.3. Assume that dim ker(Df0) = κ . Then, there exists a neighborhoodU ⊆ U0

of f0 and another one U of Crκ(f0) such that for any f ∈ F ∩U, its critical point Crκ(f )

is contained in U, and if (xj )j ∈ �f satisfies

‖Df j |E(x0)‖ ≥ 1
2 m(Df j |F(x0)) (4.7)

for each 1 ≤ j ≤ l, then x0, x1, . . . , xl−1 /∈ U .

4.1. Domination property near the critical points. Our goal here is to prove Lemma 4.3.
For that, we will first make some preliminaries that will be needed in the proof.

Denote by 0 ≤ σ1(x) ≤ σ2(x) ≤ · · · ≤ σd(x) the singular values of Df at x ∈ M .
Using that F accumulates at f0 (in C1-topology) together with the fact that ker(Df0)

at x is κ-dimensional for each x ∈ Crκ(f0), we can find a neighborhood U0 of f0 and
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a neighborhood U0 of Crκ(f0) so that Crκ(f ) is contained in U0 for every f in F ∩U0. In
particular, the singular values of Df at x ∈ Crκ(f ) are the following:

0 = σ1(x) = · · · = σκ(x) < σκ+1(x) ≤ · · · ≤ σd(x).

By continuity of σi terms on M since f is a C1-endomorphism, we can assume that for all
x ∈ U0, one has that

σ1(x) ≤ · · · ≤ σκ(x) < σκ+1(x) ≤ · · · ≤ σd(x). (4.8)

Denote by Vf (x) and Wf (x) the subspaces of TxM generated by the eigenvectors
associated to σ1(x), . . . , σκ(x) and σκ+1(x), . . . , σd(x), respectively. These subspaces
satisfy the following properties:
(1) Vf (x) ⊕ Wf (x) = TxM for every x ∈ U0;
(2) Vf (x) ⊥ Wf (x) and Df (Vf (x)) ⊥ Df (Wf (x)) for every x ∈ U0;
(3) if f ∈ F and (xi)i ∈ �f with xi ∈ Crκ(f ), then Vf (xi) = ker(Dfxi

) = E(xi) and
Dfxi

(Wf (xi)) = Im(Dfxi
) = F(xi).

Furthermore, it follows from the continuous dependence on the singular values of Df at x
that the following maps are continuous:

U0 × U0 � (f , x) �→ Vf (x) and U0 × U0 � (f , x) �→ Wf (x). (4.9)

Remark 4.4. In (4.9), the continuity is seen in Grassr (T M), the Grassmannian of the
vector bundle T M , where its points are all the pairs (x, �) such that � is an r-dimensional
subspace of TxM for r = κ and r = d − κ , respectively.

For every x ∈ U0 and η ∈ (0, π/2), define the following cone-field:

CVf
(x, η) = {u ∈ TxM : �(Ru, Wf (x)) ≥ π/2 − η},

and so C ∗
Vf

(x, η) = {u ∈ TxM : �(Ru, Vf (x)) ≥ η}. Furthermore, it follows from 4.1 that
CWf

(x, π/2 − η) = C ∗
Vf

(x, η).

LEMMA 4.5. For all η, θ ∈ (0, π/2) small enough, up to shrinking the neighborhoodsU0

and U0, we have that for every f ∈ U0 and x ∈ U0, the following holds.
For every u ∈ C ∗

Vf
(x, η), writing u = (v, w) ∈ Vf (x) ⊕ Wf (x), one has that

�(RDf (u), RDf (w)) < θ . (4.10)

Proof. We first notice that Vf0(x) = ker(Df0(x)) and Df0(TxM) = Df0(Wf0(x)) for
every x ∈ Crκ(f0). Then, for every u /∈ Vf0 , one decomposes u = (v, w) ∈ Vf0(x) ⊕
Wf0(x) with w = 0, implying that Df0(u) = Df0(w). In particular, RDf0(u) is contained
in Df0(Wf0(x)) for all u ∈ C ∗

Vf0
(x, η) and x ∈ Crκ(f0).

By the continuity in (4.9), we can shrink the neighborhoodsU0 and U0 to get (4.10).

The next lemma provides a relation between the splittings E ⊕ F and V ⊕ W , which
guarantees a domination property around of a component of the critical set whose kernel
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is k-dimensional. For simplicity, the set U will denote a neighborhood of f0 contained in
U0 and U denotes a neighborhood of Crκ(f0) contained U0.

LEMMA 4.6. Given η, θ ∈ (0, π/2) small enough, there exist neighborhoods U and U
so that for each f ∈ F ∩U and each (xi)i ∈ �f , one has that if xi ∈ U , then for all
u1 ∈ E(xi) and u2 ∈ F(xi), writing uj = (vj , wj) ∈ Vf (xi) ⊕ Wf (xi) for j = 1, 2, the
following hold:

�(Ru1, Rv1) ≤ η and �(RDfxi
(u2), RDfxi

(w2)) ≤ θ . (4.11)

Proof. Recall that ε0 > 0 and α > 0 are fixed as in (4.5). Assume that 2η, 2θ <

min{ε0, α}/2. By Lemma 4.5, there exist neighborhoods U and U such that for every
f ∈ U and x ∈ U , the inequality (4.10) holds and moreover, for every f ∈ F ∩U, the
component Crκ(f ) is contained in U.

We notice that from the inequality (4.10), it follows that to prove the lemma, it is
sufficient to show that for every (xi)i ∈ �f whose xi ∈ U , we have

E(xi) ⊆ CVf
(xi , η) and F(xi) ⊆ C ∗

Vf
(xi , η). (4.12)

Thus, our current goal is to prove (4.12). For that, observe that as �(F (xi), E(xi)) ≥
α > 2 max{η, θ}, we have that the vectors of E(xi) and F(xi) are neither in CVf

(xi , η)

nor in C ∗
Vf

(xi , η) simultaneously. Thus, only one of the following can happen:

• either E(xi) ⊆ CVf
(xi , η) and F(xi) ⊆ C ∗

Vf
(xi , η); or

• E(x) ⊆ C ∗
Vf

(xi , η) and F(xi) ⊆ CVf
(xi , η).

If E(xi) ⊆ C ∗
Vf

(xi , η) and F(xi) ⊆ CVf
(xi , η), then there is a vector u ∈ C ∗

Vf
(xi , η),

where �(Ru, F(xi)) ≤ 2η and �(RDfx(u), E(f (xi))) ≤ 2θ . Since 2η, 2θ are smaller
than α, we can take two rotations R0 and R1 of angles less than α and u′ ∈ F(xi)

satisfying u ∈ R0(F (xi)) and R1(Dfx(u)) ∈ E(f (xi)). Recall from the discussion in (4.5)
to conclude that it is incompatible with (4.3).

Therefore, E(xi) ⊆ CVf
(xi , η) and F(xi) ⊆ C ∗

Vf
(xi , η), which concludes the

proof.

The previous lemma means that around �, the subbundle E is η-close to Vf , and that
every (d − κ)-dimensional subspace contained in C ∗

Vf
, which means it is away from Vf , is

sent by Df into a subspace θ -close to Df (Wf ). This will allows us to state the following.

LEMMA 4.7. For each ρ > 0 small enough, we can find η, θ > 0 and the neighborhoods
U and U satisfying Lemmas 4.5 and 4.6 such that for each f ∈ F ∩U and (xi)i ∈ �f , if
xi ∈ U , then

‖Df |E(xi) ‖ < ρ and ‖Df (v)‖ ≥ 2ρ‖v‖ for all v ∈ C ∗
Vf

(xi , η)\{0}.

Proof. Recall that the maps U× U � (f , x) �→ Vf (x), Wf (x) are continuous, where
U and U are neighborhoods of f0 and Crκ(f0), respectively. Then, up to shrinking the
neighborhoods U and U, we can assume that Vf and Vf0 are η-close to each other and,
consequently, Wf and Wf0 are both contained in the dual-cone of each other.

https://doi.org/10.1017/etds.2023.25 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2023.25


624 C. Lizana et al

Fix η, θ > 0 small enough and take the neighborhoods U and U satisfying Lem-
mas 4.5 and 4.6. We observe that for every u = (v, w) ∈ C ∗

Vf
(x, η), with v ∈ Vf (x) and

w ∈ Wf (x),

tan η ≤ tan �(Ru, Vf (x)) = ‖w‖
‖v‖ ,

and then

‖Df (u)‖ ≥ ‖Df (w)‖ − ‖Df (v)‖
≥ m(Df |Wf (x))‖w‖ − ‖Df |Vf (x)‖‖v‖
≥

(
m(Df |Wf (x)) − ‖Df |Vf (x)‖

tan η

)
‖w‖.

We now use that (1 + 1/tan η)‖w‖ ≥ ‖w‖ + ‖v‖ ≥ ‖u‖ to obtain that

‖Df (u)‖ ≥
(

tan η

1 + tan η

)(
m(Df |Wf (x)) − ‖Df |Vf (x)‖

tan η

)
‖u‖.

Since Vf0(x) = ker(Df0) and m(Df |Wf0 (x)) is uniformly away from zero for each
x ∈ Crκ(f0), we can shrink only the neighborhoods U and U to obtain that Vf (x) and
Wf (x) are close to Vf0(x) and Wf0(x) for every x ∈ U . Then, we can assume that
m(Df |Wf (x)) is uniformly away from zero and ‖Df |Vf (x) ‖ is so close to 0 such that

(
tan η

1 + tan η

)(
m(Df |Wf (x)) − ‖Df |Vf (x)‖

tan η

)
≥ 2ρ > 0,

and hence ‖Df (u)‖ ≥ 2ρ‖u‖ for every x ∈ U .
Finally, we take f ∈ F ∩U, and use that E(x) and Vf (x) depend continuously on x in

U and are both identical on Crκ(f ) to conclude that ‖Df |E(x)‖ ≈ ‖Df |Vf (x)‖, which is
close to ‖Df0| Vf0(x)‖ ≈ 0 for each x ∈ U . Therefore, up to shrinking the neighborhoods
U and U, we can get that ‖Df |E(x)‖ < ρ for every x ∈ U .

Now we are able to prove Lemma 4.3.

4.2. Proof of Lemma 4.3. By Lemma 4.6, for all θ > 0 and all η > 0 small, there exist
neighborhoodsU and U so that for each f ∈ F ∩U and each (xi)i ∈ �f , if xi ∈ U , then
the following hold:

E(xi) ⊆ CVf
(xi , η) and F(xi) ⊆ C ∗

Vf
(xi , η). (4.13)

In particular, �(Df (Wf (xi)), RDf (v)) < θ for every v ∈ C ∗
Vf

(xi , η).
We consider the cone-field centered at F of length β > 0 in coordinates E ⊕ F over

(xi)i ∈ �f by

CF ,E(xi , β) = {(u1, u2) ∈ E(xi) ⊕ F(xi) : ‖u1‖ ≤ β‖u2‖}.
Choose β > 0 so that �(Ru, F(xi)) < α for every u ∈ CF ,E(xi , β), where α > 0 was

fixed in (4.5).
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Remark 4.8. It should be emphasized that the cone-field above is not as the previous one
defined in §2.2, where the length is the angle, since E and F are not necessary orthogonal.

Since the angle between E and F is uniformly away from zero, we can assume that
θ , η > 0 above are chosen small enough so that for any (xi)i ∈ �f , one has that if xi ∈ U ,
then:
(a) for all v ∈ CVf

(xi , η) �⇒ �(Rv, E(xi)) < α;
(b) �(Ru, F(f (xi))) < 2θ �⇒ u ∈ CF ,E(f (xi), β/2).

Assume now that (xi)i ∈ � satisfies the inequality (4.7). That is, (xi)i satisfies:

‖Df j |E(x0)‖ ≥ 1
2 m(Df j |F(x0)) for any 1 ≤ j ≤ l.

In particular, it is immediate from Lemma 4.7 that x0 /∈ U .
It remains to prove that x1, . . . , xl−1 /∈ U . For that, we first observe that x1, . . . , xl−1

are pairwise distinct since, without loss of generality, if xl = x0 then, as the orbit hits on
Crκ(f ) infinitely many times for the future, we have that xj ∈ Crκ(f ) for some ≤ 1 ≤ j ≤
l − 1 and hence, ‖Df |E(xj ) ‖ = 0. This contradicts the fact that ‖Df |F(xj ) ‖ = 0.

Second, we suppose without loss of generality that xl−1 ∈ U and take v ∈ E(x0) and
w ∈ F(x0) the unit vectors, where

‖Df l(v)‖ = ‖Df l |E(x0)‖ ≥ 1
2 m(Df l |F(x0)) = ‖Df l(w)‖.

Then, we have that u = (v, β−1w) ∈ ∂CF ,E(x0, β) since ‖v‖ = 1 = β‖β−1w‖ and hence,

‖Df l(v)‖ = ‖Df l |E(x0)‖ ≥ 1
2
m(Df l |F(x0)) = β

2
‖Df l(β−1w)‖.

Taking uj = Df j (v, β−1w) for each 1 ≤ j ≤ l, we have that ul = Df l(v, β−1w) belongs
to dual cone C ∗

F ,E(xl , β/2). This implies that ul−1 ∈ CVf
(xl−1, η). Otherwise, if ul−1 /∈

C ∗
Vf

(xl−1, η), then writing ul−1 = (v′, w′) ∈ Vf (xl−1) ⊕ Wf (xl−1) and taking z in the
intersection between F(xl−1) and the plane generated by {ul−1, w′}, one can conclude that
z = av′ + bw′ and, by Lemma 4.6, one gets that

�(Rul , F(xl)) ≤ �(RDf (ul−1), RDf (z))

≤ �(RDf (ul−1), RDf (w′)) + �(RDf (w′), RDf (z)) ≤ 2θ ,

where by item (b), it implies that ul ∈ CF ,E(xl , β/2), which is a contradiction.
Thus, by item (a) and the choice of β > 0, one concludes that �(Rul−1, E(xl−1)) <

α and �(Ru, F(x0)) < α since u ∈ CF ,E(x0, β). Thus, we can find two rotations R0 :
Tx0M → Tx0M and R1 : Txl−1M → Txl−1M of angle smaller than α and u0 ∈ F(x0) such
that

R0(u0) = u, R1(ul−1) ∈ E(xl−1), and ‖RiDf − Df ‖ < ε0, i = 0, 1.

Finally, we take that � = {x−1, . . . , xl−2} and Lj : Txj−2M → Txj−1M , defined by
L1 = R0 ◦ Dfx−1 , L2 = Df0, . . . , Ll−1 = Dfxl−3 , and Ll = R1 ◦ Dfxl−2 satisfy the
hypothesis of Lemma 4.2 which is incompatible with (4.3).
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4.3. Proof of the uniform domination property. This section is devoted to conclude the
proof of the uniform domination property. First of all, some preliminaries are needed.

Let us introduce a classical result about the lack of domination of matrices, where some
proofs can be seen in [23, Appendix A] and [5, Lemma 3.1].

LEMMA 4.9. For all δ > 0 and all N > 1, there exists l > 1 such that if A1, . . . , Al are
matrices in GL(2, R) and v, w ∈ R

2 are two unit vectors verifying

‖Ai · · · A1(v)‖ ≥ 1
2‖Ai · · · A1(w)‖; and ‖Ai‖, ‖A−1

i ‖ ≤ N , (4.14)

for every 1 ≤ i ≤ l, then there exist Ri : Vi → Vi rotation of angles smaller than δ such
that RlAl · · · R1A1(w) and Al · · · A1(v) are parallel.

Let us make some comments about what we have done so far. First, we have by
Lemma 4.3 that if dim ker(Df0) = κ , then there exists a neighborhood U of f0 and a
neighborhood U of Crκ(f0) such that for every f ∈ F ∩U and every (xi)i ∈ �f , we have
that Crκ(f ) ⊆ U and that the lack of domination property for the splitting E ⊕ F over �f

only might occur away from U. Then, we can get N ≥ 1 so that every f ∈ U satisfies:

1
N

≤ ‖Dfx |�‖ ≤ N for all (x, �) ∈ Grassκ(T M) with x /∈ U , (4.15)

since ker(Dfx) for each x /∈ U has dimension strictly smaller κ and Df on M\U is a
continuous map on a compact set. In particular, 1/N ≤ ‖Df |E(x)‖ ≤ N for each x /∈ U

and each f ∈ F ∩U.
Recall that in the setting dim ker(Df0) = r < κ , we can suppose that for every f ∈ U,

the following hold:

dim ker(Df ) ≤ r and
1
N

≤ ‖Dfx |�‖ ≤ N for all (x, �) ∈ Grassκ(T M). (4.16)

We now fix �0 ≥ 1 given by Lemma 4.9 for δ = α and N above. In the following,
we prove that the uniform domination property. In the first step, we assert that there are
no large pieces of orbit without the domination property. More concretely, we have the
following steps.

STEP 1. For every f ∈ F ∩U and every (xi)i ∈ �f , there is an integer 1 ≤ j ≤ �0 which
depends of the orbit (xi)i such that

‖Df j |E(x0)‖ ≤ 1
2 m(Df j |F(x0)). (4.17)

Proof of Step 1. The proof of this step will be by contradiction. That is, assume without
loss of generality that for some (xi)i ∈ �f ,

‖Df j |E(x0)‖ ≥ 1
2 m(Df j |F(x0)) (4.18)

for every 1 ≤ j ≤ �0. Then, there exist two unit vectors vj ∈ E(x0) and wj ∈ F(x0) so
that

‖Df j (vj )‖ ≥ 1
2‖Df j (wj )‖ (4.19)

for each 1 ≤ j ≤ �0. We notice that Df j (vj ) = 0 for every 1 ≤ j ≤ �0 since Df n(wj ) =
0 for every n ≥ 1.
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It should also be noted that, in the particular setting that | ker(Df0)| = κ , one has that
x0, . . . , x�0−1 /∈ U by Lemma 4.3.

Let us identify Txi
M with R

d for 0 ≤ i ≤ �0, and fix the notation v = v�0 and w = w�0 .
Take the family of matrices A1, . . . , Am defined by Ai = Dfxi−1 and the family of
two-dimensional subspace Vi = Ai · · · A1(V0), where V0 denotes the subspace spanned
by v and w. Then, denote by Ãi : Vi−1 → Vi the restriction of Ai to Vi−1, which is an
isomorphism and, by (4.15) and (4.16), verifies

max
1≤i≤�0

{‖Ãi‖, ‖Ã−1
i ‖} ≤ N . (4.20)

This family Ã1, . . . , Ã�0 satisfies (4.14). Therefore, there exist R̃�0 . . . , R̃1 rotations
of angles less than θ0 such that R̃�0Ã�0 · · · R̃1Ã1(w) and Ã�0 · · · Ã1(v) are parallel.
Extending R̃i to the linear map Ri on R

d that equals the identity on the orthogonal
complement of Vi . Finally, � = {x0, . . . , x�0−1} and Li = Ri ◦ Ai , for 1 ≤ i ≤ �0, verify
the hypothesis of Lemma 4.2 which is a contradiction. Therefore, one has that every
f ∈ F ∩U verifies (4.17).

Finally, we can conclude the proof of the uniform domination property.

STEP 2. There exists � ≥ 1 so that for every f ∈ F ∩U, the splitting E ⊕ F over �f

satisfies E ≺� F .

Proof of Step 2. By Step 1, let � ≥ �0 be very large. Then, for all (xi)i ∈ �f , there exists
1 ≤ j0 ≤ �0 satisfying

‖Df �|E(x0)‖ ≤ ‖Df �−j0 |E(xj0 )‖‖Df j0 |E(x0)‖
≤ ( 1

2

)‖Df �−j0 |E(xj0 )‖m(Df j0 |F(x0)).

However, taking the point (xj+j0)j , there exists 1 ≤ j1 ≤ �0 such that

‖Df �|E(x0)‖ ≤ ‖Df �−(j0+j1)|E(xj0+j1 )‖‖Df j1 |E(xj0 )‖‖Df j0 |E(x0)‖
≤ ( 1

2

)2‖Df �−(j0+j1)|E(xj1 )‖ m(Df j1 |F(xj0 )) m(Df j0 |F(x0))

≤ ( 1
2

)2‖Df �−(j0+j1)|E(xj1 )‖ m(Df j0+j1 |F(x0)).

Repeating the process, we can find n ≥ 1 so that mn = � − ∑n−1
i=0 ji satisfies

1 ≤ mn ≤ �0; and

‖Df �|E(x0)‖

≤ ( 1
2

)n‖Df mn |E(xjn )‖
n∏

i=0

m(Df ji |F(xji
))

≤ ( 1
2

)n‖Df mn |E(xjn )‖ m(Df �−mn |F(x0))

≤ ( 1
2

)n max1≤i≤�0{‖Df i
x‖ : x ∈ M}

m(Df mn |F(x�−mn))
m(Df mn |F(x�−mn)) m(Df �−mn |F(x0))

≤ C0
( 1

2

)n
m(Df �|F(x0)),
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where C0 is a constant satisfying

C0 ≥ max1≤i≤�0{‖Df i
x‖ : x ∈ M}

min1≤j≤�0{‖Df j |F(xi )
‖ : (xi)i ∈ �f } > 0.

Note that C0 is well defined and is uniform in F ∩U. Indeed, we can shrink U
(if necessary) to obtain that dim ker(Df j ) ≤ dim ker(Df

j

0 ) ≤ κ at x and ker(Df j ) is
close to ker(Df

j

0 ) on TxM for each x ∈ M , 1 ≤ j ≤ �0, and f ∈ U. Then we assume
that ker(Df

j
x ) is contained in a cone CV (x, η), where V is the kernel of Df

�0
0 at x

and 0 < η < α for each x ∈ M and 1 ≤ j ≤ �0. Since ker(Df
j
xi

) ⊆ E(xi), for every
1 ≤ j ≤ �0, and �(E(xi), F(xi)) ≥ α, for every (xi)i ∈ �f and f ∈ F ∩U, we conclude
that F(xi) is contained in the complement cone of CV (x, η) and that is enough to get that
min1≤j≤�0{‖Df j |F(xi )

‖ : (xi)i ∈ �f } is uniformly away from zero.
Finally, we can choose � > 0 large enough so that n ≥ 1 satisfies C02−n ≤ 2−1 and so

E ≺� F . This concludes the uniform domination property.

Therefore, we have just proved that every f ∈ F ∩U admits E ⊕ F as an (α, �)-
dominated splitting. This concludes the proof of Theorem C.
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