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ON WEAK CONVERGENCE IMPLYING STRONG
CONVERGENCE IN L-SPACES

Erik J. BALDER

Recently, Visintin gave conditions under which weak convergence in

Ll(T;RN) implies strong convergence. Here we analyze such results

in terms of associated Young measures and present an extension to

Ll(T;E) , where = 1is a separable reflexive Banach space.

1. Introduction
et (T,T,u) be an abstract o-finite measure space and denote by
RN . N .
Ll(T; ) the space of all integrable R -valued functions on T .
Recently, Visintin proved the following result for any given sequence

{fk}: of functions in Ll(T;RN) ([8] Theorem 1).

THEOREM. Suppose that Ty = fb weakly in Ll(T;RN) and
fb(t) 18 an extreme point of 25-{fk(t) : k> 0} a.e. in T.
Then fk > fo strongly in Ll(T;RN) .
Further, Visintin demonstrated by means of a counterexample ({[§],
p. 445) that this theorem does not continue to hold if one replaces the

image space RN by a separable Hilbert space. Nevertheless, we shall
show in this note that the above result can be extended and deepened. Let
£ be a separable reflexive Banach space with norm H:l ; the topological
dual of £ is denoted by =* , and the Borel o-algebra on Z by B(Z)
As usual, by the weak topology on E we mean the topology o(E,Z%)
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let {fk}; be any given sequence in Ll(T;E) , the space of all

integrable functions from I into Z whose dual (in the prequotient

sense) is known to be LQ(T;E*) [5]. Our main result is as follows.

THEOREM 1. Suppose that fk > fo weakly in L, (T:2) and

(1) fb(t) is an extreme point of 0 55'{fk(t) : k>n} a.e.in T .
n=1

Then fk > £ limitedly in Ll(T;a
Here we say that {fk}: converges limitedly to fb in Ll(T;E) if
(2) [ gt f,(E)=F (£)) u(de) >0
‘T

for every T x B(E)-measurable function g : T x £ » R satisfying
(3) g(t,0) =0,
(4) g(t,*) 1is sequentially weakly continuous on 2 ,

(5) lgt,e)] <clel + ¢(t) for some C>0 and ¢ € L (T;R)

Clearly, limited convergence is stronger than weak convergence in Ll(T;E),

and is in general not equivalent to it. In fact, when ZE = RN limited
convergence is equivalent to strong convergence. In one direction this
is seen by taking g(t,£) = |€| (Euclidean norm). 1In the other direction
we note that any subsequence in (2) has a further subsequence for which

(2) holds, since { }. converges in measure to a fortiori and
k'1 g 0

Fatou's lemma can be applied in an obvious way. Let us also note that in
the infinite-dimensional case g(t,£) = &l does not satisfy (4) (it is

merely weakly lower semicontinuous).

Our approach in proving the above generalization of Visintin's result
differs considerably from the one used in [§]. We use Young measures
(alias relaxed controls), which are known to be quite useful for the study

of weak convergence; for example, see [2],[3],(6]. A Young measure (with

respect to T and Z ) is defined to be a transition probability with
respect to (T,T) and (5,B(2)) ((7], III). To every (T,B(E))-
measurable function f : T > £ corresponds its relaxation Ef , the

Young measure defined by
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gf(t) = Dirac probability measure at f(%)

@
A sequence {dk}l of Young measures is said to converge narrowly (or

weakly) to a Young measure 6, if

(6) lim inf g(t,8) &, (t)(dg) u(dt)
kilpls k

>J f g(t,£) 8,(t) (dE) n(dt)
T ‘=

for every T x B(Z)-measurable function g : T x £ + [0,+®] such that
(7) g(t,*) 1is sequentially weakly lower semicontinuous on 2

(such functions are known as normal integrands); see [21,[3].

2. Proof of Theorem 1.
Theorem 1 will be proven by means of the following two lemmas.
LEMMA 2. Suppose that fk > fo weakly in Ll(T;E) . Then for
every subsequence {kj} of [k} there exist a Young measure &, and a

further subsequence {ki} of {kj} such that

(8) € > §, mnarrowly ,
Tk,
z
(9) bar §,.(%) = f £ §,(t) (dE) exists and equals fb(t) a.e. in T,

©o
(10) 8§4(t) is supported by N co {f (t) : k,>n} a.e. in T .
n=1 7
This result follows from ([3], Theorem 3.1, Lemma 3.2), proven only
for the case u(l) < 4+ ; however, it carries over to the o-finite case
without any reservation. Let us remark that the reflexiveness of the

Banach space Z 1is of crucial importance for the methods of [3]
LEMMA 3. Under (1) the Young measure &, of Lemma 3 is such that

(11) 8§4(t) = €, (t) a.e. in T .

%o

Proof. 1et t € T be such that (1),(9),(10) hold. We claim that

for every closed convex subset D of C = N EEV{fk(t) : k=2 n} with
n=1
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fb(t) € D it is true that 6,(£)(D) = 0 . For if not so, we would have,

writing v = 8,(¢) , that v = v(D) v, + (1-v(D)) v, , and hence

1 2

fb(t) = v (D) bar 2 + (1-v(D)) bar v, - Here vy and v, are the

normalized restrictions of v to D and its complement. By closedness

and convexity of the supports bar vy € D and bar v, € C . Hence, (1)

implies that fb(t) = bar Vl € D , which gives the desired contradiction.

In particular, it now follows that the closed balls of Z not containing

fb(t) are v-null sets, and hence so also are the open balls not
containing f,(t) (note that (£,0(2,2%)) and (Z,0:l) have the same

Borel sets by separability of the latter space). Hence, by separability

of (E,0-l) , all open sets of EZ not containing fb(t) are v-null
sets, so (l1l1l) follows. QED

REMARK. 1If the support of §&,(f) is compact, (11l) follows by an
application of (([!] Corollary I.4.2).

Combining Iemmas 2 and 3 we find

THEOREM 4. Suppose that i~ o weakly in Ll(T;E) and that (1)
holds. Then

> € narrowly .

€
Tx o
Proof. Ssuppose that for some g : T x Z > [0,+®] as in (7) we would

have

lim inf, JT glE,f, (£)) u(de) < [Tg(t,fo(tn n(db) = 8, -

For some subsequence {kj} of {k} the above 1lim infy Bk equals

limj Bk . Let 6§, and {ki} be as in Lemma 2. By Lemma 3 and (6),(8)
J

, a contradiction. QED

. L R >
it then follows that 1lim 1nfk Bk llmi Bki BO

REMARK. when £ = RN one can prove easily that Ef
k
if and only if fk - fb in measure on every B € T with u(B) < += .

> Ef narrowly
0

The same equivalence fails for infinite-dimensional = , again because

.l is not weakly continuous.
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Iet us now give the proof of Theorem 1. First, we shall prove (2)

under the simplifying hypothesis u(T) < +» . By ([4], Theorem 1) we

have that sup; J "fk“ dy < +» and sup; J ﬂfkﬂ duy - 0 whenever Bj v
T

B.
dJ

(iniform o-additivity). Since u 1is supposed to be finite, this implies
that {"fk"}: , and by (5) also {|g(',fk(')-fb('))|}: are uniformly
integrable ([7], Proposition II.5.2). ILet € > 0 be arbitrary; then

there exists C > 0 such that sup, I [g(t,f‘k(t)-fo(t))|u(dt) <e,
A

k
where Ak denotes the set of all ¢t € T with lg(t,fk(t)-fb(t)) > C .

Now we define gc Z max(g,-C) + C . Then, writing gy = g(-,fk(°)—fb(-)) ,

etc., we get

|
]

fgkdu>f gkdu—s::I(gi—C)du
T {g,>-C} T

Since we may apply (6) to gc , we obtain by virtue of Theorem 4
L c
lim inf g, dv = | (gl -0 du-¢e=-¢
k 7 k 70

Hence, 1lim infk J 9 dp 2 0 . By repeating the above for -g we

T
conclude that (2) has been proven for the case u(I) < += . 1In the
general case ( uw o-finite) there exists a sequence {Tn}: in T such
that U(Ih) < +0 for all 7 and 1\1% ¥ @ . Thus, by the uniform

o~additivity property mentioned above and (5), lim_ sup Ig | du = 0.
n k AT k

n
By the previous step we know that for every n , 1imk gk du=0
T

n
Hence, we conclude that lim, f 9x du = 0 , that is (2) holds. This
T

finishes the proof of Theorem 1.
3. Conclusions
We have demonstrated that when fk > fb weakly in Ll(T;E) the

extreme point condition (1) forces the associated relaxations to show

narrow convergence in the sense of Young measures (Theorem 4). Limited
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convergence of the original functions {fk}l to fb is the

manifestation of this underlying narrow convergence. When £ is finite-
dimensional limited convergence coincides with strong convergence in
Ll (T;2) .
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