Oxygen Abundances: New Results from [O I] Lines

Christopher Sneden

Department of Astronomy, University of Texas, Austin, TX 78712, USA

Francesca Primas

European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching bei München, Germany

Abstract. From new high resolution spectra of metal-poor giants we use equivalent widths of [O I], Sc II, and Fe II lines to derive new values of [O/Sc] and [O/Fe]. These results are generally consistent with previous determinations of oxygen abundances from [O I] lines, but the star-to-star scatter is greatly reduced.

1. Introduction

Conti et al. (1967) first suggested that [O/Fe] ratios in metal-poor stars are substantially larger than the Solar System value. To reach this conclusion they analyzed the [O I] 6300,6363 Å lines in a sample of bright giants of mainly the young and old disk. This work led Lambert, Sneden, & Ries (1974) to search for the 6300 Å line in the very metal-poor ([Fe/H] ~ -2.7) giant HD 122563. Their successful detection of the line implied a very high abundance, $[O/Fe] \simeq +0.6$. Subsequently, Sneden, Lambert, & Whitaker (1979) found large [O/Fe] ratios from analyses of the O I very high excitation (9.15 eV) 7770 Å triplet lines in a number of metal-poor dwarfs. Oxygen abundance studies have continued to the present, and there is unanimous agreement that [O/Fe] > 0 in almost all low metallicity stars. But abundances deduced via LTE analyses of different oxygenspecies transitions do not agree in detail. The [O I] lines suggest $[O/Fe] \simeq +0.4$, essentially independent of metallicity in the range -1.0 > [Fe/H] > -2.7 (e.g., Gratton et al. 2000 and references therein), and new data for the OH infrared vibration-rotation bands (Balachandran & Carney 1996, Melendez, Barbuy, & Spite 2000) are consistent with that result. But the O I triplet lines and OH near-UV electronic band lines yield increasing oxygen abundances with decreasing metallicity, approaching $[O/Fe] \sim +1$ at $[Fe/H] \sim -3$ (Israelian, García-Lopez, & Rebolo 1998; Boesgaard et al. 1999).

Here we make no attempt to solve the oxygen abundance problem in low metallicity stars. Instead, we re-examine the abundances deduced from the [O I] lines in giant stars, using an analytical technique employed by Lambert et al. (1974) and subsequently by, e.g., Gratton & Ortolani (1986), but relatively neglected in recent years: a comparison of the relative strengths of [O I] and Sc II lines.

2. Observations, Reductions, Analyses

The spectra originally were obtained for other projects with the McDonald Observatory 2.7m Smith reflector and the Tull "2d-coudé" echelle spectrometer. The spectra have resolving power R $\simeq 60,\!000$, and S/N >100. In the reduction procedures, care was taken in the cancellation (via division by the spectrum of a rapidly rotating hot star) of the telluric O_2 features surrounding the stellar [O I] 6300 Å line. Radial velocity shifts moved the stellar [O I] lines away from the night sky emission lines in all cases. In the top panel of Figure 1 we show examples of program star spectra near the 6300 Å line.

Neighboring lines are also labeled, including the Sc II 6300.67 Å feature. As has been noted in earlier papers, the [O I] and Sc II lines have very similar equivalent widths (EWs) in the Sun and solar metallicity giant stars, so the apparent larger strength of the [O I] line here points to an oxygen overabundance.

We measured the EWs of the [O I] 6300 Å line (and the 6363 Å line when it was strong enough), as many as seven Sc II lines, and as many as six Fe II lines in the yellow-red spectral region of our spectra. Only these transitions were considered, first because several investigations (notably that of Thévenin & Idiart 1999) suggest that neutral species of metals such as Fe I (but not the ionized species) may be subject to substantial departures from LTE in the atmospheres of metal-poor stars. Second, O I has a high ionization potential, and therefore is the majority species of oxygen, as are the ionized species of scandium and iron. The [O I] and Sc II line excitation potentials differ by only \simeq 1.5 eV, and so the dependence on atmospheric uncertainties in ratios of abundances derived from these transitions is very small (e.g. Lambert et al. 1974).

The measured EWs were employed in a standard LTE abundance analysis (e.g., Westin et al. 1999), the results of which are summarized in the lower panel of Figure 1. A dashed straight line has been drawn by hand to represent the mean trend of the abundances. The residual scatter about this line is small, with $\sigma \simeq 0.1$. A similar plot could be shown of the [O/Fe] trend with [Fe/H], but the results would look quite similar to that shown for [Sc/Fe], since our derived [Sc/Fe] do not differ significantly from zero.

The abundances are very consistent with previous [O I] studies in the metallicity regime [Fe/H] > -2, and shows evidence for a small upward trend at lower metallicities. But the oxygen abundances even at the lowest [Fe/H] values of our sample remain incompatible with the much larger abundances derived from the O I triplet and UV OH transitions.

 $\bf Acknowledgments.$ We gratefully acknowledge research support through NSF grant AST-9987162.

References

Balachandran, S., & Carney, B. W. 1996, AJ, 111, 946
Boesgaard, A. M., King, J. R., Deliyannis, C. P., & Vogt, S. S. 1999, AJ, 117, 492

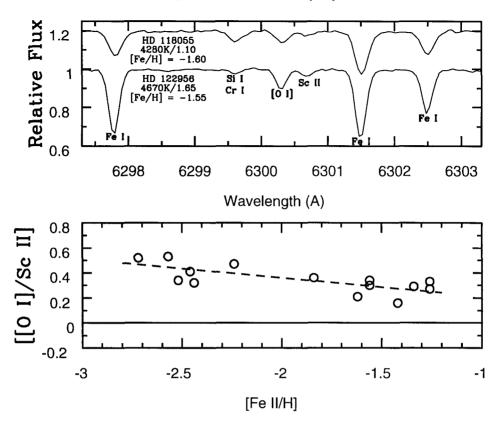


Figure 1. Upper panel: sample spectra of two of the program stars. The relative flux is correct for HD 122956, and the spectrum of HD 118055 is shifted vertically for display purposes. Bottom panel: [O/Sc] values correlated with [Fe/H]. The axis labels explicitly state the transitions used for these abundances. The dashed line is a hand-drawn linear best fit to the data.

Conti, P. S., Greenstein, J. L., Spinrad, H., Wallerstein, G., & Vardya, M. S. 1967, ApJ, 148, 105

Gratton, R. G., & Ortolani, S. 1986, A&A, 169, 201

Gratton, R. G., Sneden, C., Carretta, E., & Bragaglia, A. 2000, A&A, 354, 169

Israelian, G., García Lopez, R. J., & Rebolo, R. 1998, ApJ, 507, 805

Lambert, D. L., Sneden, C., & Ries, L. M. 1974, ApJ, 188, 97

Melendez, J., Barbuy, B., & Spite, F. 2000, preprint

Sneden, C., Lambert, D. L., & Whitaker, R. W. 1979, ApJ, 234, 964

Thévenin, F., & Idiart, T. P. 1999, ApJ, 521, 753

Westin, J., Sneden, C., Gustafsson, B., & Cowan, J. J. 2000, ApJ, 530, 783