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Abstract
We consider the properties of listwise deletion when both n and the number of variables grow large. We

show that when (i) all data have some idiosyncratic missingness and (ii) the number of variables grows

superlogarithmically in n, then, for large n, listwise deletion will drop all rows with probability 1. Using two
canonical datasets from the study of comparative politics and international relations, we provide numerical

illustration that these problems may emerge in real-world settings. These results suggest that, in practice,

using listwise deletion maymean using few of the variables available to the researcher.

Keywords: missing data, listwise deletion, high dimensional inference

1 Introduction

Listwise deletion is a commonly used approach for addressing missing data that entail excluding

any observations that have missing data for any variable used in an analysis. It constitutes the

default behavior for standard data analyses in popular software packages: for example, rows with

any missing data are by default omitted by the l m function in R (R Core Team 2020), the r eg r ess

command in Stata (Stata.com 2020), and the g l mnet function in the R package of the same name

(Friedman, Hastie, and Tibshirani 2010).

However, scholars have increasingly recognized that listwise deletion may not be a generally

appropriate research method to handle missing data. While a common critique focuses on the

plausibility of the “missing completely at random” assumption (Allison 2001, 6–7; Cameron and

Trivedi 2005, 928; Little and Rubin 2019, 15; Schafer 1997, 23), issues about efficiency in estimation

have also been raised (Allison 2001, 6; Berk 1983, 540; Schafer 1997, 38). Namely, since listwise

deletion discards data, the resulting estimators can be inefficient relative to approaches that use

more of the data (e.g., imputation methods).

These issues have been raised to an audience of political scientists (Honaker and King 2010;

King et al. 2001; Lall 2016), but themanner inwhich listwise deletion can hinder the researcher has
beenunderappreciated. Namely, if the researcher seeks to usemany variableswithmissingness, it

may be impossible altogether to draw any statistical conclusion whatsoever. Accordingly, the use

of listwise deletion may imply a severe restriction on variables used in an analysis.

The primary purpose of this note is to make this argument rigorous by considering the proper-

ties of listwise deletion when both the number of variables k and the number of units n are large.
We show that when (i) all variables have some idiosyncratic missingness and (ii) the number of

variables grows with n at any superlogarithmic rate, listwise deletion will yield no usable data
asymptotically with probability 1. In Supplementary Material A, we report numerical illustrations

to shed light on finite-n properties under our assumptions.
We then demonstrate real-world implications by considering two real-world datasets: the

Quality of Government (QoG) dataset (Teorell et al. 2021) and the State Failure dataset (King and
Zeng 2001, 2007). We first report on the empirical patterns of missingness in these datasets. We

then conduct a simulation study by randomly subsampling from the variables in these datasets.

We show that, even when a qualitatively small number of variables have been chosen from these
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datasets, very little of the data may remain after listwise deletion. Taken together, we conclude

that listwise deletion is simply not viable in many data-analytic settings.

2 Theory

We consider a fairly general setting designed to accommodate probabilistic missingness in data.

Our results will apply to any estimator, algorithm, or procedure (including, e.g., variable selection

or regression) on datasets in this setting, so long as this researcher’s chosen procedure depends

on listwise deletion.

Before we proceed, we introduce some notation. Let n be the number of observations. Let
k be the number of variables (columns) in the dataset. Let Mij be a random indicator variable

for whether or not the jth variable in the ith row is missing. For notational convenience, we

will let Mi j represent the random vector collecting the missingness indicators up to variable

j (Mi1,Mi2, . . . ,Mij ).

We will invoke three key assumptions for our results. These assumptions are general with

respect to standard assumptions about missingness—that is, they are compatible with both

missing-at-random and missing-not-at-random data generating processes. The first of these

assumptions is mutual independence of missingness across rows. This would be violated when,

for example, observations are clustered, as would often be the case for longitudinal data.

ASSUMPTION 1. All rows of the data ((M11, . . . ,M1k ), . . . , (Mn1, . . . ,Mnk )) are mutually indepen-
dent.

We also assume that there is some idiosyncratic missingness in each variable. Namely, we will

assume that there is a factorization of the data such that all conditional probabilities that an

observation ismissing are bounded away from zero, givenwhenever prior variables are observed.

Substantively, this assumption rules out the case where, for example, one variable is always

observed whenever another variable is observed.

ASSUMPTION 2. There exists a q∗ ∈ [0,1) such that for all i,

• Pr(Mi1 = 0) ≤ q∗ and
• Pr(Mij = 0|Mi (j−1) = 0) ≤ q∗, for all j ∈ {2, . . . ,k } such that Pr(Mi (j−1) = 0) > 0.

Note that this is an assumption about the presence of missingness and not about how such

missingness relates to outcomes. Thus, Assumption 2 is compatible with bothmissing-at-random

andmissing-not-at-random data generating processes.

With some additional notation, Assumption 2 can be weakened to only require the existence

of an index ordering over j such that the condition holds. We also note that Assumption 2 may be
unrealistic in settings wheremissingness is always identical across some groups of variables (e.g.,

because two or more variables come from a common data source). In such settings, our results

can be generalized to the setting where k refers to the number of groups of variables, rather than
the number of variables themselves. We formalize this extension in Supplementary Material B.

2.1 Results
We begin by application of elementary probability theory to yield the following finite-n result. In
words, this result establishes an exact lower bound on the probability that all rows of the datawill

suffer from somemissingness. In such instances, listwise deletion would yield no usable data.

LEMMA 3. Under Assumptions 1 and 2, the probability that listwise deletion removes all rows is
pal l ≥ (1−qk

∗ )
n .

This result will be helpful in proving our main result shortly in Proposition 5. We can now

consider the asymptotic properties of listwise deletion, letting both k and n tend to infinity. To
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do so, we embed the above problem into a sequence. We let kn = f (n), where f has range over the
natural numbers, and allowMij ,n and therefore qi j ,n to vary at each n. To ease exposition, we omit
notational dependence on n.
We have our third and final assumption: k grows superlogarithmically in n. This is the primary

point of divergence from standard (low-dimensional) theoretical treatments, under which k is
assumed to be fixed regardless of n. We emphasize here that Assumption 4—like other assump-
tions about asymptotics—needs not be thought of as a literal growth process that a researcher

might follow, but rather an approximation of probabilistic behavior when n (and here, also k) are
large.1

Superlogarithmic rates can be extremely slow, and include any polynomial rate of growth (e.g.,

nc for any c > 0). Thus, our results can speak to cases where n is large, k is large, but k � n . To see

howslow these rates canbe, our resultswould include the rate �log(n)1.1�,whichwouldpermit use

of 2 variableswith 10observations, 8 variableswith a thousandobservations, and 17 variableswith

amillion observations. This assumption encompasses rates that are slow enough that they would

not normally preclude good asymptotic behavior for most standard estimators. For example, see

themild assumptions invoked by Lai, Robbins, andWei (1978) for convergence of the least squares

estimator.

ASSUMPTION 4. The number of covariates grows superlogarithmically in n, so that
limn→∞

f (n)
l og (n)

=∞.

Assumption4 canbeequivalentlywritten in asymptotic shorthandnotationas k =ω(logn). The

following proposition demonstrates that when Assumptions 1, 2, and 4 hold, then the probability

of listwise deletion yielding no usable data tends to 1 as n →∞.

PROPOSITION 5. Under Assumptions 1, 2, and 4, limn→∞ pal l = 1.

Thus, we have shown that evenmodest rates of growth in the number of covariates can render

any resulting statistical inference asymptotically impossible with listwise deletion. Our results,

however, critically depend on the assumption that the number of covariates exhibits such growth

in n; otherwise, it is possible that limn→∞ pal l = 0.

Our results are supported by numerical illustrations in Supplementary Material A, which also

demonstrate finite-n implications. These results demonstrate that our theoretical results aremost
relevant in finite-n settings when rates of idiosyncratic missingness are high. When there are
low rates of idiosyncratic missingness (e.g., 1%), the probability that all rows will be removed by

listwise deletion can remain extremely lowevenwhen k is qualitatively large (e.g., k = 150) andn is
qualitatively small (e.g., n = 100). However, our results are striking once idiosyncraticmissingness

rates approach10%or25%,with striking consequences to theamountof data remaining following

listwise deletion.

3 Application

In order to understand the real-world operating characteristics of listwise deletion, we considered

two prominent datasets in use in the fields of comparative politics and international relations:

the January 2021 QoG (Teorell et al. 2021) standard cross-sectional dataset, and the State Failure
dataset covering country-years from 1955 to 1998 (King and Zeng 2007) reported by Esty et al.
(1995, 1999) and considered by King and Zeng (2001). Table 1 provides summary statistics on these

datasets. We applied mild preprocessing to these datasets: we removed country code variables,

1 Lehmann (1999, 255) provides a good discussion in the context of a sample of size n from a population of size N: “. . .we
must go back to the purpose of embedding a given situation in a fictitious sequence: to obtain a simple and accurate
approximation. The embedding sequence is thus an artifice and has only this purposewhich is concernedwith a particular
pair of values N and n and which need not correspond to what we would do in practice as these values change.” Our
discussion is analogous, with our “pair of values” being k and n. Thanks to Fredrik Sävje for suggesting the reference.
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Table 1. Summary statistics for QoG and State Failure datasets.

Quality of Government State Failure

Units of observation Countries Country-years

Number of observations 194 8,580

Number of variables 351 1,205

Proportion of missing values (avg.) 35.9% 66.8%

Proportion of missing values (max) 90.7% 99.99%

Number of variables fully observed 6 79

and in the case of the State Failure data, to apply the principle of charity, we removed 19 variables

that exhibited 100%missingness.

3.1 Methodology
We conducted simulations that ask: how much data are lost by listwise deletion if we randomly

subsample k of the variables included in each of these datasets? Our simulation thus attempts
to understand statistical behavior when using variables typical (or at least representative) of the

major datasets in use in comparative politics and international relations. To do so, we conducted

25,000 simulations in each of which we drew k of the variables from each dataset (without

replacement). We then recorded the number of rows of the data that survive listwise deletion.

We then report the expected proportion of remaining data observed after listwise deletion, as

well as theprobability that all rowsof thedata exhibit somemissingness.Note that, here, expected

values and probabilities refer to the randomness induced by our random subsampling procedure,

not any fundamental stochasticity giving rise to the underlying data. Insofar as random sampling

of variables from these datasets codifies a notion of representativeness, interpretation naturally

follows from that notion.

Webriefly discuss howout theoretical assumptions alignwith this setting. Assumption 1 asserts

i.i.d.missingness across rows,which is unlikely to bemet in this setting. In the cross-sectional QoG

case, some countries (e.g., members of the European Union) have highly correlated missingness

patterns, in part because of shared data availability. In the State Failure dataset, this is more

dramatic: since observations are at the country-year,missingness is typically positively correlated

within countries. The consequence—as in other clustering problems—is that the effective nmay
be smaller than the nominal n in practice. Our theoretical assumption of i.i.d. missingness across
rows can therefore be seen as optimistic when faced with real-world data and, all else equal, the

probability that all data will be lost may be higher than theory might dictate.

Assumption 2 asserts idiosyncratic missingness; that is, that there exists a factorization of the

data such that all observations have some probability of missingness. Assumption 2 holds in our

setting, because each observation in each dataset has missingness on at least one variable. Since

our subsamples are formed via random sampling, if the first k −1 randomly selected variables are

not missing, it follows that the kth variable has a nonzero probability of being missing. Thus, our
theoretical assumption of idiosyncratic missingness is compatible with the data, since it is met

under a model of random sampling of variables.

3.2 Results
The left panel of Figure 1 plots the expected proportion of observed data against the number of

randomly selected variables in the simulation for the QoG dataset. This proportionmonotonically

decreases to 0 as the number of randomly selected variables increases. With only 2 randomly
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Figure 1. Properties of listwise deletion on random subsamples of variables from the QoG dataset.

Figure 2. Properties of listwise deletion on random subsamples of variables from the State Failure dataset.

selected variables used, the researcher can expect to lose more than 50% of the data, which

becomes more than 99%when 17 randomly selected variables are used.

The right panel of Figure 1 plots the probability of all rows will be unusable following listwise

deletion against the number of randomly selected variables on the x-axis. Our theory would
predict that this probability should converge to 1 aswe increase the number of variables selected,

and this is borne out in our simulation. The researcher can expect to lose all of the data with

probability greater than 0.5 with 14 variables selected. With 52 variables used, this probability

becomes more than 0.99.

We found similar, but more dramatic, trends with the State Failure dataset. The left panel of

Figure 2 plots the expected proportion of observed data against the number of randomly selected

variables for the State Failure dataset. The proportion decreases at a faster rate compared with

the QoG dataset. The researcher can expect to lose more than 50%of the data if the only variable

included is randomly selected. With more than three variables, the loss is more than 99%.

The right panel of Figure 2 plots the probability of all rows missing under listwise deletion

against the number of randomly selected variables on the x-axis. This probability converges to
1 in a faster rate, as the researcher can expect to lose all of the data with probability greater than

0.5with 6 variables included and the probability rises to be greater than 0.99when includingmore

than 17 variables. Taken together with our results from the QoG data, these results demonstrate

that the moral of our theoretical results can be seen in real-world settings.
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4 Discussion

Our results demonstrate that listwise deletion cannot generally accommodate many variables,

and that this problem is not resolved asymptotically. Application of high-dimensional asymptotics

reveals that listwise deletion is evenmore fragile thanwas previously understood. Examining real-

world data used in the fields of comparative politics and international relations highlights the

seriousness of these issues for the types of data that political scientists use.

Our results imply that scholars who are committed to listwise deletion may be unable to use

all of the variables that are necessary for an otherwise valid data analysis even when n is large.
For example, in order to achieve valid inferences in an observational study, a scholar may identify

a large number of variables necessary to be conditioned on. However, if these variables exhibit

idiosyncratic missingness, then the use of listwise deletion would require the scholar to exclude

variables that would be necessary to attain an unbiased estimate. Neither dropping necessary

variables nor dropping many observations is desirable. Approaches that avoid listwise deletion

exist, including in the high-dimensional setting (e.g., Liu et al. 2016), and the researcher should
consider these alternatives.

We conclude by emphasizing that this note should not be read as advocacy for the generic

use of any particular method for addressing missing data. As Arel-Bundock and Pelc (2018) and

Pepinsky (2018) demonstrate, no best method is best across all settings, and listwise deletion can

outperform alternatives (e.g., multiple imputation) depending on the underlying data generating

process. Our results provide additional support for the perspective that themost suitable inferen-

tial strategy is one chosen based on the specifics of the problem at hand.

Appendix: Proofs

Proof of Lemma 3. We will prove the result in two cases. First suppose q∗ = 0, which is equivalent

to say that all variables are fully missing. Then pal l = 1 = (1− qk
∗ )

n . Now suppose q∗ ∈ (0,1). By

the independence assumption, pal l = Πn
i=1(1−Pr(Mi k = 0)). Denote qi j = Pr(Mij = 0|Mi (j−1) = 0) if

j > 1, else qi j = Pr(Mij = 0). By Assumption 2, qi j ≤ q∗, for all j ∈ {1,2, . . . ,k }. By the chain rule of

conditional probability, Pr(Mi k = 0) = qi1,qi2, . . . ,qi k . This means that the probability of a single

observation containing at least one missing entry is (1− qi1,qi2, . . . ,qi k ). Since q∗ ≥ qi j for all j ∈

{1,2, . . . ,k }, qk
∗ ≥ qi1,qi2, . . . ,qi k . Thus (1− qk

∗ ) ≤ (1− qi1,qi2, . . . ,qi k ). Thus (1− qk
∗ )

n is a lower

bound for the probability of all n observations each containing at least one missing entry. �

Proof of Proposition 5. First we will show that limn→∞ nqf (n)
∗ = 0 (in asymptotic shorthand nota-

tion, qf (n)
∗ = o(n−1)). Note that

lim
n→∞

nqf (n)
∗ = lim

n→∞
e lognq

f (n)
∗ = lim

n→∞
e logn+f (n) logq∗ .

Since q∗ ∈ (0,1), logq∗ < 0. Since f (n) = ω(logn), the sequence logn + f (n) logq∗ diverges to
negative infinity, and so

lim
n→∞

e logn+f (n) logq∗ = 0 = lim
n→∞

nqf (n)
∗ .

Since q∗ ∈ (0,1) and k = f (n) ≥∗ 1,−q
f (n)
∗ > −1 and 1−qf (n)

∗ ≤ 1. By Bernoulli’s Inequality, since

n ∈ �, (1− qf (n)
∗ )n ≥∗ 1 + n(−qf (n)

∗ ) = 1− nqf (n)
∗ . Thus 1− nqf (n)

∗ ≤ (1− qf (n
∗ )n ≤ 1 in the common

domain n ∈ �. Since limn→∞ 1 = 1 and limn→∞ 1− nqf (n)
∗ = 1− limn→∞ nqf (n)

∗ = 1, by the Squeeze

Theorem,

lim
n→∞

(1−qf (n)
∗ )n = 1.

Then, since�n, (1−qf (n)
∗ )n ≤ pal l ≤ 1, we have limn→∞ pal l = 1, again by the Squeeze Theorem. �
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