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Abstract. We prove that the conditions R � R � 0 and R � S � 0 are equivalent
for hypersurfaces of a 5-dimensional semi-Riemannian space form N5�c�. This solves
a problem by P.J. Ryan in the case of hypersurfaces of dimension 4 in semi-Rie-
mannian space forms.

1. Introduction. A semi-Riemannian manifold �M; g�; dimM � 3, is called
semisymmetric [17] if

R � R � 0 �1�

holds on M. It is well known that the class of semisymmetric manifolds includes the
set of locally symmetric manifolds �rR � 0� as a proper subset. A semi-Riemannian
manifold �M; g�; dimM � 3, is said to be Ricci-semisymmetric if the following con-
dition is satis®ed

R � S � 0 �2�

Again, the class of Ricci-semisymmetric manifolds includes the set of Ricci-sym-
metric manifolds (rS � 0) as a proper subset. It is clear that every semisymmetric
manifold is Ricci-semisymmetric. However, the converse statement is not true, as
can be seen for instance from material in [5].

Although the conditions (1) and (2) do not coincide for manifolds in general, it
is a long-standing question whether the conditions R � R � 0 and R � S � 0 are
equivalent for hyper-surfaces of Euclidean spaces; cf. Problem P 808 of [16] by P.J.
Ryan, and references therein. More generally, one can ask the same question for
hypersurfaces of semi-Riemannian space forms.
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Whereas the conditions R � R � 0 and R � S � 0 are equivalent on any 3-dimen-
sional semi-Riemannian manifold, for n � 3 we have the following results. It had
been proved in [18] that (1) and (2) are equivalent for hypersurfaces which have
positive scalar curvature in a Euclidean space En�1; n � 3. In [15] this result was
generalized to hypersurfaces of a Euclidean space En�1, n�3, which have non-
negative scalar curvature and also to hypersurfaces of constant scalar curvature. [15]
also proves that (1) and (2) coincide for hypersurfaces of Riemannian space forms
with nonzero constant sectional curvature. Further, in [13] it was proved that (1)
and (2) are equivalent for hypersurfaces of an Euclidean space En�1; n � 3, under the
additional global condition of completeness. In [3] it was shown that (1) and (2) are
equivalent for Lorentzian hypersurfaces of a Minkowski space En�1

1 ; n � 4, [3] also
proves that (1) and (2) are equivalent for para-KaÈ hler hypersurfaces of a semi-
Euclidean space E2m�1

s ;m � 2. In [2] we proved that (1) and (2) are equivalent for
hypersurfaces in a 5-dimensional Euclidean space E5.

In this paper, we generalize this last result to all 4-dimensional hypersurfaces of
a semi-Riemannian space form. We prove the following

Theorem. For hypersurfaces of a semi-Riemannian space form N5�c�, the condi-
tions R � R � 0 and R � S � 0 are equivalent.

The paper is organized as follows. In section 2 we ®x the notations and give
precise de®nitions of the used symbols. Since our proof will rely on results for
pseudosymmetric manifolds, we also introduce and comment on some elements of
pseudosymmetry. In section 3, and for later use in the proof, we derive several
identities valid for 4-dimensional hypersurfaces of a 5-dimensional semi-Riemannian
space form; we also prove some technical lemmas. In section 4, we prove the theorem.

2. Preliminaries. Let �M; g� be an n-dimensional, n � 3, semi-Riemannian
connected manifold of class C1. We denote by r;S and �, the Levi-Civita connec-
tion, the Ricci tensor and the scalar curvature of �M; g�, respectively. We de®ne on
M the endomorphisms ~R�X;Y�;X ^ Y and ~C�X;Y� by

~R�X;Y�Z � rX;rY� �Zÿr X;Y� �Z; �X ^ Y�Z � g�Y;Z�Xÿ g�X;Z�Y;
C~�X;Y� � ~R�X;Y� � ~R�X;Y� � 1

nÿ 2

�

nÿ 1
X ^ Yÿ �X ^ S ~Y� S ~X ^ Y�

� �

respectively, where X;Y;Z 2 ��M�;��M� being the Lie algebra of vector ®elds on
M, and the Ricci operator S~ of �M; g� is de®ned by S�X;Y� � g�X;S ~Y�. The (0,4)-
tensor G is de®ned by G�X1;X2X3;X4� � g �X1 ^ X2�X3;X4� �. The Riemann curva-
ture tensor R and the Weyl curvature tensor C of �M;G� are de®ned by

R�X1;X2;X3;X4� � g ~R�X1;X2�X3;X4

ÿ �
;C�X1;X2;X3;X4� � g C~�X1;X2�X3;X4

� �
respectively. Further, for a symmetric (0,2)-tensor ®eld A on M, we de®ne the
endomorphism X ^A Y of ��M� by �X ^A Y�Z � A�Z;Y�Xÿ A�Z;X�Y, where
X;Y;Z 2 ��M�. Evidently, we have X ^g Y � X ^ Y. For a (0,k)-tensor ®eld T on
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M; k � 1, and a symmetric (0,2)-tensor ®eld A on M, we de®ne the �0; k� 2�-tensor
®elds R � T and Q�A;T� by

�R � T��X1; . . . ;Xk;X;Y� � ÿT� ~R�X;Y�X1;X2; . . . ;Xk�
ÿ � � � ÿ T�X1; . . . ;Xkÿ1; ~R�X;Y�Xk�;

Q�A;T��X1; . . . ;Xk;X;Y� � ÿT �X ^A Y�X1;X2; . . . ;Xk� �
ÿ � � � ÿ T�X1; . . . ;Xkÿ1; �X ^A Y�Xk�::

Let M be a nondegenerate hypersurface of a semi-Riemannian manifold
�N; ~g�; dimN � 4, and let g be the induced metric tensor on M from the metric ~g. If
the ambient space is a semi-Riemannian space of constant curvature Nn�1�c�, and let
E denote the (0,4)-tensor on M de®ned as E�X1;X2;X3;X4� � H�X1;X4�H�X2;X3�
ÿH�X1;X3�H�X2;X4�, then the Gauss equation can be written shortly in the form

R � �E� ~�

n�n� 1�G �3�

where ~� is the scalar curvature of Nn�1�c�, and " � ~g��; ��, with � a unit normal. The
shape operator A and the second fundamental tensor H are related by
g A�X�Y� � � H�X;Y�, where X;Y"��M�; H is de®ned by means of

~rXY � rXY�H�X;Y���

Furthermore, for k > 1 we also de®ne that Hk�X;Y� � g�AkX;Y�, and thus
tr�Hk� � tr�Ak�.

Contracting (3) we obtain

S � � tr�H�HÿH2
ÿ �� �nÿ 1� ~�

n�n� 1� g �4�

For the proof of the theorem, we will rely on results for certain generalizations of
the semisymmetric and Ricci-semisymmetric manifolds, namely the pseudosym-
metric and Ricci-pseudosymmetric manifolds, respectively.

A semi-Riemannian manifold M is said to be pseudosymmetric if at every point
of M the following condition is satis®ed (*) the tensors R � R and Q�g;R� are linearly
dependent.

This condition is equivalent with the existence of a real-valued function LR,
de®ned on the set UR � fx 2M j Rÿ �

n�nÿ1�G 6� 0 at xg, such that

R � R � LRQ�g;R� �5�

holds on UR. The class of pseudosymmetric manifolds contains the semisymmetric
manifolds as a proper subset [5].

A semi-Riemannian manifold M is said to be Ricci-pseudosymmetric if at every
point of M the following condition is satis®ed (**) the tensors R � S and Q�g;S� are
linearly dependent.
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This condition is equivalent with the existence of a real-valued function LS,
de®ned on the set US � x 2M j Sÿ k

n g 6� 0 at x
� 	

, with S the Ricci tensor, such that

R � S � LSQ�g;S� �6�

holds on US. Again, the class of Ricci-pseudosymmetric manifolds includes the set
of Ricci-semisymmetric manifolds as a proper subset [4]. It is clear that every pseu-
dosymmetric manifold is Ricci-pseudosymmetric. However, the converse statement
is not true [4].

For more detailed information on the geometric motivation for the introduction
of pseudosymmetric manifolds, and for a review of results on di�erent aspects of
pseudosymmetric spaces, see e.g. [5] and [9]. In particular, [1] studies the conditions
of pseudosymmetry and Ricci-pseudosymmetry, realized on hypersurfaces of semi-
Riemannian spaces of constant curvature. [1] gives extrinsic characterizations of
pseudosymmetric and Ricci-pseudosymmetric hypersurfaces of semi-Riemannian
spaces of constant curvature in terms of the shape operator.

Analogously to P.J. Ryan's problem for the conditions (1) and (2), one could
ask a similar question for pseudosymmetric and Ricci-pseudosymmetric hypersur-
faces, respectively. Although the conditions (5) and (6) do not coincide for mani-
folds in general, one could state the problem whether or not the conditions
R � R � LRQ�g;R� and R � S � LSQ�g;S� are equivalent for hypersurfaces of semi-
Riemannian spaces of constant sectional curvature. But, it is known that this ques-
tion has a negative answer in general by the existence of non-pseudosymmetric,
Ricci-pseudosymmetric hypersurfaces of Sn�1�c�. Namely, in [8] it was shown that
Cartan hypersurfaces of Sn�1�c�; n � 6; 12; 24, are such hypersurfaces. This however
does not exclude that the conditions (5) and (6) may be equivalent for hypersurfaces
in some special cases (see Proposition 4.1).

3. Hypersurfaces of N5(c). For later use in the proof, we derive several speci®c
indentities for 4-dimensional hypersurfaces of a 5-dimensional semi-Riemannian
space form. General identities for hypersurfaces of semi-Riemannian space forms
with arbitrary dimension, can be found in [1].

Thus, we assume now that M is a hypersurface of a 5-dimensional semi-Rie-
mannian space of constant sectional curvature N5�c�. Using (3) we can present the
local components Chijk of the Weyl conformal curvature tensor C of M in the fol-
lowing form

Chijk � "Ehijk � �

6
� ~�

20

� �
Ghijk ÿ 1

2
�ghkSij � gijShk ÿ ghjSik ÿ gikShj�: �7�

On the other hand, the following identity is satis®ed for every 4-dimensional semi-
Riemannian manifold �M; g� [14]:

0 �ghmClikj � glmCihjk � gimChljk � ghjClikm � gljCihkm � gijChlkm

� ghkClijm � glkCihmj � gikChlmj

�8�

Substituting (7) in (8) we get
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0 �"�ghmElikj � glmEihkj � gimEhljk � ghjElikm � gljEihkm

� gijEhlkm � ghkElimj � glkEihmj � gikEhlmj�
ÿ ShmGlijk ÿ SlmGihjk ÿ SimGhljk ÿ ShjGlikm ÿ SljGihkm

ÿ SijGhlkm ÿ ShkGlimj ÿ SlkGihmj ÿ SikGhlmj

� �

6
� ~�

20

� �
�ghmGlijk � glmGihjk � gimGhljk � ghjGlikm

� gljGihkm � gijGhlkm � ghkGlimj � glkGihmj � gikGhlmj��:

�9�

Transvecting this with Hhm � Hrsg
rhgsm we ®nd

0 �tr�H��HlkHij ÿHljHik� � �Glijk

ÿ �HijH
2
lk �HlkH

2
ij ÿHikH

2
jl ÿHjlH

2
ik�

ÿ gij�H3
lk ÿ tr�H�H2

lk ÿ �Hlk� ÿ glk�H3
ij ÿ tr�H�H2

ij ÿ �Hij�
� gjl�H3

ik ÿ tr�H�H2
ik ÿ �Hik� � gik�H3

lj ÿ tr�H�H2
lj ÿ �Hlj�;

�10�

where

� � 1

3
tr�H� " 1

2
�ÿ tr�H2�

� �
� tr�H3�

� �
; �11�

� � 1

3
tr�H2� ÿ trH�� �2ÿ �� 2

3
"

3

20
~�ÿ 1

4
�

� �
: �12�

Lemma 3.1. Let M be a hypersurface of a 5-dimensional semi-Riemannian space
of constant curvature N5�c�. If a point x 2M is not umbilical then the following rela-
tion holds at x.

H4 � tr�H�H3 � �H2 � �H� �g; � 2 R; �13�

where � and � as de®ned by (11) and (12), respectively, now in addition also satisfy the
following two relations:

� � 1

3
tr�H3� ÿ tr�H� tr�H2� ÿ �ÿ �ÿ �

; �14�

� � 1

2
tr�H2� ÿ tr�H�� �2ÿ �

: �15�

Proof. Contracting (10) with gij, we obtain

tr�H�� �2ÿtr�H2� � 2�
ÿ �

Hlk � 3�ÿ tr�H3� � tr�H� tr�H2� � �ÿ �ÿ �
glk � 0: �16�
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Since x is not an umbilical point of M, (16) implies (14) and (15). Next, transvecting
(10) with Hl

h and symmetrising the resulting equality in h; i, we get

Q g;H4 ÿ tr�H�H3 ÿ �H2 ÿ �Hÿ � � 0;

which implies (13), completing the proof.

Lemma 3.2. Let M be a hypersurface of a 5-dimensional semi-Riemannian space
of constant curvature N5�c�. If at a point x 2M the relations: H3 ÿ tr�H�H2 ÿ �H � 0
and � � 0 are satis®ed then the equality Q�H2;E� � 0 holds at x, with E as de®ned in
section 2 and � given by (11).

Proof. By our assumptions, (10) reduces to

tr�H�Elijk � Flijk; �17�

where Flijk � HijH
2
lk �HlkH

2
ij ÿHikH

2
jl ÿHjlH

2
ik. From (17) there follows that

tr�H�Q�H;E� � Q�H;F� holds at x, where F is the (0,4)-tensor at x with local com-
ponents Flijk. Since the tensor Q�H;E� vanishes identically, we get Q�H;F� � 0. On
the other hand, it is easy to check that Q�H;F� � ÿQ�H2;E�. Hence the tensor
Q�H2;E� vanishes at x. But this completes the proof.

Proposition 3.1. [7] (Lemma 1) Let �M; g� be a hypersurface of a semi-Rie-
mannian space of constant sectional curvature Nn�1�c�; n � 3. If the shape operator A
of M satis®es at a point x 2M the condition

A2 � �A� �Id; �; �;2 R; �18�

then the following relation is ful®lled at x

R � R � ~�

n�n� 1� ÿ "�
� �

Q�g;R�: �19�

Let M be a hypersurface of a semi-Riemannian space of constant curvature
N5�c�. In addition, we assume that x is a point of M at which the following relation
is satis®ed

S � �
4
g: �20�

Substituting (20) into (4) and (9), respectively, we obtain

H2
hm � tr�H�Hhm � "�ghm �21�

and
ghmElijk � glmEihjk � gimEhljk � ghjElikm � gljEihkm

� gijEhlkm � ghkElimj � glkEihmj � gikEhlmj

� 1

3
"��ghmGlijk � glmGihjk � gimGhljk � ghjGlikm

� gljGihkm � gijGhlkm � ghkGlimj � glkGihmj � gikGhlmj� � 0;

�22�
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where

� � 3

20
~�ÿ �

4
�23�

Let Vh be the local components of a vector V 2 Tx�M� such that � � gijV
iVj 6� 0.

Transvecting (21) and (22) with Vh, we get, respectively

WhHhm � tr�H�Wm � "�Vm �24�

and

Vm�Elijk � "�Glijk� �Wm�glkHij � gijHlk ÿ gljHik ÿ gikHlj�
� Vj�Elikm � "�Glikm� �Wj�glmHik � gikHlm ÿ glkHim ÿ gimHlk�
� Vk�Elimj � "�Glimj� �Wk�gljHim � gimHlj ÿ glmHij ÿ gijHlm� � 0;

�25�

where Wj � VhHhj;W
i � gihWh and Vj � ghjV

h. Further, transvecting (24) and (25)
with Vm, we ®nd, respectively

~� �WhWh � tr�H� ��� "��; where �� � VhWh �26�
and

�Elijk � �VlWj � VjWl ÿ ��gjl�Hik � �ViWk � VkWi ÿ ��gik�Hlj

ÿ �VlWk � VkWl ÿ ��glk�Hij ÿ �ViWj � VjWi ÿ ��gij�Hlk

� glj�"�ViVk �WiWk� ÿ gij�"�VlVk �WlWk� ÿ glk�"�ViVj �WiWj�
� gik�"�VjVl �WjWl� � "��Glijk � 0:

�27�

From (27), by transvection with Wl, we obtain

tr�H� ��Wk ÿ ��Vk�Hij ÿ ��Wj ÿ ��Vj�Hik � �WjVk ÿWkVj�Wi

ÿ � � 0 �28�

Proposition 3.2. Let M be a hypersurface of a semi-Riemannian space of con-
stant curvature N5�c�. If at a point x 2M we have: R 6� �

12G and S � �
4 g (i.e.

x 2 UR ÿUS) then

tr�H� � 0 �29�

holds at x.

Proof. We suppose that tr�H� is nonzero at x. Now (28) turns into

��Wk ÿ ��Vk�Hij ÿ ��Wj ÿ ��Vj�Hik � �WjVk ÿWkVj�Wi � 0: �30�

Transvecting (30) with Wk and using (24) and (26) we ®nd

�� ~�ÿ ��2�Hij � ��tr�H� ÿ ���WiWj ÿ " ���ViVj � " ����WjVi �WiVj�: �31�

We note that the vector Z, with local components Zk � �Wk ÿ ��Vk must be nonzero.

P.J. RYAN'S PROBLEM 277

https://doi.org/10.1017/S0017089599970969 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089599970969


Indeed, if we had �Wk ÿ ��Vk � 0, then would also

Vh�Hhk ÿ ��

�
ghk� � 0 �32�

hold at x. Since V is an arbitrary nonzero vector at x, with � � gijV
iVj 6� 0, (32)

implies that the tensor H is proportional to g at x. Now (3) yields R � �
12G, a con-

tradiction.
Let Xi be the local components of a nonzero vector X 2 Tx�M� orthogonal to

the vectors V and W (with local components Wi). Transvecting (30) with Xj we ®nd
��Wk ÿ ��Vk�XjHij � 0, whence

XjHij � 0: �33�

Furthermore, transvecting (3) with Xh and using (33), we obtain

XhRhijk � ~�

20
�Xkgij ÿ Xjgik�;Xk � ghkX

h:

Contracting this with gij and using (20) and (23) we get �Xk � 0, whence � � 0.
Now, by the last equality, (31) reduces to

�� ~�ÿ ��2�Hij � �tr�H� ÿ ���WiWj:
ÿ �34�

We note that � ~� � ��2.
Indeed, if we had � ~� 6� ��2 then (34) gives rank H � 1 and (3) again reduces to

R � �
12G, a contradiction.
Thus (34) turns into

�tr�H� ÿ ��� �Wi � 0: �35�

But from the equality Wi � VsHsi � 0 it follows that H vanishes at x, a contra-
diction.

Thus (35) must reduce to

�tr�H� � ��; �36�

whence it follows that �� must be nonzero. Transvecting (27) with Xl and using (33)
we get

Xj�Hik ÿ 1

��
WiWk� � Xk�Hij ÿ 1

��
WiWj�:

Without loss of generality we can choose the vector X in such a way that
XkXk 6� 0. The last equality, by transvection with Xj, yields

XjXj�Hik ÿ 1

��
WiWk� � 0;
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whence Hik � 1
��WiWk, which reduces (3) to R � �

12G, a contradiction. Thus we see
that (29) holds at x, which completes the proof.

From the last proposition we immediately deduce the following

Corollary 3.1. Let M be an Einsteinian hypersurface of a semi-Riemannian
space of constant curvature N5�c�. If the set UR ÿUS �M is a dense subset of M then
the mean curvature of M vanishes identically on M

4. Proof of the theorem. In this section, we prove the theorem that the condi-
tions R � R � 0 and R � S � 0 are equivalent for hypersurfaces of a semi-Riemannian
space form N5�c�. This generalizes the result of [2] to inde®nite space forms.

We ®rst prove that there are no properly Ricci-pseudosymmetric hypersurfaces
in a 5-dimensional semi-Riemannian space form. Otherwise stated, we prove that
the conditions (*) and (**) are equivalent for 4-dimensional hypersurfaces of a semi-
Riemannian space of constant sectional curvature.

Proposition 4.1. Every Ricci-pseudosymmetric hypersurface M of a 5-dimen-
sional semi-Riemannian space of constant sectional curvature N5�c� is pseudosym-
metric.

Proof. In view of Lemma 4.1 of [1], our assertion is true at all points of M at
which the tensor H2 is a linear combination of H and g. Let now x be a point of M
at which the tensor H2 is not a linear combination of H and g. Thus, in view of
Theorem 3.1 of [1], the relation H3 � tr�H�H2 � �H; � 2 R, holds at x. From the last
equality we get H4 � tr�H�H3 � �H2; � 2 R. Combining this with (13) we obtain
� � � and � � � � 0, where �; � and � are de®ned by (11), (12) and (13), respec-
tively. Thus we have H3 � tr�H�H2 � �H. Now Lemma 3.2, together with Theorem
4.1 of [1], completes the proof.

Using the above result we can prove the following

Proposition 4.2. The conditions R � R � 0 and R � S � 0 are equivalent on the
subset US of a hypersurface M of a 5-dimensional semi-Riemannian space of constant
sectional curvature N5�c�.

Proof. It is clear that R � R � 0 implies R � S � 0. We assume now that R � S � 0
holds at a point x 2 US. In view of Proposition 4.1 we have at x

R � R � LQ�g;R�; �37�

for some function L : M4! R. It is clear that this implies R � S � LQ�g;S�, which
yields LQ�g;S� � 0. Since the tensor S is not proportional to the metric tensor, L
vanishes at x. Thus (37) reduces to R � R � 0, completing the proof.

Let M be a Ricci-semisymmetric hypersurface of a semi-Riemannian space form
N5�c�. The above result states that R � R � 0 holds on the set US. Furthermore, we
note that (3) reduces on the set MÿUR to R � ~�

n�n�1�G, which implies that R � R � 0
is ful®lled trivially on the set MÿUR. To ®nish the proof of our main theorem, we
must prove that the condition R � R � 0 is ful®lled on the set UR ÿUS. Let x be a
point of UR ÿUS. From Proposition 4.2 there follows that we can assume without
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loss of generality that there exists a neighbourhood U of x contained in UR ÿUS.
Thus the manifold �U; g� is an Einstein hypersurface of the 5-dimensional semi-
Riemannian space of constant sectional curvature N5�c�. It is clear that (21) holds on
U. Further, in view of Proposition 3.2, (21) reduces on U to

H2
hm � "�ghm:

[10] classi®es the possible shape operators A for an Einstein hypersurface in an
inde®nite space form. The shape operator A is either diagonalizable or satis®es
either A2 � 0, or A2 � ÿb2Id�b 2 R; b 6� 0�. We consider these 3 cases separately.

1. Let the condition A2 � ÿb2Id; b � const:, be satis®ed on U. [12] gives an
explicit description of the Einsteinian hypersurfaces in semi-Riemannian space
forms with shape operator satisfying A2 � ÿb2Id, with b � const: 6� 0. The shape
operator of any such hypersurface is parallel ([12], Proposition 2). Thus in particular
we have

�R �H��X1;X4;X;Y� � 0: �38�

But on the other hand, from (3) we get immediately the following identity

�R � R��X1;X2X3;X4;X;Y� � H�X2;X3��R �H��X1;X4;X;Y�
�H�X1;X4��R �H��X2;X3;X;Y� ÿH�X2;X4��R �H��X1;X3;X;Y�
ÿH�X1;X3��R �H��X2;X4;X;Y�;

which by (38) reduces to R � R � 0. So, Einsteinian hypersurfaces with shape
operator satisfying A2 � ÿb2Id; b � const: 6� 0, are semisymmetric.

2. Let the condition A2 � 0 be satis®ed on U. From Proposition 3.1 it follows
that

R � R � ~�

n�n� 1�Q�g;R� �39�

holds on U. [11] considers Einsteinian hypersurfaces in semi-Riemannian spaces of
constant sectional curvature with shape operator satisfying A2 � 0. [11] proves that
if A has maximal rank (this is rank A � 2 in our case), then c � 0, hence also ~� � 0.
Note that if rank A � 1 then (3) reduces to R � ~�

n�n�1�G. So, Einsteinian hypersur-
faces with shape operator satisfying A2 � 0 also are semisymmetric.

3. Finally, we assume that A2 � b2Id; b � const: 6� 0, holds on U. From [10] it
follows that A must be diagonalizable at every point of U. The Einstein hypersur-
faces with diagonalizable shape operator were classi®ed in [9]. From Theorem 7.1 of
[9] it follows that any such hypersurface is a space of constant curvature or a Car-
tesian product of two spaces of constant curvatures, and thus is semisymmetric.

Summarizing all subcases, we have proved that every Ricci-semisymmetric
hypersurface M of a semi-Riemannian space form N5�c� also satis®es R � R � 0. Our
main theorem is thus proved.

From the above considerations we also immediately have the following result.

Corollary 4.1. Any Einsteinian hypersurface of a semi-Riemannian space of
constant curvature N5�c� is semisymmetric
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