
1 From Particles to Fields

SYNOPSIS To introduce some basic concepts of field theory, we begin by considering two
simple model systems – a one-dimensional “caricature” of a solid and a freely propagating
electromagnetic wave. As well as exemplifying the transition from discrete to continuous
degrees of freedom, these examples introduce the basic formalism of classical and quantum
field theory as well as the notions of elementary excitations, collective modes, symmetries
and universality – concepts that will pervade the rest of the text.

One of the appealing facets of condensed matter physics is that phenomenology of
remarkable complexity can emerge from a Hamiltonian of comparative simplicity.
Indeed, microscopic “condensed matter Hamiltonians” of high generality can be
constructed straightforwardly. For example, a prototypical metal or insulator may
be described by the many-particle Hamiltonianmany-

particle
Hamil-
tonian

, H = He +Hi +Hei, where

He =
∑
i

p2
i

2m +
∑
i<j

Vee(ri − rj),

Hi =
∑
I

P2
I

2M +
∑
I<J

Vii(RI −RJ),

Hei =
∑
iI

Vei(RI − ri).

(1.1)

Here, ri (RI) denotes the coordinates of va-
lence electrons (ion cores), while He, Hi, and
Hei describe the dynamics of electrons, ions and
the interaction of electrons and ions, respec-
tively (see the figure). Of course, the Hamilto-
nian (1.1) can be made more realistic by, for
example, remembering that electrons and ions
carry spin, adding potential disorder, or intro-
ducing host lattices with multi-atomic unit cells. However, for developing our
present line of thought, the prototype Hamiltonian H will suffice.

The fact that a seemingly innocuous Hamiltonian like Eq. (1.1) is capable of
generating a plethora of phenomenology can be read in reverse: normally, one
will not be able to make progress theoretically by approaching the problem in an
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4 1 From Particles to Fields

“ab initioab initio
approach

” manner, i.e., by an approach that treats all microscopic constituents as
equally relevant degrees of freedom. How, then, can successful analytical approaches
be developed? The answer lies in several basic principles inherent in generic con-
densed matter systems.

1. Structural reducibilityreduction
principle

: Not all components of the Hamiltonian (1.1) need
to be treated simultaneously. For example, when our interest is in the vibra-
tional motion of the ion lattice, the dynamics of the electron system can often
be neglected or, at least, treated in an “effective” manner. Similarly, the dy-
namics of the electron system can often be considered independent of the ions,
etc.

2. In the majority of condensed matter applications, one is interested not so much
in the full profile of a given system but, rather, in its energetically low-lying
dynamics. This is motivated partly by practical aspects (in daily life, iron
is normally encountered at room temperature and not at its melting point),
and partly by the tendency of large systems to behave in a “universal” man-
ner at low temperatures. Here, universalityuniversality

principle
implies that systems differing

in microscopic detail (i.e., with different types of interaction potentials, ion
species, etc.) exhibit common collective behavior at low energy or long length
scales. As a physicist, one will normally seek for unifying principles in collec-
tive phenomena rather than to describe the peculiarities of individual elements
or compounds. However, universality is equally important in the practice of
condensed matter theory. In particular, it implies that, at low temperatures,
system-specific details of microscopic interaction potentials are often of sec-
ondary importance, i.e., one may employ simple model Hamiltonians.

3. For most systems of interest, the number of degrees of freedom N = O(1023)
is formidably large. However, contrary to first impressions, the magnitude of
this figure is rather an advantage: in addressing condensed matter problems,
the principles of statisticsstatistical

principles
imply that statistical errors tend to be negligibly

small.1

4. Finally, condensed matter systems typically possess intrinsic symmetriessymmetries . For
example, the Hamiltonian (1.1) is invariant under the simultaneous translation
and/or rotation of all coordinates, which expresses the global Galilean invari-
ance of the system (these are continuous symmetries). Invariance under spin
rotation (continuous) or time reversal (discrete) are other examples of common
symmetries. The general importance of symmetries cannot be overemphasized:
symmetries support the conservation laws that simplify any problem. Yet, in

1 The importance of this point is illustrated by the empirical observation that the most chal-
lenging systems in physical sciences are of medium, and not large, scale, e.g., metallic clusters,
medium-sized nuclei or large atoms consisting of some O(101–102) fundamental constituents.
Such systems are beyond the reach of few-body quantum mechanics while not yet accessible to
reliable statistical modeling. The only viable path to approaching systems of this type is often
through numerical simulation or the use of phenomenology.
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5 1.1 Classical Harmonic Chain: Phonons

condensed matter, symmetries are even more important. A conserved observ-
able is generally tied to an energetically low-lying excitation. In the universal,
low-temperature, regime in which we will typically be interested, it is precisely
the dynamics of these excitations that govern the gross behavior of the sys-
tem. Generally, the identification of fundamental symmetries is the first step
in the sequence “symmetry 7→ conservation law 7→ low-lying excitations” and
one that we will encounter time and again.

To understand how these basic principles can be used to formulate and explore
effective low-energy field theories of solid state systems, we will begin by focusing
on the harmonic chain, a collection of atoms bound by a harmonic potential.
In doing so, we will observe that the universal characteristics encapsulated by the
low-energy dynamics2 of large systems relate naturally to concepts of field theory.

1.1 Classical Harmonic Chain: Phonons

[Classical Harmonic Chain: Phonons]
Returning to the prototype Hamiltonian (1.1), let us focus on the dynamical

properties of the positively charged core ions that constitute the host lattice of a
crystal. For the moment, we will neglect the fact that atoms are quantum objects
and treat the ions as classical entities. To further simplify the problem, let us
consider a one-dimensional atomic chain rather than a generic d-dimensional solid.
In this case, the positions of the ions can be specified by a sequence of coordinates
with average lattice spacing a. Relying on the structural reducibility principle 1, we
will first argue that, to understand the behavior of the ions, the dynamics of the
conduction electrons are of secondary importance, i.e., we will set He = Hei = 0.

At zero temperature, the sys-
tem freezes into a regularly spaced
array of ion cores at coordinates
RI = R̄I ≡ Ia. Any deviation
from a perfectly regular configu-
ration incurs a potential energy
cost. For low enough temperatures
(principle 2), this energy will be
approximately quadratic in the small deviation of the ion from its equilibrium po-
sition. The “reduced” low-energy Hamiltonian of the system then reads

H =
N∑
I=1

[
P 2
I

2m + ks

2 (RI+1 −RI − a)2
]
, (1.2)

2 In this text, we will focus on the dynamical behavior of large systems, as opposed to their static
structural properties. In particular, we will not address questions related to the formation of
definite crystallographic structures in solid state systems.
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6 1 From Particles to Fields

where the coefficient ks determines the steepness of the lattice potential. Note that
H can be interpreted as the Hamiltonian of N point-like particles of mass m con-
nected by elastic springs with spring constant ks (see the figure).

1.1.1 Lagrangian formulation and equations of motion

Joseph-Louis Lagrange
1736–1813
was a French mathematician
and astronomer (though born
in Turin) who excelled in all
fields of analysis, number the-
ory and celestial mechanics. In
1788, he published Mécanique
Analytique, which summarized the field of me-
chanics since the time of Newton, and is no-
table for its use of the theory of differential
equations. In this text, he transformed mechan-
ics into a branch of mathematical analysis.

What are the elementary low-energy
excitations of the classical harmonic
chainclassical

harmonic
chain

? To answer this question we
might, in principle, attempt to solve
Hamilton’s equations of motion. In-
deed, since H is quadratic in all coordi-
nates, such a program is feasible. How-
ever, few of the problems encountered
in solid state physics enjoy this prop-
erty. Further, it seems unlikely that the
low-energy dynamics of a macroscopi-
cally large chain – which we know from our experience will be governed by large-
scale wave-like excitations – is adequately described in terms of an “atomistic”
language; the relevant degrees of freedom will be of a different type. We should,
rather, draw on the basic principles 1–4 set out above. Notably, so far, we have
paid attention to neither the intrinsic symmetry of the problem nor the fact that
the number of ions, N , is large.

To reduce a microscopic model to an effective low-energy theory, often the Hamil-
tonian is not a very convenient starting point. Usually, it is more efficient to start
from the classical actionclassical

action
, S. In the present case, S =

´
dt L(R, Ṙ), where

(R, Ṙ) ≡ {RI , ṘI} represent the coordinates and their time derivatives. The corre-
sponding classical Lagrangianclassical

Lagrangian
L related to the Hamiltonian (1.2) is given by

L = T − U =
N∑
I=1

[
m

2 Ṙ
2
I −

ks

2 (RI+1 −RI − a)2
]
, (1.3)

where T and U denote, respectively, the kinetic and potential energy.
Since we are interested in the properties of the large-N system, we can expect

boundary effects to be negligible. In this case, we may impose periodic boundary
conditions, making the identification RN+1 = R1. Further, anticipating that the
effect of lattice vibrations on the solid is weak (i.e., long-range atomic order is
maintained), we may assume that the deviation of ions from their equilibrium po-
sition is small (i.e., |RI(t) − R̄I | � a). For RI(t) = R̄I + φI(t), with φN+1 = φ1,
the Lagrangian (1.3) assumes the simplified form

L =
N∑
I=1

[
m

2 φ̇
2
I −

ks

2 (φI+1 − φI)2
]
.

To make further progress, we will now make use of the fact that we are not
concerned with behavior on “atomic” scales. For such purposes, our model would,
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7 1.1 Classical Harmonic Chain: Phonons

in any case, be much too primitive! Rather, we are interested in experimentally
observable behavior that becomes manifest on macroscopic length scales (principle
2). For example, one might wish to study the specific heat of the solid in the limit
of infinitely many atoms (or at least a macroscopically large number, O(1023)).
Under these conditions, microscopic models can usually be simplified substantially
(principle 3). In particular, it is often permissible to subject a discrete lattice model
to a continuum limitcontinuum

limit
, i.e., to neglect the discreteness of the microscopic entities

and to describe the system in terms of effective continuum degrees of freedom.
In the present case, taking a continuum limit

amounts to describing the lattice fluctuations φI in
terms of smooth functions of a continuous variable x.
(See the figure, where the [horizontal] displacement of
the point particles is plotted along the vertical axis.)
Clearly such a description makes sense only if the relative fluctuations on atomic
scales are weak (for otherwise the smoothness condition would be violated). How-
ever, if this condition is met – as it will be for sufficiently large values of the stiffness
constant ks – the continuum description is much more powerful than the discrete
encoding in terms of the “vector” {φI}. The steps that we will need to take to go
from the Lagrangian to concrete physical predictions will then be much easier to
formulate.

Introducing continuum degrees of freedom φ(x), and applying a first-order Taylor
expansion,3 let us define

φI → a1/2φ(x)
∣∣∣
x=Ia

, (φI+1 − φI)→ a3/2∂xφ(x)
∣∣∣
x=Ia

,

N∑
I=1
→ 1

a

ˆ L

0
dx,

where L = Na. Note that, as defined, the functions φ(x, t) have dimensionality
[length]1/2. Expressed in terms of the new degrees of freedom, the continuum limit
of the Lagrangian then reads

L[φ] =
ˆ L

0
dx L(∂xφ, φ̇), L(∂xφ, φ̇) = m

2 φ̇
2 − ksa

2

2 (∂xφ)2, (1.4)

where the Lagrangian densityLagrangian
density

L has dimensionality [energy]/[length]. Similarly,
the classical action assumes the continuum form

S[φ] =
ˆ
dt L[φ] =

ˆ
dt

ˆ L

0
dx L(∂xφ, φ̇) (1.5)

We have thus succeeded in abandoning the N point-particle description in favor of
one involving continuous degrees of freedom, a (classical) fieldclassical

field
. The dynamics of

the latter are specified by the functionals L and S, which represent the continuum
generalizations of the discrete classical Lagrangian and action, respectively.

3 Indeed, for reasons that will become clear, higher-order contributions to the Taylor expansion
are immaterial in the long-range continuum limit.
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8 1 From Particles to Fields

INFO The continuum variable φ is our first encounter with afield field. Before proceeding
with our example, let us pause to make some preliminary remarks on the general definition
of these objects. This will help to place the subsequent discussion of the atomic chain in
a broader context. Formally, a field is a smooth mapping

φ : M → T

z 7→ φ(z)

from a certain manifold M ,4 often called the “base
manifold,” into a “target” or “field manifoldfield

manifold
”

T (see the figure).5 In our present example, M =
[0, L]×[0, t] ⊂ R2 is the product of intervals in space
and time, and T = R. In fact, the factorizationM ⊂
R×T into a space-like manifold R multiplied by a
one-dimensional time-like manifold T is inherent in
most applications of condensed matter physics.6

However, the individual factors R and T may,
of course, be more complex than in our prototypical problem above. As for the target
manifold, not much can be said in general; depending on the application, the realizations
of T range from real or complex numbers over vector spaces and groups to the “fanciest
objects” of mathematical physics.

In applied field theory, fields appear not as final objects, but rather as input to func-
tionalsfunctionals . Mathematically, a functional S : φ 7→ S[φ] ∈ R is a mapping that takes a field
as its argument and maps it into the real numbers. The functional profile S[φ] essentially
determines the character of a field theory. Notice that the argument of a functional is
commonly indicated in square brackets [ ].

While these formulations may appear unnecessarily abstract, remembering the mathe-
matical backbone of the theory often helps to avoid confusion. At any rate, it takes some
time and practice to get used to the concept of fields and functionals. Conceptual difficul-
ties in handling these objects can be overcome by remembering that any field in condensed
matter physics arises as the limit of a discrete mapping. In the present example, the field
φ(x) is obtained as a continuum limit of the discrete vector {φI} ∈ RN ; the functional
L[φ] is the continuum limit of the function L : RN → R, etc. While, in practice, fields
are usually easier to handle than their discrete analogs, it is sometimes helpful to think
about problems of field theory in a discrete language. Within the discrete picture, the
mathematical apparatus of field theory reduces to finite-dimensional calculus.

Although the Lagrangian (1.4) contains the full information about the model, we
have not yet learned much about its actual behavior. To extract concrete physical
information from the Lagrangian, we need to derive equations of motionequations

of motion
. At first

sight, it may not be entirely clear what is meant by the term “equations of motion”
in the context of an infinite-dimensional model: the equations of motion relevant for
4 If you are unfamiliar with the notion of manifolds (for a crash course, see appendix section

A.1), think of M and T as subsets of some vector space. For the moment, this limitation won’t
do any harm.

5 In some (rare) cases it becomes necessary to define fields in a more general sense (e.g., as
sections of mathematical objects known as fiber bundles). However, in practically all condensed
matter applications, the more restrictive definition above will suffice.

6 By contrast, the condition of Lorentz invariance implies the absence of such factorizations in
relativistic field theory. In classical statistical field theories, i.e., theories probing the thermo-
dynamic behavior of large systems, M is just space-like.
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9 1.1 Classical Harmonic Chain: Phonons

the present problem are obtained as the generalization of the conventional Lagrange
equations of N point-particle classical mechanics to a model with infinitely many
degrees of freedom. To derive these equations, we need to generalize Hamilton’s
extremal principle (i.e., the route from an action to the associated equations of
motion) to infinite dimensions. As a warm-up, let us briefly recapitulate how the
extremal principle works for a system with one degree of freedom.

Suppose the dynamics of a classical point particle with coordinate x(t) is de-
scribed by the classical Lagrangian L(x, ẋ) and action S[x] =

´
dt L(x, ẋ). Hamil-

ton’s extremal principleHamilton’s
extremal
principle

states that the configurations x(t) that are realized are
those that extremize the action, δS[x] = 0, i.e., for any smooth curve t 7→ y(t),

lim
ε→0

1
ε

(S[x+ εy]− S[x]) = 0. (1.6)

(For a more rigorous discussion, see section 1.2 below.) To first order in ε, the action
has to remain invariant. Applying this condition, one finds that it is fulfilled if and
only if x satisfies Lagrange’s equation of motionLagrange’s

d

dt
(∂ẋL)− ∂xL = 0 (1.7)

EXERCISE Recapitulate the derivation of (1.7) from the classical action.

x

t
T

L

φ (x,t)
φ

εη (x,t)

In Eq. (1.5) we are dealing with a system of
infinitely many degrees of freedom, φ(x, t).
Yet Hamilton’s principle is general and we
may see what happens if Eq. (1.5) is sub-
jected to an extremal principle analogous
to Eq. (1.6). In this case, we require the ac-
tion (1.5) to be invariant under variations
φ(x, t) → φ(x, t) + εη(x, t), to first order
in ε. Note that field variations must respect boundary conditions, if present. For
example, if φ|boundary = const., then η|boundary = 0 (see the figure). When applied
to the specific Lagrangian (1.4), substituting the “varied” field leads to

S[φ+ εη] = S[φ] + ε

ˆ
dt

ˆ L

0
dx
(
mφ̇ η̇ − ksa

2∂xφ∂xη
)

+O(ε2).

Integrating by parts and requiring the contribution linear in ε to vanish, one obtains

lim
ε→0

1
ε

(S[φ+ εη]− S[φ]) = −
ˆ
dt

ˆ L

0
dx
(
mφ̈− ksa

2∂2
xφ
)
η

!= 0.7

(Notice that the boundary terms vanish identically.) Now, since η was defined to
be an arbitrary smooth function, the integral above can vanish only if the factor in

7 Here and throughout a != b means “we require a to be equal to b.”
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10 1 From Particles to Fields

parentheses is globally vanishing. Thus the equation of motion takes the form of a
classical wave equationclassical

wave
equation (

m∂2
t − ksa

2∂2
x

)
φ = 0 (1.8)

φ+φ–
x = vt

x = – vt
The solutions of (1.8) have the form
φ+(x−vt)+φ−(x+vt), where v = a

√
ks/m,

and φ± are arbitrary smooth functions of
the argument. From this we can deduce that the low-energy elementary excita-
tions of our model are lattice vibrations propagating as classical sound wavessound

waves
to the left or right at a constant velocity v (see figure).8 The trivial behavior of the
model is, of course, a direct consequence of its simplistic definition – no dissipa-
tion, dispersion, or other nontrivial ingredients. Adding these refinements leads to
the general classical theory of lattice vibrations (see, e.g., Ashcroft and Mermin9).
Finally, notice that the elementary excitations of the chain have little in common
with its “microscopic” constituents (the atoms). Rather they are collective exci-
tationscollective

excitations
, i.e., elementary excitations comprising a macroscopically large number of

microscopic degrees of freedom.

INFO The “relevant” excitations of a condensed matter system can, but need not,
be of collective type. For example, the interacting electron gas (a system to be discussed
in detail below) supports microscopic excitations – charged quasi-particles standing in 1:1
correspondence with the electrons of the original microscopic system – while the collective
excitations are plasmon modes of large wavelength that involve many electrons. Typically,
the nature of the fundamental excitations cannot be straightforwardly inferred from the
microscopic definition of a model. Indeed, the mere identification of the relevant excitations
often represents the most important step in the solution of a condensed matter problem.

1.1.2 Hamiltonian formulation

Sir William Rowan Hamil-
ton 1805–1865
was an Irish mathematician
credited with the discovery
of quaternions, the first non-
commutative algebra to be
studied. He also made seminal
contributions to the study of
geometric optics and classical mechanics.

An important characteristic of any ex-
citation is its energy. How much en-
ergy is stored in the sound waves of
the harmonic chain? To address this
question, we need to switch back to a
Hamiltonian formulation. Once again,
this is achieved by generalizing stan-
dard manipulations from point-particle
mechanics to the continuum. Remembering that, in the Lagrangian formulation of

8 Strictly speaking, the modeling of our system enforces a periodicity constraint φ±(x + L) =
φ±(x). However, in the limit of large system sizes, this aspect becomes inessential.

9 N. W. Ashcroft and N. D. Mermin, Solid State Physics (Holt–Saunders International, 1983).
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11 1.1 Classical Harmonic Chain: Phonons

point particle mechanics, p ≡ ∂ẋL is the momentum conjugate to the coordinate x,
let us consider the Lagrangian density and define the field10

π(x) ≡ ∂L
∂φ̇

(1.9)

as the canonical momentumcanonical
momentum

associated with φ. In common with φ(x), the mo-
mentum π(x) is a continuum degree of freedom. At each point in space, it may
take an independent value. Notice that π(x) is nothing but the continuum gener-
alization of the lattice momentum PI of Eq. (1.2). (Applied to PI , a continuum
approximation like φI → φ(x) would produce π(x).) The Hamiltonian densityHamiltonian

density
is

then defined as usual through the Legendre transformation,

H(∂xφ, π) =
(
πφ̇− L

)∣∣
φ̇=φ̇(φ,π) (1.10)

from which the full Hamiltonian is obtained as H =
´ L

0 dxH.

EXERCISE Verify that the transition L → H is a straightforward continuum general-
ization of the Legendre transformation of the N -particle Lagrangian L({φI}, {φ̇I}).

Having introduced a Hamiltonian, we are in a position to determine the energy
of the sound waves. Application of Eqs. (1.9) and (1.10) to the Lagrangian of the
atomic chain yields π(x) = mφ̇(x) and

H[π, φ] =
ˆ
dx

[
π2

2m + ksa
2

2 (∂xφ)2
]
. (1.11)

Considering, say, a right-moving sound-wave excitation, φ(x, t) = φ+(x − vt), we
find that π(x, t) = −mv∂xφ+(x − vt) and H[π, φ] = ksa

2 ´ dx[∂xφ+(x − vt)]2 =
ksa

2 ´ dx [∂xφ+(x)]2, i.e., a positive-definite time-independent expression, as one
would expect.

INFO For completeness, we mention that the Hamiltonian representation of the
actionHamiltonian

action
(1.5) is given by S[φ, π] =

´
dt
´ L

0 dx(πφ̇−H). From here, the Hamiltonian version
of the equations of motion can be derived by independent variations in φ and π, just as
in classical mechanics. As an exercise, carry out this variation for the harmonic chain and
verify that you obtain equations equivalent to the wave equation (1.8).11 Whether one
prefers to work in a Hamiltonian or Lagrangian formulation of a field theory depends on
the context and is often decided on a case-by-case basis.

Before proceeding further, let us note an interesting feature of the energy functional:
in the limit of an infinitely shallow excitation, ∂xφ+ → 0, the energy vanishes. This
sets the stage for principles 4, hitherto unconsidered, symmetry. The Hamiltonian
10 In field theory literature, it is traditional to denote the momentum by a Greek letter.
11 Variation of the action in φ and π leads to (invert this to check the result) φ̇=

π
m,π̇=ksa2∂2

xφ .
Differentiation of the first equation in time followed by substitution into the second equation
yields the wave equation.
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12 1 From Particles to Fields

of an atomic chain is invariant under simultaneous translation of all atom coordi-
nates by a fixed increment: φI → φI+δ, where δ is constant. This expresses the fact
that a global translation of the solid as a whole does not affect the internal energy.
Now, the ground state of any specific realization of the solid is defined through a
static array of atoms, each located at a fixed coordinate RI = Ia ⇒ φI = 0. We
say that the above translational symmetry is “spontaneously broken,” i.e., the solid
has to decide where exactly it wants to rest. However, spontaneous breakdown of
a symmetry does not imply that the symmetry has disappeared. On the contrary,
infinite-wavelength deviations from the pre-assigned ground state come close to
global translations of (macroscopically large portions of) the solid and, therefore,
cost a vanishingly small amount of energy. This is the reason for the vanishing of
the sound-wave energy in the limit ∂xφ → 0. It is also our first encounter with
the aforementioned phenomenon that continuous symmetries lead to the formation
of soft, i.e., low-energy, excitations. A much more systematic exposition of these
connections will be given in chapter 5.

To conclude our discussion of the classical harmonic chain, let us consider the
specific heatspecific

heat
, a quantity directly accessible in experiment. A rough estimate of

this quantity can be obtained from the microscopic Hamiltonian (1.2). According to
the principles of statistical mechanics, the thermodynamic energy density is given
by

u = 1
L

´
dΓ e−βHH´
dΓ e−βH

= − 1
L
∂β lnZ,

where β ≡ 1/kBT , Z ≡
´
dΓe−βH is the Boltzmann partition functionpartition

function
, and

the phase space volume element dΓ =
∏N
I=1 dRIdPI . (Hereafter, for simplicity,

we set kB = 1.) The specific heat is then obtained as c = ∂Tu. To determine
the temperature dependence of c, we can make use of the fact that, upon rescal-
ing of the integration variables, RI → β−1/2XI , PI → β−1/2YI , the exponent
βH(R,P )→ H(X,Y ) becomes independent of temperature (a property that relies
on the quadratic dependence of H on both R and P ). The integration measure
transforms as dΓ → β−N

∏N
I=1 dXI dYI ≡ β−NdΓ′. Expressed in terms of the

rescaled variables, one obtains the energy density as u = −L−1∂β ln(β−NK) = ρT ,
where ρ = N/L is the density of the atoms and we have made use of the fact that
the constant K ≡

´
dΓ′ e−H(X,Y ) is independent of temperature. We thus find a

temperature independent specific heat c = ρ. Notice that c is fully universal, i.e.,
independent of the material constants m and ks determining H. (In fact, we could
have anticipated this result from the equipartition theorem of classical mechan-
ics, i.e., the law that in a system with N degrees of freedom, the energy scales as
U = NT .)

How do these findings compare with experiment? Figure 1.1 shows the specific
heat of the insulating compound EuCoO3.12 At large temperatures, the specific
heat approaches a constant, which is consistent with our analysis. However, at
12 Note that, in metals, the specific heat due to lattice vibrations exceeds the specific heat of the

free conduction electrons for temperatures larger than a few degrees kelvin.
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13 1.2 Functional Analysis and Variational Principles
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tFig. 1.1 Specific heat cp of the insulator EuCoO3. At large temperatures, cp approaches a constant
value, as predicted by analysis of the classical harmonic chain. However, for small temper-
atures, deviations from cp = const. are substantial. Such deviations can be ascribed to
quantum effects. (Courtesy of M. Kriener, A. Reichl, T. Lorenz and, A. Freimuth.)

lower temperatures, the specific heat shows deviations from c = const. Yet, this
temperature dependence does not reflect a failure of the simplistic microscopic
modeling. Rather, the deviation is indicative of a quantum phenomenon. Indeed,
so far, we have neglected the quantum nature of the atomic variables. In the next
chapter we will discuss how an effective low-energy theory of the harmonic chain
can be promoted to a quantum field theory. However, before doing so, let us pause
to introduce several mathematical concepts that surfaced above, in a way that
survives generalization to richer problems.

1.2 Functional Analysis and Variational Principles

Let us revisit the derivation of the equations of motion associated with the harmonic
chain, Eq. (1.8). Although straightforward, the calculation was neither efficient,
nor did it reveal general structures. In fact, what we did – expanding explicitly
to first order in the variational parameter ε – has the same status as evaluating
derivatives by explicitly taking limits: f ′(x) = limε→0

1
ε (f(x+ ε)−f(x)). Moreover,

the derivation made explicit use of the particular form of the Lagrangian, thereby
being of limited use with regard to a general understanding of the construction
scheme. Given the importance attached to extremal principles in the whole of field
theory, it is worthwhile investing some effort in constructing a more efficient scheme
for the general variational analysis of continuum theories. To carry out this program,
we first need to introduce the mathematical tool of functional analysis – the concept
of functional differentiationfunctional

differen-
tiation

.
In working with functionals, one is often concerned with how a given functional

behaves under (small) variations of its argument function. In particular, given a
certain function f that we suspect would make a functional F [f ] stationary, one
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14 1 From Particles to Fields

would like to find out whether the functional remains invariant under variations
f → f + h, where h is an infinitely small increment function. In ordinary analysis,
questions of this type are commonly addressed by exploring derivatives, i.e., we
need to generalize the concept of a derivative to functionals. This is achieved by
the following definition: a functional F is called differentiable if

F [f + εg]− F [f ] = εDFf [g] +O(ε2)

where thedifferential differential DFf is a linear functional (i.e., one with DFf [g1 + g2] =
DFf [g1] + DFf [g2]), ε is a small parameter, and g is an arbitrary function. The
subscript indicates that the differential depends generally on the “base argument,”
f . A functional F is said to be stationary on f if, and only if, DFf = 0.

In principle, the definition above answers our question concerning a stationarity
condition. However, to make use of the definition, we still need to know how to
compute the differential DF , and how to relate the differentiability criterion to the
concepts of ordinary calculus. To understand how these questions can be systemati-
cally addressed, it is helpful to return temporarily to a discrete way of thinking, i.e.,
to interpret the argument f of a functional F [f ] as the limit N →∞ of a discrete
vector f = {fn ≡ f(xn), n = 1, . . . , N}, where {xn} denotes a discretization of the
support of f (cf. the harmonic chain, φ↔ f). Prior to taking the continuum limit,
N → ∞, f has the status of an N -dimensional vector and F (f) is a function de-
fined over N -dimensional space. After taking the continuum limit, f → f becomes
a function itself and F (f)→ F [f ] becomes a functional.

Now, within the discrete picture, it is clear how the variational behavior of func-
tions is to be analyzed. For example, the condition that, for all ε and all vectors g,
the linear expansion of F (f + εg) ought to vanish is simply to say that the ordinary
differential, dFf , defined through F (f + εg) − F (f) = ε · dFf (g) + O(ε2), must be
zero. In practice, one often expresses conditions of this type in terms of a certain
basis. In a Cartesian basis of N unit vectors, en, n = 1, . . . , N , dFf (g) ≡ 〈∇Ff ,g〉,
where 〈f ,g〉 ≡

∑N
n=1 fngn denotes the standard scalar product, and ∇Ff = {∂fnF}

represents the gradient, with the partial derivative defined as

∂fnF (f) ≡ lim
ε→0

1
ε

[F (f + εen)− F (f)] . (1.12)

From these identities, the differential is identified as

dFf (g) =
∑
n

∂fnF (f)gn. (1.13)

The vanishing of the differential amounts to the vanishing of all partial derivatives,
∂fnF = 0.

Equations (1.12) and (1.13) can now be straightforwardly generalized to the
continuum limit, whereupon the summation defining the finite-dimensional scalar
product translates to an integral,

〈f ,g〉 =
N∑
n=1

fngn → 〈f, g〉 =
ˆ
dx f(x)g(x).
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15 1.2 Functional Analysis and Variational Principles

The analog of the nth unit vector is a δ-distribution, en → δx, where δx(x′) ≡
δ(x− x′), as can be seen from the following correspondence:

fn
!=〈f , en〉 =

N∑
m=1

fm(en)m → f(x) !=〈f, δx〉 =
ˆ
dx′ f(x′)δx(x′).

Here (en)m = δnm denotes the mth component of the nth unit vector. The corre-
spondence (unit vector ↔ δ-distribution) is easy to memorize: while components
of en vanish, save for the nth component, which equals unity, δx is a function that
vanishes everywhere, save for x where it is infinite. That a unit component is re-
placed by infinity reflects the fact that the support of the δ-distribution is infinitely
narrow; to obtain a unit-normalized integral

´
δx, the function must be singular.

As a result of these identities, (1.13) translates to the continuum differential,

DFf [g] =
ˆ
dx

δF [f ]
δf(x) g(x), (1.14)

where the generalization of the partial derivative,

δF [f ]
δf(x) ≡ lim

ε→0

1
ε

(F [f + εδx]− F [f ]) (1.15)

is commonly denoted by δ instead of ∂. Equations (1.14) and (1.15) establish the
connection between ordinary and functional differentiation. Notice that we have not
yet learned how to calculate the differential practically, i.e., to evaluate expressions
like Eq. (1.15) for concrete functionals. Nevertheless, the identities above are very
useful, enabling us to generalize more complex derivative operations of ordinary
calculus by straightforward extrapolation. For example, the generalization of the
standardchain rule chain rule, ∂fnF (g(f)) =

∑
m ∂gmF (g)

∣∣g=g(f) ∂fngm(f) reads

δF [g[f ]]
δf(x) =

ˆ
dy

δF [g]
δg(y)

∣∣∣∣
g=g[f ]

δg(y)[f ]
δf(x) .

Here g[f ] is the continuum generalization of an Rm-valued function, g : Rn → Rm,
a function whose components g(y)[f ] are functionals by themselves. Furthermore,
given some functional F [f ], we can construct its Taylor expansion as

F [f ] = F [0]+
ˆ
dx1

δF [f ]
δf(x1)

∣∣∣∣
f=0
f(x1)+

ˆ
dx1 dx2

2
δ2F [f ]

δf(x2)δf(x1)

∣∣∣∣
f=0
f(x1)f(x2)+· · · ,

where (exercise)

δ2F [f ]
δf(x2)δf(x1)

= lim
ε1,2→0

1
ε1ε2

(F [f + ε1δx1 + ε2δx2 ]− F [f + ε1δx1 ]− F [f + ε2δx2 ] + F [f ])

generalizes a two-fold partial derivative. The validity of these identities can be
made plausible by applying the prescription given in table 1.1 to the corresponding
relations of standard calculus. To actually verify the formulae, one has to find the
continuum limit of each step taken in the discrete variant of the corresponding
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16 1 From Particles to Fields

Table 1.1 Summary of basic definitions of discrete and continuum calculus.

Entity Discrete Continuum
Argument vector f function f

Function(al) multidimensional function F (f) functional F [f ]
Differential dFf (g) DFf [g]
Cartesian basis en δx
Scalar product 〈 , 〉

∑
n
fngn

´
dx f(x)g(x)

“Partial derivative” ∂fnF (f) δF [f ]/δf(x)

proofs. Experience shows that it takes some time to get used to the concept of
functional differentiation. However, after some practice, it will become clear that
this operation is not only useful but is as easy to handle as conventional partial
differentiation.

We finally address the question how to compute functional derivatives in practice.
In doing so, we will make use of the fact that, in all but a few cases, the functionals
encountered in field theory are of the structure

S[φ] =
ˆ
M

dxL(φi, ∂µφi) (1.16)

Here, we assume the base manifold M to be parameterized by an m-dimensional
coordinate vector x = {xµ}. (In most practical applications m = d + 1 and
x = (x0, x1, . . . , xd) contains one time-like component x0 = t and d space-like
components xk, k = 1, . . . , d.13) We further assume that the field manifold has di-
mensionality n and that φi, i = 1, . . . , n, are the coordinates of the field. Functionals
of this type are called local functionalslocal

functional
.

What makes the functional S[φ] easy to handle is that all of its information is
stored in the function L. Owing to this simplification, the functional derivative can
be related to an ordinary derivative of L. To see this, all we have to do is to evaluate
the general definition (1.14) on the functional S:

S[φ+ εθ]− S[φ] =
ˆ
M

dx [L(φ+ εθ, ∂µφ+ ε∂µθ)− L(φ, ∂µφ)]

=
ˆ
M

dx

[
∂L
∂φi

θi + ∂L
∂(∂µφi)

∂µθ
i

]
ε+O(ε2)

=
ˆ
M

dx

[
∂L
∂φi
− ∂µ

(
∂L

∂(∂µφi)

)]
θiε+O(ε2),

where in the last line we have assumed that the field variation vanishes on the
boundary of the base manifold, θ |∂M = 0. Comparison with Eq. (1.14) identifies
the functional derivative as

δS[φ]
δφi(x) = ∂L

∂φi(x) − ∂µ
(

∂L
∂(∂µφi(x))

)
.

13 Following standard convention, we denote space-like components by small Latin indices k =
1, . . . , d. By contrast, space–time indices are denoted by Greek indices µ = 0, . . . , d.
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17 1.3 Maxwell’s Equations as a Variational Principle

We conclude that the stationarity of the functional (1.16) is equivalent to the
condition

∀x, i : ∂L
∂φi(x) − ∂µ

(
∂L

∂(∂µφi(x))

)
= 0 (1.17)

Equation (1.17) is known as the Euler–Lagrange equationEuler–
Lagrange
equation

of field theory. In fact,
for d = 0 and x0 = t, Eq. (1.17) reduces to the familiar Euler–Lagrange equation
for a point particle in n-dimensional space. For d = 1 and (x0, x1) = (t, x), we get
back to the stationarity equations discussed in the previous section. In the next
section we will apply the formalism to a higher-dimensional problem.

1.3 Maxwell’s Equations as a Variational Principle

REMARK This section requires familiarity with the basic notions of special relativity
such as the concepts of 4-vectors, Lorentz transformations, and covariant notation.14

James Clerk Maxwell 1831–
1879
was a Scottish theoretical
physicist and mathematician
who made seminal contribu-
tions to the study of electricity,
magnetism, optics, and the
kinetic theory of gases. In par-
ticular, he is credited with the formulation of
the theory of electromagnetism, synthesizing
seemingly unrelated experiments and equations
of electricity, magnetism and optics into a con-
sistent theory. He is also known for creating the
first true color photograph in 1861!

As a second example, let us consider
the archetype of classical field theory,
classical electrodynamicsclassical

electro-
dynamics

. As well
as exemplifying the application of con-
tinuum variational principles for a fa-
miliar problem, this example illustrates
the unifying potential of the approach:
That problems as different as the low-
lying vibrational modes of a crystalline
solid and electrodynamics can be de-
scribed by almost identical language
indicates that we are dealing with a
useful formalism. Specifically, our aim will be to explore how the equations of mo-
tion of electrodynamics, the inhomogeneous Maxwell’s equationsMaxwell’s

equations
,

∇ ·E = ρ, ∇×B− ∂tE = j, (1.18)

can be obtained from variational principles. For simplicity, we restrict ourselves to
a vacuum theory, i.e., E = D and B = H. Further, we have set the velocity of light
to unity, c = 1. Within the framework of the variational principle, the homogeneous
equations,

∇×E + ∂tB = 0, ∇ ·B = 0, (1.19)

are regarded as ab initio constraints imposed on the degrees of freedom E and B.

INFO As preparation for the following discussion, let us briefly recapitulate the notion
of Lorentz invarianceLorentz

invariance
. In this text, we will work mostly in non-relativistic contexts

14 For a summary of the covariant notation used in this text, see the Info block on 524.
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18 1 From Particles to Fields

where the time coordinate t and the d space coordinates xi are bundled into a (d + 1)-
dimensional vector x = xµ = xµ = (t, xi) and µ = 0, . . . , d. In this case, t and xi may be
considered as coordinates of a Euclidean space. Field theories defined in such spaces are
calledEuclidean

field theory
Euclidean field theories. By contrast, in relativistic theories we are working in

a space–time continuum with a Minkowski metric

η = {ηµν} =

−1
+1

+1
+1

 . (1.20)

Here, too, we denote space–time coordinate vectors by x = xµ = (t, xi). However, now the
– contravariant or “upstairs” – positioning of the index becomes an essential part of the
notation; see Info block on 524 for a summary of the notation conventions of relativity.

Hendrik Antoon Lorentz
1853–1928
was a Dutch physicist who
shared the 1902 Nobel Prize
in Physics with Pieter Zeeman
“in recognition of the extraor-
dinary service they rendered by
their researches into the influ-
ence of magnetism upon radiation phenomena.”
Lorentz derived the transformation equations
subsequently used by Albert Einstein to describe
space and time.

Field theories in space–times with a
Minkowski metric are calledLorentzian

field theory
Lorentzian

field theories. Recall that a linear coor-
dinate transformation xµ → x′µ ≡ Λµνxν
is a Lorentz transformation if it leaves the
Minkowski metric invariant: xµηµνxν =
x′µηµνx

′ν . In the covariant notation of
relativity, covariant components, xµ, are
obtained from contravariant components,
xµ, by index lowering via the Minkowski
metric, xµ = ηµνx

ν (this is why the po-
sitioning is relevant) and the invariance
condition assumes the form xµx

µ = x′µx
′µ. Expressed as a condition for the Lorentz

transformations, this reads ηµνΛµ
µ′Λ

ν
ν′ = ηµ′ν′ .

In cases where we are discussing material which does not depend on the realization of
the metric, covariant notation will be used. The Euclidean field theory is then represented
by the unit metric ηµν = δµν .

The representation of Maxwell’s theory as a variational principle is best formulated
in the language of relativistically invariant electrodynamics. As a starting
point, we require (1) a field formulated in a set of suitably generalized coordinates
and (2) its action. Regarding coordinates, the natural choice will be the coefficients
of the electromagnetic (EM) 4-potential, Aµ = (φ,A), where φ is the scalar poten-
tial and A is the vector potential. The 4-potential A is unconstrained and uniquely
determines the fields E and B through the standard equations E = −∇φ − ∂tA
and B = ∇ × A. (In fact, the set of coordinates Aµ is “overly free” in the sense
that gauge transformations Aµ → Aµ+∂µΓ, where Γ is an arbitrary function, leave
the physical fields invariant. Later we will comment explicitly on this point.) The
connection between A and the physical fields can be expressed in a more symmetric
way by introducing the EM field tensor,15

15 Notice that the field tensor (1.21) differs from that in many textbooks on electromagnetism
by a sign change, Ei ↔ −Ei. The reason is that in this text we work with a different sign
convention for the Minkovski metric, η ↔ −η; see p.524 for a discussion of this point.
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19 1.3 Maxwell’s Equations as a Variational Principle

F = {Fµν} =


0 −E1 −E2 −E3
E1 0 −B3 B2
E2 B3 0 −B1
E3 −B2 B1 0

 . (1.21)

The relation between fields and potential now reads Fµν = ∂µAν − ∂νAµ, where
xµ = (−t,x) and ∂µ = (∂t,∇).14

EXERCISE Confirm that this relation follows from the definition of the vector potential.
To verify that the constraint (1.19) is automatically included in the definition (1.21), com-
pute the construct ∂λFµν + ∂µFνλ + ∂νFλµ, where (λνµ) represent arbitrary but different
indices. This produces four different terms, identified as the left-hand side of Eq. (1.19).
Evaluation of the same construct on Fµν ≡ ∂µAν −∂νAµ produces zero, by the symmetry
of the right-hand side.

To obtain the structure of the action S[A], we can proceed in different ways. One
option would be to regard Maxwell’s equations as fundamental, i.e., to construct an
action that produces these equations upon variation (by analogy with the situation
in classical mechanics where the action functional is designed to reproduce Newton’s
equations). However, we can also be a little bit more ambitious and ask whether
the structure of the action can be motivated independently of Maxwell’s equations.
In fact, there is just one principle in electrodynamics that is as fundamental as
Maxwell’s equations: symmetry. A theory of electromagnetism must be Lorentz
invariant, i.e., invariant under relativistic coordinate transformations.

Aided by the symmetry criterion, we can try to conjecture the structure of the
action from three basic assumptions, all independent of Maxwell’s equations. The
action should be invariant under (i) Lorentz transformations, (ii) gauge transfor-
mations, and (iii) it should be simple! The most elementary choice compatible with
these conditions is

S[A] =
ˆ
d4x (c1 FµνFµν + c2Aµj

µ) , (1.22)

where d4x = dt dx1 dx2 dx3 denotes the measure, jµ = (ρ, j) the 4-current, and c1,2
are undetermined constants. Indeed, up to quadratic order in A, (1.22) defines the
only possible structure consistent with gauge and Lorentz invariance.

EXERCISE Using the continuity equation ∂µjµ = 0, verify that the Aj-coupling is gauge
invariant. (Hint: Integrate by parts.) Verify that a contribution like

´
AµA

µ would not be
gauge invariant.

Having defined a trial action, we can apply the variational principle (1.17) to com-
pute equations of motion. In the present context, the role of the field φ is taken
by the four components of A. Variation of the action with respect to Aµ gives four
equations of motion,

∂L
∂Aµ

− ∂ν
(

∂L
∂(∂νAµ)

)
= 0, µ = 0, . . . , 3, (1.23)
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20 1 From Particles to Fields

where the Lagrangian density is defined by S =
´
d4xL. With the specific form of

L, it is straightforward to verify that ∂AµL = c2j
µ and ∂(∂νAµ)L = −4c1Fµν . We

substitute these building blocks into the equations of motion to obtain 4c1∂νF νµ =
c2j

µ. Comparing this with the definition of the field tensor (1.21), and setting
c1/c2 = −1/4, we arrive at Maxwell’s equations (1.18). The overall multiplicative
constant c1 (= c2/4) can be fixed by requiring that the Hamiltonian density asso-
ciated with the Lagrangian density L reproduce the known energy density of the
EM field (see problem 1.8.2). This leads to c1 = −1/4, so that we have identified

L(Aµ, ∂νAµ) = −1
4FµνF

µν +Aµj
µ (1.24)

as the Lagrangian density of the electromagnetic fieldelectro-
magnetic

Lagrangian

. The corresponding
action is given by S[A] =

´
d4x L(Aµ, ∂νAµ).

At first sight, this result does not look surprising. After all, Maxwell’s equations
can be found on the first page of most textbooks on electrodynamics. However, our
achievement is actually quite remarkable. By invoking only symmetry, the algebraic
structure of Maxwell’s equations has been established unambiguously. We have thus
proven that Maxwell’s equations are relativistically invariant, a fact not obvious
from the equations themselves. Further, we have shown that Eqs. (1.18) are the
only equations of motion linear in the current-density distribution and consistent
with the invariance principle. One might object that, in addition to symmetry, we
have also imposed an ad hoc “simplicity” criterion on the action S[A]. However,
later we will see that this was motivated by more than mere aesthetics.

Finally, we note that the symmetry-oriented modeling that led to Eq. (1.22) is
illustrative of a popular construction scheme in modern field theory. The symmetry-
oriented approach stands as complementary to the “microscopic” formulation ex-
emplified in section 1.1. Broadly speaking, these are the two principal approaches
to constructing effective low-energy field theories.

. Microscopic analysis: Starting from a microscopically defined system, one
projects onto those degrees of freedom that one believes are relevant for the
low-energy dynamics. Ideally, this “belief” is backed up by a small expansion
parameter stabilizing the mathematical parts of the analysis. Advantages: The
method is rigorous and fixes the resulting field theory completely. Disadvantages:
The method is time consuming and, for complex systems, not even viable.

. Symmetry considerations: One infers an effective low-energy theory on the
basis of only fundamental symmetries of the physical system. Advantages: The
method is fast and elegant. Disadvantages: It is less explicit than the microscopic
approach. Most importantly, it does not fix the coefficients of the different con-
tributions to the action.

Thus far, we have introduced some basic concepts of field-theoretical modeling in
condensed matter physics. Starting from a microscopic model Hamiltonian, we have
illustrated how principles of universality and symmetry can be applied to distill
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21 1.4 Quantum Chain

effective continuum field theories, capturing the low-energy content of the system.
We have formulated such theories in the language of Lagrangian and Hamiltonian
continuum mechanics, and shown how variational principles can be applied to ex-
tract concrete physical information. Finally, we have seen that field theory provides
a unifying framework whereby analogies between seemingly different physical sys-
tems can be uncovered. In the next section we discuss how the formalism of classical
field theory can be elevated to the quantum level.

1.4 Quantum Chain

Previously, from measurements of the specific heat, we have seen that at low tem-
peratures the excitation profile of the classical atomic chain differs drastically from
that observed experimentally. Generally, in condensed matter physics, low-energy
phenomena with pronounced temperature sensitivity are indicative of a quantum
mechanism at work. To introduce and exemplify a general procedure whereby quan-
tum mechanics can be incorporated into continuum models, we next consider the
low-energy physics of the quantum atomic chain.

The first question to ask is conceptual: how can a model like (1.4) be quantized
in general? Indeed, there exists a standard procedure for quantizing continuum
theories, which closely resembles the quantization of Hamiltonian point mechanics.
Consider the defining equations (1.9) and (1.10) for the canonical momentum and
the Hamiltonian, respectively. Classically, the momentum π(x) and the coordinate
φ(x) are canonically conjugate variables: {π(x), φ(x′)} = −δ(x− x′), where { , } is
the Poisson bracketPoisson

bracket
and the δ-function arises through continuum generalization of

the discrete identity {PI , RI′} = −δII′ , I, I ′ = 1, . . . , N .16 The theory is quantized
by generalization of the canonical quantization procedure for the discrete pair of
conjugate coordinates (RI , PI) to the continuum: (i) promote φ(x) and π(x) to
operators, φ 7→ φ̂, π 7→ π̂, and (ii) generalize the canonical commutation relation
[PI , RI′ ] = −i~δII′ to17

[π̂(x), φ̂(x′)] = −i~δ(x− x′) (1.25)

16 Recall that for conjugate coordinates (RI , PI) the Poisson bracket is defined by

{f, g} =
N∑
I=1

(
∂f

∂RI

∂g

∂PI
−

∂f

∂PI

∂g

∂RI

)
.

17 Note that the dimensionalities of both the quantum and the classical continuum field are
compatible with the dimensionality of the Dirac δ-function, [δ(x − x′)] = [length]−1, i.e.,
[φ(x)] = [φI ]× [length]−1/2 and similarly for π.
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Table 1.2 Relations between discrete and continuum canonically
conjugate variables or operators.

Classical Quantum
Discrete {PI , RI′} = −δII′ [P̂I , R̂I′ ] = −i~δII′

Continuum {π(x), φ(x′)} = −δ(x− x′) [π̂(x), φ̂(x′)] = −i~δ(x− x′)

Operator-valued functions like φ̂ and π̂ are generally referred to as quantum fieldsquantum
field .

For clarity, the relevant relations between canonically conjugate classical and quan-
tum fields are summarized in Table 1.2.

INFO By introducing quantum fields, we have departed from the conceptual framework
laid out on page 8: being operator-valued, the quantized field no longer represents a
mapping into an ordinary differentiable manifold.18 It is thus legitimate to ask why we
bothered to give a lengthy exposition of fields as “ordinary” functions. The reason is that,
in the not too distant future, after the framework of functional field integration has been
introduced, we will return to the comfortable ground of the definition on page 8.

Employing these definitions, the classical Hamiltonian density (1.10) becomes the
quantum operator

Ĥ(φ̂, π̂) = 1
2mπ̂2 + ksa

2

2 (∂xφ̂)2. (1.26)

The Hamiltonian above represents a quantum field-theoretical formulation of the
problem, but not yet a solution. In fact, the development of a spectrum of methods
for the analysis of quantum field-theoretical models will represent a major part of
this text. At this point our objective is merely to exemplify the way in which physical
information can be extracted from models like (1.26). As a word of caution, let us
mention that the following manipulations, while mathematically straightforward,
are conceptually deep. To disentangle different aspects of the problem, we will first
concentrate on the plain operational aspects. Later in this section, we will reflect
on “what has really happened.”

As with any function, operator-valued functions can be represented in a variety
of ways. In particular, they can be subjected to Fourier transformation,{

φ̂k
π̂k
≡ 1
L1/2

ˆ L

0
dx e{∓ikx

{
φ̂(x)
π̂(x) ,

{
φ̂(x)
π̂(x) = 1

L1/2

∑
k

e{±ikx

{
φ̂k
π̂k

, (1.27)

where
∑
k represents the sum over all Fourier coefficients indexed by the quantized

momenta k = 2πm/L, m ∈ Z (not to be confused with the operator momentum
π̂). Note that the real classical field φ(x) quantizes to a hermitian quantum field
φ̂(x), implying that φ̂k = φ̂†−k (and similarly for π̂k). The corresponding Fourier
representation of the canonical commutation relations reads (exercise)

[π̂k, φ̂k′ ] = −i~δkk′ . (1.28)

18 At least if we ignore the mathematical subtlety that a linear operator can also be interpreted
as an element of a certain manifold.
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23 1.4 Quantum Chain

When expressed in the Fourier representation, making use of the identity,

ˆ L

0
dx (∂xφ̂)2 =

∑
k,k′

(−ikφ̂k)(−ik′φ̂k′)

δk+k′,0︷ ︸︸ ︷
1
L

ˆ L

0
dx e−i(k+k′)x=

∑
k

k2φ̂kφ̂−k,

together with a similar relation for
´ L

0 dx π̂2, the Hamiltonian
Ĥ =

´ L
0 dx H(φ̂, π̂) assumes the near diagonal form,

Ĥ =
∑
k

[
1

2mπ̂kπ̂−k + mω2
k

2 φ̂kφ̂−k

]
, (1.29)

where ωk = v|k| and v = a
√
ks/m denotes the classical sound

wave velocity. In this form, the Hamiltonian can be identi-
fied as nothing but a superposition of independent quantum
harmonic oscillators.19 This result is easy to understand
(see the figure). Classically, the system supports a discrete
set of wave excitations, each indexed by a wave number k = 2πm/L. (In fact, we
could have performed a Fourier transformation of the classical fields φ(x) and π(x)
to represent the Hamiltonian function as a superposition of classical harmonic os-
cillators.) Within the quantum picture, each of these excitations is described by
an oscillator Hamiltonian with a k-dependent frequency. However, it is important
not to confuse the atomic constituents, also oscillators (albeit coupled), with the
independent collective oscillator modes described by Ĥ.

The description above, albeit perfectly valid, still suffers from a deficiency: the
analysis amounts to explicitly describing the effective low-energy excitations of the
system (the waves) in terms of their microscopic constituents (the atoms). Indeed
the different contributions to Ĥ correspond to details of the microscopic oscillator
dynamics of individual k-modes. However, it would be much more desirable to de-
velop a picture where the relevant excitations of the system, the waves, appear as
fundamental units without an explicit account of the underlying microscopic de-
tails. (As with hydrodynamics, information is encoded in terms of collective density
variables rather than through individual atoms.) As preparation for the construc-
tion of this improved formulation, let us temporarily focus on a single oscillator
mode.

1.4.1 Revision of the quantum harmonic oscillator

Consider a standard harmonic oscillatorharmonic
oscillator

(HO) Hamiltonian

Ĥ = p̂2

2m + mω2

2 x̂2.

19 The only difference between Eq. (1.29) and the canonical form of an oscillator Hamiltonian
Ĥ = p̂2/2m + mω2x̂2/2 is the presence of the subindices k and −k (a consequence of the
relation, φ̂†

k
= φ̂−k). As we will show shortly, this difference is inessential.
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24 1 From Particles to Fields

The first few energy levels εn = ω(n+ 1/2) and the associated Hermite polynomial
eigenfunctions are displayed schematically in the figure. (To simplify the notation we
henceforth set ~ = 1.) The HO has the status of a single-particle problem. However,
the equidistance of its energy levels suggests an alternative interpretation: a given
state εn may be thought of as an accumulation of n
elementary entities, or quasi-particlesquasi-

particles
, each hav-

ing energy ω. What can be said about the features
of these new objects? First, they are structureless,
i.e., the only “quantum number” identifying the
quasi-particles is their energy ω (since otherwise n-particle states formed of the
quasi-particles would not be equidistant in energy). This implies that the quasi-
particles must be bosons. (The same state ω can be occupied by more than one
particle.)

This idea can be formulated in quantitative terms by employing the formalism of
ladder operators, in which the operators p̂ and x̂ are traded for the pair of hermitian
adjoint operators â ≡

√
mω/2(x̂+(i/mω)p̂) and â† ≡

√
mω/2(x̂−(i/mω)p̂). Up to

a factor of i, the transformation (x̂, p̂)→ (â, â†) is canonical, i.e., the new operators
obey the canonical commutation relation

[â, â†] = 1. (1.30)

More importantly, the a-representation of the Hamiltonian is very simple, viz.

Ĥ = ω
(
â†â+ 1/2

)
, (1.31)

as can be checked by direct substitution. Suppose, now, that we had been given
a zero-eigenvalue state |0〉 of the operator â: â|0〉 = 0. As a consequence, Ĥ|0〉 =
(ω/2)|0〉, i.e., |0〉 is identified as the ground state of the oscillator.20 The hierarchy
of higher-energy states can then be generated by setting |n〉 ≡ (1/

√
n!) (â†)n|0〉.

EXERCISE Using the canonical commutation relation (1.30), verify that Ĥ|n〉 = ω(n+
1/2)|n〉 and 〈n|n〉 = 1.

Formally, the construction above represents yet another way of constructing eigen-
states of the quantum HO. However, its real advantage is that it naturally affords a
many-particle interpretation. To this end, let us declare that |0〉 represents a “vac-
uum” state, i.e., a state with zero particles. Next, imagine that â†|0〉 is a state with
a single featureless particle (the operator â† does not carry any quantum number
labels) of energy ω. Similarly, (â†)n|0〉 is considered as a many-body state with n

particles; i.e., within the new picture, â† is an operator that “creates” particles.
The total energy of these states is given by ω × (occupation number). Indeed, it is

20 Switching to a real space representation of the ground state equation, verify that its solution
is the familiar ground state wave function 〈x|0〉 =

√
mω/2πe−mωx2/2. can be verified by

explicit construction. As an exercise, switching to a real space representation of the ground
state equation, [x+∂x/(mω)]〈x|0〉=0 and verify that its solution is the familiar ground state
wave function 〈x|0〉=√mω/2πe−mωx2/2 .
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25 1.4 Quantum Chain

straightforward to verify (see the exercise above) that â†â|n〉 = n|n〉, i.e., the Hamil-
tonian effectively counts the number of particles in the state. While at first sight,
this may look unfamiliar, the new interpretation is internally consistent. Moreover,
it achieves what we asked for above: it allows an interpretation of the HO states as
a superposition of independent structureless entities.

INFO The representation above shows that we can think about individual quantum
problems in complementary pictures. This principle finds innumerable applications in
modern condensed matter physics. The existence of different interpretations of a given
system is by no means heterodox but, rather, reflects a principle of quantum mechanics:
there is no “absolute” system that underpins the phenomenology. The only thing that
matters is observable phenomena. For example, we will see later that the “fictitious” quasi-
particle states of oscillator systems behave as “real” particles, i.e., they have dynamics,
can interact, can be detected experimentally, etc. From a quantum point of view, these
objects can be considered as “real” particles.

1.4.2 Quasiparticle interpretation of the quantum chain

Returning to the oscillator chain, one can transform the Hamiltonian (1.29) to a
form analogous to (1.31) by defining the ladder operators21

âk ≡
√
mωk

2

(
φ̂k + i

mωk
π̂−k

)
, â†k ≡

√
mωk

2

(
φ̂−k −

i

mωk
π̂k

)
. (1.32)

With this definition, applying the commutation relations (1.28), one finds that the
ladder operators obey commutation relations generalizing Eq. (1.30):

[âk, â†k′ ] = δkk′ , [âk, âk′ ] = [â†k, â
†
k′ ] = 0. (1.33)

Expressing the operators (φ̂k, π̂k) in terms of
(âk, â†k), it is now straightforward to bring
the Hamiltonian into the quasi-particle os-
cillator form (exercise)

Ĥ =
∑
k

ωk(â†kâk + 1/2). (1.34)

Equations (1.34) and (1.33) represent the final result of our analysis. The Hamilto-
nian Ĥ takes the form of a sum of harmonic oscillators with characteristic frequen-
cies ωk. In the limit k → 0 (i.e., long wavelengths), we have ωk → 0; excitations
with this property are said to be masslessmassless

excitation
.

An excited state of the system is indexed by a set {nk} = (n1, n2, . . . ) of quasi-
particles with energy {ωk} (see the figure). Physically, the quasi-particles of the
21 As to the consistency of these definitions, recall that φ̂†

k
= φ̂−k and π̂†

k
= π̂−k. Under these

conditions, the second of the definitions in Eq. (1.32) follows from the first upon taking the
hermitian adjoint.

https://doi.org/10.1017/9781108781244.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108781244.002


26 1 From Particles to Fields

ω

q0 111 1 0.50.50.5 0.5 11tFig. 1.2 Phonon spectra of the transition metal oxide Sr2RuO4 along different axes in momentum
space. Notice the approximate linearity of the low-energy branches (acoustic phonons)
at small momenta q. Superimposed at high frequencies are various branches of optical
phonons. (Source: Courtesy of M. Braden, University of Cologne.)

harmonic chain are identified with the phonon modesphonon of the solid. A comparison
with measured phonon spectra (fig. 1.2) reveals that, at low momenta, we have
ωk ∼ |k| in agreement with our simplistic model (in spite of the fact that the
spectrum was recorded for a three-dimensional solid with a nontrivial unit cell –
universality!). While the linear dispersion was already a feature of the classical
sound wave spectrum, the low-temperature specific heat reflected non-classical be-
havior. It is left as an exercise (problem 1.8.3) to verify that the quantum nature of
the phonons resolves the problem with the low-temperature specific heat discussed
in section 1.1.2. (For further discussion of phonon modes in atomic lattices we refer
to chapter 2 of the text by Kittel.22)

EXERCISE Classically, the ground state of the atomic chain comprises a regular array of
ions. In the quantum chain, the distance between neighboring ions fluctuates even in the
ground state, |0〉. Using the results above, show that

〈0|[φ(x)− φ(0)]2|0〉 = 1
mL

∑
k

1− cos(kx)
ωk

.

In the limit |x| � a, show that 〈0|[φ(x)− φ(0)]2|0〉 ∼ (1/a
√
ksm) ln |x/a|. What does this

imply for the stability of crystalline order in the one-dimensional chain?

1.5 Quantum Electrodynamics

The generality of the procedure outlined above suggests that the quantization of the EM
field (1.24) proceeds in a manner analogous to the phonon system. However, there are a
number of practical differences that make this task harder (but also more interesting!).
First, the vectorial character of the potential, in combination with the condition of rela-
tivistic covariance, gives the problem a nontrivial internal geometry. Closely related, the
gauge freedom of the vector potential introduces redundant degrees of freedom whose re-
moval on the quantum level is not easily achieved. For example, quantization in a setting
where only physical degrees of freedom are kept – i.e., the two polarization directions of
the transverse photon field – is technically cumbersome, the reason being that the rele-
vant gauge condition is not relativistically covariant. In contrast, a manifestly covariant
22 C. Kittel, Quantum Theory of Solids, 2nd edition (Wiley, 1987).
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27 1.5 Quantum Electrodynamics

scheme, while technically more convenient, introduces spurious “ghost degrees of freedom”
that are difficult to remove. To circumvent a discussion of these issues, we will not discuss
the problem of EM field quantization in detail.23 On the other hand, the photon field
plays a much too important role in condensed matter physics for us to drop the problem
altogether. We will therefore aim at an intermediate exposition, largely insensitive to the
problems outlined above, but sufficiently general to illustrate the main principles.

1.5.1 Field quantization

Consider the Lagrangian of the matter-free EM field, L = − 1
4
´
d3x FµνF

µν . As a first
step towards quantization of this system, a gauge choice must be made. In the absence of
charge, a particularly convenient choice is the Coulomb gaugeCoulomb

gauge
∇ ·A = 0, with scalar

component φ = 0. (Keep in mind that, once a gauge has been set, we cannot expect
further results to display “gauge invariance.”) Using the gauge conditions, one may verify
that the Lagrangian assumes the form

L = 1
2

ˆ
d3x
[
(∂tA)2 − (∇×A)2] . (1.35)

By analogy with the atomic chain, we would now proceed to “decouple” the theory by
expanding the action in terms of eigenfunctions of the Laplace operator. The difference to
our previous discussion is that we are dealing (i) with the full three-dimensional Laplacian
(instead of a simple second derivative) acting on (ii) the vector quantity A that is (iii)
subject to the constraint ∇ · A = 0. It is these aspects that lead to the complications
outlined above.

We can circumvent these difficulties by considering cases where the geometry of the
system reduces the complexity of the eigenvalue problem. This restriction is less artifi-
cial than it might appear. For example, in anisotropic electromagnetic waveguides, the
solutions of the eigenvalue equation can be formulated as24

−∇2Rk(x) = λkRk(x), (1.36)

where k ∈ R is a one-dimensional index and the vector-valued functions Rk are real and
orthonormalized:

´
Rk ·Rk′ = δkk′ . The dependence of the eigenvalues λk on k is governed

by details of the geometry (see Eq. (1.38) below) and need not be specified for the moment.

INFO An electromagnetic waveguidewaveguide is a quasi-one-dimensional cavity with metallic
boundaries (see fig. 1.3). The practical use of waveguides is that they are good at con-
fining EM waves. At large frequencies, where the wavelengths are of order meters or less,
radiation loss in conventional conductors is high. In this frequency domain, hollow con-
ductors provide the only practical way of transmitting radiation. Field propagation inside
a waveguide is constrained by boundary conditions. Assuming the walls of the system to
be perfectly conducting,

E‖(xb) = 0, B⊥(xb) = 0, (1.37)

where xb is a point at the system boundary and E‖ (B⊥) is the parallel (perpendicular)
component of the electric (magnetic) field.

23 Readers interested in learning more about EM field quantization are referred to, e.g., L. H.
Ryder, Quantum Field Theory (Cambridge University Press, 1996).

24 More precisely, one should say that Eq. (1.36) defines the set of eigenfunctions relevant for the
low-energy dynamics of the waveguide. More-complex eigenfunctions of the Laplace operator
exist, but they carry much higher energy.

https://doi.org/10.1017/9781108781244.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108781244.002


28 1 From Particles to Fields

z

x
y

Ly

LztFig. 1.3 EM waveguide with rectangular cross-section. The structure of the eigenmodes of the field
is determined by the boundary conditions at the walls of the cavity.

Regarding the problem of field quantization, let us for concreteness consider a cavity
with uniform rectangular cross-section Ly×Lz. To conveniently represent the Lagrangian
of the system, we need to express the vector potential in terms of eigenfunctions Rk that
are consistent with the boundary conditions (1.37). A complete set of functions fulfilling
this condition is given by

Rk = Nk

(
c1 cos(kxx) sin(kyy) sin(kzz)
c2 sin(kxx) cos(kyy) sin(kzz)
c3 sin(kxx) sin(kyy) cos(kzz)

)
.

Here, ki = niπ/Li with positive integer ni, Nk is a factor normalizing Rk to unit mod-
ulus, and the coefficients ci are subject to the condition c1kx + c2ky + c3kz = 0. In-
deed, it is straightforward to verify that a general superposition of the type A(x, t) ≡∑

k αk(t)Rk(x), with αk(t) ∈ R, is divergenceless and generates an EM field compat-
ible with (1.37). Substitution of Rk into Eq. (1.36) identifies the eigenvalues as λk =
k2
x + k2

y + k2
z . In the physics and electronic engineering literature, eigenfunctions of the

Laplace operator in a quasi-one-dimensional geometry are commonly described as modesfield modes .
As we will see shortly, the energy of a mode (i.e., the Hamiltonian evaluated on a specific
mode configuration) grows with |λk|. In cases where one is interested in the low-energy
dynamics of the EM field, only configurations with small |λk| are relevant. If we consider
a massively anisotropic waveguide with Lz < Ly � Lx, the modes with smallest |λk| are
those with kz = 0, ky = π/Ly, and kx ≡ k � L−1

z,y. (Consider why it is not possible to set
both ky and kz to zero.) With this choice,

λk = k2 + (π/Ly)2 (1.38)

and a scalar index k suffices to label both eigenvalues and eigenfunctions Rk. A schematic
of the spatial structure of the functions Rk is shown in fig. 1.3. The dynamical properties
of these configurations will be discussed in the text.

Returning to the problem posed by Eq. (1.35) and (1.36), one can expand the vector
potential in terms of eigenfunctions Rk as A(x, t) =

∑
k
αk(t)Rk(x), where the sum runs

over all allowed values of the index parameter k. (In a waveguide, k = πn/L where n ∈ N
and L is the length of the guide.) Substituting this expansion into Eq. (1.35) and using
the normalization properties of Rk, we obtain L = 1

2
∑

k

(
α̇2
k − λkα2

k

)
, i.e., a decoupled

representation where the system is described in terms of independent dynamical systems
with coordinates αk. From this point on, quantization proceeds along the lines of the
standard algorithm, as follows.

First, define momenta through the relation πk = ∂α̇kL = α̇k. This yields the Hamil-
tonian H = 1

2
∑

k
(πkπk + λkαkαk). Next, quantize the theory by promoting fields to

operators, αk → α̂k and πk → π̂k, and declare that [π̂k, α̂k′ ] = −iδkk′ . The quantum
Hamiltonian operator, again of harmonic oscillator type, then reads
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29 1.5 Quantum Electrodynamics

Ĥ = 1
2
∑
k

(
π̂kπ̂k + ω2

kα̂kα̂k
)
,

where ω2
k = λk. Following the same logic as that marshaled in section 1.4.2, we then define

ladder operators

ak ≡
√
ωk
2

(
α̂k + i

ωk
π̂k

)
, a†k ≡

√
ωk
2

(
α̂k −

i

ωk
π̂k

)
,

whereupon the Hamiltonian assumes the now familiar form

Ĥ =
∑
k

ωk(a†kak + 1/2). (1.39)

For the specific problem of the first excited mode in a waveguide of width Ly, ωk =
[k2 +(π/Ly)2]1/2. Equation (1.39) represents our final result for the quantum Hamiltonian
of the EM waveguide. Before concluding this section let us make a few comments on the
structure of the result.

. The construction above parallels almost perfectly our previous discussion of the har-
monic chain.25 The structural similarity between the two systems finds its origin in the
fact that the free field Lagrangian (1.35) is quadratic and, therefore, bound to map onto
an oscillator-type Hamiltonian. That we obtained a simple one-dimensional superpo-
sition of oscillators is due to the boundary conditions specific to a narrow waveguide.
For less restrictive geometries, e.g., free space, a more complex superposition of vecto-
rial degrees of freedom in three-dimensional space would have been obtained. However,
the principle that the free EM field is mapped onto a superposition of oscillators is
independent of geometry.

. Physically, the quantum excitations described by Eq. (1.39) are, of course, the photonsphoton
of the EM field. The unfamiliar appearance of the dispersion relation ωk is, again, a
peculiarity of the waveguide geometry. However, in the limit of large longitudinal wave
numbers, k � L−1

y , the dispersion approaches the form ωk ∼ |k|, i.e., the relativistic
dispersion of the photon field. Also, notice that, owing to the equality of the Hamilto-
nians (1.34) and (1.39), all that has been said about the behavior of the phonon modes
of the atomic chain carries over to the photon modes of the waveguide.

. As with their phononic analog, the oscillators described by Eq. (1.39) exhibit zero-
point fluctuations. It is a fascinating aspect of quantum electrodynamics that these
oscillations, caused by quantization of the ultra-relativistic photon field, have various
manifestations in non-relativistic physics:

INFO Without going into detail, let us mention some manifestations of vacuum fluc-
tuations in the phenomenology of condensed matter systems. One of the most
important phenomena induced by vacuum fluctuations is the Casimir effectCasimir

effect
.26 Two par-

allel conducting plates embedded into the vacuum exert an attractive force on each other.
This phenomenon is not only of conceptual importance – it demonstrates that the vacuum
is “alive” – but also of practical relevance. For example, the force balance of hydrophobic

25 Technically, the only difference is that, instead of index pairs (k,−k), all indices (k, k) are
equal and positive. This can be traced to the fact that we have expanded in terms of the real
eigenfunctions of the closed waveguide instead of the complex eigenfunctions of the circular
oscillator chain.

26 H. B. G. Casimir and D. Polder, The influence of retardation on the London–van der Waals
forces, Phys. Rev. 73, 360 (1948); H. B. G. Casimir, On the attraction between two perfectly
conducting plates, Proc. Kon. Nederland. Akad. Wetensch. 51, 793 (1948).
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30 1 From Particles to Fields

suspensions of particles of size 0.1 − 1µm in electrolytes is believed to be strongly influ-
enced by Casimir forces. Qualitatively, the origin of the Casimir force is readily understood.
In common with their classical analog, quantum photons exert a certain radiation pres-
sure on macroscopic media. The difference to the classical case is that, due to zero-point
oscillations, even the quantum vacuum is capable of creating radiation pressure. For a
single conducting body embedded into the infinite vacuum, the net pressure vanishes by
symmetry. However, for two parallel plates, the situation is different. Mode quantization
arguments similar to those used in the previous section show that the density of quantum
modes between the plates is lower than in the semi-infinite outer spaces. Hence, the force
(density) created by outer space exceeds the counter-pressure from the inside; the plates
“attract” each other.

A second context where vacuum fluctuations play a role is the physics of van der Waals
forcesVan der

Waals
forces

. Atoms or molecules attract each other by a potential that, at small separation r,
scales as r−6. While a detailed discussion of the unusually high power at which this force
decays would lead us too far astray, the essence of the argument is as follows. The zero-
point fluctuations of the EM field may induce a dipole moment in atoms, which in turn
generate a dipole–dipole interaction between close-by atoms, whose detailed evaluation27

leads to the r−6 power–law dependence. Seen in this way, geckos and spiders owe their
ability to climb walls to a deeply microscopic principle of quantum field theory.28

1.6 Noether’s Theorem

It is a basic paradigm of physics that every continuous symmetry entails a conservation
law.29 Conservation laws, in turn, simplify greatly the solution of any problem, which is
why one gets acquainted with the correspondence (symmetry ↔ conservation law) at a
very early stage of the physics curriculum, e.g., the connection between rotational symme-
try and the conservation of angular momentum. However, it is not trivial to see (at least
within the framework of Newtonian mechanics) that the former entails the latter. One
needs to know what to look for (viz. angular momentum) to identify the corresponding
conserved quantity (rotational invariance). A major advantage of Lagrangian over Newto-
nian mechanics is that it provides a tool – Noether’s theorem – to automatically identify
the conservation laws generated by the symmetries of classical mechanics.

What happens when one advances from point to continuum mechanics? Clearly, multi-
dimensional continuum theories leave more room for the emergence of complex symmetries
but, even more so than in classical mechanics, we are in need of a tool to identify the
corresponding conservation laws.

27 P. W. Milonni, The Quantum Vacuum (Academic Press, 1994).
28 The feet of geckos and spiders are covered with bushels of ultra-fine hair (about three orders of

magnitude thinner than human hair). The tips of these hairs come close enough to the atoms
of the substrate material to make the van der Waals force sizable. Impressively, this mechanism
provides a force of about two orders of magnitude larger than that required to support a spider’s
full body weight. Both spiders and geckos have to “roll” their feet off the surface to prevent
getting stuck by the enormous power of the forces acting on their many body hairs!

29 Before exploring the ramifications of symmetries and conservation laws for fields, it may be
instructive to recapitulate Noether’s theorem in the context of classical point-particle mechanics
– see, e.g., L. D. Landau and E. M. Lifshitz, Classical Mechanics (Pergamon, 1960).
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31 1.6 Noether’s Theorem

Amalie E. Noether 1882–1935
was a German mathematician
known for her ground-breaking
contributions to abstract al-
gebra and theoretical physics.
Alive at a time when women
were not supposed to attend
college preparatory schools,
she was often forbidden from lecturing under
her own name. Despite these obstacles, Noether
became one of the greatest algebraists of the
century. Described by Albert Einstein as the
most significant creative mathematical genius
thus far produced since the higher education of
women began, she revolutionized the theories of
rings, fields and algebras. In physics, Noether’s
theorem explains the fundamental connection
between symmetry and conservation laws. In
1933, she lost her teaching position owing to
her being a Jew and a woman, and was forced
out of Germany by the Nazis.

Fortunately, it turns out that Noether’s
theorem of point mechanics affords a more
or less straightforward generalization to
higher dimensions. Starting from the gen-
eral form of the action of a continuum
system, Eq. (1.16), the continuum version
of Noether’s theorem will be derived be-
low. In that we do not refer to a specific
physical problem, our discussion will be
somewhat dry. This lack of physical con-
text is, however, more than outweighed by
the general applicability of the result. The
generalized form of Noether’s theorem can
be – without much further thought – ap-
plied to generate the conservation laws of
practically any physical symmetry. In this
section, we will illustrate the application
of the formalism on the simple (yet impor-
tant) example of space–time translational
invariance. A much more intriguing case
study will be presented in section 3.6 af-
ter some further background of quantum field theory has been introduced.

1.6.1 Symmetry transformations

The symmetries of a physical system are manifest in the invariance of its action un-
der certain transformations. Mathematically, symmetry transformations are described by
two pieces of input data: first, a mapping f : M → M , x 7→ f(x) ≡ x′(x) that
assigns to any point of the base manifold some
“transformed” point; second, the field configura-
tions themselves may undergo some change, i.e.,
there may be a mapping (φ : M → T ) 7→ (φ′ :
M → T ) that defines a transformed “new field” φ′
in terms of the “old” φ. In principle, there is unlim-
ited freedom in defining such transformations. How-
ever, for most applications it is sufficient to consider

φ′(x′) = F (φ(x)), (1.40)

where F is a function: the new field in the trans-
formed space–time coordinates is obtained as a
function of the old field at the original coordinates.
With x′ = f(x), this correspondence may be equiv-
alently represented as φ′(x) = F (φ(f−1(x))). How-
ever, irrespective of the representation, it is important to understand that the two opera-
tions, x 7→ x′ and φ 7→ φ′ may, in general, be independent of each other. The working of
such transformations is best illustrated on a few examples:

The invariance properties of a theory under translations in space–time are probed by
the mapping x′ = x + a, a = const., φ′(x′) = φ(x). This describes the translation of
a field by a fixed offset a in space–time (see the figure). The system is translationally
invariant if S[φ] = S[φ′] for all fields φ. As a second example, let us probe the rotational
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32 1 From Particles to Fields

symmetry, x′ = Rx, where R ∈ O(m) is a rotation of Euclidean space–time. In this
case it would, in general, be unphysical to define φ′(x′) = φ(x). To illustrate this point,
consider the example of a vector field in two dimensions n = m = 2 (see the figure). A
properly rotated field configuration is defined by φ′(x′) = Rφ(x), i.e., the field amplitude
actively participates in the operation. In fact, one does often consider symmetry operations
where only the fields are transformed while the base manifold is left untouched.30 For
example, the intrinsic31 rotational invariance of a magnet is revealed by setting x′ = x,
m′(x) = R ·m(x), where the vector field m describes the local magnetization. Conversely,
a scalar field φ ∈ R will transform as φ(x′) = φ(x). These examples show how the extrinsic
effects of rotation, x 7→ Rx, and the intrinsic effects, φ 7→ Rφ, may appear in all sorts of
combinations.

To understand the consequences of a symmetry transformation, it is sufficient to con-
sider its infinitesimal version. (Note that any finite transformation can be generated by
successive application of infinitesimal transformations.) Consider the two mappings

xµ → xµ′ = xµ + ∂ωax
µ|ω=0ωa(x),

φi(x)→ φ′i(x′) = φi(x) + ωa(x)F ia(φ(x)), (1.41)

expressing the change of fields and coordinates to first order in a set of parameter functions
ωa characterizing the transformation. (For a three-dimensional rotation, (ω1, ω2, ω3) =
(φ, θ, ψ) would be the rotation angles, etc.) The functions F ia – which need not depend lin-
early on the field φ, and may explicitly depend on the coordinate x – define the incremental
change φ′(x′)− φ(x).

We now ask how the action (1.16) changes under the transformation (1.41), i.e., we
wish to compute the difference

∆S =
ˆ
dx′ L(φ′i(x′), ∂xµ′φ′i(x′))−

ˆ
dx L(φi(x), ∂xµφi(x)),

where dx is a shorthand for the integration measure over m coordinates x. Inserting
Eq. (1.41), using the identity ∂xνx′µ = δµν + ∂xν (ωa∂ωaxµ), together with32 the Jacobian
matrix det(∂x′/∂x) = 1 + ∂xµ(ωa∂ωaxµ) +O(ω2), one obtains

∆S '
ˆ
dx (1 + ∂xµ(ωa∂ωax

µ))L((φi + ω)aF ia, (δ ν
µ − ∂xµ(ωa∂ωax

ν))∂xν (φi + ωaF
i
a))

−
ˆ
dxL(φi(x), ∂xµφ

i(x)).

So far, we did not use the fact that the transformation was actually meant to be a sym-
metry transformation. By definition, we are dealing with a symmetry if, for constant
parameters ωa – a uniform rotation or global translation, etc. – the action difference ∆S
vanishes. In other words, we may ignore terms in the expansion of ∆S which do not contain
derivatives acting on ωa, as they will not be present in the case where ωa parameterizes a
symmetry. The straightforward expansion of ∆S to leading order in ∂µωa then leads to

∆S sym.= −
ˆ
dx jaµ(x)∂µωa(x), (1.42)

30 For example, the standard symmetry transformations of classical mechanics, q(t) → q′(t),
belong to this class: the coordinate vector of a point particle, q (a “field” in 0 + 1 space–time
dimensions) changes while the “base” (time t) does not.

31 “Intrinsic” means that we rotate just the spins but not the entire system (as we did in our
second example, rotational symmetry).

32 Note that det(∂x′/∂x) = exp tr ln(∂x′/∂x) ' exp[∂xµ (ωa∂ωaxµ)] ' 1 + ∂xµ (ωa∂ωaxµ). (Exer-
cise: Show that det A = exp tr lnA, where A is a linear operator.)
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33 1.6 Noether’s Theorem

where the components of the so-called Noether currentsNoether
current

ja are given by

jaµ =
(

∂L
∂(∂µφi)

∂νφ
i − L δµν

)
∂xν

∂ωa

∣∣∣∣
ω=0
− ∂L
∂(∂µφi)

F ia(φ) (1.43)

For a general field configuration, not much can be said about the Noether current (no
matter whether or not the theory possesses a symmetry). However, if the field φ obeys the
classical equations of motion and the theory is symmetric, the Noether current is locally
conserved,

∂µj
aµ = 0 (1.44)

This follows from the fact that, for a solution φ of the Euler–Lagrange equations, the
linear variation of the action in any parameter must vanish. Specifically, integration by
parts in Eq. (1.42) leads to ∆S = ∆S[φ] =

´
(∂µjaµ)ωa. The vanishing of this expression

for arbitrary solutions φ and arbitrary ω requires Eq. (1.44). (As an exercise in partial
differentiation, try to derive this identity directly from Eq. (1.43). You will need to use
the Euler–Lagrange equations Eq. (1.17).) It is very important to keep in mind that
the conservation law holds only for solutions of the equations of motion. Therefore, in
summary, we have Noether’s theorem:

A continuous symmetry entails a classically conserved current.

We call the current “classically conserved” because, as we will discuss later, in section 9.2,
quantum fluctuations around classical solutions may spoil the conservation of currents via
the so-called quantum anomalyanomaly .

The local conservation of a current entails the existence of a globally conserved “charge.”
For a theory with d + 1 space–time coordinates x = (x0, xi) = (t, xi), integration over
the space-like directions, and application of Stokes’ theorem (exercise), gives dtQa = 0,
where33

Qa(t) ≡
ˆ
ddx ja0(t, xi) (1.45)

is the conserved chargeconserved
charge

and we have assumed that the current density vanishes at spatial
infinity.

Notice that nowhere in the discussion above have we made any assumption about
the internal structure of the Lagrangian. In particular, all results apply equally to the
Minkowskian and the Euclidean formulations of the theory.

1.6.2 Examples of symmetries

Condensed matter systems are often translationally invariant, in space and/or in time.
Translational invariancetranslational

invariance
may hold down to the microscopic level, where it assumes the

form of a discrete symmetry under translation by multiples of the lattice spacing, or it may
be emergent only at larger length scales. For example, the fluctuating spin configurations of
a paramagnet look locally random, however the system becomes translationally invariant
on average over mesoscopic volumes containing many spins. In either case, translational
invariance appears as a continuous symmetry of the effective theories relevant to the low-
energy physics.

The corresponding symmetry transformation is defined by x′µ = xµ+aµ, φ′(x′) = φ(x).
The infinitesimal version of this transformation reads x′µ = xµ + ωµ, where we have
33 Notice that the integral involved in the definition of Q runs only over spatial coordinates.
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identified the parameter index a with the space–time index µ. Noether’s current, which in
the case of translational invariance is called the energy–momentum tensorenergy–

momentum
tensor

or stress–
energy tensor, is given by Tµν :

Tµν = ∂L
∂(∂µφi)

∂νφ
i − δµν L (1.46)

The conserved “charges” corresponding to this quantity are

Pν ≡
ˆ
ddx

(
∂L

∂(∂0φi)
∂νφ

i − δ0
ν L
)
,

where P0 is the energy and Pi, i = 1, . . . , d, the total momentum carried by the system.

EXAMPLE Evaluation of the zeroth component T 0
0 for the Lagrangian (1.4) of the

harmonic chain yields

T 0
0 = m

2 φ̇
2 + ksa

2

2 (∂xφ)2,

which is identical to the Hamiltonian density of Eq. (1.11), with π = mφ̇. For a discus-
sion of the momentum density of the chain and of the energy–momentum tensor of the
electromagnetic field we refer to problem 1.8.4.

Systems positioned at the critical point of a second-order
phase transition are scale invariantscale

invariance
. Here, the system

looks the same at all length scales, a feature formally
expressed as symmetry under dilatation, x → λx. The
ramifications of this symmetry in field theories will be
the central theme of chapter 6. However, at the critical
point, systems generally show an even larger set of sym-
metries, known as conformal symmetriesconformal

symmetries
. By definition, conformal transformations

of space–time are angle-preserving in that they map curves intersecting at a certain
angle onto image curves intersecting at the same angle. For example, the figure shows
the conformal image of a rectangular grid. Besides dilatations, translations and rotations
have this feature. The final, and less obviously angle-preserving, representatives of con-
formal transformations in general dimensions are the special conformal transformations
xµ → (xµ − bµx2)/(1 − 2xµbµ + b2x2). Geometrically, these are a composition of inver-
sion xµ → xµ/x2 followed by translation by bµ and then by another inversion. The set of
all these transformations defines the conformal groupconformal

group
, a finite-dimensional symmetry

group. (Exercise: How many parameters define the group?34)
Where they exist, conformal symmetries have far-reaching consequences for the physical

properties of a theory. This principle is driven to an extreme in the special and important
case of two-dimensional conformal invariance (i.e., the physics of critical two-dimensional
systems). The reason is that the two-dimensional conformal group is actually infinite
dimensional. Referring to appendix section A.3 for a discussion of two-dimensional confor-
mal invariance, here we note only that the existence of infinitely many symmetries, and as
many conserved currents, suffices to almost fully characterize two-dimensional conformal
theories. The mechanisms by which this happens are discussed in the appendix, which is
perhaps best read at a later stage after more concepts of field theory have been introduced.

Translational and conformal symmetry are examples of space–time symmetries. Later,
34 1+d+d(d−1)/2+d=(d+2)(d+1)/2 for dilation, translation, rotations, and special

transformation, respectively.
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when we have introduced field manifolds of richer geometric structure, we will encounter
numerous realizations of internal symmetries.

1.7 Summary and Outlook

In this chapter we have introduced the general procedure whereby classical continuum
theories are quantized. Employing the elementary harmonic oscillator as a example, we
have seen that the Hilbert spaces of these theories afford different interpretations. Of par-
ticular use is a quasi-particle picture in which the collective excitations of the continuum
theories acquired the status of elementary particles. Both examples discussed in this text,
the quantum harmonic chain and free quantum electrodynamics, lead to exactly solvable
free field theories. However, it takes little imagination to foresee that few continuum
theories will be as simple. Indeed, the exact solvability of the atomic chain would have
been lost had we included higher-order contributions in the expansion in powers of the lat-
tice displacement. Such terms would hinder the free wave-like propagation of the phonon
modes. Put differently, phonons would begin to scatter, i.e., interact. Similarly, the free
status of electrodynamics is lost once the EM field interacts with a matter field. Needless
to say, interacting field theories are much more complex, but also more interesting,
than the systems considered so far.

Technically, we have seen that the phonon or photon interpretation of the field theories
discussed in this chapter could be conveniently formulated in terms of ladder operators.
However, the applications discussed so far provide only a glimpse of the advantages of
this language. In fact, the formalism of ladder operators, commonly described as “second
quantization,” represents a central, and historically the oldest, element of quantum field
theory. The next chapter is devoted to a more comprehensive discussion of both the formal
aspects and applications of this formulation.

1.8 Problems

1.8.1 Electrodynamics from a variational principle

Choosing the Lorentz-gauged components of the vector potential as generalized coordinates,

the aim of this problem is to show how the wave equations of electrodynamics can be obtained

as a variational principle.

Electrodynamics can be described by Maxwell’s equations or, equivalently, by wave-like
equations for the vector potential. Working in the Lorentz gaugeLorentz

gauge
, ∂tφ = −∇ ·A, these

equations read (∂2
t −∇2)φ = ρ, (∂2

t −∇2)A = j. Using relativistically covariant notation,
the form of the equations can be compressed further to ∂µ∂

µAν = jν . Starting from
the action, S[A] = −

´
d4x( 1

4FµνF
µν + Aµj

µ), obtain these equations by applying the
variational principle. Compare the Lorentz gauge representation of the action with that
of the elastic chain. What are the differences and parallels?

Answer:

Substituting the EM field tensor Fµν = ∂µAν − ∂νAµ and integrating by parts, the action
assumes the form

S[A] = −
ˆ
d4x
(
−1

2Aν [∂µ∂µAν − ∂µ∂νAµ] + jµA
µ
)
.
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36 1 From Particles to Fields

Owing to the Lorentz gauge condition, the second contribution within the square brack-
ets vanishes, and we obtain S[A] = −

´
d4x( 1

2∂µAν∂
µAν + jµA

µ), where we have again
integrated by parts. Applying the general variational equation (1.17), one obtains the wave
equation.

1.8.2 Hamiltonian of electromagnetic field

Here, it is shown that the Hamiltonian canonically conjugate to the Lagrangian of the EM

field does indeed coincide with the energy density familiar from elementary electrodynamics.

Consider the EM field in the absence of matter, j = 0. Verify that the total energy stored
in the field is given by H ≡

´
d3xH(x) where H(x) = E2(x) + B2(x) is the familiar

expression for the EM energy density. (Hint: Use the vacuum form of Maxwell’s equations
and the fact that, for an infinite system, the energy is defined only up to surface terms.)

Answer:

Following the canonical prescription, let us first consider the Lagrangian density

L = −1
4FµνF

µν = 1
2

3∑
i=1

(∂0Ai − ∂iA0)2 − 1
4

3∑
i,j=1

(∂iAj − ∂jAi)2.

We next determine the components of the canonical momentum through the relation
πµ = ∂∂0AµL : π0 = 0, πi = ∂0Ai − ∂iA0 = −Ei. Using the fact that ∂iAj − ∂jAi is a
component of the magnetic field, the Hamiltonian density can now be written as

H = πµ∂0A
µ − L = 1

2(−2E · ∂0A−E2 + B2) (1)= 1
2(2E · ∇φ+ E2 + B2)

(2)= 1
2(2∇ · (Eφ) + E2 + B2),

where equality (1) is based on addition and subtraction of a term 2E ·∇φ and equality (2)
on the relation ∇ ·E = 0 combined with the identity ∇ · (af) = ∇ · af + a · ∇f (valid for
general vector [scalar] functions a [f ]). Substitution of this expression into the definition
of the Hamiltonian yields

H = 1
2

ˆ
d3x
(
2∇ · (Eφ) + E2 + B2) = 1

2

ˆ
d3x
(
E2 + B2) ,

where we have used the fact that the contribution ∇· (Eφ) is a surface term that vanishes
upon integration by parts.

1.8.3 Phonon specific heat

Previously, we stated that the mode quantization of elastic media manifests itself in low-

temperature anomalies of the specific heat. In this problem, concepts of elementary quantum

statistical mechanics are applied to determine the temperature profile of the specific heat.

Compute the energy density u = −L−1∂β lnZ of one-dimensional longitudinal phonons
with dispersion ωk = v|k|, where Z = tr e−βĤ denotes the quantum partition function.
First show that the thermal expectation value of the energy density can be represented as

u = 1
L

∑
k

[
ωk
2 + ωknB(ωk)

]
, (1.47)
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where nB(ε) = (eβε − 1)−1 is the Bose–Einstein distribution. Approximate the sum over
k by an integral and show that the specific heat cv ≡ ∂Tu ∼ T . At what temperature
Tcl does the specific heat cross over to the classical result, cv = const? (Remember that
the linear dispersion ωk = v|k| is based on a quadratic approximation to the Hamiltonian
and, therefore, holds only for |k| < Λ, where Λ is some cutoff momentum.) Recalling
the discussion in section 1.4, for a d-dimensional isotropic solid of volume Ld (with the
atomic exchange constants remaining the same in all directions), show that the dispersion
generalizes to ωk = v|k|, where k = 2π(n1, . . . , nd)/L and ni ∈ Z. Show that the specific
heat shows the temperature dependence cv ∼ T d.

Answer:

As discussed in the text, the eigenstates of the system are given by |n1, n2, . . .〉, where nm is
the number of phonons of wavenumber km = 2πm/L, E|n1,n2,...〉 =

∑
m
ωkm(nm+ 1/2) ≡∑

m
εnmm the eigenenergy, and ωm = v|km|. In the energy representation, the quantum

partition function then takes the form

Z = tr e−βĤ =
∑
states

e−βEstate =
∏

m=1,2,...

∞∑
nm=0

e−βωm(nm+1/2) =
∏

m=1,2,...

e−βωm/2

1− e−βωm ,

where nm is the occupation number of the state with wavenumber km. Hence, lnZ =
−
∑

m
[βωm/2 + ln(1 − e−βωm)]. Differentiation with respect to β yields Eq. (1.47) and,

making the replacement
∑

m
→ L

2π
´
dk, we arrive at u = C1+ 1

2π
´
|k|<Λ dk

v|k|
eβv|k|−1 = C1+

β−2C2, where C1 is the temperature-independent constant accounting for the “zero-point
energies” ωm/2. In the second equality, we have scaled k → βk. This produces a prefactor
β−2 multiplied by a temperature-independent (up to the temperature dependence of the
boundaries Λ → βΛ) integral that we denoted by C2. Differentiation with respect to T
then leads to the relation cv = ∂Tu ∼ T . However, for temperatures T > vΛ higher
than the highest frequencies stored in the phonon modes, the procedure above no longer
makes sense (formally, owing to the now non-negligible temperature dependence of the
boundaries). Yet, in this regime, we may expand eβv|k| − 1 ' βv|k|, which brings us back
to the classical result cv = const.

Consider now a d-dimensional solid with isotropic coupling, ks
2
∑d

i=1(φR+ei − φR)2

with ei a unit vector in the direction i. Taking the continuum limit leads to a contribution
ksa

2

2 (∇φ(x))2. Proceeding as in the one-dimensional system, the relevant excitations are
now waves with wavevector k = 2π(n1, . . . , nd)/L and energy ωk = v|k|. Setting

∑
k ∼´

ddk and scaling ki → βki then generates a prefactor β−(d+1), and we arrive at the
relation cv ∼ T d.

1.8.4 Energy–momentum tensor of the harmonic chain

In this problem we analyze the energy–momentum (EM) tensor of the harmonic chain. We

discuss its computation and how to make sense of its components.

(a) Show that the two independent components T 0
0 and T 1

0 of the EM tensor of the
harmonic chain defined via the Lagrangian (1.4) are given by

T 0
0 = m

2 φ̇
2 + ksa

2

2 (∂xφ)2, T 0
1 = m∂tφ∂xφ.

(b) In section 1.6.2 we identified T 0
0 as the energy density of the system. But what is

the meaning of the second component? Turning back to the discrete representation of the
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38 1 From Particles to Fields

chain, compute the total momentum carried by weak dynamical fluctuations φI(t) of the
mass center coordinates and show that it turns into an integral over T 0

1 in the continuum
limit. This construction identifies T 0

1 as the momentum density of the chain.

Answer:

(a) This part involves a straightforward application of Eq. (1.46). (b) We can consider the
total momentum of the chain as P =

∑
I
a× δ(mass density)× φ̇I , where δ(mass density)

are the fluctuations in mass density associated with a deviation profile φI . The local
particle density at site I is given by (one particle) / (distorted particle distance), i.e.,
1/(a−φI+1+φI) ' a−1+a−2(φI+1−φI) ' a−1+a−1/2∂xφ, where we used the definition of
the continuum variable φ(x) = a−1/2φI . This leads to δ(mass density) ' ma−1/2∂xφ. With
the particle velocity φ̇I = a1/2∂tφ(x, t), we obtain P =

∑
I
am∂xφ∂tφ '

´
dxm∂xφ∂tφ.

1.8.5 Stress–energy tensor from variation in metric

This problem is for advanced readers. It requires familiarity with integration over manifolds

of nontrivial geometry, as reviewed in section A.1, and fluency in variational calculus. Other

readers should not tackle this problem just yet. We offer an interpretation of the stress–energy

tensor generalizing that given in section 1.6.2: the stress tensor describing how a field theory

responds to variations in the underlying geometry.

In section 1.6.2 we derived the stress–energy tensor by investigating how a theory changes
under variations xµ → xµ + ωµ(x), where the infinitesimal shift may be coordinate de-
pendent. Such deviations describe a local distortion in the geometry of the base manifold.
To substantiate this view, consider a situation where the base manifold has a nontrivial
geometry, described by a metric tensor g = {gµν}. For example, in the field theories of
gravity, the base manifold is the universe, and gµν is its space–time metric. A more mun-
dane example would be a field theory formulated in curvilinear coordinates, where gµν is
the (square of the) Jacobian describing the transformation from Cartesian coordinates.

The generalization of the Lagrangian Eq. (1.16) to this case is given by

S[φ] =
ˆ
dx
√
gL(φ, ∂µ, ∂µφ),

where g = | det(g{µν})|, and the notation emphasizes that derivatives in the Lagrangian
appear in invariant combinations such as ∂µφ∂µφ. Their dependence on the metric is
hidden in ∂µφ = gµν∂νφ, where gµν are the coefficients of the inverse of the metric tensor,
gµνgνλ = δµλ. (We have omitted the internal field index φi to lighten the notation.)
(a) Prove the auxiliary relations ∂gρσ/∂gµν = −δρµδνσ, ∂gµν

√
g = 1

2
√
ggµν , and ∂F/∂(∂µφ) =

(∂F/∂(∂νφ))gνµ.
(b) Show that the stress tensor is obtained by variation of the action in the metric:

Tµν(x) = − 2
√
g

δS

δgµν(x) . (1.48)

(c) As an example, consider the theory of a free scalar field, L = − 1
2∂µφ∂

µφ. Compute the
stress tensor via Eq. (1.48) and convince yourself that the result is compatible with that
of the example below Eq. (1.46) for the harmonic chain Eq. (1.4) in the case where the
differentiation is carried out on the two-dimensional Minkowski metric, g = diag(−1, 1),
and the constants are scaled as m = ksa

2 = 1.
Conceptually, Eq. (1.48) demonstrates that the stress tensor answers the question how

a theory responds to variations in the geometry of its base manifold. (The terminology

https://doi.org/10.1017/9781108781244.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108781244.002


39 1.8 Problems

stress tensor underpins this interpretation.) Methodologically, it is often convenient to
compute the stress tensor via Eq. (1.48), including in cases where the theory is varied at
a trivial metric gµν = δµν .

Answer:

(a) Using that ∂gρσ/∂gµν = δµρδ
σ
ν ,35 the first identity is obtained from the matrix relation

0 = ∂gµν (gg−1) = (∂gµν g)g−1 + g∂gµν g
−1. Written in components, it yields the desired

relation. With g = ±det(g),36 the second follows from ∂gµν
√
g = 1/(2√g)∂gµν (±det(g)).

Using det g = exp tr ln g, and ∂gµν tr ln g = (g−1)νµ = gµν , we obtain the relation. The
final relation follows from the chain rule applied to ∂µφ = gµν∂

νφ.
(b) The metric enters the action in two places, the first being the factor √g, the second
the derivatives φµ = gµνφν . We thus have

Tµν = − 2
√
g

δS

δgµν
= − 2
√
g

(
L
∂
√
g

∂gµν
+√g ∂L

∂(∂ρφ)
∂(∂ρφ)
∂gµν

)
= − 2
√
g

(
L
∂
√
g

∂gµν
+√g ∂L

∂(∂ρφ)

(
∂gρσ

∂gµν

)
∂σφ

)
= −Lgµν + ∂L

∂(∂µφ)∂
νφ,

where in the final step we used the three relations in (a). Lowering the right index, Tµν =
Tµρgρσ, we get back to Eq. (1.46).

Now considering the relation det g = exp tr ln g, it is varied as ∂gµν
√
g = 1

2
√
g∂gµν tr ln g =√

g(g−1)νµ = √ggµν , where we have used the symmetry gµν = gνµ of the metric tensor,
and the notation gµν = (g−1)µν for its inverse.

The differentiation in the second occurrence of the metric, ∂µφ = gµν∂
νφ, is done as

follows: ∂gµνL = ∂L
∂(∂µφ)∂gµν∂µφ = L

∂(∂µφ)∂
νφ. Adding the two terms we get

Tµν = √g
(
gµνL+ ∂L

∂(∂µφ)∂
νφ

)
.

(c) For the free field theory in Minkowski space, we have √g = 1 and ∂∂µφL = −∂µφ.
This gives T 0

0 = 1
2 (∂µφ∂µφ) − ∂0φ∂0φ = 1

2 (−∂0φ∂0φ + ∂1φ∂1φ) = 1
2 ((∂0φ)2 + (∂1φ)2)).

Identifying the zero-coordinate with time, and the one-coordinate with space, this equals
the Hamiltonian density (kinetic energy+potential energy density) of the harmonic chain.

35 All derivatives are carried out for a general matrix, and then evaluated at the symmetric
configuration gρσ = gσρ. We are not differentiating within the class of symmetric matrices.
Think about this difference.

36 It is common practice to denote the modulus determinant g = ± det({gµν}), and the matrix
g = {gµν} by the same symbol g. Which is which should always be clear from the context.
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