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We present a weakly nonlinear theory for the evolution of dispersive transient waves
generated by moving seabed deformation. Using a perturbation expansion up to second
order, we show that higher-order components affect mostly the leading wave and the
region close to the deforming seabed. In particular, the leading wave in the nonlinear
regime has higher crests and deeper troughs than the known linear solution, while the
trough that propagates together with the moving seabed exhibits pulsating behaviour and
has larger depth. We also validate the analytical model with experimental data and obtain
good agreement between both approaches. Our results suggest a need to extend existing
models that neglect the effects of wave dispersion and higher-order components, especially
in view of practical applications in engineering and oceanography.
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1. Introduction

In this paper, we elucidate the role and importance of nonlinear components in
the propagation of dispersive waves generated by moving seabed deformation. Our
results provide a theoretical basis for applications to landslide tsunami generation and
propagation.

Landslide tsunamis are induced by the motion of subaerial or submerged masses, usually
localised at the margins of water bodies, e.g. oceans and lakes (Sammarco & Renzi 2008;
Renzi & Sammarco 2010, 2012; Couston, Mei & Alam 2015; Renzi & Sammarco 2016).
Landslide tsunamis are different from earthquake tsunamis (Fraser et al. 2013), as they are
characterised by a more localised generation mechanism, which results in the landslide
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tsunami energy focussing along narrower stretches of the shoreline. This can potentially
induce larger wave amplitudes than for earthquake tsunamis. Indeed, the largest recorded
tsunami in human history was generated by a landslide in Lituya Bay, Alaska, which
produced a runup of approximately 500 m (Kanoglou & Synolakis 2015).

Several landslide tsunami models have been developed using non-dispersive
formulations for long waves, similar to those used for earthquake tsunamis (e.g. see
Liu & Mei 2003; Wang, Liu & Mei 2010) and moving obstacles (Madsen & Hansen
2012). However, from a fluid dynamics point of view, landslide tsunamis are different
from earthquake tsunamis because of their peculiar generation mechanism. Earthquake
tsunamis are generated almost instantaneously, whereas landslide tsunamis are strongly
dependent on the time history of the seafloor deformation (Lynett & Liu 2005; Sammarco
& Renzi 2008). As the landslide moves, it gradually releases energy into the water.
Waves are continuously generated during this process, resulting in a dispersive dynamics.
Therefore, traditional non-dispersive models that are used to investigate earthquake
tsunamis, often fail to reproduce the dispersive characteristics of landslide tsunamis
(Cecioni & Bellotti 2010; Yavari-Ramshe & Ataie-Ashtiani 2016). Accurate modelling
of landslide-generated tsunamis is critical in trying to understand past events or predict
future ones. The Indonesian Palu Bay tsunami of 2018 is a case in point, where there is
lack of consensus about the exact causes of the tsunami due to differences in modelling
approaches (Goda et al. 2019).

Sammarco & Renzi (2008) showed that dispersion is responsible for shifting the
maximum wave amplitude towards the middle of a wavetrain of edge waves generated by
a landslide on a sloping beach. A similar effect was also described by Renzi & Sammarco
(2010) for landslide tsunamis propagating around a conical island, and later confirmed
experimentally by Romano, Bellotti & Risio (2013). Watts (2000) described dispersive
and nonlinear features of waves generated by an idealised landslide block on a steep slope.
More recently, Whittaker, Nokes & Davidson (2015) carried out physical tests using a solid
mass (similar to that used by Grilli & Watts 2005) moving on an otherwise flat bed that
generated a forced wave field. Their measurements confirm the importance of dispersion
in shaping landslide-generated tsunamis away from the generation zone. Additional
works showing the importance of dispersion on tsunami generation by three-dimensional
landslides have been performed by Enet & Grilli (2007), and subsequently demonstrated
by Ma, Shi & Kirby (2012) using a shock-capturing non-hydrostatic model for nonlinear
free-surface wave processes.

Nonlinearity also plays an important role in the fluid dynamics of landslide tsunamis and
seabed disturbances. Linearised models are only applicable if the landslide amplitude A is
much smaller than the water depth h, and if the landslide speed u is smaller than the critical
speed

√
gh, where g is the acceleration due to gravity. For example, Renzi & Sammarco

(2012) and Renzi & Sammarco (2016) achieved close matches between predictions by a
mathematical model based on linearised potential theory and experimental data obtained
by Di Risio et al. (2009) for a partially submerged, thin landslide moving along an incline.
However, linearised models predict incorrect wave amplitudes when the landslide is thick
and nonlinear resonant amplification occurs (Liu & Mei 2003; Renzi & Sammarco 2012).
Similarly, but in the context of vertical displacements, Hammack (1973) showed that the
leading wave can be strongly affected by positive or negative bed displacements with
behaviours showing solitary wave formation.

Computational fluid dynamics (CFD) models have been developed in recent years to
investigate the dynamics of landslide tsunamis in the nonlinear regime. As described in
the review by Yavari-Ramshe & Ataie-Ashtiani (2016), most CFD models solve simplified
forms of the governing equations, such as the nonlinear shallow-water equations or the
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higher-order Boussinesq wave equations. The vast majority of existing CFD models
are based on an Eulerian approach because the more robust Lagrangian approach is
computationally more expensive (Yavari-Ramshe & Ataie-Ashtiani 2016). CFD models
are undoubtedly valuable tools in reproducing large-scale, realistic scenarios. However,
although they can capture the key physical processes associated with wave generation
by submarine mass failures (including landslides) with high spatio-temporal resolution,
such models are not so convenient at providing detailed physical insight, unlike analytical
models. This is because analytical models enable prediction of system behaviour at
much lower computational cost, and allow parametric investigations to be conducted by
manipulating analytical formulae. Analytical models may be limited by the assumptions
used in their derivation, such that care should be taken in the interpretation of their results.

In this paper, we develop a combined analytical approach to elucidate the higher-order
dynamics of seabed-forced dispersive waves observed in recent experiments (Whittaker
et al. 2015). Our focus is on a seabed deformation moving over an otherwise horizontal
surface rather than over an inclined slope for the following reasons. The transient wave
is generated by a solid block translating with a prescribed speed, rather than purely
relying on gravity. Complications are avoided from wave reflection at a sloped bed: sudden
deceleration should there be an abrupt transition between an inclined and horizontal bed,
and possible aquaplaning of the solid block should the transition be smooth (Sue, Nokes &
Davidson 2011). On the other hand, analysis of more realistic landslides over sloping beds
(or more complex bathymetries) in intermediate waters are beyond the scope of this work.
A mild-slope extension of the present model may be derived to include the effects of slowly
varying bathymetry. Analytical solutions can be obtained only for idealised geometries,
through multiple-scale asymptotic expansion, as done by Renzi (2017) in the case of forced
underwater acoustic waves. Solutions for more realistic seabed profiles require numerical
techniques (Cecioni & Bellotti 2010). Numerical models are also required in the case of
highly nonlinear wave generation, particularly when this leads to overturning and breaking
(Capone, Panizzo & Monaghan 2010; Heller et al. 2016; Li, Jin & Tai 2020).

We first derive the nonlinear set of governing equations for a seafloor deformation on
a flat bed. Use of an idealised geometry allows us not only to reproduce the experimental
layout of Whittaker et al. (2015), but also to determine novel analytical solutions that
explain the role of second-order terms in shaping the wave field. We solve the system of
governing equations using a perturbative approach with Taylor expansions. This allows us
to obtain a sequence of linearised boundary-value problems, which we solve by applying
the Fourier transform in space (Mei, Stiassnie & Yue 2005). The physical meaning of the
solution at each order is discussed by means of asymptotic expansions of integrals (Bender
& Orszag 1999).

We show that the second-order problem is forced both at the ocean bed and on the free
surface. The solution is found by decomposing each problem and separating the relevant
forcing terms (Michele, Sammarco & d’Errico 2018; Michele & Renzi 2019; Michele,
Renzi & Sammarco 2019). Our results reveal that these second-order components affect
mostly the leading wave and the water region close to the moving seabed. Their overall
effect is to increase the free-surface elevation and to generate pronounced pulsations
of the wave trough above the deformation. Similar dynamics has also been noted by
Whittaker et al. (2015) and is observed in the experimental results provided herein. We
remark that the development of this weakly nonlinear theory is based on the assumption
that the deformation speed is much smaller than the critical speed

√
gh. If the speed is

close to the critical speed, resonance occurs and other analytical methods are necessary.
Similar conclusions can be extended to the case of nonlinear non-dispersive waves in the
presence of a steady running stream (Whitham 1974; Wu 1987; Lee, Yates & Wu 1989;
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Debnath 1994), or forced by a moving bed (Dalphin & Barros 2019). Even at lower Froude
numbers between 0.625 and 0.75, Whittaker et al. (2017) observed spilling behaviour in
some of the generated waves, implying that weakly nonlinear models should be limited in
application to Froude numbers less than 0.5.

The paper is structured as follows. In § 2 we discuss a second-order theory of
nonlinear dispersive transient waves generated by a moving seabed deformation, based
on a perturbation approach. In § 3, we present analytical second-order results that are in
very satisfactory agreement with experimental data. Then in § 4 we dissect the different
components of the wave field obtained with the analytical model. Asymptotic analysis
allows us to identify the leading and trailing wave components at different orders.
We show that the leading wave in the nonlinear regime has higher crests and deeper
troughs than the known linear solution. Therefore, neglect of nonlinear effects can lead
to underestimation of the maximum leading wave height. We also show that second-order
effects are responsible for the development of a pulsating trough that propagates together
with the bed deformation.

2. Analytical model

2.1. Governing equations
Let us consider the two-dimensional fluid domain Ω shown in figure 1, and assume an
irrotational flow of an inviscid and incompressible fluid. As a consequence, there exists
a velocity potential Φ(x, z, t), such that the velocity field v = ∇Φ where ∇(·) is the
nabla operator in x and z coordinates. The z axis points upwards from the undisturbed free
surface, h denotes the constant offshore still water depth and f (x, t) describes the elevation
of the moving bed with respect to the coordinate z = −h; t denotes time. The governing
equations for the velocity potential Φ(x, z, t) and the free-surface elevation ζ(x, t) are

∇2Φ = 0, Ω (x, z, t) , (2.1)

Φtt + gΦz = − |∇Φ|2t − 1
2
∇Φ · ∇ |∇Φ|2 , z = ζ, (2.2)

ζ + 1
g
Φt = − 1

2g
|∇Φ|2 , z = ζ, (2.3)

Φz − ft = Φxfx, z = −h + f , (2.4)

Φ = Φt = 0, z = ζ, t = 0+, (2.5)

where the fluid is assumed to be at rest before the bed motion initiates at t = 0+, and g
denotes the acceleration due to gravity. Note that the initial conditions (2.5) need simply
to be prescribed on the free surface, because time derivatives of the unknowns Φ and
ζ only appear in the free-surface boundary conditions. Let us introduce the following
non-dimensional quantities (Mei et al. 2005):

(x′, z′) = (x, z)/λ, t′ = tω, Φ ′ = Φ/(Aωλ),

(ζ ′, f ′) = (ζ, f )/A, G′ = g/(ω2λ),

}
(2.6a–e)

where A is the amplitude of the bed disturbance which is taken to be much smaller than
the typical free-surface wavelength λ, ω denotes the wave frequency and primes indicate
non-dimensional variables. We introduce the following length ratio ε = A/λ� 1, which
represents the wave steepness. We also assume that λ is the length scale of the moving
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h

f (x, t)
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Figure 1. Side view of the moving seabed deformation system.

bed perturbation, and so the landslide steepness is of the same order ε as the free-surface
waves. Substitution of (2.6a–e) into (2.1)–(2.5) yields the boundary-value problem (b.v.p.)
in non-dimensional form

∇′2Φ ′ = 0, Ω(x′, z′, t′), (2.7)

Φ ′
t′t′ + G′Φ ′

z′ = −ε
∣∣∇′Φ ′∣∣2

t′ − ε2 1
2∇′Φ ′ · ∇′ ∣∣∇′Φ ′∣∣2 , z′ = εζ ′, (2.8)

G′ζ ′ + Φ ′
t′ = −ε 1

2

∣∣∇′Φ ′∣∣2 , z′ = εζ ′, (2.9)

Φ ′
z′ − f ′

t′ = εΦ ′
x′ f ′

x′, z′ = −h′ + εf ′, (2.10)

Φ ′ = Φ ′
t′ = 0, z′ = εζ ′, t′ = 0+. (2.11)

As a consequence all the terms on the right-hand sides of (2.1)–(2.5) are also small. The
free-surface boundary conditions are evaluated noting correspondence of z′ = εζ ′. The
boundary condition at the seabed is evaluated as z′ = −h′ + εf ′. Thus Taylor expanding
(2.8)–(2.10) up to O(ε) yields

Φ ′
t′t′ + G′Φ ′

z′ = −ε[ζ ′(Φ ′
t′t′z′ + GΦ ′

z′z′) + ∣∣∇′Φ ′∣∣2
t′] z′ = 0, (2.12)

G′ζ ′ + Φ ′
t′ = −ε(ζ ′Φ ′

t′z′ + 1
2

∣∣∇′Φ ′∣∣2) z′ = 0, (2.13)

Φ ′
z′ − f ′

t′ = ε(Φ ′
x′ f ′

x′ − f ′Φ ′
z′z′), z′ = −h′. (2.14)

Let us introduce the following expansions of the non-dimensional velocity potential and
free-surface elevation:

{Φ ′, ζ ′} = {Φ ′
1, ζ

′
1} + ε{Φ ′

2, ζ
′
2}, (2.15)

where the subscripts indicate the first- (leading) and second-order solutions. Use of the
expansion (2.15) yields the following equations for n = 1, 2:
(i) Laplace equation

∇′2Φ ′
n = 0, in Ω(x′, z′). (2.16)

(ii) Free-surface dynamic condition

G′ζ ′ + Φ ′
t′ = Bn, z′ = 0, (2.17)
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where

B1 = 0, B2 = −ζ ′
1Φ

′
1t′z′ − 1

2

∣∣∇′Φ ′
1
∣∣2 . (2.18a,b)

(iii) Free-surface mixed condition

Φ ′
nt′t′ + G′Φ ′

nz′ = Fn, z′ = 0, (2.19)

where

F1 = 0, F2 = −ζ ′
1(Φ

′
1t′t′z′ + G′Φ ′

1z′z′ ) − ∣∣∇′Φ ′
1
∣∣2
t′ . (2.20a,b)

(iv) Boundary condition at the seabed

Φ ′
z′ − f ′

t′ = Gn, z′ = −h′, (2.21)

where

G1 = 0, G2 = Φ ′
1x′ f

′
x′ − f ′Φ ′

1z′z′ . (2.22a,b)

(v) Initial condition

Φ ′
n = Φ ′

nt′ = 0, z′ = 0, t′ = 0+. (2.23)

Having obtained the governing equations at each order n we are now in a position to solve
each b.v.p. at the leading order O(1) and second order O(ε).

2.2. Leading-order problem O(1)

Returning back to physical variables we get the following leading-order problem:

∇2Φ1 = 0, Ω (x, z) , (2.24)

Φ1tt + gΦ1z = 0, z = 0, (2.25)

ζ1 + 1
g
Φ1t = 0, z = 0, (2.26)

Φ1z = ft, z = −h, (2.27)

Φ1 = Φ1t = 0, z = 0, t = 0+. (2.28)

By applying the Fourier transform along the x coordinate, solving the b.v.p. via separation
of variables and transforming back to the spatial variable, we obtain the following
expression for the velocity potential:

Φ1 = − 1
2π

∫ t

0
dτ

∫ ∞

−∞
g cosh [k (h + z)] Ŵ (t, k) sin [ω (τ − t)] eikx

ω cosh2(kh)
dk

+ 1
2π

∫ ∞

−∞
Ŵ (t, k) eikx sinh(kz)

k cosh(kh)
dk, (2.29)

and the free-surface elevation

ζ1 = 1
2π

∫ t

0
dτ

∫ ∞

−∞
Ŵ (τ, k) eikx cos [ω (τ − t)]

cosh(kh)
dk, ω2 = gk tanh(kh), (2.30)
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where we use the shorthand notation W(x, τ ) = fτ , so that

Ŵ (τ, k) =
∫ ∞

−∞
fτ e−ikx dx (2.31)

is the associated Fourier transform. As an example, let us consider the following analytical
expression for the bed perturbation:

f (x, t) = A exp(−σ [x − utH (t)]2), (2.32)

in which u is the horizontal speed, σ is a shape factor, A is the maximum thickness of the
perturbed bed and H(t) is the Heaviside step function. Then

fτ = 2Auσ [x − uτH(τ )] exp(−σ [x − uτH(τ )]2)H (τ ) , (2.33)

and (2.31) becomes

Ŵ (τ, k) = − iAku
√

π exp(−[k (k + 4iτuσ) /(4σ)])H (τ )√
σ

. (2.34)

Substitution of (2.34) into (2.30) yields finally

Φ1 = − g
2π

∫ ∞

−∞
eikx cosh [k (h + z)]

ω cosh2(kh)
S (k, t) dk + 1

2π

∫ ∞

−∞
Ŵ (t, k) eikx sinh(kz)

k cosh(kh)
dk,

(2.35)

ζ1 = 1
2π

∫ ∞

−∞
eikx

cosh(kh)
C (k, t) dk, (2.36)

where the terms C and S are, respectively,

C(k, t) = − iAku
√

π e−k2/(4σ)[i e−iktuku − iku cos(ωt) − ω sin(ωt)]
(k2u2 − ω2)

√
σ

, (2.37)

S(k, t) = − iAku
√

π e−k2/(4σ)[−e−iktuω + ω cos(ωt) − iku sin(ωt)]
(k2u2 − ω2)

√
σ

. (2.38)

Note that C(−k, t) = C̄(k, t) and S(−k, t) = S̄(k, t), where the bar denotes the complex
conjugate, hence the integrals in (2.35)–(2.36) are real. They can be evaluated numerically,
and the approximation investigated asymptotically for large times and distance from x = 0,
as described in § 4. Use of (2.36)–(2.37) yields the following analytical expression of the
free-surface elevation in integral form:

ζ1 = − iAu
2
√

πσ

∫ ∞

−∞
k exp(ikx − k2/(4σ))[i e−iktuku − iku cos(ωt) − ω sin(ωt)]

(k2u2 − ω2) cosh(kh)
dk.

(2.39)
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2.3. Second-order problem O(ε)

The second-order problem expressed in terms of physical variables is given by

∇2Φ2 = 0, Ω (x, z) , (2.40a,b)

Φ2tt + gΦ2z

= −1
ε

[ζ1(Φ1ttz + gΦ1zz) − 2gΦ1xζ1x + 2Φ1ztζ1t ] = F (x, t) , z = 0, (2.41)

ζ2 + 1
g
Φ2t = −1

ε

[
1

2g
(Φ2

1x
+ ζ 2

1t
) + Φ1ztζ1

g

]
= B (x, t) , z = 0, (2.42)

Φ2z = 1
ε
(−Φ1zz f + Φ1x fx) = G (x, t) , z = −h, (2.43)

Φ2 = Φ2t = 0, z = 0, t = 0+. (2.44)

To determine the free-surface elevation ζ2, we decompose the second-order velocity
potential as Φ2 = ΦF + ΦG, where ΦF represents the solution forced at the free surface,
while ΦG represents the solution forced by the bed motion. This implies that f (x, t) cannot
have edges leading to infinite velocity, because the second-order solution would otherwise
become unbounded. In addition, we decompose the free-surface elevation ζ2 into three
components, namely ζ2 = ζF + ζG + B, where B = B(x, t) represents the second-order
forcing of the first-order solution, defined in (2.42). For later convenience, we include
all the components of each forcing term G, F and B, in Appendix A.

We now proceed to solve each component separately.

2.3.1. Second-order free-surface forcing term
The set of governing equations is given by

∇2ΦF = 0, Ω (x, z) , (2.45)

ΦFtt + gΦFz = F (x, t) , z = 0, (2.46)

ζF + 1
g
ΦFt = 0, z = 0, (2.47)

ΦFz = 0, z = −h, (2.48)

ΦF = ΦFt = 0, z = 0, t = 0+. (2.49)

A solution can be sought by applying the Fourier transform along the x coordinate. We
obtain

ΦF = 1
2π

∫ t

0

∫ ∞

−∞
cosh [k (h + z)]F̂ (τ, k) eikx sin [ω (τ − t)]

ω cosh(kh)
dk dτ, (2.50)

where F̂(t, k) is the Fourier transform of the forcing term on the free surface (see (2.41)).
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By applying the Leibniz integral rule to (2.50), we obtain the free-surface elevation ζF
given by the effect of the forcing terms on the free surface:

ζF (x, t) = − 1
2gπ

∫ t

0

∫ ∞

−∞

∫ ∞

−∞
F (τ, ξ) exp (−ik (ξ − x)) cos [ω (τ − t)] dξ dk dτ.

(2.51)
The latter can be evaluated numerically for given values of the horizontal coordinate x and
time t.

2.3.2. Second-order bed forcing term
The b.v.p. is

∇2ΦG = 0, Ω (x, z, t) , (2.52)

ΦGtt + gΦGz = 0, z = 0, (2.53)

ζG + 1
g
ΦGt = 0, z = 0, (2.54)

ΦGz = G (x, t) , z = −h, (2.55)

ΦG = ΦGt = 0, z = 0, t = 0+. (2.56)

The solution is formally equivalent to that derived at leading order. We obtain the forced
second-order potential,

ΦG = − 1
2π

∫ t

0

∫ ∞

−∞
g cosh [k (h + z)]Ĝ (t, k) eikx sin [ω (τ − t)]

ω cosh2(kh)
dk dτ

+ 1
2π

∫ ∞

−∞
Ĝ (t, k) eikx sinh(kz)

k cosh(kh)
dk, (2.57)

where Ĝ is the Fourier transform of the forcing term at the bed, G(x, t).
Similar to the previous section, the corresponding free-surface elevation is derived upon

application of the Leibniz integral rule, which yields

ζG (x, t) = 1
2π

∫ t

0

∫ ∞

−∞

∫ ∞

−∞
G (τ, ξ) exp (−ik (ξ − x)) cos [ω (τ − t)]

cosh(kh)
dξ dk dτ. (2.58)

The sought solution for the free-surface elevation is given by

ζ(x, t) = ζ1(x, t) + ε [ζF(x, t) + ζG(x, t) + B(x, t)] + O(ε2). (2.59)

3. Validation

In this section, we validate the analytical model with experimental data for a block moving
along a horizontal boundary. The experimental set-up is the same as utilised by Whittaker
et al. (2015) and is summarised briefly in § 3.1. However, the motion of the model landslide
excludes the block deceleration phase, to facilitate comparisons with the theoretical model
assumptions outlined in § 2.
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3.1. Experimental set-up
Experiments were undertaken in a flume of 0.25 m width and 14.66 m length. Waves were
generated by a semi-ellipsoidal moving block of length L = 0.5 m and height A = 0.026 m
sliding on a horizontal seabed, at a depth h = 0.175 m. Use of a horizontal boundary and
the location of the block near the centre of the flume (i.e. approximately equidistant from
the flume ends) ensured that waves propagating in both positive and negative directions
could be measured prior to reflection. No wave absorption material was present at the ends
of the flume. The experimental set-up is described in detail by Whittaker et al. (2015).

The block motion (provided by a servo motor) comprised an initial acceleration at
a constant rate a0 = 1.5 ms−2 until t = 0.109 s, when the block reached its maximum
velocity of u = 0.164 ms−1. This is similar to Run 5 reported by Whittaker et al. (2015),
and corresponds to a landslide Froude number of 0.125. However, in the experiments
undertaken by Whittaker et al. (2015), the landslide moved at its maximum velocity for
2.00 s before decelerating to rest (with a deceleration of −a0). In these experiments,
the landslide block did not decelerate during the measurement period. In other words,
the block motion consisted of an initial rapid acceleration followed by a long period of
constant velocity. Whittaker et al. (2017) present a similar wave field for a Froude number
of 0.5, but did not include wave fields generated at lower Froude numbers. The rapid
block acceleration, relatively low maximum velocity (i.e. Froude number) and lack of
deceleration make these experimental results suitable for theoretical comparisons because
the block movement matches the assumptions in (2.32).

In the experiments carried out by Whittaker et al. (2015, 2017), free-surface elevations
were measured within a spatial window of approximately 0.35 m using a laser-induced
fluorescence technique to an accuracy of ±4 mm. The highly repeatable block motion
allowed the full wave field to be measured through 37 repetitions of the experiment,
ensuring some overlap between adjacent fields of view to create a continuous free-surface
record.

3.2. Analytical vs experimental results
Now we compare analytical results with data from the experimental campaign outlined
above. Water depth and landslide velocity are the same as in the previous section, the
bed deformation maximum thickness is A = 0.026 m and the shape factor representing
the moving block is σ = 19 m−2. Although subtle differences exist between the shape of
the block in the experiments and analytical model, previous research (e.g. Sue et al. 2011;
Whittaker et al. 2015) has demonstrated that acceptable agreement can be obtained if the
volumes are equal. The analytical domain also extends to infinity on both sides, whereas
the experimental set-up is 14.66 m long. Figure 2 shows snapshots of the free-surface
elevation ζ obtained with the second-order and leading-order models. On the same
figure the free-surface elevation evaluated experimentally (dashed line) is also plotted.
A pronounced leading wave travels ahead of the solid block, while a trough propagates
in the opposite direction. Both waves are followed by trailing wave packets that resemble
the Airy wave solution discussed later in § 4. The times of arrival of crests and troughs,
as well as the overall shape of the wave patterns are in close agreement between the two
models. Slight differences in the profiles appear at small times, where the leading wave
and the trough are underestimated by the analytical model. Note that at small times the
dynamics is highly nonlinear, as the bed deformation imparts a sudden impulse to the
surrounding fluid when its speed changes from u = 0 for t < 0 to u > 0 for t ≥ 0. Also,
the moving block velocity in the experimental set-up increases gradually until t = 0.109 s,
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Figure 2. Second-order free-surface elevation ζ2 + ζ1, leading-order free-surface elevation ζ1 and
experimental data at times: (a) t = 0.5 s, (b) t = 1 s, (c) t = 1.5 s and (d) t = 2 s, (e) t = 2.5 s and ( f ) t = 3 s.
The agreement between the models is good with few discrepancies at the initial stage. This is likely due to the
instantaneous acceleration not possible in the experimental set-up.

whereas the velocity of the moving bed slide for the theoretical model is described by
the Heaviside step function as shown by (2.32). Therefore, the small differences between
the analytical and experimental models (i.e. the over-estimation of wave amplitudes
in the second-order solution) are likely due to the effects highlighted above. Interestingly,
the leading-order solution ζ1 still underestimates the amplitudes of the generated waves,
despite the instantaneous acceleration assumed in this model, reinforcing the importance
of the second-order contributions to the generated wave field. Note also that at large
times there are discrepancies in front of the leftward propagating trough. This is due
to the near-complete wave reflection caused by the presence of the vertical wall on the
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left side of the channel flume, whereas the fluid domain for the analytical model extends
toinfinity. Reflections from this boundary were first observed at approximately t = 1.6 s in
the physical experiments (Whittaker et al. 2015).

4. Wave field analysis

Having validated the analytical model, we now discuss the characteristic features of the
wave field generated by the motion of the seabed. The analytical solution given in § 2 is
instrumental to elucidating the role of the first- and second-order contributions.

4.1. Rightward leading wave at first order
In this section we derive the profile of the rightward leading wave; the asymptotic
behaviour of the leftward propagating trough can be found in a similar manner.

First, we note that the contribution given by the first term within the square brackets in
(2.39) is negligible, because the integral has no stationary points (Mei et al. 2005). The
free-surface elevation at large distances can consequently be approximated as

ζ∞
1 � − Au√

πσ

∫ ∞

0

exp(−k2/(4σ))[k2u cos kx cos(ωt) + ωk sin kx sin(ωt)]
(k2u2 − ω2) cosh(kh)

dk

= − Au
2
√

πσ
Re
∫ ∞

0

exp(−k2/(4σ))[k2u (exp (i (kx − ωt)) + exp (i (kx + ωt)))
+ωk (exp (i (kx − ωt)) − exp (i (kx + ωt)))]

(k2u2 − ω2) cosh(kh)
dk.

(4.1)
The first and second terms within each round bracket of the numerator represent rightward
and leftward propagating waves, respectively. Given that rightward leading waves are
located at x > 0, the integral including exp{i(kx + ωt)} does not have a stationary point
and provides a negligible contribution (Bender & Orszag 1999). Hence, only the integral
including the first complex exponential exp{i(kx − ωt)} is of significance. We obtain

ζ∞
1 � − Au

2
√

πσ
Re
∫ ∞

0

k exp(−k2/(4σ) + i (kx − ωt))(ku + ω)

(k2u2 − ω2) cosh(kh)
dk

=
∫ ∞

0
ζ̃ (k) cos (kx − ωt) dk. (4.2)

Note that leading waves move at speeds close the shallow-water celerity
√

gh and
correspond to small wavenumbers k ∼ 0. To investigate the latter integral analytically,
let us expand ω about k → 0 and take into account wave dispersion up to the third power:

ω �
√

ghk
(

1 − h2k2

6

)
. (4.3)

Substitution of (4.3) into (4.2) yields

ζ∞
1 �

∫ ∞

0
ζ̃ (k) cos

[
k
(
x − t

√
gh
)+ k3

√
ghh2t
6

]
dk. (4.4)

The latter integral can be further simplified by Taylor expanding ζ̃ about k → 0 and
considering the first-order term (Whitham 1974; Debnath 1994; Mei et al. 2005)

ζ∞
1 � Au

2
(√

gh − u
)√

πσ

∫ ∞

0
cos

[
k
(
x − t

√
gh
)+ th2k3√gh

6

]
dk. (4.5)
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Let us now substitute the following variables:

Zα = k
(
x −

√
ght
)
, Z3 = 2

(
x − √

ght
)3

√
ghh2t

. (4.6a,b)

This yields

ζ∞
1 � A

√
πFr

2 (1 − Fr)
√

σ

(
2

h2t
√

gh

)1/3

Ai

[(
2

h2t
√

gh

)1/3 [
x − t

√
gh
]]

, (4.7)

where Ai is Airy’s function and Fr = u/
√

gh is the Froude number of the disturbance. For
an observer travelling at a speed close to the long-wave speed

√
gh, the leading wave ζ∞

1
decays as O(t−1/3). This rate of decay is the same as that of transient waves generated by
an initial displacement of the free surface (Mei et al. 2005).

Note that (4.7) is proportional to the volume of the disturbance A
√

π/
√

σ , and that it
becomes unbounded as Fr → 1, i.e. as the disturbance speed tends to the wave speed in
shallow water

√
gh. The same result is also obtained in the case of surface waves on a

running stream and has been investigated by several authors (Whitham 1974; Wu 1987;
Lee et al. 1989; Debnath 1994).

4.2. Free-surface elevation in the disturbance region at the leading order
To analyse the free-surface elevation in the disturbance region behind the leading wave,
let us split (2.39) into two components, ζ1 = ζ s

1 + ζw
1 , where ζ s

1 represents a stationary
free-surface elevation in the moving reference frame X = x − ut, and ζw

1 denotes an
oscillating part.

Let us start with the stationary component, i.e.

ζ s
1 = Au2

2
√

πσ

∫ ∞

−∞
k2 exp(ikX − k2/(4σ))

(k2u2 − ω2) cosh(kh)
dk. (4.8)

The latter integral cannot be investigated via the stationary phase method because the term
X is insufficiently large in the landslide region. However, the integral can be investigated
analytically by noting that the term exp{−k2/(4σ)} governs the leading behaviour of the
integrand in k ∼ 0. Hence, by Taylor expanding the integrand about k → 0, except for the
exponential terms, we obtain

ζ s
1 � − Au2

2
√

πσ(gh − u2)

∫ ∞

−∞
exp(ikX − k2/(4σ)) dk = −Au2 e−X2σ

(gh − u2)
= − f (X)Fr2

(1 − Fr2)
.

(4.9)
Retaining the exponential terms, instead of including them in the Taylor expansion, allows
us to find the dependence on the moving coordinate X and to improve the accuracy of the
approximated solution of (4.9). From (4.9) we note that the solution becomes unbounded
as Fr → 1, whereas if the seabed velocity is smaller than the wave speed in shallow water,
i.e. Fr < 1, the free-surface elevation develops a trough of permanent shape moving with
the seabed deformation at speed u. This result for the first-order stationary component ζ s

1 is
identical to the well-known result for long waves (Levin & Nosov 2016). Similar behaviour
has also been observed experimentally by Whittaker et al. (2015) and in the experimental
results provided in figure 2.
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The oscillating part ζw
1 can be investigated by using the method of stationary phase (Mei

et al. 2005). From (4.2) we obtain

ζw
1 = − Au

2
√

πσ
Re
∫ ∞

0

k exp(−k2/(4σ) + i (kx − ωt))(ku + ω)

(k2u2 − ω2) cosh(kh)
dk

� − Au√
2σ t

∣∣ω′′
0

∣∣
k0 exp(−k2

0/(4σ))

(k0u − ω0) cosh (k0h)
cos

(
k0x − ω0t + π

4

)
, (4.10)

where k0 is the stationary point satisfying x/t = dω/dk, and ω0 is the frequency evaluated
at k0. For deeper physical insight, let us now consider the Boussinesq expansion (4.3) and
consider an observer moving together with the bed deformation, i.e. x = ut. The explicit
expressions for k0 and ω′′

0 = d2ω/dk2|k0 simplify as

k0 =
√

2 (1 − Fr)
h

, ω′′
0 = −h2k0

√
gh = −h

√
2gh (1 − Fr), (4.11a,b)

respectively. Substituting (4.11a,b) back into (4.10), we obtain

ζw
1 � 3Au exp(−k2

0/(4σ))

27/4 (1 − Fr)5/4 (gh)3/4 √
σht cosh (k0h)

cos

[
2t

√
2gh (1 − Fr)3/2

3h
− π

4

]
, (4.12)

i.e. the observer sees a train of waves decaying as O(t−1/2) and travelling rightwards along
the trough (4.9), with relative phase speed

c = u − ω0

k0
= 2

√
gh

3
(1 − Fr) . (4.13)

Note that as t → ∞ only the stationary component ζ s
1 survives.

As outlined by Schäffer & Madsen (1995) and Kirby (2016), the expansion (4.3) can be
further improved to approximate the frequency ω even in the case of large wavenumber k.
However, the stationary point k0 would not have an explicit expression anymore and
numerical methods are required to evaluate the solution. Given that our scope is to find
explicit, approximate expressions for the free-surface elevation, we retain terms up to third
order and continue to adopt the classical Boussinesq expansion (4.3).

4.3. Second-order term ζG

To investigate the behaviour of the forcing term G inside the expression for ζG (2.58), we
first analyse the component Φzzf , where Φzz is defined by (A7) and f represents the bed
deformation (2.32). The shape function f is governed by an exponential term associated
with forcing in the landslide region X ∼ 0, and so we expect that oscillatory components
far from the perturbation make small contributions. The steady component in Φzz reads

Φ1zz = − iAu
2
√

πσ

∫ ∞

−∞
k3 exp(ik(x − ut) − k2/(4σ))

(k2u2 − ω2) cosh2(kh)
dk

+ iAu
2g

√
πσ

∫ ∞

−∞
kω2 exp(ik(x − ut) − k2/(4σ)) dk. (4.14)

The latter integrals can be investigated analytically by noting that the exponential
exp{−k2/(4σ)} focuses the contributions as k → 0. As before, we retain the complex
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exponential to improve the approximation, but Taylor expand the other terms about k → 0.
Hence,

Φ1zz � − iAu
2
√

πσ(u2 − gh)

∫ ∞

−∞
k exp(ik(x − ut) − k2/(4σ)) dk

+ iAuh
2
√

πσ

∫ ∞

−∞
k3 exp(ik(x − ut) − k2/(4σ)) dk

= −2f (X)uσX
h

{
1

1 − Fr2 + 2h2σ [3 − 2σX2]
}

, (4.15)

which models a rightwards propagating trough followed by a single crest. Similarly, we
derive the steady component of Φx (A8) which is part of the forcing term Φxfx in G as

Φ1x = − Aug
2
√

πσ

∫ ∞

−∞
k2 exp(ik(x − ut) − k2/(4σ))

(k2u2 − ω2) cosh2(kh)
dk

− Au
2g

√
πσ

∫ ∞

−∞
ω2 exp(ik(x − ut) − k2/(4σ)) dk. (4.16)

Again, we retain the complex exponential and Taylor expand the integrands about k → 0,

Φ1x � − Aug
2
√

πσ(u2 − gh)

∫ ∞

−∞
exp(ik(x − ut) − k2/(4σ)) dk

− Auh
2
√

πσ

∫ ∞

−∞
k2 exp(ik(x − ut) − k2/(4σ)) dk

= − f (X)u
h

{
1

1 − Fr2 + 2h2σ [1 − 2σX2]
}

, (4.17)

which represents a propagating trough. Therefore, the forcing term G (2.43) can be
approximated as

G � 4uσ f 2X[1 + 4h2σ(1 − Fr2)(1 − σX2)]
εh(1 − Fr2)

. (4.18)

Use of the expression for ζG (2.58) yields

ζG = A

8π
√

2h(1 − Fr2)

∫ ∞

−∞
exp(ikx + k2/(8σ))C

cosh(kh)
[4 + h2(1 − Fr2)(k2 + 4σ)]dk.

(4.19)
Let us first define the rightward leading wave approximation of the term above as ζ∞

G .
By expanding the integrand except for the phase functions and recalling that terms
proportional to exp{i(kx + ωt)} give negligible contributions we obtain

ζ∞
G � −A2[hu2σ − g(1 + h2σ)]

2
√

2πσ(u2 − gh)2

∫ ∞

0
cos(kx − ωt)dk

= A

h
√

2

(
h2σ + 1

1 − Fr2

)
× ζ∞

1 , (4.20)

where ζ∞
1 is the leading wave approximation at the leading order (4.7). The term in

rounded brackets is positive for small Froude numbers, thus ζ∞
G causes the amplitude
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of the leading wave to increase. This second-order contribution depends on three main
parameters: (i) the ratio of disturbance height (or wave amplitude scale) to offshore water
depth A/h; (ii) the Froude number Fr; and (iii) the ratio between water depth h and bed
perturbation length scale 1/

√
σ . Therefore, the second-order solution forced at the free

surface is valid so long as the ratio A/h and h
√

σ are both small and Fr � 1, i.e. away
from the critical speed.

In the landslide region, a different approximation is required. We write ζG = ζ s
G + ζw

G ,
where the superscripts refer to the static and oscillatory components in C. We obtain

ζ s
G = A2u2

8h
√

2πσ(1 − Fr2)

∫ ∞

−∞
exp(ikX − k2/(8σ))k2[4 + h2(1 − Fr2)(k2 + 4σ)]

(k2u2 − ω2) cosh(kh)
dk

� − f 2Fr2

h(1 − Fr2)

(
h2σ + 1

1 − Fr2

)
= f

h

(
h2σ + 1

1 − Fr2

)
× ζ s

1, (4.21)

in which we have adopted an approximation for k ∼ 0 because of the exponential term
exp{−k2/(8σ)}. Therefore, the effect of ζ s

G is to increase the depth trough; indeed the
latter is proportional to the square of landslide shape f 2 and increases with Fr.

The second and third terms in C represent the oscillatory component leading to ζw
G ,

which is investigated by applying the stationary phase method as follows:

ζw
G � −A2uk0 exp(−k2

0/(8σ))[4 + h2(1 − Fr2)(k2
0 + 4σ)]

8
√

2πσh(1 − Fr2)(k0u − ω0) cosh(k0h)

× cos[k0x − ω0t + π

4
]

√
2π

t
∣∣ω′′

0

∣∣
= A exp(k2

0/(8σ))

h
√

2

(
1

1 − Fr2 + h2(k2
0 + 4σ)

4

)
× ζw

1 , (4.22)

which is in phase with ζw
1 (4.10) and so makes a positive contribution. Note that for k0 → 0

we recover the same term multiplying ζ∞
1 in (4.20).

4.4. Second-order term ζF

As is demonstrated in the following section, the term ζF is characterised by narrow
fluctuations between the leading waves and the landslide region. Given that these
oscillations occur along the x-coordinate we expect that among all the forcing terms
included in F, those including the x-derivatives provide the most significant contributions.
For this reason, we focus solely on the behaviour of Φxζx and investigate how this term
affects the second-order component ζF.

From (4.9)–(4.10), we note that away from the leading waves, the spatial derivative of
the free surface indicates that it is composed of a stationary shape moving with the bed
deformation and an oscillating part as follows:

ζ1x � 2σXfFr2

1 − Fr2 + Au√
2σ t

∣∣ω′′
0

∣∣
k2

0 exp(−k2
0/(4σ))

(k0u − ω0) cosh (k0h)
sin
(

k0x − ω0t + π

4

)
= ζ s

1x
+ ζw

1x
.

(4.23)
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Similarly, the velocity potential derivative Φ1x is approximated by

Φ1x � − uf
h(1 − Fr2)

− Aug√
2σ t

∣∣ω′′
0

∣∣
k2

0 e−k2
0/(4σ)

(k0u − ω0) ω0 cosh (k0h)
cos

(
k0x − ω0t + π

4

)

= Φs
1x

+ Φw
1x

. (4.24)

Therefore the corresponding free-surface elevation ζF reads

ζF (x, t) � − 1
π

∫ t

0

∫ ∞

−∞

∫ ∞

−∞
ζ1ξ Φ1ξ exp (−ik (ξ − x)) cos ω (τ − t) dξ dk dτ. (4.25)

The forcing component ζw
1ξ

Φw
1ξ

in the integral above, decays as O(t−1), i.e. much faster
than ζ s

1ξ
Φs

1ξ
, ζw

1ξ
Φs

1ξ
and ζ s

1ξ
Φw

1ξ
, and so makes a negligible contribution.

Recalling that ζ1 = ζ s
1x

+ ζw
1x

, accordingly we write ζF = ζ s
F + ζ sw

F , where the
superscripts indicate the contributions of static (ζ s

1ξ
Φs

1ξ
) and product between oscillating

and static components (ζ s
1ξ

Φw
1ξ

; ζw
1ξ

Φs
1ξ

), respectively, to the second-order term (4.25). The
contribution of ζ s

1ξ
Φs

1ξ
yields

ζ s
F � 2A2gu3σ

π(gh − u2)2

∫ t

0

∫ ∞

−∞

∫ ∞

−∞
exp(−ik(ξ − x) − 2(ξ − uτ)2σ)

× (ξ − τu) cos [ω (τ − t)]dξ dk dτ

= Au2g

2π
√

2(u2 − gh)2

∫ ∞

−∞
exp(ikx + k2/(8σ))C (k, t) dk. (4.26)

If we focus attention on the leading wave, the primary contribution is given by k ∼ 0,
hence the integral above can be approximated as

ζ
s,∞
F � A2u3g

√
π

2π
√

2σ(u2 − gh)2(
√

gh − u)

× Re
∫ ∞

0
cos (kx − ωt)dk = AF r2

√
2h(Fr2 − 1)2

× ζ∞
1 , (4.27)

which causes the amplitude of the leading wave to increase. The second-order contribution
of (4.27) depends on two main parameters: (i) the ratio of disturbance height (or wave
amplitude scale) to offshore water depth A/h; and (ii) the Froude number Fr. Therefore, the
second-order solution forced at the free surface is valid so long as the ratio A/h is small and
Fr < 1, i.e. away from the critical speed. Note also that for small Froude numbers (4.27)
is much smaller than the second-order leading wave component ζ∞

G (4.20). In this work
Fr � 1 and so ζ

s,∞
F makes a small contribution to the leading wave behaviour. If we now

focus on the disturbance region, performing a similar analysis as in § 4.2 on expression
(4.26) yields ζ s

F = ζ
s,s
F + ζ

s,w
F , where

ζ
s,s
F � A2u4g

2
√

2(u2 − gh)3√σπ

∫ ∞

−∞
exp([ikX − k2/(8σ)])dk = − f 2Fr4

h(1 − Fr2)3 . (4.28)

Therefore, the effect of ζ
s,s
F is to increase the depth of the trough and to reduce its width.

This term is mainly related to the shape f and speed u of the moving deformation and gives
insignificant results when Fr � 1.
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It remains to investigate the term ζ
s,w
F given by the remaining contribution to C. From

(4.26), the stationary phase method gives

ζ
s,w
F = AFr2 exp(k2

0/(8σ)) cosh (k0h)

h
√

2(1 − Fr2)
× ζw

1 , (4.29)

which is small for bed deformation speeds far from the shallow-water wave celerity. Note
that ζ

s,w
F is in phase with the leading-order waves ζw

1 (4.10), and so its effect is to increase
their amplitude in the vicinity of the bed deformation.

The effect of ζw
1x

and Φw
1x

on the second-order term ζF yields

ζ sw
F (x, t) = A2u

π
√

2σ(1 − Fr2)

×
∫ t

0

∫ ∞

−∞

∫ ∞

−∞
k2

0 cos [ω (τ − t)] exp(−ik(ξ − x) − σ(ξ − uτ)2 − k2
0/(4σ))√

τ
∣∣ω′′

0

∣∣ (k0u − ω0) cosh (k0h)

×
[

2σ (ξ − uτ) Fr2g
ω0

cos
(

k0ξ − ω0τ + π

4

)
+ u

h
sin
(

k0ξ − ω0τ + π

4

)]
dξ dk dτ.

(4.30)

The latter is more complicated than (4.26) because k0 and ω0 depend on space and time.
To obtain an approximate solution of this integral at large distance, we first derive the
approximate location of the stationary point by noting that the exponential term in the
integrals concentrates effects in the landslide region (ξ − uτ). This provides k0 and ω′′

0
expressed as (4.11a,b). Then we solve the integrals in τ and ξ , and expand the frequency
ω about k ∼ 0 except the phase function eiωt. This yields

ζ sw
F (x, t) �

iA2gk2
0Fr2 exp

(
− k2

0
2σ

)

4σ

√
2
∣∣ω′′

0

∣∣ (ω0 − k0u)(1 − Fr2)ω0 cosh (k0h)

× {Erf [(1 + i) χ ] + Erf [(i − 1) χ ]}
∫ ∞

−∞
exp (i (kx − ωt)) dk, χ =

√
t (ω0 − k0u)√

2
,

(4.31)

where Erf denotes the error function. Using the series expansion (7.1.29) in Abramowitz
& Stegun (1972), we decompose the Erf into real and imaginary parts, giving

ζ sw
F (x, t) = −

A2gk2
0Fr2 exp

(
− k2

0
2σ

)

4σ

√
2
∣∣ω′′

0

∣∣ (ω0 − k0u)(1 − Fr2)ω0 cosh (k0h)

e−χ2

×
[

sin (2χ2)

2πχ
+ 2

π

∞∑
n=1

e−(n2/4)(2χ cosh(nχ) sin(2χ2) + n sinh(nχ) cos(2χ2))

n2 + 4χ2

]
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×
∫ ∞

−∞
exp (i (kx − ωt)) dk �

Agu exp

(
− k2

0
4σ

)
sin
(π

4
+ 2χ2

)
4π2h

√
2(1 − Fr2)χ (gh)1/4

√
k0(1 − Fr)

σ
∣∣ω′′

0

∣∣ × ζw
1 .

(4.32)

Since χ is proportional to
√

t and ζw
1 decays as O(t−1/2), the above expression decays as

O(t−1), i.e. it decreases faster than the wave oscillations at leading order (4.10); ζ sw
F (x, t)

is also responsible for a modulation of the wave trough in the bed deformation region with
frequency

2χ2/t = ω0 − k0u � k0
(√

gh − u
) =

√
2g
h

(1 − Fr)3/2 . (4.33)

This is a peculiarity of nonlinear theory whose effects will be discussed in the next
section. We point out that similar qualitative behaviour was also observed experimentally
by Whittaker et al. (2015).

4.5. Second-order term B
As also demonstrated in the next section, the behaviour of the term B resembles a
propagating narrow trough of constant shape and speed u. This means that terms including
oscillating components make negligible contributions. Therefore,

B � − 1
εg

[
1
2
(Φs2

1x
+ ζ s2

1t
) + Φs

1zt
ζ s

1

]

=
{

1
2h(1 − Fr2)

+ 2u2σ 2(1 − Fr2)X2

gFr

+ 2hσFr2[1 + 4tux − 2σ(x2 + u2t2)]
}

× ζ s
1 f , (4.34)

in which we utilise the wave trough approximation at leading order ζ s
1 expressed by (4.9);

f concentrates the effects in the landslide region X ∼ 0, and so for small Froude numbers
Fr � 1 and X � 1 expression (4.34) can be crudely approximated as

B � f
2h(1 − Fr2)

× ζ s
1 . (4.35)

Equation (4.35) represents a small wave trough propagating with the bed deformation.
Since f ∼ O(A) � h, away from the critical speed the ratio in the latter expression is much
smaller than unity, and is of order ε. This is in agreement with the perturbation expansion
in terms of ε. Note that

lim
Fr→0

B
ζ s

G
= 1

2(h2σ + 1)
, (4.36)

with ζ s
G given by (4.21). Therefore, for large ratio between sea depth h and bed slide length

scale 1/
√

σ , B becomes much smaller than ζ s
G, and so exerts a minor effect at second

order.
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Figure 3. First- and second-order non-dimensional free-surface elevation profiles ζ ′ = ζ/A vs χ ′ = x/h at
non-dimensional times: (a) τ ′ = 18.71, (b) τ ′ = 37.43, (c) τ ′ = 56.14 and (d) τ ′ = 74.85. Values of channel
depth and slide amplitude are h = 0.175, A = 0.026 m, whereas the bed slide Froude number is Fr = 0.3.

5. Results and discussion

5.1. Linear and weakly nonlinear model results
We now consider the same channel flume and moving disturbance geometry analysed in
§ 3, with larger Froude number Fr = 0.3, equivalent to bed slide speed u = 0.393 m s−1.
For a better understanding of the physical phenomenon, we define the following
non-dimensional variables:

χ ′ = x
h
, τ ′ = t

√
g
h
. (5.1a,b)

Figure 3 presents snapshots of both the linear and nonlinear solutions at times t =
[2.5, 5, 7.5, 10] s, corresponding to τ ′ = [18.71, 37.43, 56.14, 74.85]. The free-surface
elevation components are evaluated by solving the complete integrals in § 2. The
second-order leading wave elevation is larger than that evaluated according to
leading-order theory, whereas over the moving bed deformation the free surface exhibits a
more pronounced pulsation in the nonlinear solution, unlike the linearised approximation.
The leftwards propagating wave is not as strongly affected by nonlinear dynamics as the
wave propagating in the direction of the disturbance.

Figure 4 shows the second-order components: the bed-forced solution ζG, the
free-surface-forced solution ζF, and the second-order component B arising from the
first-order solution.
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Figure 4. Spatio-temporal behaviour of second-order components vs non-dimensional variables χ ′ = x/h,
τ ′ = t

√
g/h; (a) ζG/A, (b) ζF/A and (c) B/A.

Comparison of the numerical values between figures 3–4(a) reveals that the behaviour
of the ζG component is similar to that of the leading-order wave. This validates the
approximated theoretical expressions in § 4.3.

Here, ζF exhibits a relatively short wavelength wavy pattern in the bed deformation
region, but seems to have only a minor effect on the leading wave maximum value,
especially at low Froude numbers. We remark that our theory is valid so long as the Froude
number is not close to unity. As shown in § 4.4, the term ζF causes narrow oscillations in
the bed deformation region and this explains why the trough presents fast oscillations at
second order. This has also been observed in experiments by Whittaker et al. (2015) in the
bed slide region (see figures 5–7–10 of the mentioned work).

Finally, figure 4(c) shows that the behaviour of B is mainly characterised by a small
trough propagating with the bed deformation. Note also that the value of ζG is smaller
than ζF, even though their contributions are of the same order of magnitude. This is in
agreement with the asymptotic expansions of § 4.5.

5.2. Weakly nonlinear and dispersive effects on leading wave behaviour
In this section we examine the effects of second-order contributions and wave dispersion
on the behaviour of propagating waves in the region x ∼ t

√
gh. For later convenience,

we first define the following non-dimensional variables ξ ′ = x′ − τ ′, where ξ ′ denotes
a non-dimensional moving coordinate. In dimensional variables ξ = ξ ′h = x − t

√
gh

represents the distance from a wave front propagating in shallow water. Figure 5 shows
the behaviour of the non-dimensional leading wave amplitude predicted by second-order
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Figure 5. Effect of disturbance amplitude A on leading waves at τ ′ = 120; (a) A = 0.026 m and (b) A =
0.013 m. Second-order contributions affect mainly the first leading wave crest, whereas wave dispersion
shortens the wavelength of subsequent oscillations with respect to the leading wave approximation (4.7).

theory, leading-order theory and the leading wave approximation (4.7) as a function of
non-dimensional distance ξ ′ at non-dimensional time τ ′ = 120. The moving bed geometry
is the same as in the previous section except for its amplitude. Specifically, figure 5(a)
refers to a case with disturbance amplitude A = 0.026 m, whereas figure 5(b) refers to
a case with smaller amplitude A = 0.013 m. Figures 5(a) and 5(b) show that the main
effect of the second-order contributions is to increase the leading wave crest height and
the following trough depth. Far from the first leading waves, however, the free-surface
elevation predicted at leading order is almost coincident with that predicted at second
order. In this region, the wave steepness and the effect of nonlinearity both decrease, hence
the influence of quadratic forcing terms becomes small.

Figure 5(a) shows that a larger disturbance amplitude affects the first oscillations and
tends to increase their amplitude. In particular, the difference between leading-order and
second-order oscillations increases almost proportionally with A. This is in agreement with
the assumption that the wave steepness is a small parameter ε.

As far as dispersion is concerned, note that the trailing waves in the dispersive solution
shorten faster than predicted by the weakly dispersive leading wave approximation (4.7).
To explain this behaviour we refer to the method of stationary phase, recalling that
an observer far from the wave front and moving at speed Cg = ω′(k0) sees a train of
sinusoidal waves with fixed wavenumber k0. Since (4.7) is derived using the Boussinesq
approximation (4.3) instead of the full dispersion relation, we find that CBoussinesq < Cg.
As a consequence, the Boussinesq approximation fails to predict the correct time of arrival
of trailing crests and troughs.

Now let us consider the influence of the disturbance length. The behaviour of the
leading waves for two different disturbance lengths and fixed A = 0.026 m is shown in
figure 6. Figures 6(a) and 6(b) refer to σ = 19/2 and σ = 19 × 2 m−2. These correspond,
respectively, to disturbance lengths increased and divided by a factor

√
2, compared with

the previous cases. The leading wave approximation captures well the behaviour of the first
leading waves at first order, whereas second-order effects tend to increase wave amplitude.
The main differences lie in the behaviour of the oscillations behind the front. As the
disturbance length increases, the spatial decay of the oscillation becomes more pronounced
than that predicted by (4.7). This is because the disturbance is longer, and so more time
τ ′ is needed for the leading waves to exhibit asymptotic behaviour. The opposite occurs in
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Figure 6. Effect of disturbance length on leading waves at τ ′ = 120. (a) σ = 19/2 m−2 and (b) σ = 19 ×
2 m−2. As in figure 5, the second-order contributions affect the first leading wave height, and subsequent
oscillations are shorter than (4.7). Note that larger disturbances increase the spatial decay of the wave pattern
behind the wave front.
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Figure 7. Effect of disturbance speed on leading waves for τ ′ = 120; (a) Fr = 0.4 and (b) Fr = 0.2. The
spatial decay is similar to that described by (4.7), and nonlinearity becomes progressively significant as the
Froude number increases.

the case shown in figure 6(b) where the spatial decay is smaller but the nonlinear effects
are more important because of the increase in disturbance steepness.

Figure 7 highlights the effect of seabed deformation speed on the leading waves.
Specifically, figures 7(a) and 7(b) show the behaviour of ζ ′ for Froude numbers Fr = 0.4
and Fr = 0.2. By comparing figures 5(a) and 7 we observe that the free-surface elevation
at second order increases with disturbance speed, while the spatial decay of oscillations
behind the first leading waves remains well described by the approximation (4.7).

Finally, figure 8 summarises all the foregoing results and shows the ratio of the
second-order to the leading-order contribution (ζ1 + ζ2)/ζ1, evaluated according to
the maximum elevation of the leading wave for several disturbance sizes and fixed
non-dimensional time τ ′ = 80. The figure shows that nonlinear effects increase with σ ,
i.e. with disturbance steepness and the slide height A.
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Figure 8. Ratio of maximum elevations of the leading wave (ζ1 + ζ2)/ζ1 evaluated from second- and
leading-order theory. This figure shows that second-order effects increase with the bed slide steepness and

height A.

6. Conclusions

We investigated the nonlinear hydrodynamics of dispersive transient waves generated by
a moving disturbance over a flat bed. This allowed us to elucidate the role of higher-order
components in shaping the wave field. The analytical model is solved by applying a
perturbation expansion to the governing equations. This yields a cascade of linearised
b.v.p.s, each of which is solved by means of the exponential Fourier transform in space. We
show that the second-order problem is forced by three main contributions: (i) nonlinearity
at the free surface; (ii) bed deformation steepness; and (iii) quadratic products given by
the solution at leading order. Their effect is to increase the free-surface amplitude and to
trigger oscillations in the trough above the disturbance. This explains earlier experimental
observations by Whittaker et al. (2015).

A parametric analysis of the system reveals that the first leading waves of the wave train
exhibits nonlinear non-dispersive behaviour, whereas closer to the tail the oscillations
are satisfactorily predicted by linear dispersive theory. The Boussinesq leading wave
approximation works well for the first crest, but predicts incorrect times of arrival for the
trailing waves. As expected, increases to the amplitude and speed of the bed deformation
magnify nonlinear effects.

The analytical model is validated by comparison with experimental results. Very good
agreement is found, given the complexity of the geometry and the impulse generated by
the instantaneous bed deformation motion.

We remark that the mathematical model is based on a simplified assumption of bed
deformation propagation at low Froude number. As Fr increases, the weakly nonlinear
theory starts to overpredict the wave amplitude, and other approaches are necessary. This
aspect is rather important, and worth further investigation.

The present study has considered a simplified bathymetry, where the bed disturbance
moves over an otherwise flat surface, reproducing the experimental layout of
Whittaker et al. (2015). Based on our results, and the scales involved in the phenomenon,
it is reasonable to expect very similar results on a mildly sloping bathymetry, i.e. for a
landslide. This is because the horizontal scale of motion, proportional to the landslide
length, is usually much greater than the vertical one, proportional to the landslide height.
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However, our results may not necessarily hold in the presence of steep depth contours,
such as cliffs and submarine canyons. Also, we assumed a two-dimensional geometry and
neglected additional three-dimensional effects, such as edge waves, which can become
dominant in the presence of trapping structures like beaches and continental shelves
(Sammarco & Renzi 2008; Renzi & Sammarco 2012, 2016).

Finally, asymptotic analyses are performed in the simplified assumption of a Gaussian
bed slide moving over a rigid horizontal seabed. More complicated seabed profiles such
as tensile faults (Okada 1985, 1992) are worth future investigation.

All the aforementioned aspects add levels of complexity that require the use of
large-scale numerical and experimental models. The results obtained herein for idealised
geometries contribute to our understanding of the hydrodynamics of dispersive landslide
tsunamis affected by higher-order contributions.
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Appendix A. Leading-order velocity potential, free-surface elevation and their
derivatives

Components of the second-order forcing term F, evaluated on the free surface z = 0, are
expressed as

Φ1 = − g
2π

∫ ∞

−∞
eikx

ω cosh(kh)
S dk, Φ1x = − ig

2π

∫ ∞

−∞
k eikx

ω cosh(kh)
S dk, (A1a,b)

Φ1z = − 1
2π

∫ ∞

−∞
ω eikx

cosh(kh)
S dk + 1

2π

∫ ∞

−∞
Ŵ eikx

cosh(kh)
dk, (A2)

Φ1zz = − 1
2π

∫ ∞

−∞
kω eikx

sinh(kh)
dk, (A3)

Φ1tz = − 1
2π

∫ ∞

−∞
ω2 eikx

cosh(kh)
C dk + 1

2π

∫ ∞

−∞
Ŵt eikx

cosh(kh)
dk, (A4)

Φ1ttz = − 1
2π

∫ ∞

−∞
ω2 eikx

cosh(kh)
[−ωS + W] dk + 1

2π

∫ ∞

−∞
Ŵtt eikx

cosh(kh)
dk, (A5)

ζ1 = 1
2π

∫ ∞

−∞
eikx

cosh(kh)
C dk, ζ1x = i

2π

∫ ∞

−∞
k eikx

cosh(kh)
C dk, (A6a,b)

and the components for G at the bed z = −h

Φ1zz = − g
2π

∫ ∞

−∞
k2 eikx

ω cosh2(kh)
S dk − 1

2π

∫ ∞

−∞
Ŵω2 eikx

g
dk, (A7)

Φ1x = − ig
2π

∫ ∞

−∞
k eikx

ω cosh2(kh)
S dk − i

2πg

∫ ∞

−∞
Ŵω2 eikx

k
dk. (A8)
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