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Differentiability of the operator norm on ℓ𝑝
spaces
Sreejith Siju

Abstract. In this paper, we present a characterization of strong subdifferentiability of the norm of
bounded linear operators on ℓ𝑝 spaces, 1 ≤ 𝑝 < ∞. Furthermore,we prove that the set of all bounded
linear operators in 𝐵(ℓ𝑝 , ℓ𝑞 ) for which the norm of 𝐵(ℓ𝑝 , ℓ𝑞 ) is strongly subdifferentiable is dense
in 𝐵(ℓ𝑝 , ℓ𝑞 ) . Additionally, we present a characterization of Fréchet differentiability of the norm of
bounded linear operators from ℓ𝑝 to ℓ𝑞 , where 1 < 𝑝, 𝑞 < ∞. Applying this result, wewill show that
theFréchet differentiability and theGateauxdifferentiability of thenormofbounded linear operators
on ℓ𝑝 spaces coincide, extending a known theorem regarding the operator norm on Hilbert spaces.

1 Introduction

The differentiability of the norm is a very useful tool in understanding the geometry of
the underlying Banach space. Various notions of differentiability of the norm of Banach
spaces include Fréchet, Gateaux, and strong subdifferentiability (referred to as 𝑆𝑆𝐷)
(see Definitions 2.1 and 3.2). It is well known that a point 𝑥 in a Banach space 𝑋 is a
smooth point if and only if the norm of 𝑋 is Gateaux differentiable at 𝑥. We employ the
terms Gateaux differentiability and smoothness interchangeably. The Fréchet differen-
tiability of the norm of a Banach space at point 𝑥 is equivalent to the existence of the
unique support functional at 𝑥 which is strongly exposed by 𝑥. Strong subdifferentia-
bility provides a non-smooth extension of Fréchet differentiability, relating Fréchet and
Gateaux differentiability. That is, the norm of a Banach space is Fréchet differentiable at
a point 𝑥 if and only if it is Gateaux differentiable and strongly subdifferentiable at 𝑥 [1].
The monographs [9] and [8] provide a detailed discussion of the concepts Fréchet and
Gateaux differentiability in Banach spaces. For a detailed study of strong subdifferen-
tiability of the norm, we recommend referring to the discussions found in [1, 1, 1], and
the references therein.

This article primarily investigates the strong subdifferentiability of operator norm
over the sequence spaces ℓ𝑝 , where 1 < 𝑝 < ∞. Additionally, we study the Fréchet and
Gateaux differentiability within the realm of operators acting on ℓ𝑝 spaces.

The strong subdifferentiability of Banach space norms has been studied extensively
in the literature.We refer the reader [1] for the basic theory of strong subdifferentiability.
Strong subdifferentiability has been also studied in the context of dual spaces, operator
norm, and 𝐽𝐵∗-triples (see [4, 2, 2, 1]). The connection between strong subdifferentiabil-
ity and Bishop-Phelps Bollobas properties has been explored in [6]. To see connections
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2 Sreejith Siju

between strong subdifferentiability and other notions in Banach space theory, we refer
[1, 3, 2, 1].

An interesting characterization of the strong subdifferentiability of the dual norm
of a Banach space 𝑋 at a bounded linear functional 𝑓 has been obtained in [1] by G.
Godefroy, V. Indumathi, and F. Lust-Piquard. The characterizing condition for strong
subdifferentiability is established in terms of the set of norm-attaining points of 𝑓 (see
Theorem 2.1). Moreover, in [4], M. Contreras, R. Paya, andW.Werner characterized the
strong subdifferentiability of the operator normofHilbert spaces (see Theorem2.3), and
showed that the collection of all strongly subdifferentiable points is dense in the space of
bounded linear operators on a Hilbert space. Subsequently, J. Guerrero and A. Palacios
broadened this characterization of strong subdifferentiability to encompass 𝐽𝐵∗-triples
[2].

In Theorem 2.4, we will show that the characterizing conditions of strong subdiffer-
entiability obtained in [1] (see Theorem 2.1) and [4](see Theorem 2.3) are essentially the
same if we view from the perspective of maximizing sequence (see Definition 2.3). This
equivalence gives rise to two natural questions in this context.

Question 1 Is it possible to extend Theorem 2.4 to bounded linear operators on Banach spaces?

Question 2 Is the set of strongly subdifferentiable points of 𝐵(𝑋), the space of bounded linear
operators on 𝑋 , dense in 𝐵(𝑋)?

In Section 2, we will show that Question 1 has an affirmative answer in the case of
ℓ𝑝 spaces, 1 < 𝑝 < ∞. We obtain a characterization for the strong subdifferentiability
of operator norm on ℓ𝑝 spaces in terms of the maximizing sequence of an operator, as
observed in the case of dual norm and operator norm on Hilbert space. We also prove
that such operators attain their norm. Our idea here is to first formulate a condition
that is equivalent to the characterization of strong subdifferentiability of operator norm
Hilbert spaces found in [4] (see Theorem 2.4). Then we will prove the equivalent con-
dition characterizes the strong subdifferentiability of operator norm on ℓ𝑝 spaces. We
will also address the borderline cases 𝑝 = 1,∞ towards the end of this section.

In Section 3, wewill give an affirmative answer toQuestion 2 in the case of ℓ𝑝 spaces,
1 ≤ 𝑝 < ∞. We will exhibit that, similar to the case of operator norm on Hilbert
spaces, the set of all strongly subdifferentiable points is norm dense in the space of
bounded linear operators on ℓ𝑝 spaces. This will also extend, in ℓ𝑝 space situation, a
result of J. Lindenstrauss [1] regarding norm-attaining operators to the class of strongly
subdifferentiable points of the space of bounded linear operator.

In [1], F. Kittaneh and R. Younis presented a characterization of smooth points in the
space of bounded linear operators on a Hilbert space, 𝐵(𝐻), using the essential norm
of an operator. Subsequently, W. Deeb and R. Khalil extended this characterization to
include operators on ℓ𝑝 spaces [7]. In another work [2] byW.Werner and K. F. Taylor, it
was exhibited that for a bounded linear operator𝑇 on aHilbert space𝐻, the assumption
made by F. Kittaneh and R. Younis regarding the essential norm of 𝑇 goes beyond char-
acterizing smoothness and serves as a characterization for the Fréchet differentiability
of the norm at 𝑇 . Thereby, proving that Fréchet and Gateaux differentiability coincide
in 𝐵(𝐻). Furthermore, it has been independently proved in [1] that the equivalence
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Differentiability of the operator norm on ℓ𝑝 spaces 3

between Fréchet and Gateaux differentiability holds in 𝐵(𝐻). So, it is natural to inquire
whether the coincidence exists between the Fréchet and Gateaux differentiability of the
norm of the space of bounded linear operators on ℓ𝑝 spaces.

Towards the conclusion of section 3, we establish, as a consequence of the results on
strong subdifferentiability, the equivalence between Fréchet andGateaux differentiabil-
ity of the operator norm on ℓ𝑝 spaces. Further, we will show that the assumption made
by F. Kittaneh and R. Younis regarding the essential norm of 𝑇 serves as a characteri-
zation for the Fréchet differentiability of operator norm on ℓ𝑝 spaces (see Proposition
3.9).

Notations: In this article, wewill use 𝑋 and𝑌 to represent infinite dimensional Banach
spaces,𝐻 to denote an infinite dimensional Hilbert space, and the scalar fields are either
real or complex, denoted by F. When referring to a subspace of a Banach space, we will
always assume it to be a closed subspace. The closed unit ball and the unit sphere of a
Banach space 𝑋 will be denoted by 𝐵𝑋 and 𝑆𝑋 , respectively. We consider every Banach
space 𝑋 as a subspace of its bidual 𝑋∗∗ through the canonical embedding. For a subset𝑌
of a Banach space 𝑋 , the annihilator of𝑌 in the dual space 𝑋∗ is denoted by𝑌⊥, defined
as 𝑌⊥ = { 𝑓 ∈ 𝑋∗ : 𝑓 (𝑦) = 0 ∀𝑦 ∈ 𝑌 }. The convex hull of a set 𝑆 is the smallest
convex set containing 𝑆, denoted by conv(𝑆). The closure of conv(𝑆) is represented by
conv(𝑆). For a Banach space 𝑋 , the extreme points of 𝐵𝑋 will be denoted by ext 𝐵𝑋 . For
a bounded subset 𝑆 of 𝑋 , the diameter of 𝑆 will be denoted by diam 𝑆.

Let 𝑋 and𝑌 be Banach spaces. We denote by 𝐵(𝑋,𝑌 ), the space of all bounded linear
operators from 𝑋 to𝑌 endowed with the usual operator norm. The space of all compact
operators from 𝑋 to 𝑌 is denoted by 𝐾 (𝑋,𝑌 ). We denote 𝐵(𝑋 × 𝑌 ) to be the space of
all bounded bilinear functional from 𝑋 × 𝑌 to F. When 𝑋 = 𝑌 , we abbreviate 𝐵(𝑋,𝑌 )
as 𝐵(𝑋), and 𝐾 (𝑋,𝑌 ) as 𝐾 (𝑋). The essential norm of a bounded linear operator 𝑇 ∈
𝐵(𝑋,𝑌 ) is defined as the distance from𝑇 to the space of compact operators, denoted by
∥𝑇 ∥𝑒 . For an operator𝑇 ∈ 𝐵(𝑋,𝑌 ), we define the set 𝑀𝑇 to be the set 𝑀𝑇 = {𝑥 ∈ 𝑆𝑋 :
∥𝑇𝑥∥ = ∥𝑇 ∥}. We call the set 𝑀𝑇 , the norm-attaining set of 𝑇 . For, 1 ≤ 𝑝 < ∞, the
direct sum of 𝑋 and𝑌 endowed with the norm ∥(𝑥, 𝑦)∥ = (∥𝑥∥ 𝑝 + ∥𝑦∥ 𝑝)

1
𝑝 is denoted

by 𝑋 ⊕𝑝𝑌 . We denote by 𝑋 ⊗̂𝜋𝑌 , and 𝑋 ⊗̌𝜀𝑌 , the projective and injective tensor product
of 𝑋 and𝑌 , respectively.

2 Strong subdifferentiability of operator norm

In this section, we will characterize strong subdifferentiability of the norm of 𝐵(ℓ𝑝 , ℓ𝑞)
at an operator 𝑇 ∈ 𝐵(ℓ𝑝 , ℓ𝑞) in terms of maximizing sequence of 𝑇 , where 1 < 𝑝, 𝑞 <

∞. To begin, we will review some definitions. Wewill first recall the definition of strong
subdifferentiability.

Definition 2.1 The norm of a Banach space 𝑋 is strongly subdifferentiable at a point
𝑢 ∈ 𝑋 if

lim
𝑡→0+

∥𝑢 + 𝑡𝑥∥ − ∥𝑢∥
𝑡

= Max{Re 𝑓 (𝑥) : 𝑓 ∈ 𝐽𝑋∗ (𝑢)} (2.1)

uniformly for 𝑥 ∈ 𝐵𝑋 , where 𝐽𝑋∗ (𝑢) = { 𝑓 ∈ 𝑆𝑋∗ : 𝑓 (𝑢) = ∥𝑢∥}.
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If this happens, we say that 𝑢 is an 𝑆𝑆𝐷 point of 𝑋 or simply 𝑢 is an 𝑆𝑆𝐷 point when
the Banach space under consideration is already known. It is evident that an element
𝑢 ∈ 𝑋 is an 𝑆𝑆𝐷 point of 𝑋 if and only if 𝑢

∥𝑢∥ is an 𝑆𝑆𝐷 point of 𝑋 . Hence, in the
subsequent discussion, we will consider strong subdifferentiability at points on the unit
sphere of a Banach space.

We need the following two definitions in the sequel.

Definition 2.2 Let 𝑋 and 𝑌 be Banach spaces. A bounded linear operator 𝑇 : 𝑋 → 𝑌

is said to attain its norm if there exists an element 𝑥 ∈ 𝑆𝑋 such that

∥𝑇𝑥∥ = ∥𝑇 ∥.

Definition 2.3 A maximizing sequence for 𝑇 ∈ 𝐵(𝑋,𝑌 ) is a sequence {𝑥𝑛} in 𝑋 with
𝑥𝑛 ∈ 𝑆𝑋 for all 𝑛 so that {∥𝑇𝑥𝑛∥} converges to ∥𝑇 ∥ as 𝑛→ ∞.

We know, from [1], an element 𝑢 is an 𝑆𝑆𝐷 point of 𝑋 if and only if the face 𝐽𝑋∗ (𝑢)
is strongly exposed by 𝑢, in the sense that the distance 𝑑 ( 𝑓𝑛, 𝐽𝑋∗ (𝑢)) tends to zero for
any sequence { 𝑓𝑛} in 𝐵𝑋∗ satisfying 𝑓𝑛 (𝑢) → 1. In [1], it is observed that for the dual
normof a Banach space 𝑋 to be strongly subdifferentiable at a bounded linear functional
𝑓 ∈ 𝑆𝑋∗ , it is enough to workwith the set 𝐽𝑋 ( 𝑓 ) = {𝑥 ∈ 𝐵𝑋 : ∥ 𝑓 ∥ = 𝑓 (𝑥) = 1} instead
of 𝐽𝑋∗∗ ( 𝑓 ). We will now recall this result from [1].

Theorem 2.1 [1, Proposition 2.2] Let 𝑋 be a Banach space and 𝑓 ∈ 𝑆𝑋∗ . Then the following
are equivalent.

(𝑖) The norm of 𝑋∗ is strongly subdifferentiable at 𝑓 .
(𝑖𝑖) 𝐽𝑋 ( 𝑓 ) ≠ ∅, and for every sequence {𝑥𝑛} in 𝐵𝑋 satisfying 𝑓 (𝑥𝑛) → 1, there exists a

subsequence {𝑥𝑛𝑖 } of {𝑥𝑛} such that 𝑑 (𝑥𝑛𝑖 , 𝐽𝑋 ( 𝑓 )) → 0.

Remark 2.2 It is easy to see that condition (ii) above is equivalent to the statement,
𝐽𝑋 ( 𝑓 ) = ∅, and for each 𝜀 > 0 there exists 𝛿 > 0 such that whenever 𝑥 ∈ 𝑆𝑋 satisfies
𝑓 (𝑥) > 1 − 𝛿, we have 𝑑 (𝑥, 𝐽𝑋 ( 𝑓 )) < 𝜀. In the subsequent sections of this paper, we
use these two equivalent conditions interchangeably.

Similarly, it is observed in [4, Theorem 1] that an analogous characterization holds
for the norm of 𝐶∗-algebra, in particular for the operator norm on Hilbert spaces. We
will now recall this result.

Theorem 2.3 [4, Theorem 1] Let A be a 𝐶∗-algebra and 𝑎 ∈ 𝑆A . The following assertions
are equivalent.
(i) The norm ofA is strongly subdifferentiable at a.
(ii) 1 is an isolated point in the spectrum of |𝑎 |.

Assume that in the above theorem the 𝐶∗-algebra under consideration is 𝐵(𝐻) and
the element 𝑎 ∈ 𝑆A corresponds to an operator𝑇 ∈ 𝑆𝐵(𝐻 ) . Thenwe have the following
equivalent characterization of strong subdifferentiability of operator norm on Hilbert
spaces in terms of maximizing sequences/norm-attaining set of 𝑇 .
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Differentiability of the operator norm on ℓ𝑝 spaces 5

Theorem 2.4 Let 𝐻 be a Hilbert space and 𝑇 ∈ 𝑆𝐵(𝐻 ) . Then the following are equivalent.

(𝑖) The norm of 𝐵(𝐻) is strongly subdifferentiable at 𝑇 .
(𝑖𝑖) 𝑀𝑇 ≠ ∅ and for every maximizing sequence {𝑥𝑛} of𝑇 , there exists a subsequence {𝑥𝑛𝑖 } of

{𝑥𝑛} such that 𝑑 (𝑥𝑛𝑖 , 𝑀𝑇 ) → 0.
(𝑖𝑖𝑖) 𝑇 attains its norm and ∥𝑃𝑇 |𝑀𝑇

⊥ ∥ < 1, where 𝑃𝑇 = (𝑇∗𝑇)1/2.

Proof It is enough to show that (𝑖𝑖) and (𝑖𝑖𝑖) are equivalent, since (𝑖) ⇔ (𝑖𝑖𝑖) follows
from [4, Theorem 1, proof of (𝑖𝑖) ⇒ (𝑖𝑖𝑖)].

Assume that (𝑖𝑖𝑖) holds and write 𝑀 = span𝑀𝑇 , recall that

𝑀𝑇 = {𝑥 ∈ 𝑆𝐻 : ∥𝑇𝑥∥ = ∥𝑇 ∥ = 1}.

Let {𝑥𝑛} in 𝑆𝐻 be a maximizing sequence for 𝑇 , that is, ∥𝑇𝑥𝑛∥ → 1. We can write

𝑥𝑛 = 𝑧𝑛 + 𝑤𝑛,

where 𝑧𝑛 ∈ 𝑀 and 𝑤𝑛 ∈ 𝑀⊥ with

1 = ∥𝑥𝑛∥2 = ∥𝑧𝑛∥2 + ∥𝑤𝑛∥2. (2.2)

We also have ⟨𝑃𝑇 𝑧𝑛, 𝑃𝑇𝑤𝑛⟩ = 0. Therefore,

∥𝑃𝑇𝑥𝑛∥2 = ∥𝑃𝑇 𝑧𝑛∥2 + ∥𝑃𝑇𝑤𝑛∥2.

Since 𝑃𝑇 is a positive operator and 𝑧𝑛 ∈ span𝑀𝑇 = span𝑀𝑃𝑇 , we have

𝑃𝑇 𝑧𝑛 = 𝑧𝑛. (2.3)

Together with equation (2.2) and the fact that ∥𝑇𝑥∥ = ∥𝑃𝑇𝑥∥ for all 𝑥 ∈ 𝐻, we get

lim ∥𝑃𝑇𝑤𝑛∥2 = 1 − lim ∥𝑃𝑇 𝑧𝑛∥2 (2.4)

= 1 − lim ∥𝑧𝑛∥2

= ∥𝑤𝑛∥2.

Now, if lim ∥𝑤𝑛∥ ≠ 0, then we have lim ∥𝑃𝑇𝑤𝑛 ∥2

∥𝑤𝑛 ∥2 = 1. Since 𝑤𝑛 ∈ 𝑀⊥, we will then
have ∥𝑃𝑇 |𝑀⊥ ∥ = 1.

Observe that, 𝑀⊥ = 𝑀⊥
𝑇
. Therefore, we will have ∥𝑃𝑇 |𝑀⊥

𝑇
∥ = 1. But, by the

assumption, ∥𝑃𝑇 |𝑀⊥ ∥ < 1. Therefore, lim ∥𝑤𝑛∥ = 0. That is, lim ∥𝑥𝑛 − 𝑧𝑛∥ = 0 and
∥𝑧𝑛∥ → 1.

Take the sequence {𝑦𝑛} to be 𝑦𝑛 =
𝑧𝑛

∥𝑧𝑛 ∥ . Then, by Equation (2.3), 𝑦𝑛 ∈ 𝑀𝑇 . Also,
since ∥𝑧𝑛∥ → 1, we get

lim ∥𝑥𝑛 − 𝑦𝑛∥ = lim ∥𝑥𝑛 − 𝑧𝑛∥ = 0.

This implies (𝑖𝑖).
Conversely assume that (𝑖𝑖) holds. If possible, assume that ∥𝑃𝑇 |𝑀𝑇

⊥ ∥ = ∥𝑇 ∥. Then
there exists a sequence {𝑤𝑛} in 𝑆𝑀⊥

𝑇
such that lim ∥𝑇𝑤𝑛∥ = lim ∥𝑃𝑇𝑤𝑛∥ = 1. Since

𝑤𝑛 ∈ 𝑀⊥
𝑇
, we have 𝑑 (𝑤𝑛, 𝑀𝑇 ) ≥ ∥𝑤𝑛∥ = 1 for all 𝑛, which contradicts (𝑖𝑖). ■

From the condition (𝑖𝑖) of Theorem 2.1 and Theorem 2.4, it is evident that a shared
property of maximizing sequence of both bounded linear functionals on Banach spaces
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and operators on aHilbert space characterize the strong subdifferentiability of the norm
of respective spaces.

The equivalent characterization (condition (𝑖𝑖)) given in Theorem 2.4 does not rely
on the orthogonality properties specific to Hilbert spaces. Consequently, this property
can be verified for more general Banach spaces. So, it is worth considering whether this
new reformulation characterizes the strong subdifferentiability of the norm of the space
of bounded linear operators on a Banach space which is not necessarily a Hilbert space.

In the remaining part of this section, wewill prove that Theorem 2.4 can be extended
to ℓ𝑝 spaces, 1 < 𝑝 < ∞. To prove the sufficient part, we need the following lemma,
which is similar to [2, Theorem 1].

Lemma 2.5 Let 𝑋 and 𝑌 be Banach spaces. Let 𝐵 ∈ 𝐵(𝑋 × 𝑌 ) with ∥𝐵∥ = 1. Then the
norm of 𝐵(𝑋 ×𝑌 ) is strongly subdifferentiable at 𝐵 if the following condition holds. For each
𝜀 > 0 there exists 𝛿 > 0 such that, whenever (𝑥, 𝑦) ∈ 𝑆𝑋 × 𝑆𝑌 satisfies 𝐵(𝑥, 𝑦) > 1 − 𝛿,
there exists (𝑥0, 𝑦0) ∈ 𝑆𝑋 × 𝑆𝑌 satisfying 𝐵(𝑥0, 𝑦0) = 1, ∥𝑥 − 𝑥0∥ < 𝜀 and ∥𝑦 − 𝑦0∥ < 𝜀

Proof The proof of this lemma utilizes a similar idea employed in the proof of [2,
Theorem 1].

Suppose 𝐵 ∈ 𝐵(𝑋 × 𝑌 ) with ∥𝐵∥ = 1 and the given condition holds. Assume that
the norm of 𝐵(𝑋 × 𝑌 ) is not strongly subdifferentiable at 𝐵. Then, by the definition of
strong subdifferentiability, there exists 𝜀 > 0 and bounded bilinear functionals 𝐶𝑛 on
𝑋 × 𝑌 with ∥𝐶𝑛∥ < 1

𝑛
such that

|∥𝐵 + 𝐶𝑛∥ − ∥𝐵∥ − Re 𝜙 (𝐶𝑛) | ≥ 𝜀 ∥𝐶𝑛∥ for all 𝜙 ∈ 𝐽𝐵(𝑋×𝑌 )∗ (𝐵). (2.5)

Using the assumed condition, choose a number 𝛿 > 0 which satisfies the following.
If Re 𝐵(𝑥, 𝑦) > 1−𝛿 for some (𝑥, 𝑦) ∈ 𝑆𝑋 ×𝑆𝑌 , then there exists (𝑥0, 𝑦0) ∈ 𝑆𝑋 ×𝑆𝑌

satisfying

(𝑖) 𝐵(𝑥0, 𝑦0) = 1,
(𝑖𝑖) ∥𝑥 − 𝑥0∥ < 𝜀

4 , ∥𝑦 − 𝑦0∥ < 𝜀
4 .

We can assume, w. l. o. g, that 𝛿 < 𝜀
2 . From Equation (2.5), we can find 𝐶𝑛 such that

∥𝐶𝑛∥ < 𝛿
2+𝛿 which satisfies the Inequality (2.5). Let𝐶 = 𝐶𝑛. Choose an element (𝑥, 𝑦) ∈

𝐵𝑋 × 𝐵𝑌 such that

(𝐵 + 𝐶) (𝑥, 𝑦) > ∥𝐵 + 𝐶∥ − 𝛿 ∥𝐶∥ .

Then we have:

∥𝐵∥ ≥ Re 𝐵 (𝑥, 𝑦) = (𝐵 + 𝐶) (𝑥, 𝑦) − Re𝐶 (𝑥, 𝑦) ≥ (𝐵 + 𝐶) (𝑥, 𝑦) − ∥𝐶∥
≥ ∥𝐵 + 𝐶∥ − (1 + 𝛿) ∥𝐶∥
≥ ∥𝐵∥ − (2 + 𝛿) ∥𝐶∥
> 1 − 𝛿.

Hence, Re 𝐵 (𝑥, 𝑦) > 1 − 𝛿. By choice of the number 𝛿, there exists (𝑥0, 𝑦0) ∈ 𝑆𝑋 × 𝑆𝑌
such that 𝐵(𝑥0, 𝑦0) = 1 and ∥𝑥 − 𝑥0∥ < 𝜀

4 and ∥𝑦 − 𝑦0∥ < 𝜀
4 .
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Differentiability of the operator norm on ℓ𝑝 spaces 7

Recall the isometric isomorphism 𝐵(𝑋×𝑌 ) � (𝑋 ⊗̃𝜋𝑌 )∗. Let 𝑐 be the bounded linear
functional on 𝑋 ⊗̃𝜋𝑌 corresponding to the bilinear functional𝐶 . Then

|𝐶 (𝑥, 𝑦) − 𝐶 (𝑥0, 𝑦0) | = |𝑐 (𝑥 ⊗ 𝑦 − 𝑥0 ⊗ 𝑦0) | (2.6)
≤ ∥𝐶∥ ∥𝑥 ⊗ 𝑦 − 𝑥0 ⊗ 𝑦0∥ 𝜋
≤ ∥𝐶∥ ∥(𝑥 − 𝑥0) ⊗ 𝑦 + 𝑥0 ⊗ (𝑦 − 𝑦0)∥ 𝜋
≤ ∥𝐶∥ 𝜀

2
.

We also have:

∥𝐵 + 𝐶∥ ≥ Re (𝐵 + 𝐶) (𝑥0, 𝑦0) = ∥𝐵∥ + Re𝐶 (𝑥0, 𝑦0) , (2.7)

From the Inequalities (2.6) and (2.7), we have

0 ≤ ∥𝐵 + 𝐶∥ − ∥𝐵∥ − Re𝐶 (𝑥0, 𝑦0)
< (𝐵 + 𝐶) (𝑥, 𝑦) + 𝛿 ∥𝐶∥ − ∥𝐵∥ − Re𝐶 (𝑥0, 𝑦0)
< 𝛿 ∥𝐶∥ + Re𝐶 (𝑥, 𝑦) − Re𝐶 (𝑥0, 𝑦0)
≤ 𝛿 ∥𝐶∥ + |𝐶 (𝑥, 𝑦) − 𝐶 (𝑥0, 𝑦0) |

< ∥𝐶∥ (𝛿 + 𝜀
2
)

< ∥𝐶∥𝜀,

which is a contradiction to the Inequality (2.5), since (𝑥0, 𝑦0) ∈ 𝐽𝐵(𝑋×𝑌 )∗ (𝐵). Therefore,
the norm of 𝐵(𝑋 × 𝑌 ) is strongly subdifferentiable at 𝐵. ■

We will next recall a theorem from [1].

Theorem 2.6 [1, Corollary 2.2] A reflexive Banach space 𝑋 is uniformly smooth if and only
if for every 𝜀 > 0 there is 0 < 𝜂(𝜀) < 1 such that, for all 𝑓 ∈ 𝐵𝑋∗ and all 𝑥 ∈ 𝑆𝑋 satisfying
| 𝑓 (𝑥) | > 1 − 𝜂(𝜀), there exists 𝑓0 ∈ 𝑆𝑋∗ satisfying | 𝑓0 (𝑥) | = 1 and ∥ 𝑓 − 𝑓0∥ < 𝜀.

We will now give a sufficient condition for strong subdifferentiability of operator
norm on Banach spaces when the range is uniformly smooth.

Proposition 2.7 Let 𝑋 and𝑌 be Banach spaces and𝑇 ∈ 𝑆𝐵(𝑋,𝑌 ) . Then the norm of 𝐵(𝑋,𝑌 )
is strongly subdifferentiable at 𝑇 if the following conditions hold.

(𝑖) 𝑀𝑇 ≠ ∅ and for every maximizing sequence {𝑥𝑛} of𝑇 , there exists a subsequence {𝑥𝑛𝑖 } of
{𝑥𝑛} such that 𝑑 (𝑥𝑛𝑖 , 𝑀𝑇 ) → 0.

(𝑖𝑖) 𝑌 is uniformly smooth.

Proof Assume that an operator𝑇 ∈ 𝑆𝐵(𝑋,𝑌 ) and the conditions (𝑖), (𝑖𝑖) hold. Since𝑌
is uniformly smooth, we have the isometric isomorphism between the following Banach
spaces.

𝐵(𝑋,𝑌 ) � 𝐵(𝑋,𝑌 ∗∗) � (𝑋 ⊗̂𝜋𝑌 ∗)∗ � 𝐵(𝑋 × 𝑌 ∗).
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So it is enough to prove that the norm of 𝐵(𝑋 × 𝑌 ∗) is strongly subdifferentiable at
𝑇 when viewed as a bounded bilinear functional on (𝑋 × 𝑌 ∗). Using Lemma 2.5, it is
enough to prove the following property (P).

(P) : For each 𝜀 > 0, there exists 𝛿 > 0 such that, whenever (𝑥, 𝑦∗) ∈ 𝑆𝑋 × 𝑆𝑌 ∗

satisfies 𝑇 (𝑥, 𝑦∗) > 1 − 𝛿, there exists 𝑥0 ⊗ 𝑦∗0 ∈ 𝐽𝐵(𝑋×𝑌 ∗ )∗ (𝑇) satisfying ∥𝑥 − 𝑥0∥ < 𝜀
and ∥𝑦 − 𝑦∗0∥ < 𝜀.

To see this, let 𝜀 > 0. Since 𝑌 is uniformly smooth, by Theorem 2.6, we have the
following property.

(P1) : We can find 𝛿1 > 0 such that whenever an element (𝑦, 𝑦∗) ∈ 𝑆𝑌 × 𝑆𝑌 ∗ satisfies
|𝑦∗ (𝑦) | > 1 − 𝛿1, there exists an element 𝑦∗0 ∈ 𝐽𝑌 ∗ (𝑦) with ∥𝑦∗ − 𝑦∗0∥ <

𝜀
2 .

From (𝑖), we also have the following.
(P2) : There exists 𝛿2 > 0 such that whenever an element 𝑥 ∈ 𝐵𝑋 satisfies ∥𝑇𝑥∥ >

1 − 𝛿2, we have 𝑑 (𝑥, 𝑀𝑇 ) < 𝛿1
2 .

Define

𝛿 = min
{
𝛿1

2
, 𝛿2, 𝜀

}
.

Choose an element (𝑥, 𝑦∗) ∈ 𝑆𝑋 × 𝑆𝑌 ∗ such that 𝑇 (𝑥, 𝑦∗) > 1 − 𝛿. Then

∥𝑇𝑥∥ ≥ 𝑇 (𝑥, 𝑦∗) > 1 − 𝛿.

Then, by property (P2), there exists 𝑥0 ∈ 𝑀𝑇 such that

∥𝑥 − 𝑥0∥ <
𝛿1

2
.

Therefore,

|𝑦∗ (𝑇𝑥0) | = |𝑦∗ (𝑇𝑥0 − 𝑇𝑥 + 𝑇𝑥) | > Re 𝑦∗ (𝑇𝑥0 − 𝑇𝑥 + 𝑇𝑥) >
−𝛿1

2
+ 1 − 𝛿 > 1 − 𝛿1.

Since 𝑇𝑥0 ∈ 𝑆𝑌 , by property (P1), there exists 𝑦∗0 ∈ 𝐽𝑌 ∗ (𝑇𝑥0) such that ∥𝑦∗ − 𝑦∗0∥ < 𝜀.
Thus, we have (𝑥0, 𝑦

∗
0) ∈ 𝐽𝐵(𝑋×𝑌 ∗ )∗ (𝑇) which satisfies the requirements of property

(P) above. Therefore, the norm of 𝐵(𝑋 × 𝑌 ∗) is strongly subdifferentiable at 𝑇 . ■

We are now in a position to give themain theorem of this section.Wewill next obtain
a characterization of strong subdifferentiability of the normof bounded linear operators
on ℓ𝑝 spaces, analogous to that of operators on Hilbert space. Towards this, we recall a
few definitions and results.

Definition 2.4 Let 𝑋 be a Banach space. For 𝑓 ∈ 𝑆𝑋∗ and 𝛿 > 0, the slice of 𝐵𝑋
corresponding to 𝑓 and 𝛿 is defined to be 𝑆( 𝑓 , 𝛿, 𝐵𝑋) = {𝑥 ∈ 𝐵𝑋 : Re 𝑓 (𝑥) > 1 − 𝛿}.

Remark 2.8 It is easy to see that if 𝑋 is a uniformly convex Banach space, then for an
𝑓 ∈ 𝑆𝑋∗ and 𝜀 > 0 we have diam 𝑆( 𝑓 , 𝛿(𝜀), 𝐵𝑋) < 𝜀, where 𝛿(𝜀) is the modulus of
convexity of 𝑋 corresponding to 𝜀.

We will now recall the definition of 𝑀-ideals in Banach spaces.
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Differentiability of the operator norm on ℓ𝑝 spaces 9

Definition 2.5 A closed subspace 𝐽 of a Banach space 𝑋 is called an 𝑀-ideal if there
exists a closed subspace 𝐽′ of 𝑋∗ such that 𝑋∗ = 𝐽⊥ ⊕1 𝐽

′, where 𝐽⊥ = { 𝑓 ∈ 𝑋∗ : 𝑓 |𝐽 =
0}.

We need the following property of 𝑀-ideals in the proof of our main theorem.

Lemma 2.9 [1] Let 𝐽 be an 𝑀-ideal in a Banach space 𝑋 . Then

ext 𝐵𝑋∗ = ext 𝐵𝐽⊥ ∪ ext 𝐵𝐽∗ .

We will next recall a theorem that characterizes the extreme points in the duals of
operator spaces.

Theorem 2.10 [2] Let 𝑋 and 𝑌 be Banach spaces. Then we have:

ext 𝐵𝐾 (𝑋,𝑌 )∗ = ext 𝐵𝑋∗∗ ⊗ ext 𝐵𝑌 ∗ .

We may replace 𝐾 (𝑋,𝑌 ) by any linear subspace containing 𝑋∗ ⊗ 𝑌 .

The following is the main theorem of this section, in which we give an affirmative
answer, in the case of ℓ𝑝 space, toQuestion 1 proposed in the introduction. This theorem
has many interesting applications including the denseness of strongly subdifferentiable
operators and a characterization of Fréchet differentiability, both ofwhich are discussed
in Section 3.

Theorem 2.11 Let 1 < 𝑝, 𝑞 < ∞ and an operator 𝑇 ∈ 𝐵(ℓ𝑝 , ℓ𝑞) with ∥𝑇 ∥ = 1. Then the
following are equivalent.

(𝑖) Norm of 𝐵(ℓ𝑝 , ℓ𝑞) is strongly subdifferentiable at 𝑇 .
(𝑖𝑖) 𝑀𝑇 ≠ ∅ and for every maximizing sequence {𝑥𝑛} of𝑇 , there exists a subsequence {𝑥𝑛𝑖 } of

{𝑥𝑛} such that 𝑑 (𝑥𝑛𝑖 , 𝑀𝑇 ) → 0.

Proof The implication (𝑖𝑖) ⇒ (𝑖) follows from Proposition 2.7.
We will now prove the implication (𝑖) ⇒ (𝑖𝑖). For, it is enough to prove that, for

each 𝜀 > 0, there exists 𝛿 > 0 such that

𝑑 (𝑥, 𝑀𝑇 ) ≤ 𝜀 whenever ∥𝑇 (𝑥)∥ > 1 − 𝛿 for some 𝑥 ∈ 𝐵ℓ𝑝 . (2.8)

To begin, assume that the norm of 𝐵(ℓ𝑝 , ℓ𝑞) is strongly subdifferentiable at an operator
𝑇 ∈ 𝑆𝐵(ℓ𝑝 ,ℓ𝑞 ) . Observe that, we have the following isometric identification,

𝐵(ℓ𝑝 , ℓ𝑞) � (ℓ𝑝 ⊗̂𝜋ℓ∗𝑞)∗.

under the map
𝐵(ℓ𝑝 , ℓ𝑞) ∋ 𝑇 → 𝑇 ∈ (ℓ𝑝 ⊗̂𝜋ℓ∗𝑞)∗, (2.9)

where the action of 𝑇 on ℓ𝑝 ⊗̂𝜋ℓ∗𝑞 is given by

𝑇

(
𝑛∑︁
𝑖=1

𝑥𝑖 ⊗ 𝑦∗𝑖

)
=

𝑛∑︁
𝑖=1

𝑦∗𝑖 (𝑇𝑥𝑖).
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Therefore, the norm of the dual space (ℓ𝑝 ⊗̂𝜋ℓ∗𝑞)∗ is strongly subdifferentiable at 𝑇 .
Fix 𝜀 > 0 and let 𝛿1 > 0 be the modulus convexity of the space ℓ𝑝 corresponding to

𝜀. Apply Remark 2.2 to obtain 𝛿 > 0 such that

𝑑 (𝑣, 𝐽ℓ𝑝 ⊗̂𝜋ℓ
∗
𝑞
(𝑇)) < 𝛿1 whenever 𝑇 (𝑣) > 1 − 𝛿 for some 𝑣 ∈ 𝐵ℓ𝑝 ⊗̂𝜋ℓ

∗
𝑞
. (2.10)

We will now prove that 𝑇 satisfies the requirements of (2.8) corresponding to the 𝛿 > 0
found in (2.10). For, let 𝑥 ∈ 𝑆ℓ𝑝 such that ∥𝑇𝑥∥ > 1 − 𝛿. Then there exists a bounded
linear functional 𝑦∗ ∈ 𝑆ℓ∗𝑞 such that 𝑦∗ (𝑇𝑥) = ∥𝑇𝑥∥. But

𝑇 (𝑥 ⊗ 𝑦∗) = 𝑦∗ (𝑇𝑥) = ∥𝑇𝑥∥ > 1 − 𝛿.

Therefore, from the expression (2.10), it follows that there exists an element 𝑢 ∈
𝐽ℓ𝑝 ⊗̂𝜋ℓ

∗
𝑞
(𝑇) such that

∥𝑥 ⊗ 𝑦∗ − 𝑢∥ 𝜋 < 𝛿1.

At this stage, we will try to get a representation of 𝑢. For, we will look at the set
𝐽𝐵(ℓ𝑝 ,ℓ𝑞 )∗ (𝑇). It is clear that

𝑢 ∈ 𝐽ℓ𝑝 ⊗̂𝜋ℓ
∗
𝑞
(𝑇) ⊆ 𝐽𝐵(ℓ𝑝 ,ℓ𝑞 )∗ (𝑇).

Observe that 𝐽𝐵(ℓ𝑝 ,ℓ𝑞 )∗ (𝑇) is a 𝑤∗-closed extremal subset of the closed unit ball of
𝐵(ℓ𝑝 , ℓ𝑞)∗, where a subset 𝐸 of a convex set 𝐶 is called extremal if 𝑥, 𝑦 ∈ 𝐸 whenever
𝑥, 𝑦 ∈ 𝐶 and 𝑡𝑥 + (1 − 𝑡)𝑦 ∈ 𝐸 , 𝑡 ∈ (0, 1).

Hence, 𝐽𝐵(ℓ𝑝 ,ℓ𝑞 )∗ (𝑇) is the𝑤∗-closed convex hull of its extreme points. In particular,

𝑢 ∈ 𝐽𝐵(ℓ𝑝 ,ℓ𝑞 )∗ (𝑇) = conv𝑤
∗ (ext 𝐽𝐵(ℓ𝑝 ,ℓ𝑞 )∗ (𝑇)).

That is,

𝑢 = 𝑤∗ − lim
𝑘→∞

𝑚𝑘∑︁
𝑛

𝑡𝑘𝑛𝜑
𝑘
𝑛,

where
∑𝑚𝑘
𝑛 𝑡𝑘𝑛 = 1 for each 𝑘 , and 𝜑𝑘𝑛 ∈ ext 𝐽𝐵(ℓ𝑝 ,ℓ𝑞 )∗ (𝑇) for all 𝑛, 𝑘 , consequently,

𝑇 (𝜑𝑘𝑛) = 1.
Since 𝐽𝐵(ℓ𝑝 ,ℓ𝑞 )∗ (𝑇) is extremal, we have

ext 𝐽𝐵(ℓ𝑝 ,ℓ𝑞 )∗ (𝑇) ⊆ ext 𝐵𝐵(ℓ𝑝 ,ℓ𝑞 )∗ . (2.11)

It is well known that 𝐾 (ℓ𝑝 , ℓ𝑞) is an𝑀-ideal in 𝐵(ℓ𝑝 , ℓ𝑞) [1]. Therefore, by Lemma 2.9,
we have

ext 𝐵𝐵(ℓ𝑝 ,ℓ𝑞 )∗ = ext 𝐵𝐾 (ℓ𝑝 ,ℓ𝑞 )⊥ ∪ ext 𝐵𝐾 (ℓ𝑝 ,ℓ𝑞 )∗ .

From the elementary theory of projective tensor products, we know that

𝐾 (ℓ𝑝 , ℓ𝑞)∗ = ℓ𝑝 ⊗̂𝜋ℓ∗𝑞 .

Hence
ext 𝐵𝐵(ℓ𝑝 ,ℓ𝑞 )∗ = ext 𝐵𝐾 (ℓ𝑝 ,ℓ𝑞 )⊥ ∪ ext 𝐵ℓ𝑝 ⊗̂𝜋ℓ

∗
𝑞
.

From Equation (2.11), we conclude that

ext 𝐽𝐵(ℓ𝑝 ,ℓ𝑞 )∗ (𝑇) ⊂ ext 𝐵𝐾 (ℓ𝑝 ,ℓ𝑞 )⊥ ∪ ext 𝐵ℓ𝑝 ⊗̂𝜋ℓ
∗
𝑞
.
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Therefore, either 𝜑𝑘𝑛 ∈ ext 𝐵𝐾 (ℓ𝑝 ,ℓ𝑞 )⊥ or 𝜑𝑘𝑛 ∈ ext 𝐵ℓ𝑝 ⊗̂𝜋ℓ
∗
𝑞
for each 𝑛 and 𝑘 . Define the

set,

𝐿𝑘 = {𝑛 ∈ N : 𝜑𝑘𝑛 ∈ ext 𝐵𝐾 (ℓ𝑝 ,ℓ𝑞 )⊥ }.
Define

𝑧𝑘𝑛 =
∑︁
𝑛∈𝐿𝑘

𝑡𝑘𝑛𝜑
𝑘
𝑛.

Then, for each 𝑘 , the element 𝑧𝑘𝑛 ∈ 𝐾 (ℓ𝑝 , ℓ𝑞)⊥. Since the net {𝑧𝑘𝑛} is bounded, passing
onto a subnet if necessary, we assume that {𝑧𝑘𝑛} converges (𝑤∗-topology) to some 𝑥 as 𝑘
goes to∞. Thus, 𝑥 ∈ 𝐾 (ℓ𝑝 , ℓ𝑞)⊥, since 𝐾 (ℓ𝑝 , ℓ𝑞)⊥ is 𝑤∗-closed.

We also have,

lim
𝑘→∞

𝑧𝑘𝑛 = 𝑢 − lim
𝑘→∞

∑︁
𝑛∉𝐿𝑘

𝑡𝑘𝑛𝜑
𝑘
𝑛,

where the above limit is taken in the 𝑤∗-topology on 𝐵(ℓ𝑝 , ℓ𝑞)∗. But then, since the
elements 𝑢 and

∑
𝑛∉𝐿𝑘 𝑡𝑘𝑛𝜑

𝑘
𝑛 are in ℓ𝑝 ⊗̂𝜋ℓ∗𝑞 , wemust have 𝑥 ∈ ℓ𝑝 ⊗̂𝜋ℓ∗𝑞 . Therefore, 𝑥 = 0.

That is, we have

𝑤∗ − lim
𝑘→∞

∑︁
𝑛∈𝐿𝑘

𝑡𝑘𝑛𝜑
𝑘
𝑛 = 0, and 𝑤∗ − lim

𝑘→∞

∑︁
𝑛∉𝐿𝑘

𝑡𝑘𝑛𝜑
𝑘
𝑛 = 𝑢. (2.12)

For each 𝑘 , let 𝑡𝑘 =
∑
𝑛∈𝐿𝑘 𝑡𝑘𝑛 . Then the net {𝑡𝑘} in R is bounded, passing onto a

subnet if necessary, we assume that {𝑡𝑘} converges to some 𝑡 ∈ R as 𝑘 goes to∞.
Suppose, 𝑡 ≠ 0. Then we can find 𝜀1 > 0 such that 𝑡𝑘 > 𝜀1 for all 𝑘 . This would

imply, ∑︁
𝑛∉𝐿𝑘

𝑡𝑘𝑛 = 1 − 𝑡𝑘 < 1 − 𝜀1.

But then, since the norm is 𝑤∗-lower semi-continuous,

∥𝑢∥ ≤ lim inf
𝑘→∞

∑︁
𝑛∉𝐿𝑘

𝑡𝑘𝑛𝜑
𝑘
𝑛 ≤

∑︁
𝑛∉𝐿𝑘

𝑡𝑘𝑛 < 1 − 𝜀1 < 1.

Which is not possible, since ∥𝑢∥ = 1. Therefore, 𝑡 = 0 and 𝐿𝑘 ⊊ {1, 2, . . . , 𝑚𝑘} for all
but finitely many 𝑘 . Therefore,

ext 𝐵ℓ𝑝 ⊗̂𝜋ℓ
∗
𝑞
∩ 𝐽𝐵(ℓ𝑝 ,ℓ𝑞 )∗ (𝑇) ≠ ∅.

From Theorem 2.10, we know that

ext 𝐵 (ℓ𝑝 ⊗̂𝜋ℓ
∗
𝑞 ) = ext 𝐵𝐾 (ℓ𝑝 ,ℓ𝑞 )∗ = {𝑥 ⊗ 𝑦 : 𝑥 ∈ 𝑆ℓ𝑝 , 𝑦 ∈ 𝑆ℓ∗𝑞 }.

Now, for each 𝑛 ∉ 𝐿𝑘 , we have 𝜑𝑘𝑛 ∈ ext 𝐵ℓ𝑝 ⊗̂𝜋ℓ
∗
𝑞
and hence

𝜑𝑘𝑛 = 𝑢
𝑘
𝑛 ⊗ 𝑣∗𝑘𝑛 , where 𝑢𝑘𝑛 ∈ 𝑆ℓ𝑝 , 𝑣∗𝑘𝑛 ∈ 𝑆ℓ∗𝑞 .

Consequently, by Equation (2.12),

𝑢 = 𝑤∗ − lim
𝑘→∞

∑︁
𝑛∉𝐿𝑘

𝑡𝑘𝑛𝑢
𝑘
𝑛 ⊗ 𝑣∗𝑘𝑛 . (2.13)
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Now, fix 𝜑𝑘0
𝑛0 ∈ ext 𝐵ℓ𝑝 ⊗̂𝜋ℓ

∗
𝑞
∩ 𝐽𝐵(ℓ𝑝 ,ℓ𝑞 )∗ (𝑇) ≠ ∅. Since 𝑇 (𝜑𝑘0

𝑛0 ) = 1, we have
𝑣
∗𝑘0
𝑛0 (𝑇𝑢𝑘0

𝑛0 ) = 1. Hence ∥𝑇𝑢𝑘0
𝑛0 ∥ = 1 and thus 𝑀𝑇 ≠ ∅.

Let elements 𝑥∗0 ∈ 𝑆ℓ𝑝∗ and 𝑦0 ∈ 𝑆ℓ𝑞 be such that 𝑥∗0 (𝑥) = 1 and 𝑦∗ (𝑦0) = 1, recall
from the beginning that 𝑦∗ (𝑇𝑥) = 1. Then 𝑥∗0 ⊗ 𝑦0 defines a compact operator from ℓ𝑝
to ℓ𝑞 or in other words 𝑥∗0 ⊗ 𝑦0 ∈ ℓ∗𝑝 ⊗̌𝜀ℓ𝑞 . Therefore, we can find 𝑘 such that������𝑥∗0 ⊗ 𝑦0

©«𝑢 −
∑︁
𝑛∉𝐿𝑘

𝑡𝑘𝑛𝑢
𝑘
𝑛 ⊗ 𝑣∗𝑘𝑛

ª®¬
������ < 𝛿1 − ∥𝑥 ⊗ 𝑦∗ − 𝑢∥ 𝜋 .

Thus for the above 𝑘 , we have������𝑥∗0 ⊗ 𝑦0
©«𝑥 ⊗ 𝑦∗ −

∑︁
𝑛∉𝐿𝑘

𝑡𝑘𝑛𝑢
𝑘
𝑛 ⊗ 𝑣∗𝑘𝑛

ª®¬
������ < 𝛿1. (2.14)

It remains to prove that 𝑑 (𝑥, 𝑀𝑇 ) < 𝜀. If possible, suppose that 𝑑 (𝑥, 𝑀𝑇 ) > 𝜀.
Recall that the elements 𝑥∗0 ∈ 𝑆ℓ∗𝑝 and 𝑦0 ∈ 𝑆ℓ𝑞 satisfies 𝑥∗0 (𝑥) = 1 and 𝑦∗ (𝑦0) = 1.

Then, by Remark 2.8, we get

diam 𝑆(𝑥∗0, 𝛿1, 𝐵ℓ𝑝 ) < 𝜀.

Since we are assuming that 𝑑 (𝑥, 𝑀𝑇 ) > 𝜀 and 𝑥 ∈ 𝑆(𝑥∗0, 𝛿1, 𝐵ℓ𝑝 ), we can conclude that

𝑦 ∉ 𝑆(𝑥∗0, 𝛿1, 𝐵𝑋) for all 𝑦 ∈ 𝑀𝑇 .

Therefore, by the definition of the slice.

Re 𝑥∗0 (𝑦) < 1 − 𝛿1 for all 𝑦 ∈ 𝑀𝑇 .

Since 𝑀𝑇 = −𝑀𝑇 , we have

| Re 𝑥∗0 (𝑦) | < 1 − 𝛿1 for all 𝑦 ∈ 𝑀𝑇 . (2.15)

We can assume, w. l. o. g., the elements 𝑢𝑘𝑛 in Equation (2.13) satisfies 𝑥∗0 (𝑢𝑘𝑛) ∈ R. To
see this, note that, if 𝑥∗0 (𝑢𝑘𝑛) = 𝑟𝑘𝑛𝑒𝑖 𝜃

𝑘
𝑛 , where 0 ≤ 𝑟𝑘𝑛 ≤ 1 and 0 ≤ 𝜃𝑘𝑛 < 2𝜋, then take

𝜑𝑘𝑛 = 𝑒
−𝑖 𝜃𝑘𝑛 𝑢𝑘𝑛 ⊗ 𝑒𝑖 𝜃

𝑘
𝑛 𝑣∗𝑘𝑛 . Also, note that

∑
𝑛∉𝐿𝑘 𝑡𝑘𝑛 ≤ 1.

So, for the same 𝑘 above, since the elements 𝑢𝑘𝑛 are in 𝑀𝑇 for all 𝑛 ∉ 𝐿𝑘 ,

| Re 𝑥∗0 ⊗ 𝑦0 (𝑢𝑘𝑛 ⊗ 𝑣∗𝑘𝑛 ) | = | Re 𝑥∗0 (𝑢𝑘𝑛)𝑣∗𝑘𝑛 (𝑦0) |
< 1 − 𝛿1.
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Differentiability of the operator norm on ℓ𝑝 spaces 13

Therefore,������Re 𝑥∗0 ⊗ 𝑦0
©«𝑥 ⊗ 𝑦∗ −

∑︁
𝑛∉𝐿𝑘

𝑡𝑘𝑛𝑢
𝑘
𝑛 ⊗ 𝑣∗𝑘𝑛

ª®¬
������ =

������Re 𝑥∗0 (𝑥)𝑦∗ (𝑦0) −
∑︁
𝑛∉𝐿𝑘

𝑡𝑘𝑛 Re 𝑥∗0 ⊗ 𝑦0 (𝑢𝑘𝑛 ⊗ 𝑣∗𝑘𝑛 )

������
≥ 1 −

������ ∑︁𝑛∉𝐿𝑘

𝑡𝑘𝑛 Re 𝑥∗0 (𝑢𝑘𝑛)𝑣∗𝑘𝑛 (𝑦0)

������
≥ 1 −

∑︁
𝑛∉𝐿𝑘

𝑡𝑘𝑛

��Re 𝑥∗0 (𝑢𝑘𝑛)𝑣∗𝑘𝑛 (𝑦0)
��

≥ 1 −
∑︁
𝑛∉𝐿𝑘

𝑡𝑘𝑛 (1 − 𝛿1)

≥ 𝛿1.

Which is a contradiction to the Inequality (2.14). Hence 𝑑 (𝑥, 𝑀𝑇 ) < 𝜀. ■

Remark 2.12 In the proof of Theorem 2.11, we have utilized the uniform convexity
and uniform smoothness of ℓ𝑝 spaces. By employing analogous arguments to those used
in the proof of Theorem 2.11, it can be shown that if Banach spaces 𝑋 and 𝑌 satisfies
the following properties: 𝑋 is uniformly convex, 𝑌 is uniformly smooth, 𝐾 (𝑋,𝑌 ) is an
𝑀-ideal in 𝐵(𝑋,𝑌 ), 𝑋∗ has Radon-Nikodym property, and either 𝑋∗ or𝑌 ∗ has approx-
imation property, then the condition (𝑖𝑖) of Theorem 2.11 characterizes the strong
subdifferentiability of the norm of 𝐵(𝑋,𝑌 ).

The following is an example of an operator at which the norm of 𝐵(ℓ𝑝) is strongly
subdifferentiable.

Example 2.13 Let𝑈 ∈ 𝐵(ℓ𝑝), 1 < 𝑝 < ∞, be an isometry. Then𝑀𝑈 = 𝑆ℓ𝑝 . Therefore,
by Theorem 2.11,𝑈 is an 𝑆𝑆𝐷 point of 𝐵(ℓ𝑝).

Wewill next show that for certain Banach spaces 𝑋 and𝑌 , condition (𝑖𝑖) of Theorem
2.11 is necessary for the operator norm on 𝐵(𝑋,𝑌 ) to be strongly subdifferentiable at
a bounded linear operator 𝑇 ∈ 𝑆𝐵(𝑋,𝑌 ) . Consequently, we will address the borderline
case 𝑝 = ∞ in Corollary 2.15.

Observe that for all Banach spaces 𝑌 , the pair (𝑌, ℓ1) has the property that every
element 𝑢 of𝑌 ⊗̂𝜋ℓ1 has a representation 𝑢 =

∑∞
𝑛=1 𝜆𝑛𝑢𝑛⊗𝑣𝑛, where𝜆𝑛 ≥ 0,

∑∞
𝑛=1 𝜆𝑛 =

∥𝑢∥, ∥𝑢𝑛∥ = ∥𝑣𝑛∥ = 1 [2].
Motivated by the above property of ℓ1, we define the following for our current

purpose.

Definition 2.6 A pair of Banach spaces (𝑋,𝑌 ) is said to have property (𝑁) if the fol-
lowing hold. Whenever 𝑓 ∈ (𝑋 ⊗̂𝜋𝑌 )∗ is an 𝑆𝑆𝐷 point and satisfies 𝑓 (𝑢) = ∥ 𝑓 ∥ for
some 𝑢 ∈ 𝐵𝑋⊗̂𝜋𝑌

, then 𝑢 has the form, 𝑢 =
∑∞
𝑖=1 𝜆𝑖𝑢𝑖 ⊗ 𝑣𝑖 with ∥𝑢𝑖 ∥ = 1, ∥𝑣𝑖 ∥ = 1, and∑∞

𝑖=1 𝜆𝑖 = 1.
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Examples of Banach spaces satisfying the property (𝑁) include (𝑌, ℓ1) for every
Banach space 𝑌 , the pair (𝐻, 𝐻) where 𝐻 is a Hilbert space, and the pair (𝑋,𝑌 ) for
finite-dimensional Banach spaces 𝑋 and 𝑌 . Besides these examples, we do not know a
pair of Banach spaces satisfying property (𝑁). We refer the reader [5], where a stronger
notion of property (𝑁) has been studied.

We will next prove a result wherein the condition (𝑖𝑖) of Theorem 2.11 is necessary
for the operator norm to be strongly subdifferentiable.

Theorem 2.14 Let 𝑋 and 𝑌 be Banach spaces such that 𝑋 is uniformly convex and the
pair (𝑋,𝑌 ∗) has property (𝑁). If the norm of 𝐵(𝑋,𝑌 ∗∗) is strongly subdifferentiable at
𝑇 ∈ 𝑆𝐵(𝑋,𝑌 ∗∗ ) , then 𝑀𝑇 ≠ ∅ and for every maximizing sequence {𝑥𝑛} of 𝑇 , there exists
a subsequence {𝑥𝑛𝑖 } of {𝑥𝑛} such that 𝑑 (𝑥𝑛𝑖 , 𝑀𝑇 ) → 0.

Proof Suppose the norm of 𝐵(𝑋,𝑌 ∗∗) is strongly subdifferentiable at 𝑇 . We have
(𝑋 ⊗̂𝜋𝑌 ∗)∗ � 𝐵(𝑋,𝑌 ∗∗). Hence the norm of (𝑋 ⊗̂𝜋𝑌 ∗)∗ is strongly subdifferentiable
at 𝑇 (see Expression (2.9) in Theorem 2.11). Let 𝜀 > 0 and 𝛿1 be the modulus convex-
ity of 𝑋 corresponding to 𝜀. Using Theorem 2.1, choose 𝛿 > 0 such that whenever an
element 𝑢 ∈ 𝐵𝑋⊗̂𝜋𝑌

∗ satisfies 𝑇 (𝑢) > 1 − 𝛿, we have 𝑑 (𝑢, 𝐽𝑋⊗̂𝜋𝑌
∗ (𝑇)) < 𝛿1.

Let 𝑥 ∈ 𝑆𝑋 such that 1 − 𝛿 < ∥𝑇𝑥∥. Then there exists a bounded linear functional
𝑦∗ ∈ 𝑆𝑌 ∗ such that 𝑦∗ (𝑇𝑥) = ∥𝑇𝑥∥.

Since the element 𝑥 ⊗ 𝑦∗ ∈ 𝐵𝑋⊗̂𝜋𝑌
∗ satisfies 𝑇 (𝑥 ⊗ 𝑦∗) > 1 − 𝛿, there exists 𝑢 ∈

𝐽𝑋⊗̂𝜋𝑌
∗ (𝑇) such that ∥𝑥 ⊗ 𝑦∗ − 𝑢∥ 𝜋 < 𝛿1.

By our assumption, the pair has (𝑋,𝑌 ∗) has the property (𝑁). Therefore, we can
write

𝑢 =

∞∑︁
𝑖=1

𝜆𝑖𝑥𝑖 ⊗ 𝑦∗𝑖 , where
∞∑︁
𝑖=1

𝜆𝑖 = 1, 𝑥𝑖 ∈ 𝑆𝑋, and 𝑦∗𝑖 ∈ 𝑆𝑌 ∗ .

Since 𝑇 (𝑢) = 1, we get 𝑇 (𝑥𝑖 ⊗ 𝑦∗𝑖 ) = 1. Consequently, ∥𝑇 (𝑥𝑖)∥ = ∥𝑦∗
𝑖
∥ = 1 for all 𝑖 and

thus 𝑀𝑇 ≠ ∅. Moreover,

𝑥 ⊗ 𝑦∗ − ∞∑︁
𝑖=1

𝜆𝑖𝑥𝑖 ⊗ 𝑦∗𝑖


𝑋⊗̂𝜋𝑌

∗

< 𝛿1. (2.16)

We will now prove that 𝑑 (𝑥, 𝑀𝑇 ) < 𝜀. If possible, suppose that 𝑑 (𝑥, 𝑀𝑇 ) > 𝜀. Let the
element 𝑥∗0 ∈ 𝑆𝑋∗ be such that 𝑥∗0 (𝑥) = 1. An argument, as in the proof of Theorem 2.11,
using the slice of 𝐵𝑋 corresponding to the above 𝛿 > 0 and 𝑥∗0 will obtain that

𝑥∗0 (𝑥)𝑦∗ − ∞∑︁
𝑖=1

𝜆𝑖 Re 𝑥∗0 (𝑥𝑖)𝑦∗𝑖


𝑌 ∗

> 𝛿1. (2.17)
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Since the projective tensor norm is larger than the injective tensor norm, we get, using
Inequality (2.17)𝑥 ⊗ 𝑦∗ − ∞∑︁

𝑖=1
𝜆𝑖𝑥𝑖 ⊗ 𝑦∗𝑖


𝑋⊗̂𝜋𝑌

∗

≥
𝑥 ⊗ 𝑦∗ − ∞∑︁

𝑖=1
𝜆𝑖𝑥𝑖 ⊗ 𝑦∗𝑖


𝑋⊗̌𝜀𝑌

∗

=

𝑥 ⊗ 𝑦∗ − ∞∑︁
𝑖=1

𝜆𝑖𝑥𝑖 ⊗ 𝑦∗𝑖


𝐵(𝑋∗ ,𝑌 ∗ )

≥
𝑥∗0 (𝑥)𝑦∗ − ∞∑︁

𝑖=1
𝜆𝑖 Re 𝑥∗0 (𝑥𝑖)𝑦∗𝑖


𝑌 ∗

> 𝛿1.

Which is a contradiction to Inequality (2.16). Hence 𝑑 (𝑥, 𝑀𝑇 ) < 𝜀. ■

In the following corollary, we will give a necessary condition for the operator norm
to be strongly subdifferentiable in the borderline case 𝑝 = ∞.

Corollary 2.15 Let 𝑋 be a uniformly convex Banach space and 𝑇 ∈ 𝐵(𝑋, ℓ∞) such that
∥𝑇 ∥ = 1. If the norm of 𝐵(𝑋, ℓ∞) is strongly subdifferentiable at 𝑇 , then 𝑀𝑇 ≠ ∅ and
for every maximizing sequence {𝑥𝑛} of 𝑇 , there exists a subsequence {𝑥𝑛𝑖 } of {𝑥𝑛} such that
𝑑 (𝑥𝑛𝑖 , 𝑀𝑇 ) → 0.

Proof We have 𝐵(𝑋, ℓ∞) = 𝐵(𝑋, 𝑐∗∗0 ). Since the pair (𝑋, 𝑐∗0) = (𝑋, ℓ1) has property
(𝑁), the result follows from Theorem 2.14. ■

Wewill next consider the other extreme value 𝑝 = 1. The strong subdifferentiability
of the operator norm ℓ1 can be deduced from [1, Theorem 2.5] and Theorem 2.1, for
completeness, we will recall it here.

Proposition 2.16 Let 𝑇 ∈ 𝐵(ℓ1) be an operator such that ∥𝑇 ∥ = 1 and {𝑒 𝑗 } denotes the
canonical basis of ℓ1. Then 𝑇 is an 𝑆𝑆𝐷 point if and only if the following two conditions hold.

(𝑖) The set, { 𝑗 ∈ N : ∥𝑇𝑒 𝑗 ∥ = ∥𝑇 ∥} ≠ ∅ and sup{∥𝑇𝑒 𝑗 ∥ : ∥𝑇𝑒 𝑗 ∥ < 1} < 1.
(𝑖𝑖) 𝑇𝑒 𝑗 ∈ 𝑐00 whenever ∥𝑇𝑒 𝑗 ∥ = 1.

Proof We have 𝐵(ℓ1) =
(⊕∞

𝑛=1 ℓ1
)
∞ under the isometric identification 𝑇 ↦→

(𝑇𝑒1, 𝑇𝑒2, . . .) with ∥𝑇 ∥ = sup 𝑗 {∥𝑇𝑒 𝑗 ∥}.
Therefore, 𝑇 is an 𝑆𝑆𝐷 point 𝐵(ℓ1) if and only if (𝑇𝑒1, 𝑇𝑒2, . . .) is an 𝑆𝑆𝐷 point of(⊕∞
𝑛=1 ℓ1

)
∞.

From [1, Theorem 2.5], the element (𝑇𝑒1, 𝑇𝑒2, . . .) is an 𝑆𝑆𝐷 point of
(⊕∞

𝑛=1 ℓ1
)
∞

if and only if 𝑇𝑒 𝑗 is an 𝑆𝑆𝐷 point of ℓ1 for all 𝑗 satisfying ∥𝑇𝑒 𝑗 ∥ = 1 and the element
(∥𝑇𝑒 𝑗 ∥) ∈ ℓ∞ is an 𝑆𝑆𝐷 point of ℓ∞.

Since ℓ1 = 𝑐∗0, it can be easily verified using Theorem 2.1 that 𝑇𝑒 𝑗 is an 𝑆𝑆𝐷 point
of ℓ1 if and only if 𝑇𝑒 𝑗 ∈ 𝑐00. Since ℓ∞ =

(
⊕∞
𝑛=1F

)
∞, using [1, Theorem 2.5] again, we
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get that (∥𝑇𝑒 𝑗 ∥) ∈ ℓ∞ is an 𝑆𝑆𝐷 point of ℓ∞ if and only if { 𝑗 ∈ N : ∥𝑇𝑒 𝑗 ∥ = 1} ≠ ∅
and sup{∥𝑇𝑒 𝑗 ∥ : ∥𝑇𝑒 𝑗 ∥ < 1} < 1. ■

3 Denseness of 𝑆𝑆𝐷 points of 𝐵(ℓ𝑝, ℓ𝑞)

We know that the set of all 𝑆𝑆𝐷 points in 𝐵(𝐻) is dense in 𝐵(𝐻) [4]. In this section,
we will extend this result to the operator norm on ℓ𝑝 spaces. Additionally, we will show
that the set of 𝑆𝑆𝐷 points of 𝐵(ℓ𝑝 , ℓ𝑞) contains an important class of operators, namely,
those operators with essential norm strictly less than its operator norm. Towards the
end of this section, we prove that the Fréchet and Gateaux differentiability coincide in
𝐵(ℓ𝑝 , ℓ𝑞). We will also show that the assumption made by F. Kittaneh and R. Younis in
[1] regarding the smoothness of operator norm characterizes Fréchet differentiability in
𝐵(ℓ𝑝 , ℓ𝑞).

For 1 < 𝑝, 𝑞 < ∞, let SSD{𝐵(ℓ𝑝 , ℓ𝑞)} denotes the set of all operators in 𝐵(ℓ𝑝 , ℓ𝑞)
at which the norm of 𝐵(ℓ𝑝 , ℓ𝑞) is strongly subdifferentiable.

We will next provide a theorem which has very interesting consequences.

Theorem 3.1 The following inclusion holds for 1 < 𝑝, 𝑞 < ∞.{
𝑇 ∈ 𝐵(ℓ𝑝 , ℓ𝑞) : ∥𝑇 ∥𝑒 < ∥𝑇 ∥

}
⊂ SSD{𝐵(ℓ𝑝 , ℓ𝑞)}. (3.1)

In particular, SSD{𝐵(ℓ𝑝 , ℓ𝑞)} is a dense subset of 𝐵(ℓ𝑝 , ℓ𝑞).

To establish Theorem 3.1, we have to integrate Theorem 2.11 with a few findings
from [1] and Lemma 3.4. We will first recall the required results.

Lemma 3.2 [1, Proposition 4.8, Proof of (b)] Let 1 < 𝑝, 𝑞 < ∞. Then the set 𝐾 𝜃 (ℓ𝑝 , ℓ𝑞) ={
𝑇 ∈ 𝐵(ℓ𝑝 , ℓ𝑞) : ∥𝑇 ∥ = ∥𝑇 ∥𝑒

}
is nowhere dense in 𝐵(ℓ𝑝 , ℓ𝑞).

We will next recall a formula for computing the essential norm of an operator.

Lemma 3.3 [2, Lemma 5] Suppose that 𝐾 (𝑋,𝑌 ) is an 𝑀-ideal in 𝐵(𝑋,𝑌 ) and an operator
𝑇 ∈ 𝐵(𝑋,𝑌 ). Then

∥𝑇 ∥𝑒 = max {𝑤(𝑇), 𝑤∗ (𝑇)} ,

where

𝑤(𝑇) := sup
{

lim sup
𝛼

∥𝑇𝑥𝛼∥ : ∥𝑥𝛼∥ = 1, 𝑥𝛼
𝑤−→ 0

}
and, in the same way,

𝑤∗ (𝑇) := sup
{

lim sup
𝛼

∥𝑇∗𝑥𝛼∥ : ∥𝑥𝛼∥ = 1, 𝑥𝛼
𝑤∗
−−→ 0

}
and at least one of the involved suprema is achieved.

We will now recall the definition of (𝑀𝑝)-space.
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Definition 3.1 [1] Let 1 ≤ 𝑝 < ∞. We say that a Banach space 𝑋 has property
(
𝑀𝑝

)
or

is an
(
𝑀𝑝

)
-space if 𝐾

(
𝑋 ⊕𝑝 𝑋

)
is an 𝑀-ideal of 𝐵

(
𝑋 ⊕𝑝 𝑋

)
.

We refer the reader [1, 1] for more details on (𝑀𝑝)-spaces. Note that the space ℓ𝑝
belongs to the class of (𝑀𝑝)-space for 1 ≤ 𝑝 < ∞. From [1], we know that if 𝑋 is
an

(
𝑀𝑝

)
-space, then 𝑋 is reflexive and 𝐾 (𝑋) is an 𝑀-ideal in 𝐵(𝑋). Moreover, from

[1, chapter VI, Theorem 6.6] we get, if 𝑋 is an (𝑀𝑝)-space, then for any weakly null
sequence {𝑢𝑛} in 𝑋 , the following equality holds

lim ∥𝑢 + 𝑢𝑛∥ 𝑝 = ∥𝑢∥ 𝑝 + lim ∥𝑢𝑛∥ 𝑝 (𝑢 ∈ 𝑋). (3.2)

The following lemma is an extension of [2, Theorem 1, 2] to the broader class of Banach
spaces known as (𝑀𝑝)-spaces, under the additional assumption that ∥𝑇 ∥𝑒 < ∥𝑇 ∥.

Lemma 3.4 Let 𝑋 and𝑌 be separable Banach spaces which belongs to the classes (𝑀𝑝) and
(𝑀𝑞), respectively, 1 < 𝑝, 𝑞 < ∞. Suppose 𝑇 ∈ 𝐵(𝑋,𝑌 ) such that ∥𝑇 ∥𝑒 < ∥𝑇 ∥ and the
sequence {𝑥𝑛} in 𝐵𝑋 is a maximizing sequence for𝑇 . If a subsequence {𝑥𝑛𝑖 } of {𝑥𝑛} converges
weakly to 𝑥 ≠ 0, then ∥𝑇𝑥∥ = ∥𝑇 ∥ and ∥𝑥∥ = 1.

Proof For 𝑞 < 𝑝, we have 𝐾 (𝑋,𝑌 ) = 𝐵(𝑋,𝑌 ) [1, chapter VI, Corollary 5.14].
Therefore, the results hold since compact operators are weak-to-norm sequentially
continuous.

Therefore, we can assume that 1 < 𝑝 ≤ 𝑞 < ∞. Let 𝑇 ∈ 𝐵(𝑋,𝑌 ), we can take
∥𝑇 ∥ = 1. Let the sequence {𝑥𝑛} be a maximizing sequence for 𝑇 and {𝑥𝑛} converges
weakly to 𝑥 ≠ 0 (we are denoting subsequence of {𝑥𝑛} by {𝑥𝑛} itself). Since 𝑋 is (𝑀𝑝)
and𝑌 is (𝑀𝑞), it follows from Equation (3.2) that

1 − ∥𝑥∥ 𝑝 = lim ∥𝑥𝑛 − 𝑥∥ 𝑝 (3.3)

and

1 = lim ∥𝑇𝑥𝑛∥𝑞 = ∥𝑇𝑥∥𝑞 + lim ∥𝑇𝑥𝑛 − 𝑇𝑥∥𝑞 . (3.4)

Note that ∥𝑇𝑥∥ ≤ 1 and lim ∥𝑇𝑥𝑛 − 𝑇𝑥∥ ≤ 1, consequently, since 𝑞 ≥ 𝑝 ≥ 1,

1 = lim ∥𝑇𝑥𝑛∥𝑞 = ∥𝑇𝑥∥𝑞 + lim ∥𝑇𝑥𝑛 − 𝑇𝑥∥𝑞

≤ ∥𝑇𝑥∥ 𝑝 + lim ∥𝑇𝑥𝑛 − 𝑇𝑥∥ 𝑝

≤ ∥𝑇𝑥∥ 𝑝 + lim ∥𝑥𝑛 − 𝑥∥ 𝑝

= ∥𝑇𝑥∥ 𝑝 + 1 − ∥𝑥∥ 𝑝 .

Therefore,

∥𝑇𝑥∥ = ∥𝑥∥. (3.5)

Since ∥𝑥∥ ≤ 1, using Equations (3.3) and (3.4) together with the fact that 𝑞 ≥ 𝑝 > 1, we
get

1 − ∥𝑥∥𝑞 ≥ 1 − ∥𝑥∥ 𝑝 . (3.6)

and

lim ∥𝑥𝑛 − 𝑥∥𝑞 = lim(∥𝑥𝑛 − 𝑥∥ 𝑝)𝑞/𝑝 = (1 − ∥𝑥∥ 𝑝)𝑞/𝑝 ≤ 1 − ∥𝑥∥ 𝑝 . (3.7)
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If possible, assume that the sequence {∥𝑥𝑛 − 𝑥∥} does not converge to 0. Then there
exists 𝜀 > 0 and a subsequence {𝑥𝑛𝑘 } of {𝑥𝑛} such that ∥𝑥𝑛𝑘 − 𝑥∥ > 𝜀 for all 𝑘 . Then,
by Equations (3.6) and (3.7),

lim
𝑇 (

𝑥𝑛𝑘 − 𝑥
∥𝑥𝑛𝑘 − 𝑥∥

)𝑞 =
1 − ∥𝑇𝑥∥𝑞

lim ∥𝑥𝑛𝑘 − 𝑥∥𝑞

=
1 − ∥𝑥∥𝑞

lim ∥𝑥𝑛𝑘 − 𝑥∥𝑞

≥ 1 − ∥𝑥∥ 𝑝
1 − ∥𝑥∥ 𝑝

= 1.

Since the sequence
{
𝑥𝑛𝑘 −𝑥

∥𝑥𝑛𝑘 −𝑥 ∥

}
converges weakly to 0, by Lemma 3.3,

∥𝑇 ∥𝑒 ≥ lim
𝑇 (

𝑥𝑛𝑘 − 𝑥
∥𝑥𝑛𝑘 − 𝑥∥

) ≥ 1 = ∥𝑇 ∥.

Which is not possible by our assumption. Therefore, the sequence (∥𝑥𝑛−𝑥∥) converges
to 0. Hence, by Equations (3.5) and (3.3), ∥𝑇𝑥∥ = ∥𝑥∥ = 1 = ∥𝑇 ∥. ■

We will next give a proof of Theorem 3.1.

Proof Proof of Theorem 3.1: Let 𝑇 ∈ 𝐵(ℓ𝑝 , ℓ𝑞) such that ∥𝑇 ∥𝑒 < ∥𝑇 ∥. To see
that the operator 𝑇 ∈ SSD{𝐵(ℓ𝑝 , ℓ𝑞)}, it is enough to verify, by Theorem 2.11,
lim inf 𝑑 (𝑥𝑛, 𝑀𝑇 ) = 0 for every maximizing sequence {𝑥𝑛} of 𝑇 .

Let the sequence {𝑥𝑛} be a maximizing sequence for 𝑇 , then there exists a subse-
quence of {𝑥𝑛} (wewill denote the subsequence by {𝑥𝑛} itself) convergesweakly to some
𝑥 ∈ ℓ𝑝 by the reflexivity of ℓ𝑝 .

If 𝑥 = 0, then by Lemma 3.3, ∥𝑇 ∥ = ∥𝑇 ∥𝑒 , which is not possible.
Therefore, 𝑥 ≠ 0, by Lemma 3.4, ∥𝑇𝑥∥ = ∥𝑇 ∥, and ∥𝑥∥ = 1. Thus 𝑥 ∈ 𝑀𝑇 .
Since the sequence {𝑥𝑛} is a maximizing sequence for 𝑇 , from the proof of Lemma

3.4, the sequence {∥𝑥𝑛 − 𝑥∥} converges to 0. Thus 𝑑 (𝑥𝑛, 𝑀𝑇 ) → 0. Hence, by Theorem
2.11, the operator 𝑇 ∈ SSD{𝐵(ℓ𝑝 , ℓ𝑞)}.

The denseness of the set SSD{𝐵(ℓ𝑝 , ℓ𝑞)} is now follows from Lemma 3.2. ■

We know that, for a Hilbert space 𝐻, the norm of 𝐵(𝐻) is strongly subdifferentiable
at every compact operator on 𝐻 [3]. We will next obtain a corollary which extends this
result to ℓ𝑝 spaces.

Corollary 3.5 Suppose 1 < 𝑝, 𝑞 < ∞ and 𝐾 ∈ 𝐵(ℓ𝑝 , ℓ𝑞) be a compact operator. Then the
norm of 𝐵(ℓ𝑝 , ℓ𝑞) is strongly subdifferentiable at 𝐾 .

Proof The proof follows directly from the inclusion,{
𝑇 ∈ 𝐵(ℓ𝑝 , ℓ𝑞) : ∥𝑇 ∥𝑒 < ∥𝑇 ∥

}
⊆ SSD{𝐵(ℓ𝑝 , ℓ𝑞)}. ■
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Observe from Theorem 2.11 that if an operator 𝑇 ∈ SSD{𝐵(ℓ𝑝 , ℓ𝑞)}, then 𝑇 attains
its norm, the converse is not true as the following example suggest.

Example 3.6 Let 1 < 𝑝, 𝑞 < ∞ and {𝑒𝑛} denotes the canonical basis of ℓ𝑝 . Let 𝑇 ∈
𝐵(ℓ𝑝 , ℓ𝑞) be an operator defined as follows, for each 𝑥 = (𝜁1, 𝜁2, . . .) ∈ ℓ𝑝

𝑇

( ∞∑︁
𝑖=1

𝜁𝑛𝑒𝑛

)
= 𝜁1𝑒1 +

∞∑︁
𝑖=2

(
1 − 1

𝑛

)
𝜁𝑛𝑒𝑛.

Clearly, 𝑀𝑇 = {𝛼𝑒1 : 𝛼 ∈ F, |𝛼 | = 1}. Let the sequence {𝑥𝑛} be a maximizing
sequence for 𝑇 . Then, for some subsequence {𝑥𝑛𝑖 }, 𝑑 (𝑥𝑛𝑖 , 𝑀𝑇 ) → 0 if and only if
𝑥𝑛𝑖 → 𝑒1. But the sequence {𝑒𝑛} is a maximizing sequence for 𝑇 and does not contain
any subsequence converging to 𝑒1. Hence (𝑖𝑖) of Theorem 2.11 fails to hold. Therefore,
𝑇 ∉ SSD{𝐵(ℓ𝑝 , ℓ𝑞)}.

Remark 3.7 It iswell known that the set of all norm-attaining bounded linear operators
on a reflexive Banach space 𝑋 is dense in 𝐵(𝑋) [1]. FromExample 3.6 and Theorem 2.11
we get SSD{𝐵(ℓ𝑝)} is a proper subset of norm-attaining bounded linear operators on
ℓ𝑝 . Moreover, from Theorem 3.1, SSD{𝐵(ℓ𝑝)} is dense in 𝐵(ℓ𝑝).

As an application of Theorem 3.1, we will next obtain a characterization of Fréchet
differentiability. Consequently, we will show the equivalence between Fréchet differen-
tiability and Gateaux differentiability of the norm of 𝐵(ℓ𝑝 , ℓ𝑞) (see Theorem 3.9), just
as observed in the case of operator norm on Hilbert spaces (see [1, Theorem 3.1] and [2,
Theorem]). We begin by recalling a few definitions and results.

Definition 3.2 The norm of a Banach space 𝑋 is Fréchet differentiable at a point 𝑢 in
the unit sphere 𝑆𝑋 if and only if there is a bounded linear functional 𝑓 ∈ 𝑋∗ (unique)
such that

lim
𝑡→0

∥𝑢 + 𝑡𝑥∥ − 1
𝑡

= Re 𝑓 (𝑥) (3.8)

uniformly on 𝐵𝑋 .

If we drop the uniformity assumption for 𝑥 in the above definition, we have the def-
inition of Gateaux differentiability of the norm at 𝑢. That is, Gateaux differentiability
demands only the existence of the limit in Equation (3.8) at each point 𝑥 ∈ 𝐵𝑋 . When
𝑥 = 𝑢, we see that the unique bounded linear functional 𝑓 in Definition 3.2 satisfies
∥ 𝑓 ∥ = 𝑓 (𝑢) = 1. Indeed, the functional 𝑓 , which we call the gradient of the norm at 𝑢,
is then uniquely determined by the condition

∥ 𝑓 ∥ = 𝑓 (𝑢) = 1.

If the norm of a Banach space 𝑋 is Gateaux differentiable at a point 𝑢 ∈ 𝑆𝑋 , then it is
usually said that 𝑢 is a smooth point of 𝑆𝑋 .

We will next recall a theorem from [7], which combined with Theorem 3.1 of the
present paper will give a characterization for Fréchet differentiability in 𝐵

(
ℓ𝑝 , ℓ𝑞

)
in

terms of the essential norm of an operator.
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Theorem 3.8 [7, Theorem 2.1] and [2, Theorem 1] Let 𝑇 ∈ 𝐵
(
ℓ𝑝 , ℓ𝑞

)
, 1 < 𝑝, 𝑞 < ∞, and

∥𝑇 ∥ = 1. Then the following are equivalent:

(𝑖) 𝑇 is smooth.
(𝑖𝑖) ∥𝑇 ∥𝑒 < 1 and if ∥𝑇𝑥1∥ = ∥𝑇𝑥2∥ = 1 for 𝑥1, 𝑥2 ∈ 𝐵ℓ𝑝 then 𝑥1 = 𝛼𝑥2, where 𝛼 ∈ F and

|𝛼 | = 1.

In the following theorem, we will see that the condition (𝑖𝑖) of Theorem 3.8 char-
acterizes Fréchet differentiability rather than smoothness. Moreover, the following
theorem is an extension of [1, Theorem 3.1] and [2, Theorem] to the class of ℓ𝑝 spaces.
At this stage, the proof of the following corollary looks simple, but Theorem 3.1 and
consequently Theorem 2.11 are very crucial in the proof.

Proposition 3.9 Let 𝑇 ∈ 𝐵
(
ℓ𝑝 , ℓ𝑞

)
, 1 < 𝑝 < ∞, and ∥𝑇 ∥ = 1. Then the following are

equivalent:

(𝑖) The norm of 𝐵
(
ℓ𝑝

)
is Fréchet differentiable at 𝑇 .

(𝑖𝑖) ∥𝑇 ∥𝑒 < 1 and if ∥𝑇𝑥1∥ = ∥𝑇𝑥2∥ = 1 for 𝑥1, 𝑥2 ∈ 𝐵ℓ𝑝 then 𝑥1 = 𝛼𝑥2, where 𝛼 ∈ F and
|𝛼 | = 1.

Consequently, the norm of 𝐵(ℓ𝑝 , ℓ𝑞) is Fréchet differentiable at 𝑇 if and only if norm of
𝐵(ℓ𝑝 , ℓ𝑞) is Gateaux differentiable at 𝑇 .

Proof Fréchet differentiability implies Gateaux differentiability (smoothness). Hence,
by Theorem 3.8, (𝑖) ⇒ (𝑖𝑖).

Conversely, if (𝑖𝑖) holds, then by Theorem 3.8, 𝑇 is smooth. Also, by Theorem 3.1,
𝑇 is an 𝑆𝑆𝐷 point of 𝐵(ℓ𝑝 , ℓ𝑞). Since Gateaux differentiability together with strong
subdifferentiability implies Fréchet differentiability, the norm of 𝐵(ℓ𝑝 , ℓ𝑞) is Fréchet
differentiable at 𝑇 . ■
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