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Stochastically generated instantaneous velocity profiles are used to reproduce the outer
region of rough-wall turbulent boundary layers in a range of Reynolds numbers extending
from the wind tunnel to field conditions. Each profile consists in a sequence of steps,
defined by the modal velocities and representing uniform momentum zones (UMZs),
separated by velocity jumps representing the internal shear layers. Height-dependent UMZ
is described by a minimal set of attributes: thickness, mid-height elevation, and streamwise
(modal) and vertical velocities. These are informed by experimental observations and
reproducing the statistical behaviour of rough-wall turbulence and attached eddy scaling,
consistent with the corresponding experimental datasets. Sets of independently generated
profiles are reorganized in the streamwise direction to form a spatially consistent modal
velocity field, starting from any randomly selected profile. The operation allows one to
stretch or compress the velocity field in space, increases the size of the domain and adjusts
the size of the largest emerging structures to the Reynolds number of the simulated flow.
By imposing the autocorrelation function of the modal velocity field to be anchored on
the experimental measurements, we obtain a physically based spatial resolution, which
is employed in the computation of the velocity spectrum, and second-order structure
functions. The results reproduce the Kolmogorov inertial range extending from the UMZ
and their attached-eddy vertical organization to the very-large-scale motions (VLSMs)
introduced with the reordering process. The dynamic role of VLSM is confirmed in the
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−u′w′ co-spectra and in their vertical derivative, representing a scale-dependent pressure
gradient contribution.

Key words: turbulent boundary layers, turbulence modelling

1. Introduction

Turbulent boundary layer (TBL) flows exhibit significant complexity, which is reflected
in the wide range of energetic scales that contribute to the spectrum of the streamwise
velocity (Saddoughi & Veeravalli 1994; Jiménez 2012; Cardesa, Vela-Martín & Jiménez
2017). Statistical analysis reveals that amid this complexity and chaotic behaviour, certain
consistent and widespread structural features, such as vortices, ramp-like shear layers,
outer layer streaks, weakly rotating rolls and large sweep/ejection events, emerge (Cantwell
1981; Robinson 1991; Adrian 2007; Dennis & Nickels 2011; Jiménez 2018; Heisel et al.
2021). One of the manifestations of these structural features on the instantaneous flow
fields is the occurrence of regions of nearly uniform streamwise velocity, defined as
uniform momentum zones (UMZs), separated by internal shear layers (ISL), also referred
to as vortical fissures (VFs) (Priyadarshana et al. 2007; Eisma et al. 2015; de Silva,
Hutchins & Marusic 2016; de Silva et al. 2017; Heisel et al. 2020; Iungo et al. 2024).

Adopting these flow features and leveraging on their governing scaling laws has led
to the formulation of simplified models aimed at reducing the computational costs of
wall-turbulence flow simulations (Perry & Chong 1982; Klewicki & Oberlack 2015;
Bautista et al. 2019; Marusic & Monty 2019; Ehsani et al. 2024).

Uniform momentum zones, in particular, have been detected in spatial measurements
of turbulent boundary layer flows, conducted in both laboratory and field settings, and
linked to the evolution of wall-attached, large-scale structures in the outer layer (Meinhart
& Adrian 1995; Adrian, Meinhart & Tomkins 2000; Heisel et al. 2018).

The vertical distribution of UMZs and shear layers results in the step-like shape of the
instantaneous velocity profile, up to the turbulent–non-turbulent interface (de Silva et al.
2016; Heisel et al. 2020). In the logarithmic region, the thickness of the internal shear
layers was observed to scale with the Taylor microscale δω ≈ 0.4λT (Eisma et al. 2015;
de Silva et al. 2017; Heisel et al. 2021), while the local velocity difference, or jump,
was found to scale with the friction velocity (�Um ≈ 2uτ ) (de Silva et al. 2017; Heisel
et al. 2018). It was also shown that, within the logarithmic region, the thickness of UMZs
scales with the wall-normal distance (Hm ≈ z) (Heisel et al. 2020; Ehsani et al. 2024).
This scaling behaviour is consistent with the hairpin paradigm phenomenological model
(Adrian 2007) and with the attached eddy hypothesis (AEH), which assumes the size of
self-similar turbulent motions to scale with the distance from the wall (Townsend 1976; de
Silva et al. 2016; Marusic & Monty 2019; Deshpande, de Silva & Marusic 2023).

The analysis of the statistical moments computed on a large ensemble of UMZ profiles,
extracted from canonical turbulent boundary layer flows, demonstrated the preservation
of the mean and root-mean-square (r.m.s.) streamwise velocity in the logarithmic region
(Heisel et al. 2018; Ehsani et al. 2024). Hence, the UMZs, along with their accompanying
shear layers, can be interpreted as a ubiquitous, fundamental signature of the attached-eddy
coherent structures, which are linked to the momentum transfer and other surface processes
in turbulent boundary layers across various surface roughness conditions and Reynolds
numbers (Prandtl 1925; Heisel et al. 2018, 2020; Bautista et al. 2019; Bross, Fuchs &
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Kähler 2019; Xu, Zhong & Zhang 2019; Cogo et al. 2022; Puccioni et al. 2023; Salesky
2023; Zhang et al. 2023).

The vertical variability of UMZs and shear layers, manifested in the observed different
step-like instantaneous profiles extracted from experimental data, can be thus used
to reproduce the streamwise and vertical velocity variability in wall turbulent flows.
Leveraging on this observation, various approaches, often encompassing theoretical
assumptions and experimental data assimilation techniques, have been proposed to
generate synthetic instantaneous velocity profiles, with a more or less complex
spatio-temporal distribution, as computationally inexpensive, low-dimensional models of
wall turbulence (Perry & Chong 1982; McKeon & Sharma 2010; Saxton-Fox & McKeon
2017; Bautista et al. 2019; Ehsani et al. 2024).

Ehsani et al. (2024) used laboratory (wind tunnel) and field scale atmospheric
surface layer (ASL) measurements in rough-wall turbulent boundary layers to extract
the wall-normal location, kinematic and geometrical properties of UMZs. These include
the thickness hm, the modal velocity um, the vertically averaged velocity wm and the
mid-height elevation zm. All these attributes have been re-organized and statistically
characterized as a function of z. Leveraging on the resulting first and second statistical
moments of UMZ attributes, a set of models has been proposed to stochastically generate
one-dimensional (1-D) step-like instantaneous modal (streamwise) and vertical velocity
profiles. These are based on the inverse transform sampling technique, inverting the
cumulative density functions to sample each corresponding attribute, and on a prescribed
correlation coefficient to capture the correct Reynolds shear stress 〈u′

mw′
m〉. Results show

that the ensemble of stochastically generated profiles reproduces the mean velocity and
variances of canonical rough-wall turbulent boundary layers, including some key structural
features as the attached-eddy scaling of UMZ thickness (Heisel et al. 2020) and the shear
velocity scaling of the velocity jump across UMZ interfaces (Heisel et al. 2021). The
primary reason for selecting the log region as the focus of our work is to ensure the
scalability of our modelling approach, especially towards high-Reynolds-number flows.
The log region is ubiquitous, and its thickness increases in the ASL creating the space and
opportunity for bottom-up wall modelling. By recalling the mixing length assumption in
the derivation of the logarithmic law of the wall, and its relation to UMZ thickness (as
discussed by Heisel et al. 2020), we hope that the predictive capabilities of this model can
extend as high as the log layer can reach.

In the present work, we first re-order the generated 1-D rough-wall turbulent profiles into
a two-dimensional (2-D) modal velocity field, and then we extend the comparison with
measured wall turbulent flows to account for turbulent kinetic energy (TKE) production,
dissipation and scale-dependent streamwise velocity variance, i.e. the power spectrum.

To introduce some small-scale turbulence, and allow for the continuity of the modal
velocity vertical gradients, shear layers with prescribed thickness were introduced in the
stochastically generated profiles, replacing the abrupt velocity jump of each step. To
opportunely order and set the spatial (or temporal) resolution of the generated profiles,
hot-wire datasets from the wind tunnel measurements (Heisel et al. 2020) and sonic
datasets from ASL measurements (Iungo et al. 2024) were used (§ 2). The consistency of
the generated and rearranged spatial velocity field with the measured turbulent boundary
layer flows is assessed across a wide range of Reynolds numbers in § 3, and conclusions
follow in § 4.

In this study, the symbol z denotes the wall-normal distance and the subscript ‘i’ denotes
an arbitrary elevation zi or a UMZ attribute at any given location, e.g. the modal velocity
umi . The subscript ‘m’ is used to distinguish attributes of UMZs, such as um or hm.

999 A56-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

93
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.933


R. Ehsani and others

The superscript ‘+’ marks inner unit normalization, u+ = u/uτ . For variables, lowercase
lettering indicates instantaneous value, while uppercase lettering defines the temporal,
spatial or ensemble averages. For velocity, superscript ′ denotes fluctuations from the mean
value according to the Reynolds decomposition u = U + u

′
.

2. Methodology

2.1. UMZ detection and profile generation
The UMZ detection and extraction procedure, required to guide the modal velocity profile
generation, was implemented on three experimental datasets and described in detail by
Heisel et al. (2020). Instantaneous spatial and temporal velocity fields were obtained
from particle image velocimetry (PIV) and hot-wire measurements, respectively, obtained
in the St. Anthony Fall Laboratory atmospheric boundary layer wind tunnel, under
approximately zero pressure gradient conditions (Heisel et al. 2020). In addition, we used
field measurements in the ASL performed at the Eolos Wind Research Field Station in
Rosemount, Minnesota (Iungo et al. 2024), employing super-large-scale particle image
velocimetry (SLPIV, Toloui et al. 2014) and sonic anemometer measurements. The two
wind tunnel datasets, labelled as m1 and m2, are characterized by fully rough conditions
induced by a horizontal steel wire mesh. The experimental measurements collected by
hot-wire are denoted by H-W(m1) and H-W(m2) throughout the paper. The details about
the turbulent flow characteristics and the experiment’s parameters are presented in table 1.
In the following, we provide a brief summary of how instantaneous velocity profiles have
been generated using UMZ distribution obtained from experimental data. The details are
presented by Ehsani et al. (2024). Uniform momentum zones were identified using the
histogram-based approach, which was first introduced by Adrian et al. (2000), and recently
implemented by de Silva et al. (2016), Heisel et al. (2020) and Ehsani et al. (2024).
Figure 1(a) illustrates the results of the UMZ detection algorithm, with each distinct
UMZ depicted in a unique colour. The black solid curve represents the shear interface
between neighbouring UMZs. For the stochastic generation of modal velocity profiles,
a comprehensive statistical analysis of UMZ characteristics (i.e. thickness hmi , modal
velocity umi and vertical velocity wmi) at each generic wall-normal location is required.
At each given zi, cyan dashed line in figure 1(a), we group all UMZs that intersect zi; four
samples of them shown by the double circle head vertical yellow lines. This way, we obtain
a distribution of UMZ characteristics even near the wall, whose mid-height elevation is
larger than the elevation reference location (zmi > zi). The distribution of hm and um for
the specified wall-normal location zi is depicted in figure 1(b,c). The distribution of the
UMZs thickness is classified as log-normal, while the distribution of the modal velocity
and vertical velocity is approximated as Gaussian (Ehsani et al. 2024).

Leveraging on the statistics of the UMZ attributes, we can reconstruct their
height-dependent cumulative distribution functions (c.d.f.s), which are critical for the
stochastic generation procedure of instantaneous step-like velocity profiles. Let us suppose
we are located at the specific wall-normal location at zi, as shown in figure 1( f ). Using
the extracted statistics of the hm thickness at zi, we are able to reproduce the c.d.f. of
hm at this location, as plotted in figure 1(d). A random number between 0 and 1 is then
sampled out of a uniform distribution rhmi

∈ (0 1). The thickness hmi of the generated
UMZ is determined by inverting the cumulative distribution function of the log-normal
distribution. This approach is known as inverse transform sampling and has been used in
different research areas (Foufoula-Georgiou & Stark 2010; Fan et al. 2016; Heisel 2022).
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Figure 1. Illustrated procedure for the stochastic generation of modal velocity profiles. (a) Mapped UMZ
from instantaneous experimentally obtained velocity field using histogram-based approach. Thickness hmi ,
mid-height elevation zmi and modal velocities umi for the detected UMZs. Double circle head yellow vertical
lines indicate sampled thicknesses hmi of the UMZs intersecting the generic height zi (dashed cyan horizontal
line) for which the statistics of UMZ characteristics are collected. (b) Probability density function (p.d.f.) of
the UMZ thickness hm. (c) P.d.f. of UMZ modal velocity um. (d) Reproduced cumulative distribution function
(c.d.f.) of hm. (e) Reproduced c.d.f. of um. ( f ) A sample step of the stochastically generated velocity profile.

The technique for determining the modal and vertical velocities of the generated UMZ is
similar, except that it uses statistics from the mid-height elevation zmi = zi + hmi/2 of the
generated UMZ to reconstruct the cumulative distribution function of um and wm to invert.
For the purpose of reproducing the Reynolds shear stress −u′w′, the random numbers used
for rumi

and rwmi
are from a Gaussian copula with an imposed linear correlation parameter.

This approach guarantees a specified Pearson correlation coefficient and ensures that both
variables are uniformly distributed within the range ∈ (0 1) (Joe 1997; Nelsen 2007). The
stochastically generated modal velocity profile shown in figure 1( f ) is just one of the many
step-like profiles generated by the model. One of the technical reasons we focused on the
log region is the invariance of the Reynolds shear stress (∂u′w′/∂z ≈ 0), and the balance
of TKE production and dissipation in this region, which facilitate the development and
validation of our model. The linear variation in UMZs thickness with elevation and the
known parametrization of the mean velocity profile allow us to normalize UMZ statistics
across a wide range of Reynolds numbers and assess the representativeness of our model
(Heisel et al. 2020; Ehsani et al. 2024). Ehsani et al. (2024) demonstrated that a large
enough ensemble of generated modal velocity profiles effectively reproduce the statistical
moments of canonical rough-wall turbulent boundary layer flows and exhibit statistical
characteristics of wall-attached behaviour within the logarithmic region.

2.2. Introducing a finite size shear layer
Modal velocity profiles are generated stochastically, by inverse transform sampling of the
UMZ thickness hm and modal velocity um distributions, as described by Ehsani et al.
(2024) and sketched in figure 1( f ). These profiles necessarily exhibit a step-like shape:
the resulting internal shear layers (ISLs) had zero thickness (figure 2a) and locally infinite
velocity gradients.

Our first objective is to identify an appropriate length scale, introduce a smooth
transitional region between adjacent UMZs, and reproduce the correct streamwise velocity
profile in the ISLs. Using PIV measurements (Heisel et al. 2021) was able to estimate
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Figure 2. Modal velocity profile. (a) Shear layers with zero thickness. (b) Modified shear layers with
thickness δω. The sampled internal shear layer coloured in purple is described by (2.1).

statistically the ISL thickness, δω, at different elevations z/δ in rough-wall turbulent
boundary layers. From those results, the ratio between δω and the Taylor microscale,
δω/λT � 0.4, was observed to be fairly invariant throughout the outer layer, as previously
observed by Eisma et al. (2015) and de Silva et al. (2017) over smooth surfaces. Based
on the above results, we used the high-frequency hot-wire dataset from the wind tunnel
experiments by Heisel et al. (2020) and the sonic and SLPIV measurements from a recent
ASL dataset (Iungo et al. 2024) to determine the Taylor micro-scale, and imposed the
thickness of the ISL as δω = 0.4λT (Heisel et al. 2021). The shape of the velocity profile in
the finite shear layers can now be defined by a modified ellipsoid equation, as a function of
the length scale λT and the velocity jump �u as described in figure 2(b). This formulation
is inspired by the Oseen vortex equation describing advecting and rotating 2-D vortex cores
(Oseen 1912). Heisel et al. (2021) inferred that both the ISL and the energetic prograde
vortex cores can be statistically described by the same scaling quantities: the largest vortex
core diameter varying with λT and the azimuthal velocity scaling with uτ , which can be
easily implemented as semi-axes in the elliptic shear layer equation. In addition, Heisel
et al. (2018) demonstrated that vortex cores in the logarithmic region are preferentially
located within the ISL, thus supporting a consistent mathematical formulation. Equation
(2.1) is then implemented to introduce finite internal shear layers into the modal velocity
step-like profiles.

u+
ISLi

= u+
mi

+ �u+
mi

2
[(1 − cos θ), (sin θ + 1)]

zISLi

δ
= zISLci

δ
+ δω

2δ
[(sin θ − 1), (1 − cos θ)]

⎫⎪⎪⎬
⎪⎪⎭

0 ≤ θ ≤ π

2
(2.1)

Here, u+
mi

denotes the modal velocity of the ith UMZ, as shown in figure 2(a); u+
ISLi

represents the flow velocity at the midpoints of the internal shear layer, in between
two UMZs, as depicted in figure 2(b); �umi is the velocity jump (i.e. the difference in
modal velocity between two neighbouring UMZs), resulting from the stochastic generation
process. The corresponding wall-normal location zISLi/δ depends on the mid-elevation
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of the ISL, zISLci
/δ, and thickness of the shear layer, δω. The shear layer thickness is

imposed using the local, z-dependent, Taylor micro-scale, using the scaling relationship
δω = 0.4λT suggested by Heisel et al. (2021). Two harmonic functions are employed to
describe both the lower and upper portion of the velocity profile, within the ISL, relative
to its mid-elevation zISLci

/δ (see figure 2).

2.3. Combining velocity profiles into a modal velocity spatial field
Our next objective is to arrange the independent, stochastically generated, modal velocity
profiles into a spatially (or temporally) coherent, realistic, velocity field. We follow
a procedure inspired by the approach introduced by Cazanacli (2021) to reconstruct
channelization and avulsions in fluvial dispositional systems (Bryant, Falk & Paola 1995).
Initially, we select a single starting modal velocity profile, randomly, from a set of N
generated modal velocity profiles (figure 3 first step). The collection of profiles is referred
to as Repository (figure 3), and N can potentially be unrestricted. To determine the second
modal velocity profile of the generated velocity field, an additional set of independent
modal velocity profiles, of finite size M < N, is required. This set of profiles is referred to
as Storage, and its size is assumed, for now, to be contingent upon the Reynolds number
Reτ of the synthetic velocity field we are constructing. The Reτ dependency of Storage
size will be discussed in § 3.9. To introduce spatial coherence in the velocity field, we
compute the cross-correlation coefficient between the first profile um1(z) of the modal
velocity field and all the profiles in the Storage umi(z) (figure 3 second step). This enables
us to identify the profile with the highest correlation (among the M samples), which is then
designated as the second profile in the modal velocity field, and so on (figure 3 third step).
Due to the finite size of the Storage and the limited vertical extent of the shear layers in the
generated velocity profiles, the choice of modelling the finite shear layer, as opposed to
the sharp interface implemented by Ehsani et al. (2024), was observed to have a negligible
effect on the process of selecting the most correlated velocity profile. The second profile
is then removed from Storage and replaced with a randomly selected velocity profile
from the Repository (figure 3 fourth step). This process ensures a consistent number
of profiles within the Storage. Our methodology entails continuous sampling from the
Storage, selecting the most correlated velocity profile with respect to the latest addition to
the velocity field (steps 2 and 3), and replacing the chosen profile with a randomly selected
one from the Repository (step 4). The process of replenishing the Storage with a random
profile from the Repository yields the following outcomes.

(i) It ensures a consistent number of profiles M, so that the selection and the reordering
process are not compromised by a progressively reduced number of available samples.
This ensures the statistical homogeneity (steadiness) in the reordered spatial (temporal)
velocity field.

(ii) During the iteration, the random replacement of profiles keeps introducing
variability in the Storage, which periodically triggers more abrupt changes in the vertical
structure of the profiles, and in fact creates some very-large-scale excursions in the velocity
field. Because of the continuous search for nearly correlated velocity profiles, any marked
discontinuity in the profile structure will be followed by a sequence of similar profiles,
thus creating large-scale coherent motions.

If the Storage had an infinite size, the reordered velocity field would result in an endless
sequence of very similar, correlated profiles with negligible differences with respect to the
first randomly chosen one. Such an absence of variability would hinder the creation of
new structures within the velocity field. However, limiting the size of the Storage reduces
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Figure 3. Model procedure for making the velocity field. The size of the Repository and the velocity field are
undefined. The size of Storage is limited and the Reynolds number dependent.

the computational complexity of the algorithm and, most importantly, allows tuning the
size of the largest scale emerging from the reordering procedure. Since the extent of the
largest scale increases with Reynolds number (Saddoughi & Veeravalli 1994; Hutchins &
Marusic 2007b; Guala, Metzger & McKeon 2011; Smits, McKeon & Marusic 2011), this
option, in fact, enables the stochastic velocity field to better reflect the Reynolds number
of the turbulent flow that it is supposed to represent (see § 3.9 for more details).

3. Results

3.1. Restructuring profiles in a 2-D modal velocity field
The reordering of independently generated profiles can be performed in the temporal
or spatial domains, since it is simply based on the highest cross-correlation coefficient
among the M available independent samples. However, to create a representative modal
velocity field, we need to define the spatial, or temporal, distance between profiles. We
will display the outcome of this operation in the spatial domain, leveraging on the Taylor
hypothesis and the available velocity time-series from hot-wires in the wind tunnel and
sonic anemometers in the ASL. This procedure ensures that the extraction of UMZ and the
generation of instantaneous profiles, based on spatial PIV velocity data, are independent of
the reordering procedure. Following the organization of independently generated velocity
profiles to form a correlated velocity field, it becomes necessary to calculate the spatial
distance �x between each profile. To set �x in the generated velocity fields, we rely on
the experimental observations: the hot-wire dataset is used for the wind tunnel velocity
field, H-W(m1), H-W(m2), while the sonic dataset is employed for the ASL velocity field.
Assuming the Taylor, frozen-turbulence, hypothesis, the spatial autocorrelation function,
normalized by the variance σ 2

u , is computed for both the hot-wire and sonic datasets, and
denoted as ρu′u′(rx). It is then matched by the generated wind tunnel and ASL velocity
fields by opportunely tuning �x in our model. Figure 4(b,d, f ) shows the autocorrelation
functions of the actual datasets and generated velocity fields versus the space and number
of profiles at z/δ = 0.12 for the wind tunnel datasets and at z/δ = 0.02 for the ASL dataset.
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Figure 4. (a,c,e) Contour plot of the generated velocity field for WT(m1), WT(m2), and ASL datasets,
respectively. (b,d, f ) Autocorrelation functions of the streamwise fluctuating velocity for the generated velocity
field, the hot-wire velocity time-series for wind tunnel datasets (WT(m1), WT(m2)), and the sonic anemometer
and SLPIV for the ASL dataset, matching at ρu′u′ (rx) = ρu′

mu′
m
(Np) = 0.7. The autocorrelation function of the

PIV datasets for wind tunnel (WT(m1), WT(m2)) are computed using the unbiased estimator.

For the wind tunnel datasets, the ensemble average of the spatial autocorrelation function
from PIV (unbiased estimate) was also calculated and observed to be compatible with the
hot-wire datasets. The representative spatial lag, denoted as rx, is estimated for an arbitrary
condition ρu′u′(rx) = 0.7 for both the laboratory and field datasets. The autocorrelation
function is then computed for each generated velocity field and the corresponding number
of profiles Np, leading to the imposed matching value ρu′

mu′
m
(Np) = 0.7, is determined. The

optimal stretching or compression in the streamwise direction for the generated velocity
field is achieved when the spatial lag rx from the experimental datasets corresponds to
the correct number of profiles Np, such that the two autocorrelation functions can overlap.
This results in the most representative distance between the generated profile �x = rx/Np.
Figure 4(a,c,e) shows the generated velocity field after reordering and optimally spacing
the profiles. The value of ρu′u′ = 0.7 is chosen to ensure that the value of �x is in the range
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of the Taylor microscale, which is the lower limit imposed in the detection of UMZs and
generation of UMZ thickness hmi , and a fairly objective spatial resolution of our model.
The sensitivity analysis on the �x value for different values of autocorrelation coefficient
is studied in the Appendix.

Note that the value of �x also depends on the size of the Storage. With Storage
increasing in size, the selection process of subsequent profiles offers a larger pool of
candidates. Consequently, the generated velocity field becomes more correlated and rx,
which is calculated based on the actual dataset, has to comprise a larger number of profiles
Np, thus leading to a decrease in �x. Given that the stochastically generated velocity
profiles are unable to accurately capture small-scale turbulence, it is unphysical for the
emerging spatial resolution �x to be smaller than the Kolmogorov scale. The Taylor
micro-scale λT is employed here as a limit case for �x to reflect the spatial resolution of
UMZ detection and identification in the experimental data. To fulfil this condition, the size
of Storage is adjusted based on the Reynolds number, on which λT is weakly dependent.

In practical terms, it is found that the size of Storage should be of the order of
O(10

√
Reτ ). For the wind tunnel dataset, the size of Storage is 103, while for the ASL

dataset, the Storage comprises 104 profiles. The calculated value of �x for each velocity
field is consistent with the value of the Taylor micro-scale based on the dataset. We
acknowledge that �x is, rigorously, expected to be a weak function of the distance to the
wall z, which would require a remeshing of the modal velocity field and a height-dependent
streamwise correlation with experimental measurements. To compensate for that, we chose
representative vertical locations in the logarithmic layer and we recall that the vertical
extension of UMZs centred at these elevations cover a good portion of the logarithmic
region where data are extracted. The result of this simplification is discussed in more
detail in the spectra of the streamwise velocity fluctuations.

To provide a qualitative comparison between the generated velocity field and the
corresponding experimental dataset, we include in figure 5(a,b) the streamwise velocity
contour plots. Figure 5(a) shows the instantaneous super-large-scale PIV streamwise
velocity field from the ASL dataset, and figure 5(b) illustrates the stochastically generated
and reordered modal velocity field starting from the same initial modal velocity profile
as the experimental dataset. Each SLPIV snapshot covers a range of 7.5 m in the vertical
direction and 8 m in the streamwise direction, acquired at a sampling frequency of 120 Hz
(Iungo et al. 2024). To build a long streamwise interval, the temporal velocity signal of the
middle column of the SLPIV dataset was selected at each time t (i.e. u = u(xmiddle, z, t)
where xmiddle = 4 m) and projected into the streamwise coordinate employing the Taylor
frozen turbulence hypothesis. The initial condition for the generated modal velocity field
matches the first modal velocity profile extracted from the experimental dataset (i.e.
um(Gen)(x, z) = um(SLPIV)(x, z) at x = 0). Figure 5(c) shows the temporal signal of the
streamwise velocity at z/δ = 0.03, corresponding to both the experimental (top) and the
generated (bottom) dataset. The variability and structure of the turbulent flow appear well
preserved in our generated velocity field. Since the generation process is stochastic, from
the same initial profile but different generated or replenished profiles in the Storage, we
can reproduce many different realizations.

3.2. Statistical convergence of the generated modal velocity field
Previous research by Ehsani et al. (2024) defined the requirement of a minimum of
102–103 independent modal velocity profiles to achieve convergence in the first statistical
moments of the synthetic modal velocity dataset. However, with the newly introduced
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Figure 5. Qualitative comparison between the generated and the experimental dataset. (a) Contour plot of the
velocity field for the SLPIV (ASL) dataset. (b) Contour plot of generated modal velocity field. (c) Temporal
signal of streamwise velocity at z/δ = 0.03. Top, measurements. Bottom, the generated modal velocity field.

spatial (temporal) correlation among the velocity profiles, the actual number of profiles is
not as important as the number of large-scale structures emerging in the modal velocity
field. These large-scale structures become equivalent to large-scale flow turnover times,
typically used in time-series analysis of wall-bounded flows. The convergence of the
mean velocity and Reynolds stresses based on the number of independent profiles, as
discussed by Ehsani et al. (2024), has therefore to be reassessed. Statistical results from
the reorganized and spaced synthetic velocity field are validated through comparison
with hot-wire datasets from the wind tunnel and the sonic anemometer dataset from the
ASL. Figure 6 depicts the statistical convergence of both the generated velocity field and
the experimental measurements from the hot-wire dataset for the wind tunnel (m1) and
the sonic for the ASL. The statistics are computed over varying size temporal windows
starting at an arbitrary time t0 = 0 up to time t. The mean velocity presented in figure 6(a)
demonstrates the convergence of both the generated velocity field and the experimental
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the abscissa, U and δ represent the local mean velocity and the outer length scale, respectively. (a) Mean
streamwise velocity. (b) Streamwise velocity variance. (c) Wall-normal velocity variance. (d) Reynolds shear
stress.

measurements after structures with sizes ranging from 12 to 15δ. This size is compatible
with the size of VLSM structures (Smits et al. 2011). The abscissa of this figure is
normalized with U and δ, which represent the local mean velocity and the outer length
scale, respectively. Figure 6(b–d) shows the convergence of the streamwise variance,
wall-normal variance and Reynolds shear stress for both the generated velocity field and
experimental datasets. The convergence of the turbulent stresses is achieved at time scales
corresponding to a turnover time scale. These overlaps with the period of VLSMs are
qualitatively reproduced by the avulsion-like mechanisms of the profile reordering process.
In the following, we focus on the distribution of turbulent kinetic energy in the range of
resolved scales, from λT to the VLSMs.

3.3. Structure function analysis
In the inertial subrange, Kolmogorov (1941) introduced a scaling law for the structure
functions representing varying moments of the scale-dependent streamwise velocity
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Figure 7. Compensated second-order structure function for streamwise fluctuating velocity for the
experimental and generated dataset. (a) Wind tunnel (m1). (b) Wind tunnel (m2). (c) ASL. For the black solid
line, the dissipation value, derived from production, is computed through a composite of the mean velocity
gradient obtained from the SLPIV dataset and Reynolds shear stress sourced from the sonic dataset.

difference. The second-order streamwise structure function D11(rx), for spatially
homogeneous turbulent flows, is given by

D11(rx) = [u′
1(x1 + rx) − u′

1(x1)]2 = C2ε
2/3rx

2/3, (3.1)

where rx is the spatial lag, x1 is an arbitrary streamwise location over which spatial
averaging is performed and C2 ≈ 4C1 ≈ 72C/55 ≈ 2 are Kolmogorov’s constants
(Monin, Yaglom & Lumley 1975; Frisch 1995). This dependency, commonly referred to
as ‘Kolmogorov’s 2

3 law’, establishes a relationship between the TKE dissipation rate ε

and the peak, or plateau, of D11(rx) in the inertial range (Saddoughi & Veeravalli 1994;
De Silva et al. 2015; Yang et al. 2017).

The normalized, compensated, second-order structure functions are plotted in figure 7
for the different datasets. The Kolmogorov length scale η is estimated as (ν3/ε)1/4

(Kolmogorov 1941). The plateau, approaching the C2 constant, is well reproduced
in figure 7(a,b) for hot-wire datasets from the wind tunnel experiments, and for the
corresponding generated modal velocity fields. For the ASL case, plotted in figure 7(c),
the SLPIV does not fully capture the streamwise velocity variability in the inertial range,
as compared with the co-located sonic anemometer, which leads to the underestimation of
D11. The main reason is in the inertial response of the snowflakes and their relatively low
density, in this particular experiment, affecting the measurement spatial resolution (see
current and previous snow particle characterization in Li et al. 2021a,b; Li, Guala & Hong
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Dataset P (m2 s−3) ε (m2 s−3) ε/P

Wind tunnel (mesh 1) 2.32 2.09 0.90
Hot-wire
Wind tunnel (mesh 1) 2.02 3.2 1.58
Generated
Wind tunnel (mesh 2) 6.95 5.94 0.85
Hot-wire
Wind tunnel (mesh 2) 5.83 9.78 1.67
Generated
Atmospheric surface layer — 0.08 —
Sonic
Atmospheric surface layer 0.044 (0.019) 0.43
SLPIV
Atmospheric surface layer 0.03 0.10 3.3
Generated

Table 2. TKE dissipation rate ε, estimated through structure function Duu, and TKE production P. Values
are reported at z/δ = 0.12 for WT (m1) and WT (m2), and z/δ = 0.02 for the ASL. Estimates from structure
functions are selected for the calculation of η, and for the normalization and scaling of the spectra in the wind
tunnel. For the ASL, we imposed ε = P.

2023; Iungo et al. 2024). In the SLPIV compensated structure function, the dissipation
rate, ε, is not computed using (3.1), as standard practice. Assuming local equilibrium
between ε and the TKE production term, D11, represented by the solid black curve in
figure 7(c), is normalized by P = −u′w′(∂U/∂z); where u′w′ is estimated from the sonic
anemometer time-series, and (∂U/∂z) is estimated using SLPIV dataset. The comparison
denotes a progressively reduced SLPIV velocity resolution in the inertial subrange, for
rx/η < O(104).

3.4. Spectral analysis
To directly inspect the ability of our model to capture a wide range of turbulent scales,
we focus here on the streamwise velocity power spectrum. The latter represents the
scale-dependent distribution of the streamwise velocity variance, and it is denoted by
E11(k1), in which k1 is the longitudinal wavenumber. It is estimated from the streamwise
velocity time-series using the fast Fourier transform.

The TKE dissipation and production terms, computed using the second-order structure
function (Saddoughi & Veeravalli 1994) at one representative height in the logarithmic
layer, z/δ = 0.12 for the wind tunnel experiments (m1 and m2) and z/δ = 0.02 for ASL
dataset, are provided in table 2. Remarkably, ε derived from the second-order structure
function closely matches the TKE production term (P = −u′w′(∂U/∂z)) values for both
the generated and experimental wind tunnel (m1, m2) dataset. This is possible because
the stochastic model reproduces adequately the variability of the streamwise velocity up
to the inertial range, along with the mean velocity gradient and Reynolds shear stresses, as
shown by Ehsani et al. (2024). The k2

1 premultiplied streamwise velocity spectra (E11) were
also used to quantify the TKE dissipation rate following ε = 15ν

∫ ∞
0 k2

1E11 dk1 (Batchelor
1953). Values were somewhat underestimated by approximately a factor of two in the wind
tunnel, and more significantly in the ASL, due to the finite vertical size of the x-wire
sensor and the relatively large observation volume of the sonic anemometer, respectively.
Spectral analyses of the generated time-series also lead to underestimated dissipation
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rates, since the small-scale fraction required in the integration of k2
1E11 is missing in

the synthetic signal, equivalently to a coarse measuring system. This trend is amplified
in the ASL dataset, where the broadening range of partially resolved scales contribute
to reduce the accuracy of the spectral estimate of ε. At the field scale, the most reliable
experimental results are the production term P = 0.044 (m2 s−3) and the TKE dissipation
rate ε = 0.08 (m2 s−3) estimated from the sonic D11. Consistent with figure 7(c), D11 from
SLPIV measurements underestimate ε = 0.019 (m2 s−3) significantly. The second-order
structure function of the generated velocity signal leads to ε = 0.10 (m2 s−3), which
captures the order of magnitude of the experimental estimates.

The comparison between results suggests that, in wall-bounded turbulent flows at
varying Reynolds numbers, the energetic range of scales responsible for the Reynolds
shear stresses, fairly overlap with (i) the streamwise variability induced by the attached
eddies, and to some extent with (ii) the portion of the TKE up to the inertial range
plateau where D11 is expected to peak. TKE production is reasonably estimated because
the attached eddies, consistent with the hairpin vortices organization (Adrian 2007; Heisel
et al. 2018), are reproduced in the stochastic generation of UMZs and in the resulting modal
velocity field. As discussed by Ehsani et al. (2024), −u′w′ are somewhat underestimated
in the extracted UMZ attributes u′

m, w′
m, and such difference obviously persists in the

generated modal velocity field. TKE dissipation rates and portions of the inertial range are
satisfactorily captured because the spatial reorganization of the generated profiles into a
modal velocity field is achieved with the correct spacing, implying that the modelled UMZ
variability is distributed across the correct range of physical scales.

3.5. Streamwise velocity spectrum
The streamwise velocity spectrum reflects the range and magnitude of the turbulent
structures contributing to the variance, and in broader terms, to the variability of the
flow. The low-wavenumber energy-containing range for VLSMs is known to scale with
outer-layer variables like δ. The intermediate range for the attached eddies scales with
the distance from the wall, while the high-wavenumber range, where dissipation occurs,
scales with the Kolmogorov length scale or the viscous scale near the wall (McKeon
& Morrison 2007; Smits et al. 2011; Hwang, Hutchins & Marusic 2022). The subrange
intersecting the attached-eddy and dissipation regions is expected to follow a scaling of
k−5/3

1 so-called the inertial subrange. In the inertial subrange, the energy is transferred
by inertial mechanisms from low to high wavenumber, and a reasonable set of scaling
quantities is defined by the Kolmogorov scales. Figure 8 shows Kolmogorov’s universal
scaling of one-dimensional power spectra for the generated streamwise velocity field as
compared with the experimental datasets. The reorganized modal velocity field closely
reproduces the theoretical scaling in the inertial range (k1η)−(5/3) for all different datasets
across a wide range of Reynolds numbers.

The generation of the theoretical scale dependence in the stochastic field is attributed
to the fact that the procedure reproduces the correct shape for the autocorrelation seen
in figure 4(b,d, f ), where the autocorrelation and spectrum are Fourier pairs (Pope 2000).
The scale dependence is also related to two properties of the UMZ organization seen in the
figure 4(a,c,e) generated fields. First, the varying position of ISLs results in a self-similar
crossing signal at a given z position. Second, consecutive profiles have similar, but not
equal, modal velocities that represent small-amplitude variability within each UMZ. Both
the large-amplitude ISL crossings and the finer variability in modal velocity are required
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Figure 8. Kolmogorov universal scaling for one-dimensional streamwise velocity power spectra computed
on the (a) generated, (b) experimental datasets. The dissipation and Kolmogorov length scale are calculated
based on the D11 structure function analysis. Triangle head arrow marks the low boundary of VLSM scales
L = πδ corresponding to k1δ = 2 (Guala et al. 2006; Balakumar & Adrian 2007); ellipsoid head arrow marks
attached-eddy scales hm = 0.75z.

to recover the theoretical −5/3 inertial range from experimental UMZ fields (Heisel et al.
2022).

We note that the model’s ability to reproduce inertial range statistics seems better
reflected in the wavenumber spectra (figure 8) as compared with the compensated D11

structure functions in figure 7 where some deviations are observed for 102 < rx/η <

103. As suggested by Davidson & Pearson (2005), the second-order structure function
does not provide a truly local description of energy at scale rx, and suffers from some
contaminations from the smaller scales. Those are partly missing in our stochastic model,
due to the limited spatial resolution, and partly over-estimated, at least based on the E11
deviation from the −5/3 slope at the high wavenumber end of the inertial range, possibly
due to the Fourier decomposition of the sharp streamwise velocity gradients between
adjacent profiles.

The inertial range, comprising the Taylor micro-scale λT , the integral length scale
L ∝ z, all the way to the production scale, is observed to correctly extend towards
lower wavenumbers, k1, as the Reynolds number increases from laboratory to field
conditions. This is well captured by the modal velocity field. The UMZ wall-attached
structures, featured in the instantaneous profiles and adapting to the increased range of
height z (Ehsani et al. 2024), exhibit variability in thickness ensured by the stochastic
generation and a consistent streamwise organization ensured by the reordering process.
Below the inertial subrange, the smaller-scale variability, characteristic of vortex cores,
shear layers and other features progressively influenced by viscosity, contributes to the
dissipative range and only emerges in the high-resolution hot-wire measurements in the
wind tunnel. Due to the absence of such flow features in the generated modal velocity
field, the power spectrum is limited to the inertial and production ranges. What appears
particularly intriguing is the range of large scales covered by the generated and reorganized
modal velocity field. The power spectra in figure 8(a) denote a peak, which typically
represents the upper edge of the inertial range and marks the transition to the large- and
very-large-scale motions (Balakumar & Adrian 2007; Guala et al. 2011). The generated
profiles do not have any constraints beyond the imposed wall-attached scaling. Hence,
the large-scale spectral peak must reflect the extent of the reordering process, the size of
the Storage and the vanishing streamwise velocity autocorrelation functions at some large
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temporal or spatial lags (see figure 4). To better visualize the covered range of scales by
the model, we plotted for each condition, a triangle head arrow, corresponding to k1δ = 2
marking the lower edge of the VLSMs (Guala, Hommema & Adrian 2006; Balakumar &
Adrian 2007), and an ellipsoid head arrow, marking the attached-eddy scaling hm = 0.75z
of UMZs (Heisel et al. 2020; Ehsani et al. 2024). The emerging inertial range in the
logarithmic layer appears comprised between these two scales, suggesting that fluctuations
of the attached-eddy thickness hm combined with the convoluted and ramp-like shape of
the uniform momentum zones mostly contribute to the streamwise velocity variability in
the inertial range. The streamwise variability of hm in the generated modal velocity field
may capture the contribution from small vortices and oscillations of the internal shear layer
discussed by Heisel et al. (2022). In scaling terms, UMZs are expected to extend in the
flow direction from 0.75 z tan−1(α), if inclined consistently with the structure inclination
angle α = 9◦ − 18◦ (Adrian et al. 2000; Mathis et al. 2009b; Guala et al. 2012), all the way
to O(πδ), if they remain aligned and confined within a VLSMs or superstructure. With this
working hypothesis in mind, we inspect the vertical velocity spectrum and Reynolds shear
stress co-spectrum, in the hope to strengthen the phenomenological interpretation of UMZ
streamwise organization and dynamics, and understand the transition to the largest scale
motions in the logarithmic regions.

3.6. Premultiplied spectra across the log layer
Premultiplied spectra of the streamwise velocity fluctuations are depicted in figure 9
for the generated and experimental wind tunnel (m1) dataset. The key point of this
figure is to explore how the model captures the wall-normal dependency of TKE energy
distribution across scales. The high-frequency hot-wire measurements show spectral
amplitudes progressively reducing with increasing distance from the wall, as the variance
is reduced. This trend is, to some extent, reproduced by the generated modal velocity field
in figure 9(a). However, aside from small differences in the range of elevation explored
in the log region, the emerging spectral plateau captured by the measurements (see also
Balakumar & Adrian 2007) is not captured.

Early studies have shown the existence of two types of large-scale structures: (i) the
so-called large-scale motions (LSMs), which emerge from the concatenation of hairpin
vortices travelling with the same convective velocity and forming a packet and (ii) the
VLSMs (Kim & Adrian 1999; Zhou et al. 1999; Guala et al. 2006; Balakumar & Adrian
2007). Two distinct categories of LSMs have been proposed: near-wall attached LSMs
which scale with the wall-normal distance (modelled here, and denoted as type A eddies),
and outer-layer detached LSMs (denoted as type B eddies) (Perry & Marušić 1995;
Hutchins & Marusic 2007b; Mathis, Hutchins & Marusic 2009a; Mathis et al. 2009b;
Bailey & Smits 2010). The streamwise alignment of detached LSMs has been suggested
to result in the formation of VLSMs within the log region (Del Alamo & Jimenez 2006).
Similar arguments were proposed by Kim & Adrian (1999), leveraging on the spanwise
alignment of (attached) hairpin packets contributing to bulges denoted as VLSMs. The
streamwise extent of LSMs ranges from 1δ to 3δ, whereas for VLSMs, it spans between
10δ and 20δ for boundary layer flow. Premultiplied spectra are thus expected to feature
two distinct peaks; one at relatively shorter wavelength clustering around LSMs and one
at longer wavelength indicative of VLSMs, as observed in a variety of shear flows at
moderate Reynolds numbers (Guala et al. 2006; Balakumar & Adrian 2007; Hutchins
& Marusic 2007a; Guala et al. 2011). This is observed in the experimental wind tunnel
dataset, through a broadening of the premultiplied spectral plateau, progressively reduced
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Figure 9. Pre-multiplied power spectra of the fluctuating streamwise velocity k1E11 versus streamwise
wavenumber, k1, for (a) generated (m1), and (b) hot-wire (m1) experimental dataset.

with increasing z. We speculate that the surface roughness and moderate Reynolds number
contribute to smear the expected peaks of the two large-scale populations, leading to a
broadening central region. For the purpose of this analysis, we previously selected k1δ = 2,
which corresponds to L = πδ, as the threshold marking the low-wavenumber range of
VLSMs. It is noteworthy that the modal velocity field exhibits a peak in the premultiplied
spectra consistent with the range of large-scale turbulent structures, but does not show
any bimodal or broadening distribution change with the wall distance. The increase in
streamwise velocity variance to the wall is indeed manifested in a growing contribution to
the VLSM range, which is rather expected to occur in the middle of the log region.

The key factor contributing to the model’s inability to generate outer-scale detached
VLSMs lies in its inadequacy to reproduce UMZ structures and step profiles independent
of their elevation. The formation of VLSMs in our model is however consistent with
the pseudo-streamwise alignment of attached hairpin packets and LSMs as proposed
previously (Kim & Adrian 1999; Adrian et al. 2000; Guala et al. 2006). The model
captures the reduction of the unimodal peak amplitude with increasing distance from
the wall, which is in line with the growth of the size of the attached-eddy structure
with distancing from the wall (i.e. hm = 0.75z) and a decrease in their modal velocity
and thickness variability. However, in the generated modal velocity field, the reordering
process, providing aggregation and alignment of the attached eddies, is z-independent,
as the size of the Storage in the stage of profile generation. Hence, we cannot expect
any change in energy distribution with the distance from the wall that is not encoded
in the attached eddy scaling and variability assumed in the profile generation (Ehsani
et al. 2024). One possibility is to progressively vary the Storage size with elevation, to
introduce a change in the size and organization of correlated structures. In the model,
however, the Storage size is dependent on Reτ (see § 3.9) which is z-invariant. Also,
increasing the Storage size may result in the value of �x becoming smaller than the Taylor
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Figure 10. Power co-spectra of the fluctuating streamwise, u′, and wall-normal, w′, velocity versus
streamwise wavenumber, k1, for (a) generated and (b) experimental dataset.

microscale, a scenario that is not physically plausible, based on the current, and perhaps
intrinsic, limitation in UMZ definition and detection. We also acknowledge that, owing
to the model’s inability to generate high-frequency dissipative structures, the value of the
premultiplied spectra does not approach zero for high-end wavenumber for the generated
modal velocity field.

3.7. Co-spectral analysis
Spectral analysis of large-scale structures associated with the energy-containing and
intermediate ranges has been used to quantify their significant impact, not only on
the TKE distribution, but also on the generation of TKE and Reynolds shear stress
(Ganapathisubramani, Longmire & Marusic 2003; Guala et al. 2006; Balakumar & Adrian
2007). In particular, the direct estimate of the attached eddy and VLSM contribution
can be obtained through the co-spectra of the streamwise velocity and wall-normal
velocity E12. These are plotted in figure 10 for the experimental and generated datasets.
The wavenumber k1δ = 2, corresponding to a wavelength of πδ is taken again to mark
the range of the VLSM, along with the assumed contribution of the attached eddies
proportional to 0.75z (Heisel et al. 2020). It is remarkable that the modal velocity field
u′w′ co-spectra well reproduce the experimental trends, consistent with those observed
by Balakumar & Adrian (2007), and confirms the dynamic relevance of large-scale
structures. This result confirms that the vertical velocity variability introduced in the
UMZ attributes and implemented in the generation of the instantaneous velocity profiles
is a critical element in reproducing wall turbulent flows. The phenomenological spanwise
alignment of hairpin packets, leading to a cumulative coherent contribution of Q2 events
and to large-scale shear stress contributions, is manifested in the model through the
reorganization of the modal velocity field. Because the wall-normal and modal velocity
are statistically anticorrelated locally, i.e. for each UMZ providing the correct 〈u′

mw′
m〉,

the vertical velocity field also maintains a level of spatial correlation across large scales,
thus extending beyond the single vortex core or the internal shear layer thickness, both
proportional to λT (Heisel et al. 2021).

3.8. Vertical derivative of premultiplied −u′w′ co-spectra
In the mean momentum equation, the z-derivative of the Reynolds shear stress represents
an exerted net force, equivalent to the mean pressure gradient. Assuming streamwise
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Figure 11. Vertical derivative of premultiplied co-spectra, E12, for (a) generated (m1), and (b) hot-wire (m1)
dataset.

velocity homogeneity and neglecting viscous terms, ∂p/∂x ∼ ∂(−u′w′)/∂z in which p is
pressure. The latter term can be decomposed in a range of contributing Fourier modes with
the understanding that, in nearly zero pressure gradient boundary layers as the ASL, the
integral value is expected to be small, and thus the different contributions from various
scales are expected to balance each other (Guala et al. 2006; Balakumar & Adrian 2007),

∂(−u′w′)
∂z

=
∫ ∞

0

∂(−E12)

∂z
dk1. (3.2)

The vertical derivative of E12, simply referred to as the derivative co-spectrum,
represents the scale-by-scale contribution to the vertical turbulent momentum flux u′w′.
Figure 11 shows the premultiplied derivative co-spectra computed on the generated and
experimental dataset for the wind tunnel rough-wall case (m1). First, at all wall-normal
locations, the integral of the z-derivative of −u′w′ has a negative sign which confirms
that our flow domain is located slightly above the maximum Reynolds shear stress peak,
defined as z+

p = 2Re1/2
τ (Sreenivasan & Sahay 1997). Therefore, the Reynolds stress

contributions are expected to be consistently negative and responsible for the deceleration
of the mean velocity, consistent with the momentum absorption by the surface. Second, at
the location nearest to the wall, the integral of the derivative spectrum becomes positive in
the low-wavenumber range (k1δ < 2), which indicates a positive z-derivative of Reynolds
shear stress for large-scale structures. This supports the interpretation of active VLSMs,
contributing to the pressure gradient and accelerating the flow near the wall, as previously
observed in various canonical shear flows (Guala et al. 2006; Balakumar & Adrian
2007). It has been phenomenologically related to large-scale sweeping, fourth quadrant
Q4 events, separating coherent spanwise-aligned aggregates of hairpin packets and vortex
clusters. It is quite interesting that, despite the high-frequency noise, both the experimental
data and the model confirm the VLSM positive dynamic contribution very close to the
surface. It suggests that the large-scale alternation and reorganization of attached eddies is
one of the key physical mechanisms restarting the wall cycle (Waleffe 1997). We also
infer that the attached versus detached nature of VLSMs may not be as dichotomous
as discussed by Kim & Adrian (1999) and Del Alamo & Jimenez (2006), respectively.
Recent results by Deshpande et al. (2023) suggest that superstructures and VLSMs are an
assemblage of attached eddy hierarchy in the x–z plane, which is in fact consistent with our
modelling framework. Hence, as we focus on near-surface turbulent processes, we retain
the denomination of the large-scale structures emerging from the reordering procedure as
VLSMs.
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3.9. How the storage can be sized to reflect the flow Reynolds number
We aim to discuss here the relationship between the Reynolds number of the stochastically
modelled flow and the Storage size (M). Here, M represents the size of the Storage
employed to select the step-like velocity profile that is most correlated with any given
velocity profile, e.g. the last one added to the generated modal velocity field. The specific
effect of different values of M is quantified by the power spectrum of the generated, and
reordered, modal velocity field, under different assumptions. In particular, we explore two
distinct scenarios for the m1 wind tunnel flow, hoping to shed some light on how to tune
the modelling parameters to the flow that we try to reproduce.

(1) The generated modal velocity signal for different M Storage sizes at z/δ = 0.12 is
segmented into windows of physical size w = 12δ, which enables to capture the length
scale of VLSMs; the spacing �x, imposed by matching the autocorrelation function with
the one computed on the measured velocity, varies for the three distinct, M-specific, modal
velocity fields.

(2) The generated modal velocity signal for different Storage sizes M at the same
elevation z/δ = 0.12 is segmented into windows composed by Ns = 10 000 profiles, using
the same �x spacing between profiles corresponding to the experimentally estimated
Taylor micro-scale �x = λT for all generated modal velocity fields.

Figure 12(a) illustrates the single-sided power spectra of the generated modal velocity
field at z/δ = 0.12 with different resolution �x, as described in scenario 1. With the
reduction of the Storage size to M = 100, the inertial range is shrunk and the spectrum
encompasses a narrower range of wavenumbers. This is due to the reduction of potentially
correlated candidates in the profile selection, resulting in the model’s inability to generate
longer-lasting, or large-scale, structures. This imposes a stretching of the reorganized
modal velocity field through an increasing �x, exceeding the Taylor microscale, and thus
a reduction of the maximum resolved wavenumber. By increasing the size of the Storage
to M = 10 000, the model gains the ability to produce longer-lasting correlated structures,
which leads to a reduction of the �x value that falls below the Taylor microscale. This
represents a virtual increase of spatial resolution, which is not consistent with the UMZ
identification procedure in the experimental dataset. Figures 12(b)–12(d) are examples of
the generated modal velocity field employing various Storage sizes. The number of profile
subsets that the modal velocity field contains in these figures is 200 across all cases.
However, the value of �x varies across these three cases, resulting in different spatial
resolutions. For the case of M = 10 000 (figure 12d), it can be observed that all the 200
profiles are similar and correlated to each other. It has been determined that a Storage size
of M = 1000 adequately reproduces the structures compatible with LSMs and VLSMs,
while ensuring that �x approximates the Taylor microscale and the resolution of UMZs
detection.

To study the effect of Storage size on the low-end wavenumber of the inertial range and
specifically on its ability to reproduce flows with different Reynolds numbers, scenario 2
has been designed. Figure 13 shows the one-sided power spectra of the generated modal
velocity field across a wide range of M for a consistent spacing between the profiles at
z/δ = 0.12. The predefined spacing is compatible with the value of �x for the generated
modal velocity field with M = 1000, matching the experimental value of the Taylor
microscale. Choosing the same value of �x for all the generated modal velocity profiles
leads to having the same high-end wavenumber k1 = 2π/2λT for all cases. The velocity
signal is segmented into windows of size Ns = 10 000, where Ns represents the number
of sample profiles in each window. Selecting an identical number of samples for various
velocity fields also results in a consistent low-end wavenumber k1 = π/NsλT across all
cases, enough to cover the largest structure of turbulence.
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Figure 12. Impact of Storage size on the spatial resolution of generated modal velocity field and reproduction
of longer lasting structures. (a) Power spectra of the generated modal velocity field (m1) employing different
Storage sizes (M). The triangle head arrow marks the low boundary of VLSMs scales L = πδ and the ellipsoid
head arrow signifies attached-eddy scales L = 0.75z. Generated modal velocity field with Storage size of: (b)
M = 100; (c) M = 1000; (d) M = 10 000.

Increasing the Storage size M leads to an extension of the inertial range, with larger
energetic structures persisting in space (or time). This behaviour is compatible with
an increase in the turbulent boundary layer Reynolds number (see e.g. Saddoughi &
Veeravalli 1994; Hutchins & Marusic 2007a), defining the separation between the smallest
scales, of the order of Kolmogorov η, or the viscous scale ν/uτ , and the largest scales,
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Figure 13. Impact of Storage size on the low-end wavenumber of inertial range and its Reynold number
dependency. Spacing profile for all the generated fields is �x = λ, and the signal is segmented into windows
with length of Ns = 10 000. In the inset plot, a power-law function is fitted to the relationship between M and
N0, which is the number of profiles that are compatible with the length scale of the low-end wavenumber of the
inertial range L0. In this function, N0 = aMb, a � 4.1 and b � 0.46. This relationship is compatible with our
empirical relationship of M � 10Re0.5

τ .

multiple of δ. To determine the length scale compatible with the low-end wavenumber
of the inertial range for each generated velocity field (again for the m1 study case), we
have marked the wavenumber k1 at which the deviation from the −5/3 line begins and
the corresponding length scale L0. For M = 100, we estimated k1 = 10, indicated by
the rose-headed arrow, and L0 = 2π/10 = 0.5πδ. For the other two cases, M = 1000
and M = 10 000, k1 = 7 and k1 = 2 are marked with diamond head and rectangle head
arrows, which correspond to L0 = 0.7πδ and L0 = 2.45πδ, respectively. As the reordering
procedure is based on the number of profiles, not necessarily on their physical scale, we
also track N0 = L0/�x. The maroon circle points in the inset plot of figure 13 show the
estimated number of profiles N0 versus different Storage sizes M. A power law function,
represented as N0 = aMb, is attempted to establish a relationship between N0 and M,
where a � 4.1 and b � 0.46. This relationship is compatible with the empirical equation
we introduced for the Storage size with respect to the Reynolds number of the generated
modal velocity field M � 10Re1/2

τ . The size of the Storage embeds the physical property
of the attached-eddy aggregation into large-scale structures that we want to reproduce in
the generated velocity field and be energetically consistent with the inertial and production
subrange. By increasing the Reynolds number of the generated modal velocity field and,
e.g. transitioning from the wind tunnel (m1) dataset to the ASL dataset, the size of the
VLSMs, depending on δ, has to increase, along with the separation of scales in the
inertial range. To replicate the increase in size and energetic contribution of large-scale
structures in wall-turbulent flows with larger Reynolds numbers, maintaining an adequate
spacial resolution �x = λT , an increase in the Storage size is therefore required. The
corresponding, emerging super-structures are visualized in figure 14 for the three Storage
sizes investigated (m1 case study).

4. Conclusion

In this study, we demonstrate how synthetically generated step-like instantaneous velocity
profiles can be reorganized in time or space to reproduce some key statistical properties of

999 A56-24

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

93
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.933


Stochastic modal velocity field in rough-wall turbulence

0.12

0.08

0.04

0.12

0.08

0.04

0.12

0.08

0.04

x/δ

z/δ

z/δ

z/δ

0 2 4 6 8 10 12 14 16 18 20

0 2 4 6 8 10 12 14 16 18 20

0 2 4 6 8 10 12 14 16 18 20

100 200 300 400 500 600 700 800

100 200 300 400 500 600 700 800

100 200 300 400 500 600 700 800

20

18

16

14

12

10

8

6

4

2

0

um
+

# Profiles
(a)

(b)

(c)

Figure 14. Generated modal velocity field (m1) using different Storage sizes. The spatial distance �x between
the modal velocity profiles is consistent and compatible with the Taylor microscale λT . Generated modal
velocity field with Storage size of: (a) M = 100; (b) M = 1000; (c) M = 10 000.

the logarithmic region of canonical rough-wall turbulent boundary layer flows. Leveraging
on experimental datasets (Heisel et al. 2020; Iungo et al. 2024), encompassing a wide
range of Reynolds numbers from laboratory to field conditions, uniform momentum
zones (UMZs) are first extracted from instantaneous 2-D particle image velocimetry
measurements to create height-dependent statistics of UMZ attributes. These attributes,
including UMZ thickness and mid-elevation, streamwise modal and vertical velocities, are
used to inform a stochastic model to generate a large number of independent, step-like, 1-D
vertical velocity profiles (Ehsani et al. 2024), which are here reorganized into 2-D modal
velocity fields. The step-like profiles represent vertical sequences of UMZs separated by
internal shear layers, which reproduce the basic configuration and momentum contribution
of attached eddies (Marusic & Monty 2019) and hairpin packets (Adrian 2007). In this
paper, we introduce a large-scale organization of the step-like instantaneous velocity
distributions using a cross-correlation-based ranking procedure to progressively group
similar profiles. For the purpose of reordering and compiling a 2-D modal velocity field,
we have created a Repository and Storage of independent, generated velocity profiles with
finite sizes N and M, respectively. The size of the Repository, N, must only ensure the
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continuous replenishment of the Storage, and hence it should always be greater than the
size of the Storage throughout the process of producing an organized modal velocity field
(N > M). To avoid repeated profiles in the modal velocity field, the initial number of
generated profiles N should also be larger than the size of the final modal velocity field
that we aim to generate and reorganize. There are three key elements in the operation of
reorganization: (i) the statistical properties, e.g. mean, variance, attached eddy scaling and
Reynolds stresses, from the ensemble of velocity profiles are preserved; (ii) the introduced
large turnover scale has been observed to depend on the size M of the Storage; (iii)
a range of intermediate scales and quasi-uniform momentum zones emerged, from the
concatenation of non-perfectly similar profiles, to bridge the smallest UMZ scale with the
largest turnover scale, leading to an energetic scale-by-scale distribution consistent with
the turbulent inertial range.

The hot-wire and sonic anemometers experimental datasets (from Heisel et al.
(2020) and Iungo et al. (2024), respectively) were used for the wind tunnel and ASL
modal velocity fields, to match the streamwise velocity autocorrelation function and
find the optimal distance �x, or temporal lag, between adjacent profiles. With the
correct estimation of �x, which is of the order of the Taylor microscale λT , the
consistency of the reorganized generated velocity field with the canonical boundary
layer flow could be assessed using higher-order statistics: Kolmogorov’s scaling of the
one-dimensional longitudinal power spectrum and compensated second-order structure
functions of the streamwise, modal velocity show the capability of the model to reproduce
the production range and the inertial subrange (k−5/3

1 ) from the scale of UMZs to the
very-large-scale-motions and superstructures (Hutchins & Marusic 2007b; Guala et al.
2011); u′w′ co-spectra and co-spectral derivatives confirm the dynamic role played by
attached eddies and VLSMs in sustaining the Reynolds shear stresses (Guala et al.
2006; Balakumar & Adrian 2007), ensuring the correct modelling of both streamwise
and vertical modal velocities, and the key role played by UMZ spatial variability and
organization.

The ability of our stochastic model to generate computationally affordable, arbitrarily
sized, 2-D velocity fields over a wide range of Reynolds numbers is an important step
towards the generation of dynamic boundary conditions for large-scale turbulent flows.
This capability is crucial for various research applications in practical engineering or
geophysical scenarios, e.g. in the presence of wind turbines, complex terrain, urban
canopies, where near-surface flows, in the logarithmic layer, can be modelled and allowed
to interface with large-scale flow simulations focused on the relevant geometry of the
problem.

Our model offers some significant advancements and differences, as compared with
previously developed frameworks. With respect to Bautista et al. (2019), the generated
profiles include vertical velocity fluctuations, to reproduce the Reynolds shear stress
contribution by UMZs; the 2-D modal velocity field emerges from a bottom-up
implementation, depending on surface roughness parameters, which is envisioned to
interface with large-scale numerical simulations, such as LES, farther from the wall.
The ability to introduce spatial variability in a consistent scale-dependent fashion,
consistent with the inertial range scaling regime, and the reasonable agreement between
TKE production and dissipation at different elevations are expected to ensure a rapid
convergence of potentially paired simulations. With respect to the resolvent framework
(Sharma & McKeon (2013) and Herrmann et al. (2021), among others), our model
provides some necessary variability and randomness in the replicated scale-dependent
modes, but so far, lacks three-dimensionality and the associated continuity constraint.
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Ranked dynamic modes emerging from the decomposition of numerical datasets are
replaced in our model by statistical observations of UMZ attributes, from experimental
results, which are critically needed for the stochastic generation of instantaneous velocity
profiles. We speculate that the two approaches could be complementary.

The long-term impact is to generate a modal velocity field suited to a specific surface
and flow domain as a function of four basic parameters of turbulent flows and boundary
conditions, such as friction velocity uτ , outer length scale δ, aero-dynamic roughness
length z0 and Taylor microscale λT . The parametrization of the UMZ attributes by Ehsani
et al. (2024) and the Storage size dependency on Reτ allows to potentially automate the
generation and reordering processes leading to unvalidated, but potentially representative,
modal velocity fields for any uτ , δ, z0, λT and Reτ combination. We do acknowledge
that these parameters are not typically known a priori, implying that some iteration
strategies, or minimal experimental input, will have to be implemented in the interface with
outer-scale numerical simulations. The generated modal velocity field can also be further
developed by incorporating small-scale turbulent features, such as vortex cores of various
sizes and azimuthal velocities, which requires an increased resolution in the streamwise
direction, similar to that needed here to reproduce finite shear layers. Future developments
could be implemented by machine learning models trained on the generated dataset to
improve the ordering and selection of subsequent velocity profiles in the generated field,
and then to incorporate conservation equations in a 3-D modelling extension (physics
informed neural network). The contribution from AI-based algorithms with different
architectures, as developed by Raissi, Perdikaris & Karniadakis (2019), Raissi, Yazdani
& Karniadakis (2020), Eivazi et al. (2022) and Baddoo et al. (2023) will be essential.
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Appendix

To obtain the correct distance (�x) between ordered modal velocity profiles in the
generated velocity field, we adjusted the autocorrelation of the generated dataset to
match that of the experimental dataset, using a specific value of the autocorrelation
coefficient, specifically ρu′u′ = 0.7, in the range from 0 to 1. The shape of the curve is
qualitatively captured in the modal velocity synthetic signal, and hence only its stretching
or compression had to be determined. In this section, we conduct a sensitivity analysis by
varying the values of the autocorrelation coefficient to study its impact on the estimated
value of �x. We originally picked 0.7 to set a relatively fine resolution without exceeding
the true resolution of the model, which is based on the identification criterion for UMZs to
be larger than the Taylor microscale λT . We show here the effects of different selections:
ρu′u′ = 0.3 and ρu′u′ = 0.5. The resulting distance between adjacent profiles �x for the
generated m1 velocity field for the three different autocorrelation coefficients 0.3, 0.5 and
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Figure 15. Sensitivity analysis on �x value for different values of autocorrelation coefficient. (a) Normalized
�x with the Taylor microscale for various autocorrelation coefficient values. (b) Compensated autocorrelation
curves of generated velocity field with the experimental hot-wire dataset at z/δ = 0.12 for different values of
autocorrelation coefficients.

0.7 are equal to 1.13, 1.01 and 1.09 cm, respectively. Normalized �x/λT values for the cases
investigated are shown in figure 15(a), denoting a negligible effect by different choices of
the autocorrelation coefficient values. The corresponding autocorrelation curves for the
generated m1 velocity field ρu′u′(rx) = ρu′

mu′
m
(Np) are shown in figure 15(b).
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