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Abstract

In this paper, we propose a machine-based classification technique using the scattering para-
meters obtained using a wearable wideband textile antenna to diagnose breast tumors. The
breast phantom is formed following the dielectric properties of the human breast tissues
and characterized to ensure the resemblance with a actual tissue model for the range of fre-
quencies from 3 to 10 GHz. A biocompatible textile antenna is fabricated and embedded on
an artificial breast phantom model to capture the variation of the reflection coefficient S11 and
the transmission coefficient S21 for frequencies 3–10 GHz for different locations and sizes of
tumors within the phantom model. Support vector machine is used to classify the healthy tis-
sues from the malignant tumors based on the variation of the scattering parameters owing to
the variation of the dielectric characteristics of the breast phantom model. The proposed
method offers 84% and 89% accuracy while using S11 and S21 parameters alone for the ana-
lysis. However, the results further improve up to 93% as a combination of S11 and S21 signals is
considered.

Introduction

Regular screening and early detection of breast cancer can reduce the mortality rate of the
women population worldwide. In [1–3], investigation related to microwave imaging, magnetic
resonance imaging (MRI)-derived three-dimensional printing technology, and thermal therap-
ies have been carried out for early detection of tumor or breast cancer. The microwave imaging
technique is inexpensive compared to MRI and low sensitivity ultrasound, and much comfort-
able than mammography (less sensitivity) is of great use. Tumors can be benign and malig-
nant, as described in [4], which are thoroughly explained here. Novel techniques for the
early detection of tumors can increase the quality of life and decrease the number of deaths.
Joines et al. [5] showed tumors have a high-dielectric constant compared to healthy tissue for
different frequency ranges, which becomes the main feature for breast cancer detection using
microwave techniques over existing mammography and ultrasound imaging. Klemm et al. [6]
presented a ultrawideband (UWB) microwave system for breast cancer detection with various
tumor sizes. Islam et al. [7] proposed different antennas for microwave imaging breast cancer
detection. Phantoms are basically artificial models or structure of body organs. Apart from
geometrical structures, parameters like permittivity and conductivity are important for prepar-
ing phantoms. A different mixing recipe is proposed to balance the dielectric properties of a
phantom model. A human breast has a relatively simple kind of structure that is easy to repro-
duce through simulation. Fluid glycerine [8], rubber–carbon mixture, and Triton X-100 [9] are
the materials used for tissue replacement previously. Joachimowicz et al. [10] designed a het-
erogeneous phantom and measured characteristics over a 0.5–6 GHz frequency range.
Lazebnik et al. [11] have modeled dielectric properties for normal and malignant tissues
from 500MHz to 20 GHz and 3.1–10.6 GHz using one-pole and two-pole Debye models,
respectively. A muscle equivalent model designed using agar [12] is reliable for its high-
melting point. Mashal et al. [13] developed a heterogeneous breast phantom for microwave
imaging experiments using the oil–gelatin mixture, but it is very delicate in nature.
Lazebnik et al. [14] proposed tissue mimicking phantom models for UWB applications
from 500MHz to 20 GHz. Liquid-based phantoms proposed earlier is not suitable for struc-
tures which require both interior and exterior shells to form the breast anatomy. Davis et al.
[15] characterized breast tumor based on UWB backscatter for different sizes of tumor.
An artificial intelligence method has been introduced for statistically detecting breast cancers
using broadband antennas [16]. It has used dual-polarized antennas detecting tumor statistic-
ally using artificial neural networks with S-parameter inputs (S11 and S21). Salvador et al. [17]
has proposed an algorithm for compensating backscatter propagation and detected tumor on
phantom below 1 GHz successfully. Bahrami et al. [18] have designed an array of flexible
antennas operating from 2 to 4 GHz for breast cancer detection. Flexible antennas are suitable
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for on-body application and offer robust performance at different
bending radii. Datta et al. [19] have applied machine learning
algorithm to analyze microwave signals for detecting various
lower body movements using flexible antennas. Hazarika et al.
[20] Parsha et al. [21] show high-gain artificial magnetic
conductor- and electromagnetic band-gap-based antennas for
onbody communication purposes.

In this paper, we propose machine learning-based approaches to
classify the malignant and healthy breast tissues exploiting the vari-
ation of reflection and transmission coefficients of the antennas
embedded on a human breast model. Three layers of heterogeneous
breast phantom model with and without tumor are prepared, and
the dielectric characterization is performed to resemble the live
human breast tissue. A schematic of a breast phantom model is
shown in Fig. 1. A flexible, biocompatible textile substrate is also
characterized and used to fabricate the transmitting and receiving
antennas embedded on the artificial phantom model. The S para-
meters of the antennas are captured and analyzed for different loca-
tions and sizes of the tumor within the breast phantom. Support
vector machine, a supervised machine learning model, is exploited
to classify S11, S21, and the combination of S11 and S21 for healthy
tissues and malignant tumors at different locations with different
sizes. The confusion matrix shows that the analysis based on the
combination of S11 and S21 signals offers the highest accuracy of
detection of malignant cells.

Dielectric properties of breast phantom

The breast tissues possess different dielectric properties (relative
permittivity and conductivity) at different layers. The proposed
phantom model has four constituents: skin, fat, gland, and
tumor. The phantom model dielectric properties, which are fre-
quency dependent, can be characterized by the single-pole disper-
sive Debye equation:

1(v) = 11 + (1S − 11)/(1+ jvt)− jss/(v10) (1)

e = er + iss/(ve0), (2)

where ϵr and σs are the frequency-dependent dielectric constant
and static conductivity of the tissue, ϵ0 is the dielectric permittiv-
ity of vacuum, ω is the angular frequency, σs/(ωε0) is the dielectric
losses, ε∞ is the relative permittivity at high frequencies, εS is the
static relative permittivity, and τ is the relaxation time.

Fabrication of heterogeneous breast phantom

The different layers of preparation of a phantom model is shown
in Fig. 2. Three layers of the breast phantom model are prepared
by mixing the constituents, as shown in Table 1. At first, the skin
is prepared by mixing the constituents as mentioned in Table 1.
All the materials are taken accordingly to their specific concentra-
tions and heated in a double boiler for 5–7 min until the tempera-
ture rises to 50°C. Then they are thoroughly stirred until the
temperature drops to 25°C. The mixture is placed within a bowl
of 110 mm diameter and another bowl of 106 mm diameter is
then pressed within it so that the skin layer achieves the required
thickness of 2.1 mm. Vinegar (0.7 mL) is added as a preservative
and the mixture is refrigerated overnight.

The fat is prepared using the same chemicals at different pro-
portions and heated in a double boiler until the temperature rises

to 50°C. Then they are stirred until the temperature of the mixture
drops to 25°C. The mixture is then emptied into the space within
the skin layer. A bowl of required diameter is then pressed on it to
achieve the required thickness of 33 mm.

The gland is the penultimate layer which is prepared following
similar steps considering the different proportions of mixtures.
The prepared solution is then emptied into the space in between
the fat layer, as shown in Table 1. Straws of various diameters 5,
10, 15, and 20 mm are inserted into it and kept refrigerated
overnight.

The tumor prepared by different mixtures of constituents is
finally inserted into the gland using the straws of different dia-
meters, as mentioned in Table 1.

Measurement of the fabricated phantom

The dielectric properties for different components of the phantom
model are measured using a Rohde & Schwarz ZXX network ana-
lyzer via a DAK probe at 23°C. The measured values match the
realistic one as showed in [22]. The detailed experimental setup
is shown in Fig. 3(a). The values of the conductivity and permit-
tivity of skin, fat, gland, and tumors for the frequency range of 3–
10 GHz are shown in Figs 3(b) and 3(c), respectively. The average
values of permittivity and conductivity for different components
are presented in Table 2.

Antenna design

The variation of the scattering parameters of the wearable antenna
proximity to the human body is investigated in the proposed
work. The dispersion of the radio parameters through different
layers is exploited to differentiate the malicious and healthy breast
tissues. In the study, two identical antennas are designed and
placed on the breast phantom model as a transmitter and a

Fig. 1. Schematic of a breast phantom.

Fig. 2. (a) Ingredients, (b) skin, (c) gland, (d) prepared phantom, (e) fat, and (f)
tumor.
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receiver, respectively. Due to the transmission of short pulses
through the breast region, the transmission and the reflection
coefficient vary. The antennas exhibit a broadband behavior,
and the deviations of S21 and S11 for a wide range of frequencies
are recorded for the different tissue models present on the phan-
tom. To design the textile antenna, dielectric properties of the tex-
tile substrate are characterized for 3–10 GHz frequencies using
R&S ZXX material characterized and presented in Fig. 4(a). In
the experiment, a denim substrate of dimensions 30 mm ×
30 mm and thickness 0.8 mm is considered. The exact permittiv-
ity and conductivity are inserted in the material library of HFSS
simulation software, and the UWB textile antennas resonating

from 3 to 10 GHz are designed as shown in Fig. 4(b). The dimen-
sions of the proposed antennas are rigorously optimized and
obtained as follows: Wp = 15 mm, Lp = 11.2 mm, Lp1 = 1.8 mm,
Wp1 = 3.8 mm, S1 = 2mm, LF = 10 mm, and WF = 3.5 mm. A
partial ground plane of dimensions WG = 30 mm and LG = 10
mm and the staircase pattern of the antenna are utilized to obtain
the wide bandwidth and compact size. The simulated and mea-
sured values of reflection coefficient (S11) and transmission coef-
ficient (S21) of both the identical antennas for the frequency range
3–10 GHz are shown in Fig. 4(c). The gain and efficiency of the

Fig. 3. (a) Experimental setup, (b) permittivity, and (c) conductivity.

Table 2. Average values of dielectric properties of different parts of phantom
model

Dielectric properties Skin Fat Gland Tumor

Permittivity (ϵ) 24.72 14.8 32.94 45.93

Conductivity (σ) (S/m) 4.52 1.97 5.51 7.77

Loss tangent (tan δ) 0.493 0.355 0.453 0.451
Fig. 4. (a) Dielectric properties of substrate, (b) antenna structure, (c) simulated and
measured S11 and S21, (d) gain of the antenna in air and on phantom, and (e) effi-
ciency in air and on phantom.

Table 1. Breast phantom model quantities

Skin Fat Gland Tumor

100 mL distilled water 50 mL distilled water 70 mL distilled water 110 mL distilled water

7 mL propylene glycol 2 mL propylene glycol 7 mL propylene glycol 6 mL propylene glycol

6 g agar–agar gelatin 7 g agar–agar gelatin 5 g agar–agar gelatin 10 g agar–agar gelatin

0.7 mL vinegar 0.7 mL vinegar 0.7 mL vinegar 0.7 mL vinegar

1.5 g corn sugar gum 1.5 g corn sugar gum 1.5 g corn sugar gum 1.5 g corn sugar gum

0.7 mL liquid detergent (Ezee) 0.7 mL liquid detergent (Ezee) 0.7 mL liquid detergent (Ezee) 0.7 mL liquid detergent (Ezee)
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antenna in air and on the phantom model are shown in Figs 4(d)
and 4(e) respectively. It is seen from Figs 4(d) and 4(e) that both
the parameters deteriorate when the antenna is experimented pla-
cing on the phantom model. The proposed antenna is robust and
offers reasonable gain, however which is essential for capturing
the deviation of scattering parameters in air as well as phantom
at a wide range of frequencies due to dielectric variation.

Results and discussion

Scattering parameter measurement setup

The measurements are made using a two port Anritsu-MS2037C
Vector Network Analyzer (VNA). As the maximum output power
of the VNA is − 3 dBm, the test antenna is fed with 0.5 mW
power. For the S11 and S21 measurements, both the antennas
are connected to the VNA via port 1 and port 2 and placed on
or near the breast phantom model, as shown in Fig. 5.
Measurements are recorded for the different positions and sizes
of the tumors around the breast phantom.

Multiple data sets of S11 and S21 are created for 20 different
locations of the antennas on the breast phantom with and without
tumor and exploited for the classification of the tumor. In this
study, we have used a support vector machine (SVM) classifier,
which is a supervised machine learning model. The experiment
has exploited a cubic polynomial kernel function on each data
instance to map the original nonlinear observations into a higher-
dimensional space in which they become separable. The box con-
straint level of the cubic polynomial kernel function is set at 1 for
the current study. For the classification, we have utilized the clas-
sification learner toolbox in MATLAB. The workflow of the train-
ing is shown in Fig. 6.

The variation of S11 and S21 for the five cases: without tumor
and with tumor of diameter 10 mm placed at four different
locations are depicted in Figs 7(a)–7(e) and 8(a)–8(e), respect-
ively. Owing to the detuning of the resonance frequency as in
Fig. 7 the radiation characteristics of the antenna become
affected which deteriorate the antenna gain and efficiency sig-
nificantly as shown in Figs 4(d) and 4(e) respectively. Thus,
the measured gain and efficiency subjected to different condi-
tions may also be considered for the investigation. However,
in this article we have studied only S11 and S21 parameters for
the required analysis.

The S parameters are measured for various tumor sizes, having
diameters of 5, 10, 15, and 20 mm positioned at a fixed location
on the breast phantom model. Twenty sets of S11 and S22 data
are recorded considering different antenna locations for multi-
class classification. The variations of S11 and S21 for a specific
antenna location for different tumor sizes are shown in Figs 9
and 10, respectively.

Fig. 5. (a) S11 and S21 measurement setup and (b) VNA.

Fig. 6. Flowchart of the proposed model.

Fig. 7. Measured S11: (a) without tumor and with tumor at four different locations: (b) location 1, (c) location 2, (d) location 3, and (e) location 4.
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The statistical parameters including different features of the S11
and S21 data of the tumors at different locations and different sizes
are extracted and presented in Table 3 and 4, respectively.

Figures 11 and 12 present the confusion matrix for different
tumor locations and sizes of the tumors.

Table 5 presents the precision of the diagnostic for both the
cases using the classifier. The data presented in Tables 5 and 6
are calculated from the confusion matrix, considering TP (true
positive), FP (false positive), FN (false negative), and TN (true

negative) values. It is seen that the higher the value of TP, the bet-
ter the classifier is.

The 5-fold cross-validation method is used to measure the per-
formance, which means for testing purposes, 20% of data is uti-
lized. It is seen that as the number of features is increased, the
accuracy of prediction is also increased.

Figure 13 shows the overall classification accuracy while the
tumor is placed at four different locations on the breast phantom.
It is seen that an average accuracy of 94% is achieved while using

Fig. 8. Measured S21: (a) without tumor and with tumor at four different locations: (b) location 1, (c) location 2, (d) location 3, and (e) location 4.

Fig. 9. Measured S11 for tumor sizes (a) 5 mm, (c) 10 mm, (d) 15 mm, and (e) 20 mm.

Fig. 10. Measured S21 for tumor sizes (a) 5 mm, (c) 10 mm, (d) 15 mm, and (e) 20 mm.

Table 3. Features of S11 and S21 for tumors at different locations

Features

Parameters Cases std rms Mean Peak Clearance Kurtosis

S11 With 2.73 8.38 − 79.14 17.19 2.29 5.76

Without 3.78 9.65 − 88.64 18.874 2.26 3.22

S21 With 13.36 64.43 − 63.03 89.4 1.44 3.96

Without 9.32 53.4 − 52.56 74.73 5.83 5.17

Both S11 and S21 With 8.04 36.4 − 35.4 53.3 1.868 4.84

Without 6.55 31.52 − 30.7 46.8 4.04 4.2
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both S11 and S21 for classification. In contrast, 84 and 89% accur-
acy are achieved using S11 and S21, respectively. Alongside, Fig. 13
presents the accuracy of the proposed technique for classifying
four different sizes of tumors exploiting S11, S21, and the combin-
ation of S11 and S22. It is seen that an average accuracy of 94.5% is
achieved while using both S11 and S21 for classification. In con-
trast, 84 and 89% accuracy are achieved using S11 and S21, respect-
ively. Along with SVM, few other classifiers like Naïve Bayes,
Decision tree, k-nearest neighbors (KNN), and neural network
(NN) are used for the classification and statistical performances
are listed in Table 6. SVM offers superior performances in
every aspect compared to that of the rest.

Specific absorption rate (SAR) analysis for the flexible textile
antenna over different parts of the phantom model is performed.
The average SAR value (for 1 g or 10 m) is calculated [23, 24] for
different phantom parts with an input power of 100 mW. The
SAR values for skin, fat, and gland are 0.0251, 0.2098, and
0.2247W/kg, respectively, as shown in Fig. 14, which falls
under the limit set by FCC and IEC standards.

Conclusion

In this paper, a machine learning approach is proposed for the
classification of breast tumor based on the reflection and

Fig. 11. Confusion matrix for different tumor sizes: (a) S11, (b) S21, and (c) S11 and S21.

Fig. 12. Confusion matrix for different tumor locations: (a) S11, (b) S21, and (c) S11 and S21.

Table 4. Features of S11 and S21 for tumors of different sizes

Features

Parameters Cases (mm) std rms Mean Peak Clearance Kurtosis

S11 5 2.8751 9.5 − 8.7 12.85 1.96 6.98

10 3.1177 12 − 9.14 13.7 2.47 5.1

15 3.47 9.48 − 10.1 26.4 2.57 3.71

S21 20 2.44 11.42 − 10.8 21.6 3.44 2.46

5 13.71 56.4 − 62.3 92 1.29 5.13

10 11.21 59.8 − 65.12 90.18 1.42 4.36

Both S11 and S21 15 12.43 62 − 55 86 1.47 3.29

20 10.04 65.3 − 64.4 80 1.55 4.24

5 7.86 34.02 − 32.04 53 1.48 6.23

10 6.84 36 − 34.32 61.42 2.54 4.82

15 6.32 34.28 − 37.4 55 3.24 3.56

20 6.82 28.84 − 33.25 51.86 2.86 3.89
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transmission coefficients of the UWB antenna. The breast phan-
tom is fabricated to match the dielectric properties of the realistic
tissues. The dielectric properties of the artificial phantom layers,
tumors, and the textile substrate are rigorously characterized for
the entire frequency ranges from 3 to 10 GHz. The designed
antenna is flexible, robust, and offers reasonably good gain over
the entire band of operation and thus considered for capturing

Fig. 13. Overall classification accuracy for both location and size of tumor.

Table 6. Comparison with other classifiers

For different locations For different sizes

Classifier
Accuracy

(%)
Precision

(%)
Recall
(%)

F1 score
(%)

Accuracy
(%)

Precision
(%)

Recall
(%)

F1 score
(%)

Naive Bayes 78.6 81.2 83 81.8 82 88 84.5 86

Decision
tree

83.5 86.4 92 91.8 84.8 81.8 90.2 91

KNN 88.3 86.2 88.4 89.2 85.5 92.5 82.6 92

NN 85.3 83.01 88.05 85.8 84.8 86.2 85.3 88.2

SVM 95 93.5 89.25 94.5 94 91.8 95 94.5

Table 5. SVM classifier results

Different locations Different sizes

Classifier S11 S21 Both S11 S21 Both

Accuracy (%) 85.6 89.4 94.4 84 89 94

Precision 0.895 0.8925 0.955 0.855 0.925 0.95

Recall/sensitivity 0.855 0.8925 0.945 0.845 0.895 0.95

F1 score 0.86 0.89 0.945 0.82 0.9 0.945

Specificity 0.88 0.86 0.904 0.86 0.82 0.92

False positive rate 0.0892 0.0952 0.088 0.08 0.094 0.086

False negative rate 0.08 0.062 0.0526 0.06 0.082 0.0326

False discovery rate 0.1 0.08 0.0988 0.1 0.06 0.0962

Matthews correlation coefficient 0.88 0.82 0.8511 0.84 0.86 0.9

Fig. 14. SAR calculations for (a) skin, (b) fat, and (c) gland.
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the variation of S-parameters due to the healthy tissues and
malignant cells of different sizes present at a different location
within the breast model. SVM provides the highest classification
accuracy of 93% as the combination of S11 and S21 are considered,
but 84 and 89% accuracies as S11 and S21 are used separately. The
effect of the location and size of the tumor on the classification
accuracy is investigated and described in the confusion matrix
statistically. For comparative evaluation, other classifiers are
used, and SVM is proved to be the most accurate one. The pro-
posed technique is inexpensive, reasonably accurate, and effective
for early stage detection and continuous monitoring of breast
cancer.
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