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Selective energy and enstrophy modification of
two-dimensional decaying turbulence
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In two-dimensional decaying homogeneous isotropic turbulence, kinetic energy and
enstrophy are respectively transferred to larger and smaller scales. In such spatiotemporally
complex dynamics, it is challenging to identify the important flow structures that govern
this behaviour. We propose and employ numerically two flow-modification strategies that
leverage the inviscid global conservation of energy and enstrophy to design external
forcing inputs that change these quantities selectively and simultaneously, and drive the
system towards steady-state or other late-stage behaviour. One strategy employs only local
flow field information, while the other is global. We observe various flow structures
excited by these inputs and compare them with recent literature. Energy modification
is characterized by the excitation of smaller wavenumber structures in the flow than
enstrophy modification.

Key words: isotropic turbulence

1. Introduction

Turbulent flows exhibit nonlinear interactions over a wide range of spatiotemporal scales.
In two-dimensional (2-D) decaying turbulence, the rate of energy dissipation is slowed
considerably by kinetic energy transfer to large-scale coherent vortex cores through the
inverse energy flux mechanism (Kraichnan 1967; McWilliams 1990; Bracco et al. 2000;
Fox & Davidson 2010; Boffetta & Ecke 2012), while the enstrophy dissipation rate is
enhanced by enstrophy transfer to small-scale eddies (Weiss 1991). The identification
and modification of collective structures in the flow that accelerate or decelerate the
inverse energy flux mechanism or alter the enstrophy cascade is a fundamental question
(Hunt, Wray & Moin 1988; Holmes et al. 2012). This is unlikely to be addressed by
flow-modification strategies based on linearization of the Navier–Stokes equations and
reduced-order/surrogate representations that lack strict adherence to conservation laws.
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The objective of the current work is to tie a flow-modification strategy directly to the
governing equations and their ensuing conservation laws.

A comparison of the behaviour of decaying 2-D turbulence with either well-developed
vortices or phase-scrambled initial conditions revealed the crucial role of coherent vortex
structures in suppressing the cascade rate (McWilliams 1990). More recent studies by
Jiménez (2020a,b) have shed light on the connections between dipoles (counter-rotating
vortices) and streams (formed by the concatenation of dipoles) on the kinetic energy of
the flow. These findings have been corroborated by network-theoretic approaches using
induced velocity and flow perturbations (Yeh, Meena & Taira 2021). However, these
recent data-intensive approaches require either machine learning to extract templates of
dynamical significance or some explicit knowledge of vortical interactions in the flow. In
the present work, we provide explicit physical definitions of forcing terms to be added to
the Navier–Stokes equations, capable of altering conserved quantities independently, and
revealing automatically the flow structures of significance.

Several previous efforts have focused on the exclusive modification of single conserved
quantities in fluid flows. Vallis, Carnevale & Young (1989) and Shepherd (1990) modified
the Euler equations to alter energy while preserving topological invariants associated
with the vorticity field. This enabled the discovery of isolated energy extrema and stable
steady equilibria. Sadourny & Basdevant (1985) designed, and Vallis & Hua (1988) later
employed, a subgrid-scale closure scheme that dissipates enstrophy while preserving
energy. Another approach was developed by Gay-Balmaz & Holm (2013) and applied to
dissipate the squared helicity while preserving energy in three-dimensional incompressible
flow. A relevant early work with a more general context is that of Morrison (1986). Our
approach is inspired by the recently introduced framework of exterior dissipation (Aureli &
Hanna 2021; Hanna 2021), which enables proportional selective modification of multiple
conserved quantities. We present local and global flow-modification approaches with three
objectives: (i) to alter selectively and simultaneously any integral conserved quantities;
(ii) to identify characteristic flow structures that accelerate or decelerate the inverse energy
flux and enstrophy cascade; (iii) to discover and approach efficiently stable steady or
slowly-varying states. In certain limits, our local approach leads to behaviour similar to
that of Vallis et al. (1989) or Sadourny & Basdevant (1985).

2. Approach

We consider the 2-D flow of homogenous and incompressible fluid within a fixed
bi-periodic square domain D. The governing dynamics is given by the forced
Navier–Stokes equations

∂u
∂t

= −u · ∇u − ∇p/ρ︸ ︷︷ ︸
eu

+ ν ∇2u︸ ︷︷ ︸
du

+f u, ∇ · u = 0, (2.1)

where u = u(x, t) is the velocity, p is the pressure, ρ is the density, ν is the kinematic
viscosity, and f u is the external forcing to be designed. In the inviscid, unforced case,
the flow admits the integral quadratic invariants Qi of kinetic energy E and enstrophy Ω ,
defined as

Q1 ≡ E =
∫
D

1
2

u · u dx, Q2 ≡ Ω =
∫
D

1
2

ω · ω dx, (2.2a,b)
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Selective modification of isotropic turbulence

where ω = ∇ × u = ωk̂ is the vorticity field. We may express the time derivatives of these
conserved quantities as

d
dt

Qi =
∫
D

bi · ∂u
∂t

dx =
∫
D

bi · eu dx +
∫
D

bi · du dx +
∫
D

bi · f u dx. (2.3)

The contribution of the Euler term in (2.3) vanishes (Hasegawa 1985; Foias et al.
2001), i.e.

∫
D bi · eu dx = 0. The evolutions of kinetic energy and enstrophy are

governed by b1 = u and b2 = ∇ × ω, respectively; using a vector calculus identity,
ω · ω = ω · ∇ × u = u · (∇ × ω)+ ∇ · (u × ω), but due to the bi-periodic boundary
conditions, the divergence term vanishes, and we have simply

∫
D

ω · ω dx =
∫
D

u · (∇ × ω) dx. (2.4)

Along with (2.1), we also consider the forced vorticity transport equation in the form

∂ω

∂t
= ∂ω

∂y
∂ψ

∂x
− ∂ω

∂x
∂ψ

∂y︸ ︷︷ ︸
J(ω,ψ)

+ ν ∇2ω︸ ︷︷ ︸
dω

+fω, (2.5)

where u = ∇ × (ψ k̂) defines the streamfunction ψ , and fω is the external forcing to be
designed. The integral kinetic energy and enstrophy invariants (Boffetta & Ecke 2012) and
their time derivatives may be expressed as

Q1 ≡ E =
∫
D

1
2
ωψ dx, Q2 ≡ Ω =

∫
D

1
2
ω2 dx,

d
dt

Qi =
∫
D

bi
∂ω

∂t
dx, (2.6a–c)

where the energy has been rewritten by eliminating a divergence term due to the
bi-periodic boundary conditions. Similarly to before,

∫
D bi J(ω,ψ) dx = 0. Note that the

bi in (2.6a–c) are distinct from the bi in (2.3). We find that b1 = ψ , by a manipulation of

∂

∂t

∫
D

(
1
2

u · u
)

dx =
∫
D

∇ × (ψ k̂) · ∂u
∂t

dx (2.7)

and elimination of a divergence term, while clearly b2 = ω.
The vector and scalar equations (2.1) and (2.5) will be the respective starting points for

local and global approaches to systematically modify the inviscid conservation or viscous
non-conservation of the integral quantities Qi. Each approach generates a unique forcing
term, as described below.

2.1. Local formulation
We first construct an external forcing term f u = f u(x, t) in (2.1) using only local flow
field information. Inspired by Hanna (2021) and Aureli & Hanna (2021), we define

f u = −ε1(b1 ∧ b2) · b2 − ε2(b2 ∧ b1) · b1, (2.8)

where b1 = u and b2 = (∇ × ω) as discussed above, and ε1 and ε2 are constant
coefficients. The wedge product ∧ of two vectors in three dimensions is

956 A12-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

10
94

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.1094


A.G. Nair, J. Hanna and M. Aureli

2b1 ∧ b2 = b1b2 − b2b1, where juxtaposition indicates the standard tensor product. The
terms in (2.8) can be rearranged into double cross-products:

f u = −ε1

2

(‖∇ × ω‖2 u − [u · (∇ × ω)] ∇ × ω
)

︸ ︷︷ ︸
b2×(b1×b2)

−ε2

2

(‖u‖2 ∇ × ω − [u · (∇ × ω)] u
)

︸ ︷︷ ︸
b1×(b2×b1)

. (2.9)

The first term exclusively alters the integral flow energy, while the second exclusively
alters the integral flow enstrophy, allowing for independent manipulation of these two
quantities. (The construction of b2 involved the discarding of a divergence term. Thus
the first term in f u does actually change the local vorticity magnitude and enstrophy, but
its effect is a pure divergence that does not affect the global conservation.) If ε1 = 0,
then energy is conserved, while enstrophy is increased (decreased) if ε2 < 0 (ε2 > 0).
Similarly, if ε2 = 0, then enstrophy is conserved, while energy is increased (decreased) if
ε1 < 0 (ε1 > 0). In what follows, ε2 ≥ 0.

In the inviscid case, the rates of change of the integrals Qi can be rearranged into the
simple forms

∫
D

bi · f u dx = −εi

2

∫
D

[
u × (∇ × ω)

]2 dx = −εi

2

∫
D

[u · ∇ω]2 dx, (2.10)

where we have used the fact that
∫
D(∇ω) · u dx vanishes for 2-D flow. These two rates

are proportional, thus the quantity E/ε1 −Ω/ε2 is conserved (Hanna 2021), which seems
to ensure that the resulting dynamics are not simply driven to a trivial equilibrium when
both quantities are dissipated. The rates vanish when the two bi align. Remarkably, when
ε2 = 0, the rate of change of energy is the same as that generated by the method of Vallis
et al. (1989), and when ε1 = 0, the rate of change of enstrophy is the same as that generated
by the method of Sadourny & Basdevant (1985).

2.2. Global formulation
We next construct an alternative external forcing term fω = fω(x, t) in (2.5) incorporating
global flow field information. Interpreting the integrals of (2.6a–c) as inner products of
square-integrable functions on D allows for a formal analogy with the framework of Aureli
& Hanna (2021), in which scalar fields are now regarded as infinite-dimensional vectors.
We mimic the algebraic construction of exterior dissipation in Aureli & Hanna (2021) by
introducing an array B = (b1, b2) = (ψ, ω) produced by stacking the vectors bi, and the
Gram matrix G of the inner products of b1 and b2,

G =
∫
D

[
ψ2 ψω

ψω ω2

]
dx. (2.11)

The global forcing is constructed as

fω = −1
2 B adj(G) ε, (2.12)

where adj(·) denotes the adjugate (transpose of the cofactor matrix), and ε = (ε1, ε2) is
an array containing the constant coefficients exclusively modulating the rates of E and Ω ,

956 A12-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

10
94

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.1094


Selective modification of isotropic turbulence

respectively. Explicitly,

fω = −ε1

2

(
ψ

∫
D
ω2 dx − ω

∫
D
ψω dx

)
− ε2

2

(
ω

∫
D
ψ2 dx − ψ

∫
D
ψω dx

)
. (2.13)

In the inviscid case, the rates of change of the integrals Qi are∫
D

bifω dx = −εi

2

(∫
D
ψ2 dx

∫
D
ω2 dx

)
sin2(β), (2.14)

where β indicates the ‘angle’ between the vectors bi in the function space, defined by

cosβ = ∫
D ψω dx/

√∫
D ψ2 dx

∫
D ω2 dx. As before, the rates are proportional, vanishing

when β = 0 (when ψ and ω ‘align’), and again the quantity E/ε1 −Ω/ε2 is conserved.

2.3. Viscous compensation
Both external forcing and viscosity break the invariance of conserved quantities. The
forcing terms offer a means to compensate for viscous decay of energy and enstrophy,
through the augmentation of the constant coefficients εi by additional time-varying
coefficients ενi that can eliminate the effect of viscosity on these quantities or set their
rates to some other desired behaviour. The rates of change of the conserved quantities
with viscous compensation are

d
dt

Qi = Di − ενi F ⇒ ενi = 1
F

(
Di − d

dt
Qi

)
, (2.15)

where Di ≡ ∫
D bi · du dx and F ≡ −(1/εi)

∫
D bi · f u dx for the local formulation ((2.3)

and (2.10)), while Di ≡ ∫
D bidω dx and F ≡ −(1/εi)

∫
D bifω dx for the global formulation

((2.6a–c) and (2.14)). Note that F does not carry a subscript as it is the same for both
quantities. As this shared forced rate F tends to zero, compensation becomes impractical,
requiring large coefficients ενi .

2.4. Numerical set-up
Two-dimensional direct numerical simulations are performed using a Fourier spectral
method and a fourth-order Runge–Kutta time integration scheme on a square bi-periodic
computational domain of sides L = 1 with 1024 × 1024 grid points in the x- and
y-directions. Further details of the set-up can be found in Taira, Nair & Brunton (2016).
The definitions of spatial and temporal scales, along with their initial values, are shown in
table 1. The initial values are indicated with a subscript 0. The spatial scales are normalized
by the initial integral length scale l0, and the time scales are normalized by the initial
large-eddy turnover time τ0. The isotropic energy spectrum for 2-D turbulence is defined as
E(k) = πk〈|û(k)|2〉 (where the average 〈·〉 is over all |k| = k) and û(k) = ∫

D u(x) eik·x dx
(Boffetta & Ecke 2012). All the simulations are performed such that kmaxη ≥ 8, with kmax
the maximum resolvable wavenumber, and η the smallest (Kolmogorov) length scale. The
initial Reynolds number based on the integral length scale for all the viscous simulations
is fixed at Re0 ≈ 713.1780.

The initial condition for all the simulations is shown in figure 1(a). We also show
corresponding energy spectra E(k), and dissipation (scaled enstrophy) spectra 2ν Ω(k),
withΩ(k) = k2 E(k), as the unforced flow evolves. We can see the presence of the classical
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Variable Definition Initial value

r.m.s. velocity u∗ =
√

1
L2

∫
D

u · u dx u∗
0 = 0.7587

r.m.s. vorticity ω∗ =
√

1
L2

∫
D

ω · ω dx ω∗
0 = 16.1564

Integral length scale l = u∗/ω∗ l0 = 0.0470

Reynolds number Re = u∗l/ν Re0 = 713.1780

Eddy turnover time τ = l/u∗ τ0 = 0.0619

Small (Kolmogorov) scale η ∼ l Re−1/2 η0 ∼ 0.0018

Table 1. Flow field parameters (L = 1).
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Figure 1. Baseline (unforced) 2-D decaying homogeneous isotropic turbulent flow: (a) spectral evolution of
energy and enstrophy, with plots of vorticity fields; (b) time history of energy, enstrophy and integral length
scale for two different initial Reynolds numbers.

k−3 turbulent energy spectra and k−1 dissipation spectra at the initial condition of the
turbulent flow, and the breakdown of the scaling leading to the eventual formation of large
coherent structures. The evolution of energy E, enstrophy Ω , and integral length scale
l for two different Reynolds numbers over a long time period 0 ≤ t/τ0 ≤ 200 is shown
in figure 1(b). The rates of decay of energy (in particular) and enstrophy decrease with
increasing Re.

In the following section, we present and discuss the implications of local and
global modification of inviscid, viscous, and compensated viscous flows. We define
δ1 ≡ ε1F0/E0 and δ2 ≡ ε2F0/Ω0 as normalized rates at which energy and enstrophy,
respectively, are injected (negative) or extracted (positive). For the local formulation, the
maximum resolvable wavenumber limits the maximum rates of modification.
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Figure 2. Trajectories of energy, enstrophy and the shared forced rate of change of these quantities for
global forcing of 2-D turbulent flow: (a,d,g) modification of energy, δ1 = −1, δ2 = 0; (b,e,h) modification
of enstrophy, δ1 = 0, δ2 = 1; (c, f,i) modification of both quantities, δ1 = −1, δ2 = 0.25. The unforced viscous
baseline simulation is shown in grey, the modified inviscid flow in green, viscous flows in black dotted, and
compensated viscous flows in black dashed. Also shown in (g,h,i) (insets) are late-stage (t/τ0 ≈ 33) vorticity
snapshots for the globally modified viscous flows.

3. Results and discussion

The effects of global forcing are shown in figure 2. The evolution of energy, enstrophy and
the shared forced rate of change of these quantities F is shown over the time window 0 ≤
t/τ0 ≤ 33 for the unforced viscous baseline simulation (grey) and for the modified inviscid
(green), viscous (black dotted) and compensated viscous (black dashed) flows. Three
modification cases are shown: forced energy injection, δ1 = −1, δ2 = 0 (figures 2a,d,g);
forced enstrophy dissipation, δ1 = 0, δ2 = 1 (figures 2b,e,h); and simultaneous forcing to
inject energy and dissipate enstrophy, δ1 = −1, δ2 = 0.25 (figures 2c, f ,i). Compensated
viscous flows have an additional time-dependent modification to fully cancel the additional
energy and enstrophy decay induced by viscous dissipation. The trajectories of these
simulations are similar to those of the inviscid cases, although not identical, as the forcing
is being applied to a different flow, albeit one with the same energy and enstrophy as the
inviscid flow.

The maximum energy reached in figures 2(a,d,g) is higher for the inviscid flow than
the viscous flow. The enstrophy is invariant in the inviscid setting, while for the viscous
case, the enstrophy initially decays at the same rate as the baseline but quickly saturates
to a nearly-constant value around t/τ0 > 10. At this time, the forcing term F reaches
a peak and subsequently drops to zero as the system approaches a late-stage slowly
decaying nearly steady state after t/τ0 > 25. Late-stage vorticity snapshots for the globally
modified viscous flows are also shown. The inverse cascade in decaying turbulence leads
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t/τ0 ª 5 t/τ0 ª 10 t/τ0 ª 15t/τ0 ª 2.5(a) (b) (c) (d )

(e) ( f ) (g) (h)

(i) ( j) (k) (l)

50

0

–50

fω

Figure 3. Forcing fields fω superimposed on vorticity contours (black) for global forcing of 2-D turbulent
flow: (a–d) modification of energy, δ1 = −1, δ2 = 0; (e–h) modification of enstrophy, δ1 = 0, δ2 = 1; (i–l)
modification of both quantities, δ1 = −1, δ2 = 0.25.

to the formation of a dipole (Smith & Yakhot 1993). The formation of this structure is
accelerated with energy and enstrophy modification. The minimum enstrophy achieved in
figures 2(b,e,h) is nearly identical for the inviscid and viscous flows, with a nearly-steady
state reached quickly around t/τ0 > 10. The mixed case in figures 2(c, f,i) shares a
combination of the features observed in figures 2(a,d,g) and 2(b,e,h).

Shown in figure 3 is the global forcing fω at several times, superimposed on vorticity
contours. We observe that energy modification excites streams (fast regions between vortex
dipoles) and some other more diffuse regions between vortex cores, while enstrophy
modification excites vortex cores. This is consistent with the conclusions from Jiménez
(2020a) and McWilliams (1990), where streams and vortex cores were found to be the
relevant structures correlated with energy and enstrophy, respectively. As the solution
approaches the late-stage flow, the forcing inputs fade, and indeed vanish in the inviscid
case. All of the forced cases approach a non-trivial steady or slowly-varying state with a
characteristic length scale of the order of the system size.

For the energy modification and enstrophy modification cases, we compare the global
forcing fω with the enstrophy field and a scalar measure of the strain field in figures 4(a–c)
and 4(d–f ), respectively, at t/τ0 ≈ 10. The enstrophy field ω2 can be computed easily
from the vorticity. For 2-D incompressible flow, an appropriate invariant measure of strain
(Weiss 1991; Oetzel & Vallis 1997) is the determinant of (twice) the symmetric part of the
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Figure 4. (a,d) The forcing field fω, (b,e) the enstrophy field ω2, and (c, f ) the strain field s2, superimposed
on vorticity contours (black) at t/τ0 ≈ 10 for (a–c) modification of energy, δ1 = −1, δ2 = 0, and (d–f )
modification of enstrophy, δ1 = 0, δ2 = 1.

velocity gradient tensor Σ , given by

Σ =

⎡
⎢⎢⎣
∂u
∂x

∂u
∂y

∂v

∂x
∂v

∂y

⎤
⎥⎥⎦ . (3.1)

We employ s2 ≡ −det(Σ + ΣT). The energy forcing operates both in regions of
significant strain and vorticity, while the enstrophy forcing is, not surprisingly, more
strongly associated with the latter. It is clear that the forcing fields are distinct from either
of the two measures.

To quantify the influence of the rate parameters δ1 and δ2 on the system trajectories,
we run additional simulations for energy and enstrophy modification as shown in
figures 5(a,c,e) and 5(b,d, f ), respectively. For energy modification, we can see that
late-stage energy saturates at different values for different forcing δ1. However, for
enstrophy modification, the enstrophy trajectories saturate to the same level. This is also
evident in the values of velocity and vorticity magnitude of late-stage flow fields at
t/τ0 = 30 in table 2. The integral length scale at this late stage is nearly identical for
all modified cases. As seen in table 2, the mixed case leads to lower values of vorticity and
velocity than the purely energy-modified case.

We also show the viscous decay rate Di = ∫
D bidω dx for energy and enstrophy

modification in figures 5(c,d). We see that for the baseline flow, the viscous energy
decay rate decreases monotonically, while the viscous enstrophy rate initially decreases,
then increases to a peak value around t/τ0 = 26, and subsequently decreases again. For
cases with δ2 ≥ 0.5, the non-monotonic behaviour in the decay rate disappears. The
viscous enstrophy decay rate for the baseline flow follows [Ω/ log(l/η)]p, where p = 3/2
(Davidson 2015). For the modified flows, we find empirically p = 1.66, 2.42 and 3.00 for
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Figure 5. Influence of rate parameters (δ1 and δ2) on global forcing of 2-D turbulent flow: (a,c,e) modification
of energy, and (b,d, f ) modification of enstrophy. Trajectories of energy/enstrophy, viscous decay rate, and the
forced rates of change of these quantities are shown. The unforced viscous baseline simulation is in grey. The
dashed lines in (c,d) are empirical fits to scaling laws, discussed in the text.

Case δ1 δ2 u∗/u∗
0 ω∗/ω∗

0 l/l0

Baseline 0 0 0.97 0.61 1.59

Energy forcing −0.75 0 2.61 0.78 3.35

−1 0 2.79 0.82 3.40
−1.5 0 2.95 0.87 3.39

Enstrophy forcing 0 0.75 0.99 0.29 3.41
0 1 0.99 0.29 3.41
0 1.5 0.99 0.29 3.41

Combined forcing −1 0.25 1.76 0.52 3.38

Table 2. Values at t/τ0 ≈ 30.

δ2 = 0.25, 0.5 and 0.75, respectively. As shown by the dashed lines, the viscous energy
decay rate for modified flows follows [E/ log(l/η)]q, where q = −1.0, −0.24 and −0.12
for δ1 = 0.5, 0.75 and 1.5, respectively. The forced rates for various cases are shown
in figures 5(e, f ). For the cases with δ1 ≤ 0.25, viscous dissipation effects dominate the
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external energy forcing input, and correspondingly the flow does not show large changes in
energy. For δ1 ≥ 0.5, a peak in the shared forced rate is observed. The times corresponding
to the peaks decrease with increasing δ1, reflecting a more rapid approach to late-stage
behaviour.

In decaying turbulence, energy accumulates in the smallest wavenumber kmin ≈
1/L, leading to condensate formation (Boffetta & Ecke 2012). The formation of the
condensate is accelerated with the modification of energy and enstrophy. We show
the centroid wavenumbers of the energy spectra kc(E) and enstrophy spectra kc(Ω)
for the energy and enstrophy modified cases in figures 6(a) and 6(b), respectively.
Here, kc(E) = ∫ kmax

0 k E(k) dk/
∫ kmax

0 E(k) dk and kc(Ω) = ∫ kmax
0 kΩ(k) dk/

∫ kmax
0 Ω(k) dk.

As the flow evolves, the baseline flow centroid energy and enstrophy wavenumbers both
decrease non-monotonically (McWilliams 1990). This non-monotonicity is suppressed for
modified flows with δ2 ≥ 0.5.

We show the spectrogram of energy and enstrophy for baseline flow in figures 6(c)
and 6(d), respectively, and for the modified energy with δ1 = −1 in figure 6(e)
and modified enstrophy with δ2 = 1 in figure 6( f ). (Slices through figures 6(e, f )
can be seen in figures 6(i,j).) We can see here the distribution of energy in the
range of wavenumbers k ≈ 10–50 and the distribution of enstrophy in the range
k ≈ 50–150. Both the centroid plots and spectrograms show rapid shifts towards low
wavenumbers for the modified energy and enstrophy. We also show the transfer of energy
TE(k, t) = ∂E(k)/∂t + 2νk2 E(k) and enstrophy TΩ(k, t) = ∂Ω(k)/∂t + 2νk2Ω(k) in
figures 6(g) and 6(h) for the respective modified cases. There is a large positive transfer of
energy to smaller wavenumbers for energy modification throughout the entire time period
considered, while for enstrophy modification, the transfers die out fairly quickly.

To illustrate further these effects of the modification in the physical domain, we compute
the 2-D signature function V(r) = ∫ kmax

0 E(k) J3(kr) k dk, where J3 is a Bessel function of
the first kind. This function represents the measure of energy held in eddies of size r,
and is related to the second-order structure function of the flow (Davidson 2015). The
signature function for the baseline flow is shown in figure 7(a). The energy modification
cases with δ1 = −0.5 and −1 are shown in figures 7(b) and 7(c), respectively. The
enstrophy modification cases with δ2 = 0.5 and δ2 = 1 are shown in figures 7(d) and 7(e),
respectively. Initially, much of the energy in the baseline flow is concentrated near the
initial integral length scale r ≈ l0. As the modified flows evolve, energy gets distributed
across eddies of different sizes, with a shift towards larger sizes. As the energy of the
flow increases for energy-modified cases, we see a larger magnitude associated with the
signature function. The energy is unaffected by forcing in the enstrophy modification
cases, so the corresponding energy level decreases, as in the baseline flow.

The effects of local forcing are shown in figures 8 and 9, and compared with the global
forcing in figure 8. The evolution of energy, enstrophy and the integral length scale is
shown over the time window 0 ≤ t/τ0 ≤ 33 for the unforced viscous baseline simulation
(grey) and for the locally (magenta or orange) and globally (black) modified viscous
(dotted) and compensated viscous (dashed) flows. Three modification cases are shown:
forced energy injection δ1 = −0.1, δ2 = 0, magenta, or dissipation δ1 = 0.1, δ2 = 0,
orange (figures 8a,d,g), forced enstrophy dissipation δ1 = 0, δ2 = 0.1 (figures 8b,e,h),
and simultaneous forcing to inject energy and dissipate enstrophy δ1 = 0.1, δ2 = 0.25
(figures 8c,f ,i). Here, the compensated viscous flows are designed so that the viscous
contribution to the decay of energy and enstrophy matches that of the unforced baseline
flow. The forcing coefficients are smaller than those used in figure 2 because the achievable
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Figure 6. Influence of rate parameters (δ1 and δ2) on spectra for global forcing of 2-D turbulent flow. Centroid
wavenumbers of (a) energy and (b) enstrophy spectra, with the unforced viscous baseline in grey. Baseline
flow spectrograms of (c) energy and (d) enstrophy. Spectrograms of (e) energy and (g) energy transfer in
the energy-modified case δ1 = −1, and ( f ) enstrophy and (h) enstrophy transfer in the enstrophy-modified
case δ2 = 1. Spectral evolution for (i) the energy-modified case δ1 = −1, and (j) the enstrophy-modified case
δ2 = 1.

rate of local forcing is limited by the maximum resolvable wavenumber. Therefore, the
systems do not approach late-stage behaviour in this time window.

We find that the global forcing is significantly more effective than the local forcing in
changing the quantities of interest. In particular, the effect of the local modification on
enstrophy in figures 8(e) and 8(f ) is weak. The behaviour of the integral length scales
is curious. Note that the integral length scale is simply the square root of the ratio of
energy to enstrophy. As shown earlier, in figure 1, lower Reynolds number baseline flows
are characterized by faster decay of both energy and enstrophy, and more rapid growth of
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and globally (black) modified viscous (dotted) and compensated viscous (dashed) flows.

integral length scale. Yet figures 8(a,d,g) show that when we decrease (orange) or increase
(magenta) the energy through forcing, this decelerates or accelerates, respectively, the
growth of the integral length scale.

Figure 9 shows the local forcing (∇ × f u) · k̂ at several times for the locally modified
viscous flows with energy injection and/or enstrophy dissipation. These local forcing
fields are significantly different from the global ones in figure 3. Energy modification
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Figure 9. Forcing fields (∇ × f u) · k̂ superimposed on vorticity contours (black) for local forcing of 2-D
turbulent flow: (a–d) modification of energy, δ1 = −0.1, δ2 = 0; (e–h) modification of enstrophy, δ1 = 0,
δ2 = 0.1; (i–l) modification of both quantities, δ1 = −0.1, δ2 = 0.1.

introduces new dipolar structures near existing vortex cores, while enstrophy modification
introduces streaky elongated dipolar structures between the cores. These streaks help the
filamentation process of vorticity, accelerating the enstrophy cascade (Davidson 2015).
The latter is reminiscent of recent findings using broadcast mode analysis (Yeh et al.
2021), where streaks occupying low-vorticity regions were found to be the most sensitive
structures to flow perturbations. The forcings have spectra Ef (k) = πk〈| f̂ u(k)|2〉 (where
the average 〈·〉 is over all |k| = k) and Ωf (k) = k2 Ef (k), shown in figure 10 for the two
pure cases. They evolve non-monotonically. These modifications are characterized by
wavenumbers k below ≈100 and above ≈100 for enstrophy. This difference reflects the
simultaneous acceleration of the inverse energy and enstrophy fluxes to larger and smaller
scales, respectively.

Figure 11 shows the influence of local energy and enstrophy modification on the
spectral statistics of the flow. In particular, we show the centroid energy and enstrophy
wavenumbers in figures 11(a,b), similar to figures 6(a,b). We also show the centroid
wavenumbers of the forcing fields for energy- and enstrophy-modified cases. We see that
for δ1 = −0.1, the energy transfers to smaller wavenumbers compared to the baseline,
resulting in acceleration of the inverse energy flux, while for δ = 0.1, energy transfers to
higher wavenumbers compared to the baseline, slowing down the inverse flux cascade.
For the enstrophy modification, we see that although initially the centroid wavenumbers
are identical, the enstrophy transfers to lower wavenumbers than the baseline. The
corresponding centroid of the wavenumbers of energy forcing lies in the range 50 ≤
kc(Ef ) ≤ 120 (corresponding to the elongated dipoles), while the centroid of the
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wavenumbers of enstrophy forcing lies in the range 200 ≤ kc(Ef ) ≤ 400, corresponding
to the elongated streaks.

4. Conclusions and future directions

We have introduced local and global flow-modification strategies that selectively modulate
energy and enstrophy in 2-D decaying homogeneous isotropic turbulence. Acceleration or
deceleration of large-scale coherent vortex core formation is achievable. Through their
selective excitation, these two strategies reveal and/or excite different flow structures that
have been observed previously and obtained through disparate means. For the global
flow-modification strategy, the late-stage vorticity saturates at different levels for different
energy forcing rates, while it saturates at the same level for the enstrophy forcing rates
considered. The late-stage integral length scales achieved are similar for all the modified
cases. The enstrophy forcing is associated with vortex cores for the global strategy, while it
introduces streaky elongated dipolar structures for the local strategy. For negative rates of
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the local energy forcing, the energy transfers to smaller wavenumbers as compared to the
baseline flow, accelerating the inverse energy flux, while for positive rates, the energy
transfers to higher wavenumbers as compared to the baseline flow, slowing down the
inverse flux cascade. Modification of energy or enstrophy is associated with the excitation
of lower and higher wavenumbers, respectively.

One issue with which we did not concern ourselves is to what extent our modifications
violate the conservation of integral linear and angular momentum. However, it would be
straightforward to include any number of additional quantities within the framework of
Aureli & Hanna (2021). Another significant omission is the role of (wall) boundaries,
which might be better addressed from a Lagrangian point of view. Extensions of the
present Eulerian approach to forced and three-dimensional turbulence are currently
underway. The latter replaces enstrophy with helicity and allows for changes in vorticity
without changes in enstrophy, and one may expect that selectively decreasing energy
will Beltramize the flow (Vallis et al. 1989). Another possibility is to use these flow
modifications to construct closure schemes for modelling of turbulent flows (Sadourny
& Basdevant 1985), such that the effects of higher wavenumbers on energy and other
quantities are mimicked by the modification terms. The present work suggests a promising
approach for closed-loop turbulence control.
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