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Abstract

Swisher [‘On the supercongruence conjectures of van Hamme’, Res. Math. Sci. 2 (2015), Article
no. 18] and He [‘Supercongruences on truncated hypergeometric series’, Results Math. 72 (2017),
303–317] independently proved that Van Hamme’s (G.2) supercongruence holds modulo p4 for any
prime p ≡ 1 (mod 4). Swisher also obtained an extension of Van Hamme’s (G.2) supercongruence for
p ≡ 3 (mod 4) and p > 3. In this note, we give new one-parameter generalisations of Van Hamme’s (G.2)
supercongruence modulo p3 for any odd prime p. Our proof uses the method of ‘creative microscoping’
introduced by Guo and Zudilin [‘A q-microscope for supercongruences’, Adv. Math. 346 (2019), 329–358].
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1. Introduction

In his first letter to Hardy in 1913, Ramanujan mentioned the following formula (see
[1, page 25, (2)]):

∞∑
k=0

(8k + 1)
( 1

4 )4
k

k!4 =
2
√

2
√
π Γ( 3

4 )2
. (1.1)

Here (a)n = a(a + 1) · · · (a + n − 1) is the rising factorial and Γ(x) is the Gamma
function. Ramanujan did not give a proof of (1.1) and the first proof was given by
Hardy [7]. In 1997, Van Hamme [12] conjectured 13 p-adic analogues of Ramanujan’s
series, including

(p−1)/4∑
k=0

(8k + 1)
( 1

4 )4
k

k!4 ≡ p
Γp( 1

2 )Γp( 1
4 )

Γp( 3
4 )

(mod p3) for p ≡ 1 (mod 4) (1.2)

(marked (G.2) in Van Hamme’s list). Here and throughout the paper, p always denotes
an odd prime and Γp(x) stands for Morita’s p-adic Gamma function [10]. Swisher [11]
and He [8] independently showed that (1.2) holds modulo the stronger power p4.
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We shall give a generalisation of (1.2): for p ≡ 1 (mod 4) and 0 � s � (p − 1)/4,

(p−1)/4∑
k=s

(8k + 1)
( 1

4 )k−s( 1
4 )k+s( 1

4 )2
k

(k − s)! (k + s)! k!2 ≡ (p + 4s)
( 1

4 )2
s ( 1

4 )(p−1)/4+s( 1
2 )(p−1)/4−s

s!2 (1)(p−1)/4+s( 1
4 )(p−1)/4−s

(mod p3).

(1.3)

When s = 0, the right-hand side of (1.3) reduces to p( 1
2 )(p−1)/4/(1)(p−1)/4, which is

congruent to the right-hand side of (1.2) modulo p3 (see [9]). Thus, the supercon-
gruence (1.3) is indeed a generalisation of (1.2). A similar extension of the (A.2)
supercongruence of Van Hamme was recently given by Guo [3].

We shall prove (1.3) by establishing the following q-supercongruence.

THEOREM 1.1. Let n ≡ 1 (mod 4) be an integer greater than 1 and let 0 � s �
(n − 1)/4. Then

(n−1)/4∑
k=s

[8k + 1]
(q; q4)k−s(q; q4)k+s(q; q4)2

k

(q4; q4)k−s(q4; q4)k+s(q4; q4)2
k

q2k

≡ [n + 4s]
(q; q4)2

s (q; q4)(n−1)/4+s(q2; q4)(n−1)/4−s

(q4; q4)2
s (q4; q4)(n−1)/4+s(q; q4)(n−1)/4−s

q3s+(1−n)/4 (mod Φn(q)3). (1.4)

Here we need to be familiar with the standard q-notation. The q-shifted factorial
is defined by (a; q)0 = 1 and (a; q)n = (1 − a)(1 − aq) · · · (1 − aqn−1) for any positive
integer n. The q-integer is defined as [n] = (1 − qn)/(1 − q) and Φn(q) denotes the nth
cyclotomic polynomial, which can be written as

Φn(q) =
∏

1�k�n
gcd(k,n)=1

(q − ζk),

where ζ is a primitive nth root of unity.
It is easy to see that (1.3) follows from (1.4) by taking n = p and q→ 1. The s = 0

case of (1.4) was given by Liu and Wang [9] and can also be deduced from [5, Theorem
4.3].

Swisher [11, (3)] gave the following extension of Van Hamme’s (G.2) supercongru-
ence: for p ≡ 3 (mod 4) and p > 3,

(3p−1)/4∑
k=0

(8k + 1)
( 1

4 )4
k

k!4 ≡ −
3p2Γp( 1

2 )Γp( 1
4 )

2Γp( 3
4 )

(mod p4). (1.5)

(The negative sign was missing in Swisher’s original supercongruence.)
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We shall give a new generalisation of (1.5) modulo p3 as follows: for p ≡ 3 (mod 4)
and 0 � s � (p − 3)/4,

(3p−1)/4∑
k=s

(8k + 1)
( 1

4 )k−s( 1
4 )k+s( 1

4 )2
k

(k − s)! (k + s)! k!2 ≡ (3p + 4s)
( 1

4 )2
s ( 1

4 )(3p−1)/4+s( 1
2 )(3p−1)/4−s

s!2 (1)(3p−1)/4+s( 1
4 )(3p−1)/4−s

(mod p3).

(1.6)

When s = 0, the right-hand side of (1.6) reduces to 3p( 1
2 )(3p−1)/4/(1)(3p−1)/4, which

is easily seen to be congruent to the right-hand side of (1.5) modulo p3. Thus, the
supercongruence (1.6) can be deemed a generalisation of the modulo p3 case of (1.5).
A result of Guo and Schlosser [5, Corollary 1.2 with d = 4 and q→ 1] implies that
(1.6) is even true modulo p4 for s = 0. However, numerical evaluation indicates that
(1.6) is not true modulo p4 for general s.

In the same way as before, we shall prove (1.6) via the following q-supercongruence.

THEOREM 1.2. Let n ≡ 3 (mod 4) be a positive integer and let 0 � s � (n − 3)/4.
Then

(3n−1)/4∑
k=s

[8k + 1]
(q; q4)k−s(q; q4)k+s(q; q4)2

k

(q4; q4)k−s(q4; q4)k+s(q4; q4)2
k

q2k

≡ [3n + 4s]
(q; q4)2

s (q; q4)(3n−1)/4+s(q2; q4)(3n−1)/4−s

(q4; q4)2
s (q4; q4)(3n−1)/4+s(q; q4)(3n−1)/4−s

q3s+(1−3n)/4 (mod Φn(q)3).

(1.7)

Our proof of Theorems 1.1 and 1.2 will use the powerful method of ‘creative
microscoping’, which was devised by Guo and Zudilin [6].

2. Proof of Theorem 1.1

We require the following easily proved q-congruence, which was first given by Guo
and Schlosser [4, Lemma 3].

LEMMA 2.1. Let d, m and n be positive integers with m � n − 1 and dm ≡ −1 (mod n).
Then, for 0 � k � m,

(aq; qd)m−k

(qd/a; qd)m−k
≡ (−a)m−2k (aq; qd)k

(qd/a; qd)k
qm(dm−d+2)/2+(d−1)k (mod Φn(q)).

Following Gasper and Rahman’s monograph [2], the basic hypergeometric series
r+1φr is defined as

r+1φr

[a1, a2, . . . , ar+1

b1, b2, . . . , br
; q, z
]
=

∞∑
k=0

(a1; q)k(a2; q)k · · · (ar+1; q)k

(q; q)k(b1; q)k · · · (br; q)k
zk.
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Jackson’s 6φ5 summation (see [2, Appendix (II.21)]) can be stated as follows:

6φ5

[ a, qa1/2, −qa1/2, b, c, q−n

a1/2, −a1/2, aq/b, aq/c, aqn+1
; q,

aqn+1

bc

]
=

(aq; q)n(aq/bc; q)n

(aq/b; q)n(aq/c; q)n
. (2.1)

To prove Theorem 1.1, we first establish the following result.

THEOREM 2.2. Let n ≡ 1 (mod 4) be an integer greater than 1. Let 0 � s � (n − 1)/4
and let a be an indeterminate. Then, modulo Φn(q)(1 − aqn)(a − qn),

(n−1)/4∑
k=s

[8k + 1]
(aq; q4)k(q/a; q4)k(q; q4)k−s(q; q4)k+s

(aq4; q4)k(q4/a; q4)k(q4; q4)k−s(q4; q4)k+s
q2k

≡ [n + 4s]
(aq; q4)s(q/a; q4)s(q; q4)(n−1)/4+s(q2; q4)(n−1)/4−s

(aq4; q4)s(q4/a; q4)s(q4; q4)(n−1)/4+s(q; q4)(n−1)/4−s
q3s+(1−n)/4. (2.2)

PROOF. For a = q−n or a = qn, the left-hand side of (2.2) is equal to

(n−1)/4∑
k=s

[8k + 1]
(q1−n; q4)k(q1+n; q4)k(q; q4)k−s(q; q4)k+s

(q4−n; q4)k(q4+n; q4)k(q4; q4)k−s(q4; q4)k+s
q2k

=

(n−1)/4−s∑
k=0

[8k + 8s + 1]
(q1−n; q4)k+s(q1+n; q4)k+s(q; q4)k(q; q4)k+2s

(q4−n; q4)k+s(q4+n; q4)k+s(q4; q4)k(q4; q4)k+2s
q2k+2s

= [8s + 1]
(q1−n; q4)s(q1+n; q4)s(q; q4)2s

(q4−n; q4)s(q4+n; q4)s(q4; q4)2s
q2s

× 6φ5

⎡⎢⎢⎢⎢⎢⎢⎢⎣
q1+8s, q

9
2+4s, −q

9
2+4s, q, q1+n+4s, q1−n+4s

q
1
2+4s, −q

1
2+4s, q4+8s, q4−n+4s, q4+n+4s

; q4, q2

⎤⎥⎥⎥⎥⎥⎥⎥⎦ . (2.3)

Letting q �→ q4, a = q1+8s, b = q, c = q1+n+4s and n �→ (n − 1)/4 − s in (2.1), one sees
that the right-hand side of (2.3) can be simplified as

q2s[8s + 1]
(q1−n; q4)s(q1+n; q4)s(q; q4)2s

(q4−n; q4)s(q4+n; q4)s(q4; q4)2s

(q5+8s; q4)(n−1)/4−s(q3−n+4s; q4)(n−1)/4−s

(q4+8s; q4)(n−1)/4−s(q4−n+4s; q4)(n−1)/4−s

= [n + 4s]
(q1−n; q4)s(q1+n; q4)s

(q4−n; q4)s(q4+n; q4)s

(q; q4)(n−1)/4+s(q3−n+4s; q4)(n−1)/4−s

(q4; q4)(n−1)/4+s(q4−n+4s; q4)(n−1)/4−s
q2s

= [n + 4s]
(q1−n; q4)s(q1+n; q4)s

(q4−n; q4)s(q4+n; q4)s

(q; q4)(n−1)/4+s(q2; q4)(n−1)/4−s

(q4; q4)(n−1)/4+s(q; q4)(n−1)/4−s
q3s+(1−n)/4.

Thus, we have proved that (2.2) is true modulo 1 − aqn and a − qn.
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Since n ≡ 1 (mod 4), letting d = 4 and m = (n − 1)/4 in Lemma 2.1, we obtain

(aq; q4)m−k

(q4/a; qd)m−k
≡ (−a)m−2k (aq; q4)k

(q4/a; qd)k
qm(2m−1)+3k (mod Φn(q)) (2.4)

for 0 � k � m. Using this q-congruence, we can easily verify the following congru-
ence, for m = (n − 1)/4 and s � k � m − s,

[8(m − k) + 1]
(aq; q4)m−k(q/a; q4)m−k(q; q4)m−k−s(q; q4)m−k+s

(aq4; q4)m−k(q4/a; q4)m−k(q4; q4)m−k−s(q4; q4)m−k+s
q2m−2k

≡ −[8k + 1]
(aq; q4)k(q/a; q4)k(q; q4)k−s(q; q4)k+s

(aq4; q4)k(q4/a; q4)k(q4; q4)k−s(q4; q4)k+s
q2k (mod Φn(q)). (2.5)

Moreover, for (n − 1)/4 − s < k � (n − 1)/4, the summand indexed k on the left-hand
side of (2.2) is congruent to 0 modulo Φn(q) because k + s > (n − 1)/4 and (q; q4)k+s
in the numerator incorporates the factor 1 − qn. This means that the left-hand side of
(2.2) is congruent to 0 modulo Φn(q). Since

[n + 4s](q; q4)(n−1)/4+s = [n](q; q4)(n−1)/4(qn+4; q4)s ≡ 0 (mod Φn(q))

for n > 1, we conclude that (2.2) is also true modulo Φn(q). Noting that the polynomi-
als 1 − aqn, a − qn and Φn(q) are pairwise relatively prime, we complete the proof of
the theorem. �

PROOF OF THEOREM 1.1. For a = 1, the denominators on both sides of (2.2) are
relatively prime to Φn(q). Moreover, when a = 1 the polynomial (1 − aqn)(a − qn) =
(1 − qn)2 contains the factor Φn(q)2. Therefore, putting a = 1 in (2.2), we obtain the
desired q-supercongruence (1.4). �

3. Proof of Theorem 1.2

The proof is similar to that of Theorem 1.1. We first establish the following
parametric generalisation of Theorem 1.2.

THEOREM 3.1. Let n ≡ 3 (mod 4) be a positive integer. Let 0 � s � (n − 3)/4 and let
a be an indeterminate. Then, modulo Φn(q)(1 − aq3n)(a − q3n),

(3n−1)/4∑
k=s

[8k + 1]
(aq; q4)k(q/a; q4)k(q; q4)k−s(q; q4)k+s

(aq4; q4)k(q4/a; q4)k(q4; q4)k−s(q4; q4)k+s
q2k

≡ [n + 4s]
(aq; q4)s(q/a; q4)s(q; q4)(3n−1)/4+s(q2; q4)(3n−1)/4−s

(aq4; q4)s(q4/a; q4)s(q4; q4)(3n−1)/4+s(q; q4)(3n−1)/4−s
q3s+(1−3n)/4. (3.1)
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PROOF. For a = q−3n or a = q3n, the left-hand side of (3.1) is equal to

(3n−1)/4∑
k=s

[8k + 1]
(q1−3n; q4)k(q1+3n; q4)k(q; q4)k−s(q; q4)k+s

(q4−3n; q4)k(q4+3n; q4)k(q4; q4)k−s(q4; q4)k+s
q2k

= [8s + 1]
(q1−3n; q4)s(q1+3n; q4)s(q; q4)2s

(q4−3n; q4)s(q4+3n; q4)s(q4; q4)2s
q2s

× 6φ5

⎡⎢⎢⎢⎢⎢⎢⎣
q1+8s, q

9
2+4s, −q

9
2+4s, q, q1+3n+4s, q1−3n+4s

q
1
2+4s, −q

1
2+4s, q4+8s, q4−3n+4s, q4+3n+4s

; q4, q2

⎤⎥⎥⎥⎥⎥⎥⎦ . (3.2)

Letting q �→ q4, a = q1+8s, b = q, c = q1+3n+4s and n �→ (3n − 1)/4 − s in (2.1), one sees
that the right-hand side of (3.2) may be written as

q2s[8s + 1]
(q1−3n; q4)s(q1+3n; q4)s(q; q4)2s

(q4−3n; q4)s(q4+3n; q4)s(q4; q4)2s

(q5+8s; q4)(3n−1)/4−s(q3−3n+4s; q4)(3n−1)/4−s

(q4+8s; q4)(3n−1)/4−s(q4−3n+4s; q4)(3n−1)/4−s

= [3n + 4s]
(q1−3n; q4)s(q1+3n; q4)s

(q4−3n; q4)s(q4+3n; q4)s

(q; q4)(3n−1)/4+s(q2; q4)(3n−1)/4−s

(q4; q4)(3n−1)/4+s(q; q4)(3n−1)/4−s
q3s+(1−3n)/4.

This proves that (2.2) holds modulo 1 − aq3n and a − q3n.
Since n ≡ 3 (mod 4), letting d = 4 and m = (3n − 1)/4 in Lemma 2.1, we again

obtain (2.4) for 0 � k � m. Applying this q-congruence, we can check (2.5) for
m = (3n − 1)/4 and s � k � m − s. For (3n − 1)/4 − s < k � (3n − 1)/4, the summand
indexed k on the left-hand side of (3.1) is congruent to 0 modulo Φn(q) because
k + s > (3n − 1)/4 and (q; q4)k+s has the factor 1 − q3n. This implies that the left-hand
side of (3.1) is congruent to 0 modulo Φn(q). Since

[3n + 4s](q; q4)(3n−1)/4+s = [3n](q; q4)(3n−1)/4(q3n+4; q4)s ≡ 0 (mod Φn(q)),

we conclude that (3.1) is also true modulo Φn(q). �

PROOF OF THEOREM 1.1. When a = 1, the polynomial (1 − aq3n)(a − q3n) =
(1 − q3n)2 contains the factor Φn(q)2. Thus, letting a = 1 in (2.2), we get the
q-supercongruence (1.7). �

4. An open problem

We believe that the following conjecture is true.

CONJECTURE 4.1. The q-supercongruences (1.4) and (1.7) are also true modulo
[n]Φn(q)2.

The above conjecture is clearly true for s = 0 (see [5, 9]). Numerical computation
indicates that both sides of (1.4) (or (1.7)) should be congruent to 0 modulo [n].
However, it seems difficult to confirm this. The technique of proving a q-congruence
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modulo [n] introduced in [6] does not work here, because of the additional
parameter s.
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