Bull. Aust. Math. Soc. 107 (2023), 177-183
doi:10.1017/S000497272200048X

NEW GENERALISATIONS OF VAN HAMME’S (G.2)
SUPERCONGRUENCE

NA TANG

(Received 7 April 2022; accepted 10 April 2022; first published online 18 May 2022)

Abstract

Swisher [‘On the supercongruence conjectures of van Hamme’, Res. Math. Sci. 2 (2015), Article
no. 18] and He [‘Supercongruences on truncated hypergeometric series’, Results Math. 72 (2017),
303-317] independently proved that Van Hamme’s (G.2) supercongruence holds modulo p* for any
prime p = 1 (mod 4). Swisher also obtained an extension of Van Hamme’s (G.2) supercongruence for
p =3 (mod 4) and p > 3. In this note, we give new one-parameter generalisations of Van Hamme’s (G.2)
supercongruence modulo p* for any odd prime p. Our proof uses the method of ‘creative microscoping’
introduced by Guo and Zudilin [‘A g-microscope for supercongruences’, Adv. Math. 346 (2019), 329-358].

2020 Mathematics subject classification: primary 11B65; secondary 11A07, 33D15.
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1. Introduction

In his first letter to Hardy in 1913, Ramanujan mentioned the following formula (see
[1, page 25, (2)]):

4
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Here (a), =a(a+1)---(a+n—1) is the rising factorial and I'(x) is the Gamma

function. Ramanujan did not give a proof of (1.1) and the first proof was given by

Hardy [7]. In 1997, Van Hamme [12] conjectured 13 p-adic analogues of Ramanujan’s

series, including

(p=1)/4 4 I (L
Z (8k+1)( )4 = M(modﬁ) forp=1(@mod4)  (1.2)
k! rp(Z)

(marked (G.2) in Van Hamme’s list). Here and throughout the paper, p always denotes
an odd prime and I',,(x) stands for Morita’s p-adic Gamma function [10]. Swisher [11]
and He [8] independently showed that (1.2) holds modulo the stronger power p*.
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178 N. Tang 2]

We shall give a generalisation of (1.2): for p =1 (mod4) and 0 < s < (p — 1)/4,

(p_zliM(Sk“) (Do Dras(D? - s)(i)%(;{)(p_1>/4+s<%)<p_1>/4_s

3
(k=)L (k + )1 k12 (mod p7).

— s1? (1)(p—1)/4+s(4_11)(p—1)/4—s

(1.3)

When s = 0, the right-hand side of (1.3) reduces to p(%)(p,l)/4/(l)(p,1)/4, which is
congruent to the right-hand side of (1.2) modulo p* (see [9]). Thus, the supercon-
gruence (1.3) is indeed a generalisation of (1.2). A similar extension of the (A.2)
supercongruence of Van Hamme was recently given by Guo [3].

We shall prove (1.3) by establishing the following g-supercongruence.

THEOREM 1.1. Let n=1 (mod 4) be an integer greater than 1 and let 0 < s <
(n—1)/4. Then

(ni):/4[8k+1] (@34 0-5(@: s 4; - o

— (@ q-s(q*; qiss(q*s 4}

(7 2@ 4 n-1)/2+5(G%5 G -1y 14
(g% gYHq" g =1y 14+5(@ GV n=1)/4-5

= [n + 4s] g (mod @,(9)Y).  (1.4)

Here we need to be familiar with the standard g-notation. The g-shifted factorial
is defined by (a;¢)o = 1 and (a;q), = (1 —a)(1 —aq)---(1 —ag"™") for any positive
integer n. The g-integer is defined as [n] = (1 — ¢")/(1 — g) and ®,(q) denotes the nth
cyclotomic polynomial, which can be written as

D,(q) = || (g5,
1<k<n
ged(k,n)=1

where { is a primitive nth root of unity.

It is easy to see that (1.3) follows from (1.4) by takingn = pand g — 1. The s =0
case of (1.4) was given by Liu and Wang [9] and can also be deduced from [5, Theorem
4.3].

Swisher [11, (3)] gave the following extension of Van Hamme’s (G.2) supercongru-
ence: for p = 3 (mod 4) and p > 3,

k1 2r,()

k=0

(mod p*). (1.5)

(The negative sign was missing in Swisher’s original supercongruence.)
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We shall give a new generalisation of (1.5) modulo p* as follows: for p = 3 (mod 4)
and 0 <s<(p-3)/4,

(Bp=1)/4 (D (3 (12 CIRE) (3) :
4 k=s\g)k+s\g)p 4/5\3/Bp-D/4+s3)Bp-1)/A-s 3

2. Bk D otk e = CP g L (mod P

= s)! s) k! s1#( )(3p—])/4+s(4)(3]7_1)/4_‘\'

(1.6)

When s = 0, the right-hand side of (1.6) reduces to 3p(%)(3,,_1)/4/(1)(3,,_1)/4, which
is easily seen to be congruent to the right-hand side of (1.5) modulo p3. Thus, the
supercongruence (1.6) can be deemed a generalisation of the modulo p? case of (1.5).
A result of Guo and Schlosser [5, Corollary 1.2 with d = 4 and ¢ — 1] implies that
(1.6) is even true modulo p* for s = 0. However, numerical evaluation indicates that
(1.6) is not true modulo p* for general s.

In the same way as before, we shall prove (1.6) via the following g-supercongruence.

THEOREM 1.2. Let n =3 (mod 4) be a positive integer and let 0 < s < (n—3)/4.
Then

(3"21:)/4[8“ . (@: 4 N-s(@: 4 es(@: 4D},
k=s

(0" i-s(q*; 4 (@5 4}

(@ 4@ g n-1)14+5(@% @) n-1))a—s

= [3n + 4s]
(g% g2(q"; g 3n-1)/2+5(@ G Gn-1)/a-s

q3s+(1—3n)/4 (mOd (D”(q)3)
1.7
Our proof of Theorems 1.1 and 1.2 will use the powerful method of ‘creative

microscoping’, which was devised by Guo and Zudilin [6].

2. Proof of Theorem 1.1

We require the following easily proved g-congruence, which was first given by Guo
and Schlosser [4, Lemma 3].

LEMMA 2.1. Let d, m and n be positive integers withm < n — 1 and dm = —1 (mod n).
Then, for 0 < k < m,
@q; qOm—t_ _ (a2 Lad: g
(q¢/a; g m-r (/] a; ")
Following Gasper and Rahman’s monograph [2], the basic hypergeometric series
110, 1s defined as

midm=d+2)[2+(d=Dk (mod ®,(q)).

1502, - -5 Al ]_ O (a5 (a2 Ok (aret; i
r+19r g, 2| = - - - 7.
bi,by,....b, (@ Db @i (bri i
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Jackson’s g¢ps summation (see [2, Appendix (II.21)]) can be stated as follows:
a7 qal/27 _qal/z

6P5 3 q,
a'?, —a'?, aq/b, aq/c, ag"" be

, b, ¢, 617" ) dqn+l] _ (dq; Q)n(aq/bC; q)n (2 1)

~ (aq/b; ulag/c; q)’
To prove Theorem 1.1, we first establish the following result.

THEOREM 2.2. Let n = 1 (mod 4) be an integer greater than 1. Let 0 < s < (n—1)/4
and let a be an indeterminate. Then, modulo ®,(q)(1 — aq")(a — q"),

(H_ZI)/4[8/€+1] (aq; 9@/ a; GG T s @ §iss o

e (aq*; g (q* [ a; g g i-s(q*s s

(aq: 4")s(q/a: 4 o(q@: ) n-114+5(@% -1 745 R Xy
(ag*; a")s(q*/a; 4)s(q*; @) -1y 14+5(@5 G n-1)/4-
PROOF. Fora = g™ or a = 4", the left-hand side of (2.2) is equal to

[n + 4s]

(2.2)

(n-1)/4
Z (8 + 1] (q " @ aG G- (@ ks o
o (@ q0G"s gIg §i-5(q*5 ¢k
(n—1)/4~s _
_ Z [8k + 85 + 1] (ql ”;q4)k+s(q1+",q4)k+s(q q )k(q q )k+2s 2k+2s
e (@ @ ieas (@7 gD (@h 7G5 g Hrss
(@ 4@ g (@ 425 o
= [8s + 1]
(@* "5 qs(q g)s(q*: q*)as
q1+85’ q%+4s’ _q%+4s’ q, q1+n+4s’ ql—n+4s .
% 05 144y Lyds 4485 A-ntds  Atn+d 44 2.3)
q§ S _qa 3 q S, q —HN ‘Y’ q n -§
Letting g = ¢*, a=q¢""%,b=q,c=q¢""""* and n — (n — 1)/4 — 5 in (2.1), one sees

that the right-hand 51de 0f (2.3) can be simplified as

1+n. 5+8s 3—n+4s

(@5 q5(@" ™ qHs(@ 425 (@5 q ) n-1ya-5(q 5 @M - 1)/4-s
(@ )@ gM)s(@* g)as (@85 N 1) ja—s(@ 5 ¢ =1y ja-s

g*[8s + 1]

l+n.

@@ s (@ dHDin-1)a45(@ T G -1y a5 7

= [n + 4S]
(@ D5 45 (@ @D 1)/a45( @5 gD -1/

@75 qs(@" " g (@ G -1y 145G @D = 1))a-s S—y

= [n + 4s]
(@ gH5(@5 4N (@5 48 = 1))a+5(@ G =1y 145

Thus, we have proved that (2.2) is true modulo 1 — ag" and a — ¢"
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Since n = 1 (mod 4), letting d = 4 and m = (n — 1)/4 in Lemma 2.1, we obtain

(aq; ¢*)m-x

I )
(q*/a; gD m-k

= (~a) mq’"@""m" (mod @,(q)) (2.4)

for 0 < k < m. Using this g-congruence, we can easily verify the following congru-
ence,form=m—-1)/4ands <k <m-s,

(aq; ¢ )m-r(q/ s G )m-r @5 @ Vmt=s(G @ Imtrs 2o

[8(m — k) + 1]
(aq*; @m-i(q*1a; ¢ m-i(q*; gHm-i-s(@*; G m-rks

(aq; gM(q/a; d(q; §D-s(q; G ks

= —[8k+ 1]
(aq*; gH(q*a; g i-s(q*; ¢ ies

g** (mod @,(q)).  (2.5)

Moreover, for (n — 1)/4 — s < k < (n — 1)/4, the summand indexed k on the left-hand
side of (2.2) is congruent to 0 modulo ®,(g) because k +s > (n — 1)/4 and (g; ¢")i+s
in the numerator incorporates the factor 1 — ¢". This means that the left-hand side of
(2.2) is congruent to 0 modulo ®,(g). Since

[+ 451(q; @ n-1ya4s = [11(q; §Dn-1y4(¢" 3 ¢*)s = 0 (mod @,(q))

for n > 1, we conclude that (2.2) is also true modulo ®,,(g). Noting that the polynomi-
als 1 —aq", a — ¢" and ®,(g) are pairwise relatively prime, we complete the proof of
the theorem. o

PROOF OF THEOREM 1.1. For a = 1, the denominators on both sides of (2.2) are
relatively prime to ®,(g). Moreover, when a = 1 the polynomial (1 — aq")(a — q") =
(1 — ¢™)? contains the factor ®,(g)>. Therefore, putting a = 1 in (2.2), we obtain the
desired g-supercongruence (1.4). |

3. Proof of Theorem 1.2

The proof is similar to that of Theorem 1.1. We first establish the following
parametric generalisation of Theorem 1.2.

THEOREM 3.1. Let n = 3 (mod 4) be a positive integer. Let 0 < s < (n — 3)/4 and let
a be an indeterminate. Then, modulo ®,(q)(1 — ag*™)(a — ¢*"),

3n-1)/4
(Z)/ [8k + 1] (aq: 4/ a; g G 4 -s(@: TIies 2

e (aq*; g (g a; g 4 i-s(q*s s

(aC]; q4)s(Q/a; 44)5(61; 114)(311—1)/4“((]2; q4)(3n—1)/4—s 3s+(1-3n)/4

= [n + 4s]
(aq*; gM(q*/a; g))s(q*; g 3n-1)/4+5(@: GV Gn-1)/4-5

3.1
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PROOF. For a = ¢~" or a = ¢*", the left-hand side of (3.1) is equal to

(3Bn-1)/4 B

ST I8k 11 (@' 7" gY@ 4@ (@ 4 Nirs
(

k=s

a3 M@ g dhs g-s(q*; ¢ ks

(@7 gM5(a 3 qM(q: qMas o

=[8s+ 1]
(@43 gMs(@* 35 4)s(q*; g
q'vss, q%+4s’ _qg+4s’ g, q'tintds gl-dnvds . a2
X ; . .
69 leds  _ Leds 4485 d-3n+ds FIEVIL L
q B q s q ) q s q

Lettingg = ¢*,a=¢"**.b=q,c=q¢"*"** andn — (3n - 1)/4 — sin (2.1), one sees
that the right-hand side of (3.2) may be written as

@745 g5 )25 (@5 qMEn-1a-s(@ "GN Gno1y s

2s
q~[8s + 1]—— —
(@735 4)5(@* 3" g1 5(q*: 425 (@55 qM) 3n-1)/4-5(@ 4 4N 3n=1)14-5

(61]73"§ q4)s(q”3”; 614)s (q; q4)(3n—1)/4+s(qz§ ‘]4)(3n—1)/4—s 3s+(1=3n)/4

(@3 M)5(@* 3" q%)s (0% g n-1)/2+5(Q 4D Gn-1)/4s

= [3n + 4s]

This proves that (2.2) holds modulo 1 — ag® and a — ¢*".

Since n =3 (mod 4), letting d =4 and m = 3n —1)/4 in Lemma 2.1, we again
obtain (2.4) for 0 < k < m. Applying this g-congruence, we can check (2.5) for
m=@0Bn-1)/4and s <k <m-s.For Bn-1)/4 —s <k < (3n—1)/4, the summand
indexed k on the left-hand side of (3.1) is congruent to 0 modulo ®,(q) because
k+s> (3n—1)/4 and (q; ¢*)r+s has the factor 1 — ¢*". This implies that the left-hand
side of (3.1) is congruent to 0 modulo ®,(g). Since

[3n + 451(q: ¢ )n-nyjass = [31(q: ¢Nan-1a(q”" ;g5 = 0 (mod D, (g)),
we conclude that (3.1) is also true modulo @,(q). O

PROOF OF THEOREM I.I. When a =1, the polynomial (1 —ag*)(a-¢*") =
(1 —g>)? contains the factor ®,(g)*>. Thus, letting a =1 in (2.2), we get the
g-supercongruence (1.7). ]

4. An open problem

We believe that the following conjecture is true.

CONJECTURE 4.1. The g-supercongruences (1.4) and (1.7) are also true modulo
[n]®,(q)*.

The above conjecture is clearly true for s = 0 (see [5, 9]). Numerical computation
indicates that both sides of (1.4) (or (1.7)) should be congruent to 0 modulo [r].
However, it seems difficult to confirm this. The technique of proving a g-congruence
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modulo [n] introduced in [6] does not work here, because of the additional

parameter s.
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