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Abstract
We consider the problem of optimally maintaining an offshore wind farm in which major components progressively
degrade over time due to normal usage and exposure to a randomly varying environment. The turbines exhibit both
economic and stochastic dependence due to shared maintenance setup costs and their common environment. Our
aim is to identify optimal replacement policies that minimize the expected total discounted setup, replacement,
and lost power production costs over an infinite horizon. The problem is formulated using a Markov decision
process (MDP) model from which we establish monotonicity of the cost function jointly in the degradation level
and environment state and characterize the structure of the optimal replacement policy. For the special case of
a two-turbine farm, we prove that the replacement threshold of one turbine depends not only on its own state of
degradation but also on the state of degradation of the other turbine in the farm. This result yields a complete
characterization of the replacement policy of both turbines by a monotone curve. The policies characterized herein
can be used to optimally prescribe timely replacements of major components and suggest when it is most beneficial
to share costly maintenance resources.

1. Introduction

Global demand for clean and renewable energy sources, such as wind and solar power, is motivated by
growing concerns about environmental sustainability and climate change. Like many other industrial-
ized nations, the United States has committed to reducing harmful carbon emissions while increasing
the proportion of power generated by non-fossil-based sources over the next few decades. Specifically,
it plans to (1) cut carbon emissions in half by 2030, (2) reach 100% clean electricity by 2035, and (3)
achieve net-zero carbon emissions by 2050 [20]. However, these ambitious goals can only be attained
if the supply and reliability of renewable energy sources are sufficient to meet consumer demand while
remaining economically competitive with fossil fuel sources. Some in the operations community have
considered optimal investment strategies for renewable energy technologies, such as wind and solar
[3, 30]. Wind energy is playing an increasingly important role in the move towards more sustainable
forms of energy because it is clean, accessible, affordable, and inexhaustible. Wind energy is produced
by a wind turbine—a system designed to convert kinetic energy (wind) into mechanical energy to gen-
erate electricity. Wind turbines are typically comprises a structural tower, the rotor and hub (including
three turbine blades), and the nacelle, which houses most of the mechanical and electrical systems,
including the gear box and generator, among others. A collection of wind turbines operating in proximity
to one another is known as a wind farm.

Although wind farms can be land-based (onshore) or sea-based (offshore), the vast majority of wind
generation in the USA originates from onshore systems [47]. New onshore wind farm installations are
very costly, as they require significant capital investments, supporting infrastructure and connection
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services, and these costs are substantially higher for offshore wind farms [52]. However, due to esca-
lating demand for wind energy and depletion of available land resources, offshore wind has received a
great deal of attention over the past two decades. Though it is more costly, offshore wind holds a few
advantages over its onshore counterpart. First, stronger andmore consistent wind resources are available
offshore, thereby increasing generating capacity and improving reliability. Second, offshore wind farms
are usually located in vast open water areas, allowing for large-scale installations. Finally, because off-
shore wind farms are distant from dense population centers, their negative visual and auditory impacts
are significantly reduced. Despite these advantages, wide-scale adoption of offshore wind has not yet
been realized due to significant capital investment costs and its levelized cost of energy (LCOE)—an
aggregate economic measure that is used to compare lifetime power generation costs associated with
different technologies [65]. The three components of this aggregate cost are broadly categorized as cap-
ital expenditures, operational expenditures, including operations and maintenance (O&M) costs, and
decommissioning expenditures. O&M costs typically account for 20–50% and 35–50% of the cost of
producing onshore and offshore wind energy, respectively [67, 74]. Moreover, the replacement of large,
critical components such as turbine blades, gear boxes, and generators constitutes as much as 75% of
total O&M costs [40, 70]. Therefore, the viability of large-scale offshore wind generation hinges on a
reduction of O&M costs and, ultimately, the LCOE.

While similarities exist between the maintenance of onshore and offshore wind farms, offshore farms
are especially difficult tomaintain due to accessibility issues, environmental conditions (e.g., wind speed
and wave height), safety concerns, and the need for costly, specialized crews and equipment to perform
operations. Accessibility is usually associated with their distance from the shore, sea conditions, and
availability of sea vessels. When unanticipated failures occur, helicopters are often deployed to reduce
delays in accessing the turbines. Another unique feature of offshore wind farm maintenance is the need
for different types of vessels to carry crews, replacement parts, and equipment. In addition to crew
transfer vessels (CTVs) and service operational vessels (SOVs), a jack-up vessel (JUV) is essential for
replacement of large, critical components such as turbine blades and generators [70]. Because it may be
cost-prohibitive for a wind farm operator to own such resources, they must be chartered from external
providers. Dalgic et al. [15–17] have documented several complicating factors associated with the use
of JUVs. The accessibility and availability issues associated with offshore wind farm maintenance are
aptly detailed in [25, 52, 57, 58, 61, 62].

These considerationsmotivate our work here in whichwe seek to prescribe optimal replacement poli-
cies for offshore wind farms that minimize the long-run expected total discounted setup, replacement,
and lost production costs. Critical to our approach is the inclusion of both economic and stochastic
dependence between the turbines in a wind farm. Economic dependence is present because signifi-
cant setup costs are incurred any time replacements are performed. These costs can be shared among
multiple turbines, allowing operators to exploit economies of scale. Stochastic dependence refers to the
association of the turbines’ degradation processes stemming from their common operation in a randomly
varying, exogenous environment. The repair or replacement of turbine components can be either preven-
tive (occurring before a failure) or reactive (occurring after a failure); in either case, a per-replacement
cost is incurred. Substantial downtime costs (in the form of lost revenue) are also incurred whenever
a major component fails and/or a turbine is taken offline to perform replacements. We formulate and
analyze aMarkov decision process (MDP) model to prescribe optimal replacement policies and provide
practical insights to wind farm operators.

1.1. Relevant literature

An offshore wind farm can be viewed as a collection of complex, progressively degrading multiunit
systems operating in a dynamic environment. A multiunit system can refer either to one system with
multiple (dependent or independent) components or a collection of systems that are dependent in some
way; we adopt the latter view for offshore wind farms. Many other researchers embrace the first view
in order to devise tractable maintenance policies for multiple independent units. For instance, Tian and
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Liao [68] examined policies for general multiunit systems with several identical, independent units and
numerically obtained dual threshold-type policies. Zhang et al. [80] decomposed a multiunit system
and established an opportunistic dual-threshold policy for the maintenance of each single-unit system.
Arts and Basten [7] proposed a condition-based maintenance (CBM) model for each component of a
two-component system independently by considering both scheduled and unscheduled downtime. After
prescribing optimal maintenance policies for each component, they synchronized scheduled downtime
in order to maintain both units simultaneously. Such decomposition procedures usually lead to tractable
maintenance policies; however, it is well-known that interdependent, degrading systems present signif-
icant challenges to strategic maintenance planning [19, 49, 73, 83], especially when multiple types of
dependence exist. Olde Keizer et al. [50] surveyed several dependence types prevalent in CBM strategies
for degrading systems. Here, we focus primarily on economic and stochastic dependence.

First, economic dependence exists in multiunit systems generally, and in offshore wind farms specif-
ically, because maintenance operations are typically performed jointly on several units to share setup
costs and reduce the total downtime overall. Ko and Byon [34] considered the problem of maintain-
ing a large number of homogeneous units that degrade independently over time but are economically
dependent due to shared setup costs. Salari and Makis [59] examined economic dependence between
the units of a production system in which the production rate of each unit decreases as the degradation
level increases. Zhu et al. [81] considered a multicomponent system with heterogeneous, independently
degrading units and significant shared maintenance setup costs. Zhu et al. [82, 83] formulated a mul-
tistage stochastic integer program to optimize the maintenance of a multicomponent system subject to
economic dependence. They derived structural results for a simpler two-stage version of the model to
enhance tractability. Related to economic dependence is resource-based dependence, in which units are
linked through a shared and limited set of resources [1, 36, 63]. Olde Keizer et al. [51] used a MDP
model to jointly optimize maintenance activities and spare parts inventory of a multicomponent system
in which the components share identical spares. Maintenance is feasible only if spares are available,
thereby inducing resource-based dependence. They obtained optimal replacement and ordering poli-
cies that minimize the total long-run average cost per time unit. Similarly, de Pater and Mitici [18]
considered multiple repairable components whose maintenance activities are linked via the availability
of spares. They integrated remaining useful life (RUL) estimation with a limited inventory of spares
to devise a predictive maintenance model subject to resource-based dependence. Wind turbines may
be forced to sit idle awaiting the resources needed to restore them to working condition, resulting in
economic losses in the form of lost revenues.

Second, stochastic dependence can exist between the units in amultiunit system in at least three ways:
via load sharing, dependence of degradation processes due to structural dependencies or the association
of degradation processes via a common operating environment. The first type exists when the failure or
degradation of one unit influences the lifetimes of other units. For example, if additional power produc-
tion is required of one wind turbine due to the failure of another, load sharing can lead to accelerated
degradation and premature failure of the operational unit [9, 69, 76, 78, 80]. Structural dependence
refers to the physical configuration of components within the system, for example, the components are
connected in series, parallel, or some other manner [5, 38, 75, 79]. Third, stochastic dependence can
be induced by exogenous factors, such as environmental conditions, that simultaneously influence the
degradation processes of individual units. Reliability and availability indices, as well as optimal main-
tenance strategies, for single-unit systems operating in a randomly evolving environment have been
well studied [31–33, 35, 77]. Random shock processes have often been used to model the operating
environment and its impact on competing degradation processes [14, 28, 55, 56, 75]. Of particular
interest to our work here is a model by Ulukuş et al. [71], who examined the optimal replacement of a
single-unit system subject to environment-driven degradation. Using an MDP model, they established
the existence of an optimal degradation-based threshold replacement policy for each environment state.
Furthermore, they conjectured conditions for which the thresholds are monotone; however, this con-
jecture was based only on empirical evidence. Abdul-Malak et al. [2] extended the model in [71] to
the case of multiple units operating in a shared environment, where stochastic dependence stems from
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the association of degradation processes via the common environment. They established monotonicity
of the value function over the entire state space, although they did not characterize the optimal policy.
Instead, numerical approximations were used to illustrate the replacement policies, and for the special
case of a single unit, they provided a partial resolution to the conjecture in [71] and proved conditions
needed to ensure that the replacement thresholds are monotone (for each environment state). Our work
differs from prior models in that we seek to establish structured replacement policies that consider the
following: (1) economic dependence due to shared setup costs, (2) stochastic dependence induced by a
common, randomly evolving environment, and (3) the impact of production losses that also depend on
the environment state.

1.2. Summary of contributions and results

Our main contributions and results are summarized as follows:

(1) The problemwe study has a unique feature: The turbines in the farm are exposed to a common envi-
ronment that evolves randomly over time. In particular, the degradation processes of the turbines
are associated with each other through their common exposure to the environment. Therefore, in
addition to economic dependence induced by the sharing of setup costs, there is stochastic depen-
dence among the turbines. We create and analyze an MDP model that incorporates economic and
stochastic dependence, both of which significantly influence maintenance strategies.

(2) We establish structural properties that lead to a characterization of the optimal replacement pol-
icy. First, we show that insights from the analysis of single-unit systems carry over to our setting.
Specifically, for a single turbine, the optimal policy is monotone in its degradation level when the
degradation levels of all other turbines are fixed, as seen in Figure 1(a). For a fixed turbine 1 degra-
dation level (level A), there is a turbine 2 degradation threshold (level B) below which it is not
optimal to replace and above which it is optimal to replace. Other models assume that it is always
optimal to replace a failed system, implying that a replacement threshold always exists. However,
in our setting, it is possible that replacement of a failed turbine is not prescribed due to significant
shared setup costs. Second, for the special case of two turbines, we provide a novel result that, for a
given level of degradation of one turbine, the optimal policy is monotone in the degradation level
of the other turbine beyond a certain point. Referring to Figure 1(b), for a fixed turbine 2 degrada-
tion level (level D), beyond the point X, there is a threshold degradation level of turbine 1 (level C)
below which it is not optimal to replace turbine 2, but above which it is optimal. Similar to the prior
case, it may not be optimal to replace turbine 2 when turbine 1 is failed. Third, we show that these
thresholds (if they exist) are monotone in the degradation level of turbine 2. That is, in Figure 1(c),
when the degradation level of turbine 2 is level G (level H), the optimal threshold for replacing
turbine 2 is level F (level E) over the degradation level of turbine 1. Our results show that level E
is necessarily less than or equal to level F. As a byproduct, the region where the optimal policy
replaces both turbines (the opportunistic region) is completely characterized by a monotone curve
(depicted by the dotted curve in Figure 6) in the space of degradation levels of the two turbines.

(3) Our numerical results provide a procedure to assess the value of incorporating dependence and
adequately modeling the environment, as well as the consequences of incorrect assumptions on
the replacement policies and costs. Our results provide insights as to how the replacement policies
depend on the environment and underlying assumptions.

The remainder of the paper is organized as follows. In Section 2, we describe the degradation model
and formulate the replacement problem using an MDP model. Section 3 establishes properties of the
cost function and the structure of the optimal replacement policy. In Section 4, numerical examples are
used to illustrate replacement policies and demonstrate the value of incorporating dependence and the
environment. Finally, some concluding remarks are provided in Section 5.
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Figure 1. Visualization of the optimal replacement policy of turbine 2. (a) Monotone policy in its own
degradation level. (b) Monotone policy in the other turbine’s degradation level. (c) Monotonicity of
thresholds.

2. Model and problem formulation

In this section, we first provide a mathematical model of wind turbine degradation due to normal oper-
ation and the influence of a randomly evolving environment. Subsequently, we formulate a stochastic
optimization problem tominimize the expected total discounted setup, replacement, and downtime costs
over an infinite horizon.

2.1. Degradation model

Consider a finite collection N := {1, . . . ,N} of N wind turbines operating in an offshore wind farm.
Critical wind turbine components (e.g., generators, transformers, rotors, and turbine blades) degrade
over time due to normal usage and the influence of their ambient operating environment. For example,
it is well known that ocean air is corrosive to wind turbine blades due to its higher salt content [22].
In what follows, the phrase “turbine degradation” refers to the degradation of a single, critical com-
ponent whose replacement requires substantial time, effort, and resources. That is, we do not specify
which component but refer more generally to the turbine’s degradation. Each turbine degrades until its
cumulative level of degradation first reaches, or exceeds, a critical deterministic threshold b (b > 0), at
which time the turbine is said to be failed. In the problem formulation that follows, we consider discrete
decision epochs m ∈ Z+ := {0, 1, 2, . . .} and define a period as the time between two consecutive deci-
sion epochs. Let Xn(m) denote the degradation of turbine n ∈ N at decision epoch m with state space
[0, b]. Here, level 0 means a turbine is in as-good-as-new condition. Next, define the vector-valued
process X = {(X1(m), . . . ,XN (m)) : m ∈ Z+} describing the joint degradation process of all N tur-
bines with continuous state space X := [0, b]N . At decision epoch m, turbine n is said to be working
if Xn(m) ∈ [0, b) and failed if Xn(m) ≥ b. Hereafter, and without loss of generality, we set the failure
threshold b = 1. Stochastic processes are used extensively in the reliability and maintenance optimiza-
tion communities to model the temporal and/or spatial evolution of degradation in systems. For a single
system, {Xn(m) : m ∈ Z+} is often assumed to evolve as a discrete-time Markov chain (DTMC) on a
finite state space, or when a continuous-time, continuous-state process is more appropriate, degradation
can be modeled using gamma, Wiener, or other Lévy processes [6, 10, 38, 48].

For our purposes here, it is appropriate to model not only degradation but also the influence of
a randomly varying environment on the evolution of degradation. Wind turbines are often located in
proximity to one another within a wind farm; thus, they experience not only similar environmental con-
ditions but also wake effects resulting from changes in wind speed [21]. Although the turbines operate
independently, their degradation processes exhibit stochastic dependence due to their exposure to a com-
mon environment. Monbet et al. [44] surveyed stochastic models—many of which are Markovian—that
can be used to model wind conditions and the sea state from time series data. Although the environment
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realistically evolves continuously in time and space, researchers have assumed that it evolves over finitely
many discrete states. Representative examples include [2, 11, 31, 32, 71]. In those specific models, each
environment state maps to a unique, positive degradation rate. That is, if the environment occupies state
i, then the system degrades linearly at a rate r(i) > 0. Consequently, in the absence of any type of main-
tenance intervention, the degradation process evolves as a piecewise linear function of time (almost
surely). In contrast to those models, our main theoretical results do not impose such restrictive assump-
tions but only require that future degradation can be predicted using the current level of degradation
and the environment state. The discrete environment states are essentially aggregations of several fac-
tors, including wind speed, ambient temperature, relative humidity, wave height, and others. Hence,
these states can be viewed as approximations of the true (continuous) environment states over time. For
example, if the environment evolves as a diffusion model with a randomly evolving drift coefficient,
the distinct environment states can be viewed as the average behavior of the diffusion process within an
interval of time. Flory et al. [23] employedMarkov chain Monte Carlo methods to model such behavior.

Let J(m) denote the state of the environment at decision epoch m and assume J := {J (m) : m ∈
Z+} evolves as a temporally homogeneous DTMC on the finite state space L := {1, . . . ,L} with L ∈
N. The environment states are ordered such that state 1 represents the most favorable condition for
maintenance activities and state L represents the least favorable condition. To account for accessibility,
resource availability, and maintenance feasibility issues, we can append L with additional states that
reflect conditions under which maintenance cannot be performed (e.g., when wind speeds and/or wave
heights are excessive, transport vessels are unavailable and/or crews are unavailable). In such cases,
the only feasible action is “do nothing” and wait until the next decision epoch. The one-step transition
probability matrix (TPM) of J is denoted by P = [pℓk], where pℓk is the conditional probability that the
environment state is k at decision epoch m+ 1, given that it was ℓ at epoch m for any m ∈ Z+. The number
of distinct environment states (L) can be estimated using the well-known Bayesian information criterion
[23, 60]. Anastasiou and Tsekos [4] concluded that six-to-eight distinct states are sufficient to model
environmental conditions using a first-order, stationary Markov chain and noted that the stationarity
assumption has been employed to model wind speed and wave height in other maritime applications
[8, 39]. It is well-known that weather conditions exhibit strong seasonality effects, as highlighted and
modeled by Byon et al. [12, 13]. To account for these effects, one can employ a different DTMC model
for different seasons of the year. The transition probabilities can be estimated using proportions data
[29, 41] or by mining time series data [66]. A realization of the joint process (X, J) is an (N + 1)-
dimensional vector (x, ℓ), where x = (x1, . . . , xN ) ∈ X and ℓ ∈ L.

We assume that future degradation can be predicted via the current state (x, ℓ). For each turbine
n ∈ N and a triplet (xn, ℓ, t), let fn : [0, 1] × L × R+ → R+ be a generic mapping that predicts the
degradation of turbine n after t time units when its current degradation level is xn and the environment
state is ℓ. It can assume any number of functional forms (e.g., linear, piecewise linear, exponential, etc.);
however, we impose no such assumption. This mapping satisfies the initial condition fn(xn, ℓ, 0) = xn,
and we impose the natural assumption that, for each n ∈ N , fn is monotone nondecreasing in (xn, ℓ, t),
i.e., fn(xn, ℓ, t) ≤ fn(x′n, ℓ′, t′) for any xn ≤ x′n, ℓ ≤ ℓ′, and t ≤ t′. That is, future degradation is
assumed to be higher than the present level of degradation, and because the state space L is ordered,
higher environment states lead to accelerated degradation of the units; however, we impose no additional
assumptions on fn. Condition monitoring or sensor data (e.g., from a Supervisory Control and Data
Acquisition (SCADA) system) can be used to estimate the evolution of degradation and/or the RUL of
components using the techniques developed in [11, 24], for example. Papadopoulos et al. [53] suggest
that when a dynamic environment is considered, the RUL can be estimated using the models developed
by Bian et al. [11].

2.2. Problem formulation

Maples et al. [40] note that the majority of wind turbine O&M costs are due to the replacement of
critical components (e.g., generators, transformers, rotors, and turbine blades). Thus, optimally timed
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replacements that exploit economies of scale can reduce O&M costs for wind farms and the overall
cost of wind energy to consumers. Here, we present an MDP model to formulate the problem of opti-
mally replacing wind turbines with the objective of minimizing the expected total discounted, setup,
replacement and downtime costs over an infinite horizon.

Periodic inspections, which are assumed to be costless and instantaneous, are performed to reveal
the state of each turbine perfectly (i.e., the state is completely observable). Such observations can be
obtained, for example, by using sensors attached to critical components and tracking important signals
of degradation, such as vibration or acoustic signals [11]. A decision to replace or not replace a unit is
made by a decision maker (DM) just after an inspection such that Z+ = {0, 1, . . .} is the set of decision
epochs, and the time between any two consecutive inspections is a period in the MDP model. The state
of the system is the (N +1)-dimensional vector (x, ℓ) whose state space is Γ := X ×L. For any decision
epoch m ∈ Z+, let an ∈ {0, 1} denote the action taken for turbine n ∈ N , where an = 0 means “do
nothing” and an = 1 means “replace.” Therefore, the N-dimensional vector a = (a1, . . . , aN ) describes
the actions taken by the DM, and the action space isA := {0, 1}N . Whenever replacement is prescribed,
the turbine must be shut down for one full period. Replacement activities commence immediately after
the inspection and end just prior to the subsequent inspection. We assume that a period is sufficiently
long to ensure that replacements are completed during a single period. Because the average time to
complete a major replacement is between 2 to 7 days (see Maples et al. [40]), the time between two
consecutive decision epochs is 1 week in our model. However, it is important to note that the length of
the period can be adjusted to account for different time scales when the model is used to prescribe the
optimal timing of maintenance actions for minor components. In such cases, the period length can be
set to 1 day. All replacements are assumed to be perfect and reset the degradation to level 0. For the
remainder of the paper, vector inequalities are assumed to hold component-wise. That is, a ≤ a′ implies
an ≤ a′n, and x ≤ x′ implies xn ≤ x′n for each n ∈ N .

Let x̂n(xn, ℓ, an) be the predicted level of degradation of turbine n at the start of the next period when
the current degradation and environment states are xn and ℓ, respectively, and action an is taken. Then,

x̂n(xn, ℓ, an) =
min{1, fn(xn, ℓ, 1)}, if an = 0,

0, if an = 1.
(1)

Following a replacement, degradation is returned to level 0 (an as-good-as-new condition), and without
intervention, the turbine either fails or assumes some higher degradation level fn(xn, ℓ, 1).

Next, we describe the setup and other costs associated with replacements in an offshore wind farm.
If at least one unit is replaced, a setup cost cs (cs > 0), which comprises significant equipment and crew
transfer costs, is incurred. For offshore wind farms, the distance between the base station and the shore-
line is usually significant such that helicopters and SOVs and/or JUVs must be used to transport needed
equipment and crews to the farm. Additionally, heavy equipment is required to perform replacements;
hence, the setup cost cs can be substantial (in excess of £250,000 per day of operation; see [42, 64]).
However, this cost can be shared if multiple turbines are replaced in the same period. The shared setup
cost induces economic dependence between the turbines. Second, a per-replacement cost cr (cr > 0)
is incurred for every turbine that is replaced. This cost compromises the procurement cost of a new
component, as well as the labor hours needed to complete the replacement. Finally, a downtime cost is
incurred for any turbine that either (1) fails in the time interval between two inspections or (2) is taken
offline so that a replacement can be performed. This cost corresponds to lost power production due to
turbine unavailability [40]. As noted by Wan et al. [72], power output is a function of wind speed and
is typically characterized by a monotone increasing, S-shaped curve that is convex at low wind speeds,
concave after an inflection point, and flat beyond an upper speed threshold [26]; therefore, we assume
the downtime cost rate is a function of the environment state ℓ. Let cd (ℓ) denote the downtime cost per
unit time per turbine when the environment is in state ℓ. For example, if wind speed instantiates the
environment, disjoint intervals of speed may correspond to different regions of the power output curve,
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Figure 2. Partition of wind speed into disjoint intervals with distinct downtime cost rates. (a) A typical
wind power curve. (b) Downtime cost rate versus environment.

as depicted in Figure 2(a). Three distinct wind speed ranges (low, medium, and high) result in distinct
regions of power output.
Figure 2(b) illustrates how the wind speed intervals can be mapped to environment states in order to
associate a downtime cost rate with each state. Wind speed can be mapped to power production using
the well-known method of bins, as prescribed by the International Electrotechnical Commission [27].
In this specific illustration with three environment states, we divide the wind speed range into three
intervals of equal length, with the lowest environment state (state 1) corresponding to wind speeds
that exceed the cutoff speed; therefore, we assign a positive downtime cost rate for this state. We
assume the downtime cost rate cd (ℓ) is strictly increasing in ℓ ∈ L and bounded from above. That
is, 0 < cd (1) < · · · < cd (L) < ∞.

We now describe the degradation dynamics of a particular turbine n ∈ N with and without replace-
ment. Figure 3(a) and 3(b) depicts scenarios in which the environment state is fixed at ℓ throughout the
period. From Figure 3(a), we see that at decision epoch m, the turbine can either be failed (point A) or
working (point B).

For either case, if replacement is prescribed at time m, the turbine is down for the entire period and
is restored to a new condition at decision epoch m+ 1 (point C); hence, the cost cd (ℓ) + cr is incurred
in each of the two scenarios of Figure 3(a). Figure 3(b) depicts the same two scenarios in which the
turbine is either failed (point A) or working (point B) at time m. Here, if replacement is not prescribed at
decision epoch m and the unit is failed, it remains failed at m+ 1 so that the incurred cost is cd (ℓ). On the
other hand, if the turbine is working at time m (point B) and replacement is not prescribed, two possible
scenarios (represented by the dotted lines) may occur. First, the turbine continues degrading and reaches
the critical threshold (b = 1) before decision epoch m+ 1 (point D). In this case, the turbine is down
from the crossing time (point D) until the start of the next period (point E). This downtime is denoted
by gn(xn, ℓ) and is obtained via the predictive function fn (xn, ℓ, t). Specifically, let gn(xn, ℓ) denote the
predicted within-period downtime if no replacement is performed (an = 0), xn is the degradation at the
start of the period, and the environment state is ℓ. Then,

gn(xn, ℓ) = max {0, 1 − inf {t ≥ 0 : fn (xn, ℓ, t) ≥ 1}} . (2)

For this first scenario, the downtime cost cd (ℓ) · gn(xn, ℓ) is incurred for turbine n. For the second
scenario, the turbine is working at time m (point B), but its level of degradation does not reach the
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Figure 3. Degradation evolution of a turbine within a period with and without replacement.
(a) A turbine with replacement. (b) A turbine without replacement.

failure threshold before decision epoch m+ 1. Rather, it continues operating for the entire period and
evolves to a higher level of degradation at decision epoch m+ 1 (point F). In this case, gn(xn, ℓ) = 0
so that no downtime cost is incurred. Finally, we note that if the turbine is failed at decision epoch m
(point A) and replacement is not prescribed, it remains failed at decision epoch m+ 1 (point E). Since
fn(1, ℓ, t) = 1 for all ℓ ∈ L and t ≥ 0, it follows that gn(1, ℓ) = 1. Therefore, the cost cd (ℓ) · 1 = cd (ℓ) is
incurred.

For notational convenience, define an indicator function I(a), where I(a) = 1 if an = 1 for some
n ∈ N (at least one replacement is performed) and I(a) = 0 if an = 0 for all n ∈ N (no replacements
are performed). The one-step immediate cost is then

c(x, ℓ, a) = I(a)cs +
∑
n∈N

an [cr + cd (ℓ)] +
∑
n∈N

(1 − an) cd (ℓ) gn(xn, ℓ). (3)

The first term on the RHS of Equation (3) represents the setup cost. The second term is the sum of
replacement costs and power production losses incurred for all replaced turbines. Finally, the third term
accounts for the downtime costs estimated by the predictive functions for turbines that are not replaced.

All immediate costs are discounted at a fixed rate _ (0 < _ < 1). The objective is to minimize the
expected total discounted setup, replacement, and downtime costs over an infinite horizon. LetP denote
the set of all nonanticipative replacement policies. Starting in state (x, ℓ), the DM solves

V (x, ℓ) = inf
c∈P

{
E

[ ∞∑
m=0

_mc(xm, ℓm, ac (xm, ℓm) | (x, ℓ))
]}

, (x, ℓ) ∈ Γ, (4)

where ac (xm, ℓm) denotes the action prescribed by policy c ∈ P in state (xm, ℓm) at decision epoch m.
Equation (4) is equivalent to

V (x, ℓ) = min
a∈A

{
c(x, ℓ, a) + _

∑
k∈L

V (x̂(x, ℓ, a), k)pℓk

}
, (x, ℓ) ∈ Γ, (5)

where x̂(x, ℓ, a) = (x̂1(x1, ℓ, a1), . . . , x̂N (xN , ℓ, aN )) is the N-dimensional vector of predicted degrada-
tion levels at the start of the next period. Note that the state space Γ is Borel-measurable, and the action
spaceA is finite. Additionally, the immediate costs are strictly positive and bounded, and the problem is
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discounted. Therefore, by Theorems 6.2 and 6.3 of [54], there exists an optimal, deterministic stationary
replacement policy, and the value iteration (VI) algorithm converges to the optimal value. Next, define
the optimal action in state (x, ℓ) by

a∗(x, ℓ) := min

{
a′ ∈ argmina∈A

{
c(x, ℓ, a) + _

∑
k∈L

V (x̂(x, ℓ, a), k)pℓk

}}
, (x, ℓ) ∈ Γ. (6)

That is, if there exist multiple optimal actions in state (x, ℓ), we take the minimum action; hence,
Equation (6) has a unique solution. In Section 3, we establish structural properties and provide some
practical insights into this important operational problem.

3. Structural results and insights

In this section, we establish some properties of the value function V (x, ℓ) and the optimal replacement
policy of the MDPmodel presented in Section 2. Before proceeding to the main results, we first provide
two lemmas that describe useful properties of the immediate and downtime costs. The proofs of all
results are contained in the Appendix.

Lemma 3.1. For each n ∈ N , gn(xn, ℓ) is monotone nondecreasing in xn ∈ [0, 1] and ℓ ∈ L.

Lemma 3.1 implies that, for each turbine n, the first crossing time to the failure threshold is shorter
starting from higher degradation and environment states. Thus, the resulting downtime within a period
is longer. Before proceeding to Lemma 3.3, we first review the notion of discrete concavity, which is
more fully elucidated by Murota et al. [45, 46].

Definition 3.2. Let X ⊆ Z. A function f : X → R is said to be discrete concave on its domain X if and
only if X ≠ ∅ and

f (x − 1) + f (x + 1) ≤ 2f (x) for all x ∈ X .

Discrete concavity is useful for characterizing structural properties of the value function. Due to the
nature of power output of wind turbines, henceforth, we assume that the downtime cost rate cd (ℓ) is
discrete concave on its domain L. Furthermore, to simplify notation, let Xn(xn, ℓ) := cd (ℓ) · gn(xn, ℓ) for
each n ∈ N . We first examine properties of the immediate cost function, c(x, ℓ, a).

Lemma 3.3. For each a ∈ A, the immediate cost function c(x, ℓ, a) is

(a) monotone nondecreasing in (x, ℓ) ∈ Γ and
(b) discrete concave on L for each x ∈ X if Xn(xn, ℓ) is discrete concave on L for each n ∈ N .

Lemma 3.3(a) asserts that the immediate costs are monotone increasing as the degradation level and
environment state increase. That is, it is more costly to operate a system that is more degraded and/or
operating in a more detrimental environment. However, Lemma 3.3(b) asserts that the marginal cost
increases are diminishing in these two dimensions if Xn(xn, ℓ) is discrete concave on its domain. While
this assumption may appear restrictive on first glance, it is appropriate in this context due to the nature
of power output as a function of wind speed and other relevant conditions. Next, we present structural
properties of the value function.
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3.1. Value function properties

We now examine important properties of the value function V (x, ℓ). Proposition 3.5 posits that the
monotonicity and discrete concavity of Lemma 3.3 extend to the value function if the transition matrix
P possesses the increasing failure rate (IFR) property.

Definition 3.4. Let P = [pℓk] be the one-step TPM of a DTMC with state space L = {1, . . . ,L}. Then
P is said to be IFR if

[k (ℓ) :=
L∑

ℓ′=k
pℓℓ′

is nondecreasing in ℓ ∈ L for each k ∈ L.

Definition 3.4 implies that, starting from a higher environment state, the DTMC is more likely to
transition to even higher states. Next, we state the main result related to V (x, ℓ).

Proposition 3.5. If P is IFR, then V (x, ℓ) is

(a) monotone nondecreasing in (x, ℓ) ∈ Γ and
(b) discrete concave on L for each x ∈ X if Xn(xn, ℓ) is discrete concave on L for each n ∈ N .

Proposition 3.5(a) asserts that if P is IFR, then the cost starting from state (x, ℓ) is nondecreasing
over the entire state space. That is, for a fixed environment state ℓ, the cost function is monotone nonde-
creasing in degradation x, and for a fixed level of degradation x, the cost is monotone nondecreasing in
ℓ. However, the costs do not increase without bound. Proposition 3.5(b) asserts that the marginal costs
diminish as the environment state increases, a property that follows directly from the discrete concavity
of the downtime cost rate function cd (ℓ) on L.

Naturally, one would like to examine the sensitivity of the value function to changes in the model’s
cost parameters. For example, how sensitive is the value function to an increase in the setup cost cs in
light of the fact that this substantial cost can be shared by performing group replacements? To answer
this question, we employ the notion of comparative statics, as described by Milgrom and Shannon [43].
Let w be any one of the nonnegative cost parameters cs, cr, or cd (ℓ). The functions c(x, ℓ, a,w) and
V (x, ℓ,w) denote, respectively, the immediate cost and value functions associated with parameter w.
Proposition 3.6 asserts monotonicity in all three cost parameters.

Proposition 3.6. If c(x, ℓ, a,w) is monotone nondecreasing in w for each (x, ℓ) ∈ Γ and a ∈ A, then
V (x, ℓ,w) is monotone nondecreasing in w.

Consider a case in which the DM can reduce the setup cost by decreasing the cost of preparing the
JUV and helicopter. Proposition 3.6 asserts that optimally replacing the turbines incurs less cost in this
case, that is, V (x, ℓ, cs) ≤ V (x, ℓ, c′s) for each (x, ℓ) ∈ Γ and any cs ≤ c′s. Next, we provide useful
structural properties of the optimal wind farm replacement policy.

3.2. Characterizing the optimal replacement policy

Here, we present the main results of this section by establishing structural properties of the optimal
replacement policy for a wind farm. For notational convenience, let

V (x, ℓ) := {n ∈ N : a∗n(x, ℓ) = 1},
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Figure 4. Extension of optimal actions at degradation level x to higher degradation levels. (a) a∗(x, ℓ) =
(1, 1, 0) in shaded region. (b) a∗(x, ℓ) = (1, 1, 1) in shaded region.

be the set of all turbines for which replacement is optimal in state (x, ℓ). Similarly, let N \ V (x, ℓ) be
the set of turbines for which it is optimal to do nothing in state (x, ℓ).

Theorem 3.7 For each (x, ℓ) ∈ Γ, consider a degradation vector y ∈ X such that yn ≥ xn for n ∈
V (x, ℓ) and yn = xn for n ∈ N \ V (x, ℓ). If P is IFR, then a∗(y, ℓ) = a∗(x, ℓ).

Theorem 3.7 asserts that, for a given environment state ℓ, the replacement region extends in each
dimension for which it is optimal to replace in degradation level x. The result is elucidated by way of
a simple example. Consider a wind farm comprising three turbines (N = 3), and suppose that in state
(x, ℓ) = (0.5, 0.5, 0.5, ℓ), it is optimal to replace turbines 1 and 2 but not to replace turbine 3, that is,
a∗(x, ℓ) = (1, 1, 0). Figure 4(a) illustrates that these same actions are optimal for any state (y, ℓ) in the
shaded region (extension of the optimal actions in two dimensions).

That is, a∗(y, ℓ) = (1, 1, 0) for any degradation level y ∈ [0.5, 1] × [0.5, 1] × {0.5}. Figure 4(b)
illustrates a different scenario in which the state is again (x, ℓ) = (0.5, 0.5, 0.5, ℓ), but it is optimal
to replace all three turbines, that is, a∗(x, ℓ) = (1, 1, 1). For this case, we see that action (1, 1, 1) is
optimal for any degradation level y ∈ [0.5, 1] × [0.5, 1] × [0.5, 1], so the optimal actions extend in three
dimensions to states with higher levels of degradation.

Now for a given environment state ℓ, consider a single turbine n′ ∈ N with degradation level xn′ and
fix the degradation levels of all other turbines n ∈ N \ {n′}. The following corollary characterizes the
behavior of the optimal action a∗n′ (x, ℓ) for each environment state.

Corollary 3.8. Suppose that P is IFR and let n′ ∈ N . Fix ℓ ∈ L and xn ∈ [0, 1] for each n ∈ N \ {n′}.
Then the optimal action a∗n′ (x, ℓ) is monotone nondecreasing in xn′ .

As a consequence of economic dependence, it is possible that replacement of turbine n′ is not optimal
for any level of degradation, that is, a degradation-based threshold policy does not exist. However,
if reactive replacement is required whenever unit n′ is found to be failed, Corollary 3.8 implies the
existence of a degradation threshold x∗n′ such that

a∗n′ (x, ℓ) =
1, if xn′ ≥ x∗n′ ,

0, if xn′ < x∗n′ .
(7)
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Figure 5. Extension of the optimal actions for two turbines in a fixed environment state.

Equation (7) mirrors the optimal replacement policy described in Theorem 2 of [71] for a single
degrading system that is influenced by its random environment; however, their model assumes that an
immediate, reactive replacement is performed whenever a failure is revealed. Our model shows that, for
some turbines, delaying replacement may be optimal due to the economic dependence induced by the
shared setup cost (cs) and the turbines’ stochastic dependence induced by their common environment.
That is, the threshold for replacing a turbine may depend not only that turbine’s degradation but also on
the degradation levels of the other turbines in the wind farm. This interesting feature of our model is
more transparent in the case of N = 2 turbines.

3.3. Special case: N= 2

Structural properties of the optimal replacement policy over the entire space Γ are not immediately
obvious when a wind farm contains three or more turbines. Fortunately, Theorem 3.7 can be used to
establish the dependence of an optimal replacement threshold of a particular turbine on the degradation
of the other turbine in a two-turbine wind farm (N = 2). Before formalizing this interesting result, it is
helpful to consider a graphical depiction of the two-turbine case in Figure 5. For ℓ fixed, the black circles
in Figure 5 represent degradation levels (x1, x2) ∈ [0, 1] × [0, 1]. From Theorem 3.7, we can deduce
the following. If the optimal action at point A is (0, 1), then (0, 1) remains optimal for any point along
the line segment AD. Specifically, for a fixed degradation level x1, if it is optimal to replace turbine 2
at A, then it is optimal to replace turbine 2 for each point along AD. Similarly, if the optimal action at
point B is (1, 0) (replace turbine 1 but not turbine 2), then (1, 0) remains optimal for any point along
the line segment BE. Finally, at point C, the optimal action is (1, 1), replace both turbines. Then it is
also optimal to replace both turbines for every point contained in the shaded region.

Next, we seek to provide structure to replacement regions over the degradation space X . For a fixed
environment state ℓ ∈ L, let x∗2 (x1, ℓ) denote the optimal replacement threshold for turbine 2 when the
degradation of turbine 1 is x1 ∈ [0, 1]. Similarly, let x∗1 (x2, ℓ) be the optimal replacement threshold for
turbine 1 when the degradation of turbine 2 is x2 ∈ [0, 1]. When they exist, let

b1(x2, ℓ) := inf{x1 ≥ 0 : a∗(x1, x2, ℓ) = (1, 1)}, (8)
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Figure 6. Monotone threshold policy for turbine 2 in a wind farm with two turbines.

b2(x1, ℓ) := inf{x2 ≥ 0 : a∗(x1, x2, ℓ) = (1, 1)}. (9)

That is, b1(x2, ℓ) (b2 (x1, ℓ)) is the minimum level of turbine 1 (turbine 2) degradation that makes group
replacement optimal when the degradation of turbine 2 (turbine 1) is x2 (x1). The next proposition
asserts that the optimal replacement threshold of one turbine is monotone decreasing in the degradation
level of the other turbine beyond these special points b1(1, ℓ) and b2(1, ℓ).

Proposition 3.9. For each ℓ ∈ L, if P is IFR and a∗(1, 1, ℓ) = (1, 1), then

(a) x∗2 (x1, ℓ) is monotone nonincreasing in x1 ∈ {x1 : b1(1, ℓ) ≤ x1 ≤ 1} and
(b) x∗1 (x2, ℓ) is monotone nonincreasing in x2 ∈ {x2 : b2(1, ℓ) ≤ x2 ≤ 1}.

Proposition 3.9 establishes the fact that the replacement threshold of one turbine depends on the
degradation state of the other turbine. Figure 6 depicts the region in which it is optimal to replace
turbine 2, that is, {(x1, x2) : a∗(x1, x2, ℓ) ∈ {(0, 1), (1, 1)}}. The figure illustrates that the replacement
threshold for turbine 2 is monotone decreasing in x1 for any x1 ≥ b1(1, ℓ).

Figure 6 also highlights the fact that it is advisable for the DM to decrease the optimal threshold
of turbine 2 as turbine 1 reaches higher degradation levels. The results in Proposition 3.9 confirm
that the replacement thresholds for both turbines are monotone decreasing. In Section 4, we provide
some numerical examples illustrating the effects of economic and stochastic dependence on the optimal
turbine replacement policies.

4. Numerical illustrations

Here, we illustrate the structure of optimal replacement policies for a two-turbine wind farm using our
MDP model. While our main results are valid for any finite number of turbines, we choose to illustrate
the policies for N = 2 since they can be easily visualized in the xy-plane. It is worth noting that, although
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Table 1. Downtime cost and degradation rates for each environment state.
Environment Downtime cost rate Turbine 1 degradation rates Turbine 2 degradation rates
ℓ cd (ℓ) r1 (ℓ) r2 (ℓ)
1 10 0.06 0.08
2 30 0.15 0.22
3 48 0.21 0.33
4 60 0.30 0.41
5 70 0.40 0.47
6 75 0.50 0.56

the state space grows exponentially in the number of turbines N, approximate dynamic programming
(ADP) and state-space reduction techniques can be employed to solve larger instances, as was done
in [2]. First, we provide numerical examples demonstrating how these policies differ depending on
the magnitude of the setup cost (cs) and the prevailing environment state (ℓ). Second, we assess the
importance of incorporating economic and stochastic dependence when evaluating turbine replacement
policies. To that end, we consider simpler models that either ignore these features altogether or use fewer
environment states than are needed to adequately characterize the environment. We begin by describing
a baseline example, which considers a wind farmwith twowind turbines. There exists ample evidence to
suggest that 6–8 states are sufficient to model environmental conditions [4]; hence, our baseline example
contains six distinct environment states.

4.1. A baseline example

Suppose there are two turbines in an offshore wind farm (N = 2), and the turbines are exposed to an
environment whose evolution is modeled by a DTMC with state space L = {1, . . . , 6} and TPM

P =



0.40 0.20 0.20 0.14 0.05 0.01
0.22 0.30 0.20 0.15 0.10 0.03
0.20 0.14 0.30 0.22 0.11 0.03
0.10 0.10 0.20 0.35 0.15 0.10
0.05 0.08 0.10 0.20 0.35 0.22
0.03 0.05 0.10 0.15 0.40 0.27


.

It can be shown that P possesses the IFR property. For this illustration, it is assumed that, for each
turbine n ∈ N , the DM predicts future degradation using the linear predictive function

fn(xn, ℓ, t) = xn + rn(ℓ)t, t ≥ 0,

where rn(ℓ) is the degradation rate of turbine n in environment state ℓ ∈ L. The form of fn is immaterial
as long as it satisfies the nonnegativity and monotonicity assumptions stated in Section 2. It is difficult to
obtain proprietary wind farm O&M records to parameterize our model. Therefore, notional setup costs,
downtime cost rates, and degradation rates were chosen relative in scale but are not intended to reflect
any real data provided to the authors. The linear degradation rates were chosen such that rn(i) < rn(j)
whenever i < j, and their magnitudes are in proportion to the failure threshold b = 1. Because the time
scale of one period is on the order of 1 week, the rates of degradation are relatively small as compared
to the failure threshold of 1. Similarly, the downtime cost rates are selected such that cd (i) < cd (j)
whenever i < j. The setup and replacement costs are cs = 5 and cr = 8, respectively. Table 1 lists all
other notional parameter values.
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Figure 7. Baseline example optimal replacement policy for each environment state (cs = 5): (a) envi-
ronment state ℓ = 1, (b) environment state ℓ = 2, (c) environment state ℓ = 3, (d) environment state
ℓ = 4, (e) environment state ℓ = 5, and (f) environment state ℓ = 6.

To implement the VI algorithm of [54], we discretized the continuous degradation space X (cf.
Kushner and Dupuis [37]). Specifically, for each n ∈ N = {1, 2}, the degradation interval [0, 1]
was uniformly discretized into 101 states so that xn ∈ {0.00, 0.01, . . . , 0.99, 1.00}, and we let X ′ :=
{0.00, 0.01, . . . , 0.99, 1.00}2. Then for each (x, ℓ) in X ′ ×L, let vk (x, ℓ) denote the kth iterate of the VI
algorithm with v0(x, ℓ) = 0. The algorithm terminates at iteration k (k ∈ N) ifvk − vk−1

∞ = max
(x,ℓ )

{��vk (x, ℓ) − vk−1(x, ℓ)
��} ≤ nv,

where nv > 0 is a tolerance level. For each implementation of the VI algorithm, we set nv = 0.01
and _ = 0.99. The VI algorithm was coded in Python 3.9 and executed on a personal computer with a
3.40 GHz processor and 8 GB of RAM. Next, we examine the sensitivity of the optimal replacement
policy to each environment state and the setup cost.

4.2. Baseline example sensitivity

Starting in state (x1, x2, ℓ) = (0, 0, 1), the VI algorithm yields an optimal total discounted cost of
3,044.20 for the baseline example. For a fixed environment state, replacement regions are the regions in
which at least one turbine is replaced (shaded regions). The opportunistic region is the region in which
both turbines are replaced (dark shaded region). Figure 7 depicts the replacement regions in different
environment states.

Figure 7(b)–(f) shows that higher environment states lead to larger replacement regions, as these
states imply accelerated degradation and higher power production rates. Hence, in higher environment
states, the DM opts to lower the replacement threshold to avoid high production losses caused by turbine
failures. However, in Figure 7(a), the largest replacement region is for environment state ℓ = 1 since the
production and degradation rates for this state are least among all environment states; hence, the DM
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Figure 8. Baseline example optimal replacement policy for each environment state (cs = 80): (a) envi-
ronment state ℓ = 1, (b) environment state ℓ = 2, (c) environment state ℓ = 3, (d) environment state
ℓ = 4, (e) environment state ℓ = 5, and (f) environment state ℓ = 6.

prefers to perform the preventive replacements much sooner. Such a scenario may correspond to the
overhaul of large, critical components in a wind farm, as major replacements are typically performed
in the summer months when environment conditions are milder. Figure 7(a) also illustrates the result
in Proposition 3.9—the optimal replacement threshold of one turbine is decreasing in the degradation
state of the other turbine when both are in the opportunistic region. However, we also observe non-
intuitive behavior for the optimal replacement policy in Figure 7; the optimal replacement threshold
of each turbine is not necessarily decreasing over the entire degradation state space. For example, in
Figure 7(a), for a fixed degradation state of turbine 2 (x2 = 0.4), the DM opts to replace turbine 2 at
point B but not to replace at points A and C. Thus, by increasing the degradation state of turbine 1,
the optimal replacement threshold for turbine 2 decreases first (moving from point A to B) and then
increases (moving from point B to C). One possible explanation for this behavior is that, at point C,
turbine 2 is closer to the opportunistic region and will reach this region sooner. Thus, it is best for the
DM to postpone replacement of turbine 2 until turbine 1 further degrades so that a group replacement
can be performed and setup costs can be shared.

In the first instance of the baseline example, the setup cost (cs = 5) was relatively low compared to
the downtime cost rates. This scenario corresponds to the case when the required resources for replace-
ment are available (e.g., no cost for chartering a JUV and helicopter) and the majority of the setup cost
is fueling. For the sake of comparison, we also examined a scenario with a relatively high setup cost
corresponding to the case when a helicopter and JUV must be chartered from a spot market, and the
total setup cost exceeds the highest capacity of power production for a turbine (cs = 80). Figure 8 shows
how the optimal replacement regions shrink with a substantial increase in the setup cost. Figure 8(c)–(f)
shows that for some degradation levels, the DM may allow the other turbine to remain failed and post-
pone replacement. That is, for higher states of degradation, replacing only one turbine is not optimal,
and the DM is more inclined to perform group replacement due to the magnitude of the setup cost.
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Table 2. Summary of the three distinct models for the replacement problem.

Model Optimal policy
Dependence type Correct information

Economic Stochastic Environment

Full model c∗ X X X

Model 1 c1 ✗ ✗ X

Model 2 c2 X X ✗

One would expect the opportunistic region to be larger in higher environment states since the DM
opts to perform the group replacement sooner to avoid higher power production losses. However, in
Figures 7 and 8, the opportunistic region does not necessarily grow with the environment state. There
are two reasons for this nonintuitive behavior. First, if the environment state is 1, then the likelihood of
transitioning to higher states is low. Hence, it is expected that, in subsequent periods, the environment
remains in state 1 with a higher probability. Second, the downtime cost in environment state 1 is low;
hence, the DM prefers to replace both turbines in an environment state that leads to a lower produc-
tion loss. In the next subsection, we show how models with incorrect assumptions impact the optimal
replacement policies.

4.3. Value of correct modeling

Here, our aim is to assess the magnitude of cost increases resulting from incorrect model assumptions.
The MDP model incorporates economic dependence via the setup cost cs and stochastic dependence
via the association of degradation processes to the turbines’ common environment. Here, we compare
the expected total discounted costs obtained by two distinct models and compare those with the costs
obtained by the model of Section 2. In the first model, the DM simply ignores both types of dependence
and assumes that replacement decisions are made for each turbine independently. In the second model,
the DM includes dependence but assumes the environment can be described by a simple two-state
DTMC, thereby ignoring any intermediate environment states.

Let c∗ be the optimal replacement policy obtained by the MDP model of Section 2, and let ci be
the optimal replacement policy obtained by Model i, for i = 1, 2. Table 2 summarizes how the models
differ with regard to their underlying assumptions.

The full model incorporates both economic and stochastic dependence and all six environment states.
After obtaining the optimal policy for each model using the VI algorithm, we simulated the respective
costs of the modified policies (c1 and c2) on the full model using a large number of sample paths.
Along each sample path, the total discounted cost was computed, and these values were compared. The
simulation run length, which corresponds to the number of decision epochs, is denoted by M (M ∈ N).
Since the expected one-step costs are bounded, and the cost function is discounted, the simulation run
length can be determined a priori to ensure that the total discounted cost is accurate to a fixed constant.
The simulation run length M was chosen such that M ≥ [ln((1 − _)ns/C)/ln(_)] − 1, where C is
any valid upper bound on the expected one-step costs and _ is the discount factor. For all numerical
examples, M was chosen to correspond to ns = 0.01, _ = 0.99, and C = cs + N [cr + cd (L)]. For the
baseline example, M ≥ 1428, so we chose M = 1500.

To compute the average simulated total discounted cost under each policy, we selected the number
of replications (R) to achieve a desired margin of error using the well-known relationship

R =
(
zU/2 f̂/Δ

)2 , (10)

where zU/2 is the critical z-value above which lies area U/2 under the standard normal density function,
f̂ is the estimated standard deviation, and Δ is the desired margin of error. For each of the following
models, we chose a 95% confidence level (U = 0.05, zU/2 = 1.96) and Δ = 1. The simulation models
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were coded in the MATLAB R2022a computing environment and executed on a personal computer
with an 8-core CPU and 8 GB of RAM. We next describe the modified MDP formulations for Models
1 and 2, along with the corresponding numerical results.

Model 1. The first modified model ignores both economic and stochastic dependence; therefore,
the problem can be decomposed into two independent, single-turbine problems. For each decomposed
problem, the setup and replacement costs are assessed every time a replacement is performed. Although
both turbines are assumed to operate in environments governed by the same transition matrix P, their
environments (and degradation processes) evolve independently. Thus, for turbine n ∈ {1, 2}, the state
is (xn, ℓn) ∈ [0, 1] × L, an ∈ {0, 1} is the action, and the immediate cost function is

c(xn, ℓn, an) = an [cs + cr + cd (ℓn)] + (1 − an)cd (ℓn)gn(xn, ℓn).

The Bellman equation for the decomposed MDP model n is

V (xn, ℓn) = min
an∈{0,1}

{
c(xn, ℓn, an) + _

∑
kn∈L

V (x̂n(ℓn, an), kn)pℓnkn

}
, (xn, ℓn) ∈ [0, 1] × L,

where

x̂n(ℓn, an) =
min{1, fn(xn, ℓn, 1)}, if an = 0,

0, if an = 1.

Figure 9 illustrates the behavior of the Model 1 optimal replacement policy (c1) for each environ-
ment state. We observe that the optimal replacement threshold of one turbine does not depend on the
other’s degradation state in the absence of economic and stochastic dependence. Moreover, the opti-
mal replacement thresholds decrease with the environment state. That is, in environments that induce
higher degradation and power production rates, preventive replacements are prescribed at lower levels
of degradation for both turbines.

Next, we seek to assess how the Model 1 optimal policy (c1) performs under the assumptions of the
full model (i.e., when economic and stochastic dependence are present). To this end, we apply policy
c1 to a simulation of the full model and compare its resulting simulated total discounted cost. We first
performed 5,000 replications of the simulation model (each with M = 1, 500 decision epochs) and
obtained a sample standard deviation f̂ ≈ 256. By Equation (10), the number of replications needed
to ensure Δ = 1 is R = 251, 763; hence, we selected R = 252, 000. The policy c1 was applied in the
simulation of the full model, and the simulated total discounted costs for three different initial states
are reported in Table 4. The simulated costs are also compared with those obtained using VI on the full
model, which includes both economic and stochastic dependence.

Model 2. Like the full model, this second modification incorporates both economic and stochastic
dependence (via shared setup costs and a common environment). However, in this case, the DM lacks
sufficient information to assess the number of environment states and the degradation rates associated
with each state. Recall that the full model assumes that the environment can transition among six distinct
states. In Model 2, the DM uses only two states to describe the environment (L = {1, 2}) and estimates
a degradation rate for each state. Table 3 summarizes the downtime cost rates and degradation rates
corresponding to each environment state. Note that the values used for states 1 and 2 in Model 2 corre-
spond to those of the extreme states 1 and 6 from Table 1. For this new two-state model, the DM scales
the original transition probabilities, p11, p16, p61, and p66, to construct the new TPM

P̂ =

[
0.98 0.02
0.10 0.90

]
,
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Figure 9. Baseline example optimal replacement policy for each environment state (cs = 80): (a) envi-
ronment state ℓ = 1, (b) environment state ℓ = 2, (c) environment state ℓ = 3, (d) environment state
ℓ = 4, (e) environment state ℓ = 5, and (f) environment state ℓ = 6.

Table 3. Downtime cost and degradation rates for the environment states of Model 2.
Environment Downtime cost Turbine 1 degradation rates Turbine 2 degradation rates
(ℓ) cd (ℓ) r1 (ℓ) r2 (ℓ)
1 10 0.06 0.08
2 75 0.50 0.56

where, for example, p̂11 was obtained by p̂11 = p11/(p11 + p16) ≈ 0.98. All other components of
this MDP model, including the immediate cost function and the Bellman equation, are identical to the
MDP model defined in Section 2. Figure 10 depicts the optimal replacement policy (c2) obtained by VI
algorithm for each of the two environment states. To compare the costs of this policy to the full model,
it was necessary to create a mapping between each of the six states in the full model to the two states
of the modified environment process. Specifically, the replacement policy for ℓ = 1 (Figure 10(a)) was
used for states 1, 2, and 3 in the full model. The replacement policy for ℓ = 2 (Figure 10(b)) was used
for states 4, 5, and 6 in the full model.

We first performed 5,000 replications of the simulation model (each with M = 1, 500 decision
epochs) and obtained a sample standard deviation f̂ ≈ 251. By Equation (10), the number of repli-
cations needed to ensure Δ = 1 is R = 242, 024; hence, we selected R = 243, 000. As before, we apply
policy c2 to a simulation of the full model and compare its resulting simulated total discounted cost. The
simulated total discounted costs for six different initial states are summarized in Table 4 and compared
with those obtained using VI on the full model.

Table 4 compares the expected total discounted costs of the full model and the simulated total dis-
counted costs of Models 1 and 2 starting from initial states (0, 0, 1), (0, 0, 2), (0, 0, 3), (0, 0, 4), (0, 0, 5),
and (0, 0, 6). This table reveals several interesting results. First, the policies resulting from Model 1, in
which both economic and stochastic dependence are ignored, yield average total discounted costs that
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Figure 10. Model 2 optimal replacement policy for each environment state. (a) Environment state ℓ = 1.
(b) Environment state ℓ = 2.

Table 4. Total discounted costs for six distinct initial states.
Initial state Full model cost Simulated costs Cost increase

(x1, x2, ℓ) c∗ c1 c2 c1 c2

(0, 0, 1) 3,044.20 3,292.75 3,206.01 8.16% 5.32%
(0, 0, 2) 3,064.10 3,315.29 3,227.43 8.20% 5.33%
(0, 0, 3) 3,078.28 3,330.06 3,242.08 8.17% 5.32%
(0, 0, 4) 3,103.09 3,352.33 3,266.26 8.03% 5.25%
(0, 0, 5) 3,127.71 3,375.41 3,290.24 7.91% 5.19%
(0, 0, 6) 3,141.79 3,393.75 3,303.13 8.02% 5.14%

are just over 8% higher than those generated by the full model, indicating the importance of sharing
setup costs and consideration of how the turbines’ degradation processes are related via their shared
environment. Second, we note that the policies resulting from Model 2, which includes both types of
dependence but fails to adequately characterize the environment process, result in cost increases on the
order of 5%. These results provide evidence that accounting for all possible environment scenarios can
be important when assessing the lifetime replacement costs of an offshore wind turbine. Finally, we
observe a general trend that the total costs are increasing in the initial environment state (assuming both
turbines start in an as-good-as-new condition). This observation is in agreement with Proposition 3.5(a).

4.4. Comparisons with heuristic policies

Here, we assess the performance of the optimal replacement policy obtained from our model with three
distinct and common heuristic policies:

• Reactive replacement policy. Using this policy, the DM replaces the component reactively, that is,
immediately following a failure.

• Age-replacement policy. The classical age-replacement policy prescribes replacement either at failure
or at a chosen deterministic age T, whichever occurs first. The replacement age is taken to be the
expected lifetime of the unit, which is typically the manufacturer’s mean time-to-failure.
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Table 5. Total discounted cost comparison: Optimal policy versus three heuristic policies.
Initial state Markov decision process Reactive (% ↑) Age-replacement (% ↑) Fixed interval (% ↑)
(0, 0, 1) 3,044.20 3,562.56 (17.03) 3,476.30 (14.19) 4,297.62 (41.17)
(0, 0, 2) 3,064.10 3,584.19 (16.97) 3,499.76 (14.22) 4,342.98 (41.74)
(0, 0, 3) 3,078.28 3,600.14 (16.95) 3,516.48 (14.24) 4,378.32 (42.23)
(0, 0, 4) 3,103.09 3,627.54 (16.90) 3,545.08 (14.24) 4,439.10 (43.05)
(0, 0, 5) 3,127.71 3,658.22 (16.96) 3,575.66 (14.32) 4,507.26 (44.11)
(0, 0, 6) 3,141.79 3,668.03 (16.75) 3,585.76 (14.13) 4,553.16 (44.92)

• Fixed interval policy. This policy performs a replacement every T units, whether a replacement is
warranted or not. Here, the deterministic inter-replacement time T is taken to be the manufacturer’s
mean time-to-failure.

We compared the total costs generated by the MDP policies with those of the heuristic policies starting
from six distinct initial states (corresponding to the six environment states). The results in Table 5 show
that the total discounted costs obtained by the MDP model are approximately 17% lower than those
obtained using reactive replacement, 14% lower than those obtained using the age-replacement policy,
and over 40% lower than those obtained using a fixed interval policy. These results highlight the value
of using the optimal policy as compared to simple heuristic policies.

5. Conclusions and discussion

Wedevised and analyzed anMDPmodel to optimally prescribe the replacement times of critical compo-
nents in an offshore wind farm. Our model includes both economic and stochastic dependence between
the turbines operating in the farm. Economic dependence is induced by significant setup costs that can be
shared by performing opportunistic replacements; stochastic dependence exists in the turbines’ degra-
dation processes due to their common exposure to a randomly varying environment. The main results
may have significant practical implications for offshore wind farm operators who seek to reduce turbine
downtime and ensure sustained power production capacity. We established the monotonicity of actions
for each turbine in the farm (fixing the degradation of all other turbines). Most interesting is the fact
that the optimal replacement time of one turbine depends not only on its own level of degradation but
also on the degradation levels of the other turbines in the farm. Furthermore, beyond a certain point, the
replacement thresholds are monotone. We showed that it may be more beneficial to delay replacements
and reduce overall costs by performing group replacements when the setup costs can be shared among
multiple turbines. This result is important since the cost of chartering or deploying service operations
vessels and/or JUVs is significant. Numerical examples illustrated the structure of replacement poli-
cies in the case of two turbines and showed that monotone policies emerge beyond certain degradation
thresholds for both turbines. We also demonstrated the value of including dependencies and account-
ing for the influence of the environment. When compared with three different heuristic policies, it was
shown that the optimal policy substantially reduces the total discounted costs.

While the insights gained from theMDPmodel are valuable, it can be further expanded and improved
to incorporate additional contextual information (in the form of constraints) related to the maintenance
of offshore wind farms. Several factors influence the feasibility of performing maintenance operations,
including the wind speed and wave height, availability of specialized resources (vessels and/or heli-
copters), and availability of crews to perform the work. Specifically, safety limits for wind speed and
wave height dictate conditions for which vessels can safely operate in the sea, and when conditions
are unsafe, operations are deemed infeasible. To incorporate this realism into our model, one need
only to append an additional state—an indicator variable that assumes the value 0 or 1—indicating if
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weather conditions are suitable for maintenance operations. When conditions are too harsh, the indica-
tor is assigned a value 0 and maintenance cannot be performed. In this case, the only feasible action is
“do nothing” and wait until the next decision epoch. Another critical factor affecting the feasibility of
maintenance is the availability of specialized resources (e.g., SOVs, CTVs, JUVs, and helicopters) or
work crews. Likewise, these constraints can be included in the MDP model by adding indicator vari-
ables to the state vector, which indicate whether a resource or crew are available at each decision epoch.
However, the inclusion of these additional components in the state vector increases the dimensionality of
the problem to the extent that it may become intractable or the structural results might be lost. Another
complication is that the number of states grows exponentially in the number of turbines in the wind
farm. To deal with these issues, one can consider ADP techniques, along with state–space reduction
strategies, as demonstrated by Abdul-Malak and Kharoufeh [2].

Although the model presented herein focused on the replacement of major components in an offshore
wind turbine, it can be modified to prescribe the timing of other maintenance actions (e.g., minor or
medium repairs) for components that experience more frequent failures than major components such as
generators and gearboxes. The MDP model employs an assumption that replacement takes one period
(up to 1 week) to complete and that all replacements are completed before the next decision epoch.
Because the average time needed to repair or replace a minor component is typically shorter than that
of a major component, the length of time between decision epochs can be chosen to ensure that the
maintenance action is completed within one period. For example, minor repairs or replacements can
usually be completed within 1 day, whereas major replacements may require 2–7 days to complete.
Thus, the time scale of the MDP model can be modified to account for minor repairs or replacements
by setting the period length to 1 day. It is important to note that the per-period costs and the degradation
function must be modified in this case. It is expected that the opportunistic region for minor or medium
repairs will be larger than the opportunistic region for replacing major components.

Finally, in our framework, the DM’s objective is to minimize the expected total discounted costs,
which include the setup and replacement costs, as well as the costs associated with turbine downtime.
However, if the objective is to maximize expected profit over a planning horizon, it is necessary to
modify the MDP model by incorporating pricing and production rate information into the one-step
profit. To this end, let Cn(ℓ) ∈ R+ be the nominal rate of power production for turbine n when the
environment state is ℓ and dm (dm > 0) the price at decision epoch m. It can be assumed that a turbine
produces power at its nominal rate when it is operating. The price can be incorporated by expanding
the state to (x, ℓ, d) and using pricing information, for example, from regional transmission operators
such as PJM (https://www.pjm.com) to estimate the probability that the price transitions from dm to
dm+1 in one period. By including the dynamic and stochastic price, the DMmay consider maximization
of expected profits. During each period, revenue is only accrued for a turbine if it is operational; no
revenue is included during downtime. For instance, at the beginning of a period, if turbine n is failed
(xn = 1) or is scheduled for replacement (an = 1), there is no earned revenue because the turbine is down
for the entire period. However, if turbine n is operational at the start of period m and no replacement
is scheduled, the one-step revenue can be calculated as Cn(ℓ)dm [1 − gn(xn, ℓ)], where gn(xn, ℓ) is the
predicted downtime during that period. Finally, the profit in each period is determined by subtracting the
applicable setup and replacement costs (if there is a need for replacement) from the generated revenues.
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Appendix A.

Proof of Lemma 3.1

Proof. For each t ≥ 0 and (x, ℓ), (x′, ℓ′) ∈ Γ such that (x, ℓ) ≤ (x′, ℓ′), fn(xn, ℓ, t) ≤ fn(x′n, ℓ′, t). Thus,
we have

inf {t ≥ 0 : fn(xn, ℓ, t) ≥ 1} ≥ inf {t ≥ 0 : fn(xn, ℓ′, t) ≥ 1} .

It follows that

1 − inf {t ≥ 0 : fn(xn, ℓ, t) ≥ 1} ≤ 1 − inf
{
t ≥ 0 : fn(x′n, ℓ′, t) ≥ 1

}
,

and subsequently,

max {0, 1 − inf {t ≥ 0 : fn(xn, ℓ, t) ≥ 1}} ≤ max
{
0, 1 − inf

{
t ≥ 0 : fn(x′n, ℓ′, t) ≥ 1

}}
. �
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Proof of Lemma 3.3

Proof. For any given x ≤ x′, ℓ ≤ ℓ′ and n ∈ N , if an = 0, by Lemma 3.1, we have

cd (ℓ)gn(xn, ℓ) ≤ cd (ℓ′)gn(x′n, ℓ′), (A.1)

and if an = 1,

cr + cd (ℓ) ≤ cr + cd (ℓ′), (A.2)

since cd (ℓ) is strictly increasing in ℓ. As Equations (A.1) and (A.2) hold for each n ∈ N , then for any
a ∈ A,

c(x, ℓ, a) = I(a)cs +
∑
n∈N

an [cr + cd (ℓ)] +
∑
n∈N

(1 − an)cd (ℓ)gn(xn, ℓ)

≤ I(a)cs +
∑
n∈N

an [cr + cd (ℓ′)] +
∑
n∈N

(1 − an)cd (ℓ′)gn(x′n, ℓ′) = c(x′, ℓ′, a). (A.2)

Lemma 3.3(a) follows immediately. Now, for a ∈ A and x ∈ X , c(x, ℓ, a) is a linear function of
cd (ℓ) and Xn(xn, ℓ) := cd (ℓ)gn(xn(ℓ), which are discrete concave on L. Thus, Lemma 3.3(b) follows
as well. �

Proof of Proposition 3.5

Proof. For (x, ℓ) ∈ Γ, denote the mth iterate of the VI algorithm by vm (x, ℓ). We prove
Proposition 3.5(a) by induction on m. Take v0(x, ℓ) = 0 for all (x, ℓ) ∈ Γ. Therefore, for any pairs
of (x, ℓ), (x′, ℓ′) ∈ Γ such that (x, ℓ) ≤ (x′, ℓ′), by Lemma 3.3, we have

v1(x, ℓ) = min
a∈A

{c(x, ℓ, a) + 0} ≤ min
a∈A

{c(x′, ℓ′, a) + 0} = v1(x′, ℓ′)

since c(x, ℓ, a) is monotone nondecreasing in (x, ℓ) ∈ Γ for each a ∈ A. For the induction hypothesis,
assume vm (x, ℓ) ≤ vm (x′, ℓ′). From Equation (1), x̂(ℓ, a) ≤ x̂′ (ℓ′, a) for any given (x, ℓ) ≤ (x′, ℓ′) and
a ∈ A. Since P is IFR, by Lemma 4.7 of [54], we have

_
∑
k∈L

vm (x̂(ℓ, a), k)pℓk ≤ _
∑
k∈L

vm (
x̂′ (ℓ′, a), k

)
pℓ′k

for any given (x, ℓ) ≤ (x′, ℓ′) and a ∈ A. By Lemma 3.3, we add c(x, ℓ, a) and c(x′, ℓ′, a) to the
left-hand side and right-hand side of the above inequality, respectively, to obtain

c(x, ℓ, a) + _
∑
k∈L

vm (x̂(ℓ, a), k)pℓk ≤ c(x′, ℓ′, a) + _
∑
k∈E

vm (
x̂′ (ℓ′, a), k

)
pℓ′k .

Minimizing both sides over a ∈ A results in vm+1(x, ℓ) ≤ vm+1(x′, ℓ′). By Theorem 6.3 of [54],
vm (x, ℓ) → V (x, ℓ), as m → ∞, and Proposition 3.5(a) follows. Similarly, we prove Proposition 3.5(b)
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by induction on m. Take v0(x, ℓ) = 0 for all (x, ℓ) ∈ Γ. Therefore, for each (x, ℓ) ∈ Γ, we have

v1(x, ℓ − 1) + v1(x, ℓ + 1) =min
a∈A

{c(x, ℓ − 1, a)} +min
a∈A

{c(x, ℓ + 1, a)}

≤min
a∈A

{c(x, ℓ − 1, a) + c(x, ℓ + 1, a)} (A.3)

≤min
a∈A

{2c(x, ℓ, a)} = 2min
a∈A

{c(x, ℓ, a)} = 2v1(x, ℓ). (A.4)

Inequalities (A.3) and (A.4) hold by Lemma 3.3(b) and the fact that the min operator preserves the
discrete concavity property. For the induction hypothesis, assume vm (x, ℓ) is discrete concave on L for
each x ∈ X . Define Q(x, ℓ, a) as the cost-to-go function in state (x, ℓ) under action a, that is,

Q(x, ℓ, a) := c(x, ℓ, a) + _
∑
k∈L

V (x̂(ℓ, a), k)pℓk . (A.5)

Then, for (x, ℓ) ∈ Γ, let Qm (x, ℓ, a) denote the cost-to-go function with respect to a ∈ A and the mth
iterate of the VI algorithm. That is,

Qm (x, ℓ, a) = c(x, ℓ, a) + _
∑
k∈L

vm (x̂(ℓ, a), k)pℓk .

Since Qm (x, ℓ, a) is the sum of two discrete concave functions, it is discrete concave onL for each x ∈ X
and a ∈ A. Then, for each x ∈ X , we have

vm+1(x, ℓ − 1) + vm+1(x, ℓ − 1) =min
a∈A

{Qm (x, ℓ − 1, a)} +min
a∈A

{Qm (x, ℓ + 1, a)}

≤min
a∈A

{Qm (x, ℓ − 1, a) + Qm (x, ℓ + 1, a)} (A.6)

≤min
a∈A

{2Qm (x, ℓ, a)} = 2min
a∈A

{Qm (x, ℓ, a)} = 2vm+1 (x, ℓ).

Inequality (A.6) holds since the min operator preserves the discrete concavity property. By Theorem 6.3
of [54], vm (x, ℓ) → V (x, ℓ) as m → ∞, and the proof is complete. �

Proof of Proposition 3.6

Proof. For any given (x, ℓ) ∈ Γ, denote the mth iterate of the VI algorithm associated with parameter w
by vm (x, ℓ,w). We prove the proposition by induction on m. Take v0(x, ℓ,w) = 0 for all w and (x, ℓ) ∈ Γ.
For each (x, ℓ) ∈ Γ and any w ≤ w′, we have

v1 (x, ℓ,w) = min
a∈A

{c(x, ℓ, a,w) + 0} ≤ min
a∈A

{c(x, ℓ, a,w′) + 0} = v1(x, ℓ,w′),

since c(x, ℓ, a,w) is in monotone nondecreasing in w for each (x, ℓ) ∈ Γ and a ∈ A. For the induction
hypothesis, assume vm (x, ℓ,w) ≤ vm (x, ℓ,w′). Then, for each (x, ℓ) ∈ Γ and a ∈ A, we have

c(x, ℓ, a,w) + _
∑
k∈L

vm (x̂(ℓ, a), k,w)pℓk ≤ c(x, ℓ, a,w′) + _
∑
k∈L

vm (x̂(ℓ, a), k,w′)pℓk .

Minimizing both sides over a ∈ A results in vm+1(x, ℓ,w) ≤ vm+1(x, ℓ,w′). Finally, by Theorem 6.3 of
[54], vm (x, ℓ,w) → V (x, ℓ,w), as m → ∞, and the proof is complete. �
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Proof of Theorem 3.7

Proof. For a given (x, ℓ) ∈ Γ and a ∈ A, we define the following sets:

I (x, ℓ, a) := {n ∈ N : a∗n (x, ℓ) = 1, an = 1},
J (x, ℓ, a) := {n ∈ N : a∗n (x, ℓ) = 1, an = 0},
G (x, ℓ, a) := {n ∈ N : a∗n (x, ℓ) = 0, an = 1},
H(x, ℓ, a) := {n ∈ N : a∗n (x, ℓ) = 0, an = 0}.

For example, the set I (x, ℓ, a) is the collection of all turbines for which the corresponding action is
replacement in both a∗(x, ℓ) and a. For notational convenience, we simply write I, J , G, and H and
suppress the dependence of these sets on (x, ℓ, a). Note that, by the definitions (6) and (A.5),

Q(x, ℓ, a∗(x, ℓ)) ≤ Q(x, ℓ, a). (A.7)

Next, we show that c(y, ℓ, a) − c(y, ℓ, a∗(x, ℓ)) ≥ c(x, ℓ, a) − c(x, ℓ, a∗(x, ℓ)).

c(y, ℓ, a) − c(y, ℓ, a∗(x, ℓ)) = cs
[
I(a) − I(a∗(x, ℓ))

]
+
∑
n∈G

(
cr + cd (ℓ)

)
−
∑
n∈G

cd (ℓ)gn(yn, ℓ)

−
∑
n∈J

(
cr + cd (ℓ)

)
+
∑
n∈J

cd (ℓ)gn(yn, ℓ)

=cs
[
I(a) − I(a∗(x, ℓ))

]
+
∑
n∈G

cr −
∑
n∈G

cd (ℓ) (gn(yn, ℓ) − 1)

−
∑
n∈J

cr +
∑
n∈J

cd (ℓ) (gn(yn, ℓ) − 1)

=cs
[
I(a) − I(a∗(x, ℓ))

]
+
∑
n∈G

cr −
∑
n∈G

cd (ℓ) (gn(xn, ℓ) − 1) (A.8)

−
∑
n∈J

cr +
∑
n∈J

cd (ℓ) (gn(yn, ℓ) − 1)

≥cs
[
I(a) − I(a∗(x, ℓ))

]
+
∑
n∈G

cr −
∑
n∈G

cd (ℓ) (gn(xn, ℓ) − 1) (A.9)

−
∑
n∈J

cr +
∑
n∈J

cd (ℓ) (gn(xn, ℓ) − 1)

=c(x, ℓ, a) − c(x, ℓ, a∗(x, ℓ)).

Equality (A.8) holds by the definitions of y and G, and inequality (A.9) holds by Lemma 3.1. Moreover,
ŷ(ℓ, a∗(x, ℓ)) = x̂(ℓ, a∗(x, ℓ)) and ŷ(ℓ, a) ≥ x̂(ℓ, a) since for all n ∈ N

ŷn(ℓ, a) =


fn(yn, ℓ), n ∈ J ,

fi (xn, ℓ), n ∈ H,

0, otherwise,

ŷn(ℓ, a∗(x, ℓ)) =
fn(xn, ℓ), n ∈ G ∪H,

0, otherwise,
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x̂n(ℓ, a) =
fn(xn, ℓ), n ∈ J ∪H,

0, otherwise,

and

x̂n(ℓ, a∗(x, ℓ)) =
fn(xn, ℓ), n ∈ G ∪H,

0, otherwise,

where fn(xn, ℓ), n ∈ N is assumed to be monotone increasing in xn. Subsequently, we have

_
∑
k∈L

V (ŷ(ℓ, a∗(x, ℓ)), k)pℓk = _
∑
k∈L

V (x̂(ℓ, a∗(x, ℓ)), k)pℓk , (A.10)

and by Proposition 3.5(a), we have

_
∑
k∈L

V (ŷ(ℓ, a), k)pℓk ≥ _
∑
k∈L

V (x̂(ℓ, a), k)pℓk , (A.11)

since ŷ(ℓ, a) ≥ x̂(ℓ, a). Thus, for any given a, we have

Q(y, ℓ, a) − Q(y, ℓ, a∗(x, ℓ)) =
[
c(y, ℓ, a) + _

∑
k∈L

V (ŷ(ℓ, a), k), k)pℓk

]

−
[
c(y, ℓ, a∗(x, ℓ)) + _

∑
k∈L

V (ŷ(ℓ, a∗(x, ℓ)), k)pℓk

]

≥
[
c(x, ℓ, a) + _

∑
k∈L

V (x̂(ℓ, a), k), k)pℓk

]
(A.12)

−
[
c(x, ℓ, a∗(x, ℓ)) + _

∑
k∈L

V (x̂(ℓ, a∗(x, ℓ)), k)pℓk

]
=Q(x, ℓ, a) − Q(x, ℓ, a∗(x, ℓ)) ≥ 0.

Inequality (A.12) holds by Equations (A.9), (A.10), and (A.11). From the above argument, we conclude

Q(y, ℓ, a) ≥ Q(y, ℓ, a∗(x, ℓ)), (A.13)

which implies

a∗(x, ℓ) ∈ argmina∈A Q(y, ℓ, a). (A.14)

Furthermore, by Definition (6),

a∗(y, ℓ) ∈ argmina∈A Q(y, ℓ, a). (A.15)
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Therefore, by Equations (A.14) and (A.15), we have

Q(y, ℓ, a∗(y, ℓ)) = Q(y, ℓ, a∗(x, ℓ)). (A.16)

Equality (A.16) implies that, if the degradation state is y, taking the optimal action associated with x
leads to the minimum cost. In order to show that a∗(y, ℓ) = a∗(x, ℓ), it is sufficient to prove that there
does not exist any a′ ∈ A such that

a′ < a∗(x, ℓ) and Q(y, ℓ, a′) = Q(y, ℓ, a∗(x, ℓ)). (A.17)

Wewill prove this assertion by contradiction. Suppose there exists an a′ ∈ A satisfying Equation (A.17),
and let us compare Q(x, ℓ, a′) and Q(x, ℓ, a∗(x, ℓ)) under two distinct cases:
Case 1: Suppose Q(x, ℓ, a′) ≤ Q(x, ℓ, a∗(x, ℓ)). In this case, by Definition (6), we conclude a∗(x, ℓ) ≤
a′, which contradicts the inequality in Equation (A.17).
Case 2: Suppose Q(x, ℓ, a′) > Q(x, ℓ, a∗(x, ℓ)). Similar to the arguments above, for the given a′ <

a∗(x, ℓ), by inequality (A.13), we see that

Q(y, ℓ, a′) − Q(y, ℓ, a∗(x, ℓ)) ≥ Q(x, ℓ, a′) − Q(x, ℓ, a∗(x, ℓ)) > 0.

That is, Q(y, ℓ, a′) > Q(y, ℓ, a∗(x, ℓ)), which contradicts the equality in Equation (A.17). As a con-
tradiction occurs in both cases, we conclude that there is no a′ ∈ A satisfying the conditions in
Equation (A.17); therefore, a∗(y, ℓ) = a∗(x, ℓ). �

Proof of Corollary 3.8

Proof. For a given n′ ∈ N , if a∗n′ (x, ℓ) = 1, by Theorem 3.7, a∗(y, ℓ) = a∗(x, ℓ) for a y such that
yn′ ≥ xn′ and yn = xn for n ∈ N \ {n′}, that is, a∗n′ (y, ℓ) = 1. If a∗n′ (x, ℓ) = 0, then a∗n′ (y, ℓ) ∈ {0, 1} for
any y ≥ x. Therefore, a∗n′ (x, ℓ) is monotone nondecreasing in xn′ for each xn, n ∈ N \ {n′} and ℓ. �

Proof of Proposition 3.9

Proof. For a given ℓ ∈ L, a∗(1, 1, ℓ) = (1, 1), thus b1(1, ℓ) exists, and we have

a∗(x1, 1, ℓ) = (1, 1), x1 ≥ b1(1, ℓ), (A.18)

and by Definition (8)

a∗(x1, 1, ℓ) ≠ (1, 1), x1 < b1(1, ℓ). (A.19)

By Corollary 3.8 and Equation (A.18), the replacement threshold x∗2 (x1, ℓ) exists on the degrada-
tion space [b1(1, ℓ), 1] × [0, 1]. For a given (x1, x2) in the degradation space [0, b1(1, ℓ)) × [0, 1),
if a∗(x1, x2, ℓ) = (1, 1), then by Theorem 3.7, a∗(x1, 1, ℓ) = (1, 1), which contradicts Equation (A.19).
Hence, there is no point in space [0, b1(1, ℓ)) × [0, 1), for which the optimal action is to replace both
turbines, that is,

a∗(x1, x2, ℓ) ≠ (1, 1), (x1, x2) ∈ [0, b1(1, ℓ)) × [0, 1).

By Theorem 3.7 and Equation (A.18), we have

a∗(x1, x2, ℓ) ≠ (0, 1), (x1, x2) ∈ [b1 (1, ℓ), 1] × [0, 1).
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That is,

a∗(x1, x2, ℓ) ∈ {(0, 0), (1, 0), (1, 1)}, (x1, x2) ∈ [b1(1, ℓ), 1] × [0, 1). (A.20)

By contradiction, assume that x∗2 (x1, ℓ) is strictly increasing in x1. Then, there must exist a point
(x1, x2) ∈ [b1(1, ℓ), 1) × [0, 1] for which a∗2 (x1, x2) = 1, and

a∗2(x1 + n , x2) = 0 (A.21)

for any n > 0. If a∗2(x1, x2) = 1, then by Equation (A.20), a∗(x1, x2) = (1, 1), and by Theorem 3.7,
a∗(x1 + n , x2) = (1, 1), which contradicts Equation (A.21). �

Value iteration algorithm

Algorithm 1 Value Iteration
initialize εv ← 0.01, δ ← 1, k ← 0 and vk(x, �) ← 0 for each (x, �) ∈ X ′ × L
while δ > εv do

k ← k + 1

vk(x, �) ← mina∈A
{
c(x, �,a) + λ

∑
�′∈L vk−1(x̂(x, �,a), �′)p��′

}
for each (x, �) ∈ X ′ × L

δ ← max(x,�)
{∣
∣vk(x, �) − vk−1(x, �)

∣
∣}

end while

return V (x, �) ← vk(x, �) for each (x, �) ∈ X ′ × L
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