
Appendix A

Long-wavelength reduction

This appendix is concerned with the long-wavelength reduction of the
electromagnetic multipole operators. The analysis follows closely the ar-
guments developed in [Bl52] (see also [de66]). Consider first the transverse
electric and magnetic multipoles, which govern real photon transitions.1

The use of the relations 1/h̄c = 5.07 × 1010 cm−1 MeV−1 and R ≈
1.2A1/3 × 10−13 cm allows one to write for real photons

kR ≈ 6.1 × 10−3[Eγ(MeV)A1/3] (A.1)

Evidently kR � 1 for photons of a few MeV. In this case, the spherical
Bessel functions can be expanded as2

jJ(kx) → (kx)J

(2J + 1)!!
; kx → 0 (A.2)

One also needs from [Ed74]

LYlm =
1

i
(r × ∇)Ylm =

√
l(l + 1)Ym

ll1 (A.3)

With this relation, the multipole operators in Eqs. (9.16) take the form

T̂ el
JM =

1

k
√
J(J + 1)

∫
d3x

{
[∇ × LjJ(kx)YJM]·Ĵc(x)

+k2[LjJ(kx)YJM] · μ̂(x)
}

T̂
mag
JM =

1√
J(J + 1)

∫
d3x

{
[∇ × LjJ(kx)YJM] · μ̂(x)

+[LjJ(kx)YJM]·Ĵc(x)
}

(A.4)

1 Recall x ≡ r and x ≡ |x| ≡ r in all these discussions.
2 One has to get all the derivatives off the Bessel functions before they can be expanded

— that is the point of the following exercise.
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These expressions can now be manipulated in the following manner:
1. The differential orbital angular momentum operator L in Eq. (A.3)

commutes with any function of the radial coordinate [L, f(r)] = 0, and it
is hermitian; thus it can be partially integrated in the last two terms on
the r.h.s. in the above to get it over to the right [with a sign (−1)].

2. The divergence theorem in Eqs. (9.13) and (9.14) can be used on the
first two terms on the r.h.s. of the above to get the curl to the right.

3. One can then get L to the right in these terms using the first argument
[again with a (−1)]. This leads to two types of terms: first

L · v =
1

i
(r × ∇)·v =

1

i
(∇ × v)·r = −1

i
∇·(r × v) (A.5)

and second

L·(∇ × v) =
1

i
(r × ∇)·(∇ × v) =

1

i
[∇ × (∇ × v)]·r

= −1

i
∇·[r × (∇ × v)] (A.6)

Here the relation ∇ × r = 0 has been used in obtaining these equations.
4. Since all derivatives are now off the spherical Bessel functions and

on the source terms, the Bessel functions may be expanded in the long-
wavelength limit according to Eq. (A.2).

5. One next invokes the general vector identity∫
xJYJM∇·[r × (∇ × v)] d3x = (J + 1)

∫
xJYJM∇ · v d3x (A.7)

This identity holds as long as the source terms v(x) vanish outside the
nucleus.

With these steps the magnetic multipoles take the form

T̂
mag
JM ≈ 1

i

kJ

(2J + 1)!!

√
J + 1

J

∫
d3x xJYJM

{
∇·μ̂(x) +

1

J + 1
∇·[r × Ĵc(x)]

}
(A.8)

Partial integration of this result then gives for the long-wavelength limit
of the transverse magnetic multipoles

T̂
mag
JM ≈ −1

i

kJ

(2J + 1)!!

√
J + 1

J

∫
d3x [μ̂(x) +

1

J + 1
r × Ĵc(x)]·∇xJYJM

(A.9)
Similarly, the electric multipole operators take the form

T̂ el
JM ≈ 1

i

kJ−1

(2J + 1)!!

√
J + 1

J

∫
d3x

{
∇ · Ĵc(x) +

k2

J + 1
∇·[r × μ̂(x)]

}
xJYJM

(A.10)

https://doi.org/10.1017/9781009290616.038 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290616.038


290 Appendixes

Now use the continuity equation on the first term

∇ · Ĵc(x) = ∇ · Ĵ(x) = −1

c

∂ρ̂

∂t
= − i

h̄c
[Ĥ, ρ̂] (A.11)

The matrix element of this relation yields

〈f|[Ĥ, ρ̂]|i〉 = (Ef − Ei)〈f|ρ̂|i〉 = −h̄kc 〈f|ρ̂|i〉 (A.12)

Thus, in the matrix element, one can replace3 ∇ · Ĵc(x) → ikρ̂(x). Thus,
for photon emission the long-wavelength limit of the transverse electric
multipoles takes the form

T̂ el
JM ≈ kJ

(2J + 1)!!

√
J + 1

J

∫
d3x

{
xJYJMρ̂(x) − ik

J + 1
μ̂(x)·[r × ∇xJYJM]

}
(A.13)

The first term in Eq. (A.13) is just the JMth multipole of the charge
density. The second term goes as h̄kc/mc2 � 1 and hence the contribution
of this term is very small compared to that of the first term for real
photons.4

Make a model where the nucleus is composed of individual nucleons,
and where only the leading terms to order 1/m are retained in the current,
that is, the terms in p(i) and σ(i) [see Eqs. (9.17) and (9.20)]. The J = 1
transverse magnetic dipole operator for k → 0 then takes the form

T̂
mag
1M ≈ i

√
2

3

h̄k

2mc

√
3

4π

{
Z∑
i=1

l(i) +
A∑
i=1

λiσ(i)

}
1M

(A.14)

This is the familiar magnetic dipole operator to within a numerical factor
and power of k. Here the nucleon magnetic moments in nuclear magnetons
are given by λp = 2.793 for the proton and λn = −1.913 for the neutron.

Static Moments. It is useful to make the connection between these
general results for the electromagnetic nuclear moments and the static
nuclear moments measured in time-independent electric and magnetic
fields.

Consider first the static electric moments of the nucleus. Suppose one
places a static charge distribution ρ(r) in an external electrostatic potential
Φel(r) where the external electric field is given by E = −∇Φel(r) (see Fig.
A.1). A relevant example is a nucleus in the field of the atomic electrons.
The interaction energy is given by

U = ep

∫
ρ(r)Φel(r) d

3r (A.15)

3 Note this is for photon emission; for photon absorption one has the opposite sign for

this term.
4 This term can become large in electron scattering where, as we shall see, the appropriate

ratio is h̄qc/mc2 with q the momentum transfer.
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Fig. A.1. Static electric nuclear moments.

The external field satisfies Laplace’s equation since it is source-free over
the nucleus

∇2Φel(r) = 0 (A.16)

It is also finite there. Thus the external field in the region of the nucleus
can be expanded in terms of the acceptable solutions to Laplace’s equation

Φel(r) =
∑
lm

almr
lYlm(Ωr) (A.17)

The numerical coefficients alm can be related to various derivatives of the
field at the origin. Substitution of Eq. (A.17) into Eq. (A.15) yields

U = ep

∑
almMel

lm (A.18)

Here the multipole moments of the charge density are defined by

Mel
lm =

∫
xlYlm(Ωx)ρ(x) d3x (A.19)

These are exactly the same expressions, to within a numerical factor and
powers of k, as the first term in the transverse electric multipole operators
in Eq. (A.13).5 Note that the nuclear quadrupole moment is conventionally
defined by

Q =

∫
(3z2 − r2)ρ(x) d3x (A.20)

which differs by a numerical constant from Mel
20.

Consider next the nuclear magnetic moments. Take the ground-state
expectation value that gives 〈∂ρ̂(x)/∂t〉 = (i/h̄) 〈[Ĥ, ρ̂]〉 = 0. This implies

∇·〈Ĵ(x)〉 = ∇·〈Ĵc(x)〉 = 0 (A.21)

Here the general decomposition of current has been invoked

Ĵ = Ĵc + ∇ × μ̂ (A.22)

5 The charge multipole operators are defined in terms of the charge density operator.
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Since the divergence of the last quantity in Eq. (A.21) vanishes everywhere,
it can be expressed as the curl of another vector M(x)

〈Ĵc(x)〉 = ∇ × M(x) (A.23)

One can assume that the additional magnetization M(x) vanishes outside
the nucleus, for suppose it does not. Then since its curl vanishes outside
the nucleus by Eq. (A.23), it can be written as M(x) = ∇χ(x) in this
region. Now choose a new magnetization M′(x) = M(x)− ∇χ(x). This new
magnetization has the same curl everywhere, and now, indeed, vanishes
outside the nucleus.

The expectation value of the interaction hamiltonian for the nucleus in
an external magnetic field now takes the form

〈Ĥint〉 = −ep

∫
[∇ × M(x)]·Aext(x) d3x − ep

∫
μ(x)·Bext(x) d3x (A.24)

Here μ ≡ 〈μ̂〉. The use of Eqs. (9.13) and (9.14) permits this expression to
be rewritten as

〈Ĥint〉 = −ep

∫
[M(x) + μ(x)]·Bext(x) d3x (A.25)

Since Bext(x) is an external magnetic field with no sources over the nucleus,
it satisfies Maxwell’s equations there

∇ · Bext = ∇ × Bext = 0 (A.26)

Thus one can write in the region of interest

Bext = −∇Φmag

∇2Φmag = 0 (A.27)

One can now proceed with exactly the same arguments used on the electric
moments. The energy of interaction is given by

〈Ĥint〉 = ep

∫
[M(x) + μ(x)]·∇Φmag(x) d3x

= −ep

∫
Φmag∇·(M + μ) d3x (A.28)

The divergence in the last equation evidently plays the role of the “mag-
netic charge.” Thus, just as before, when the general solution to Laplace’s
equation is substituted for the magnetic potential Φmag, all one needs are
the magnetic charge multipoles given by

Mmag
lm = −

∫
xlYlm(Ωx)∇·(M + μ) d3x (A.29)

= −
∫

xlYlm(Ωx)∇·[ 1

l + 1
r × (∇ × M) + μ] d3x
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The second equality follows with the aid of the identity in Eq. (A.7). A
partial integration, and the restoration to operator form yields the final
result for the relevant static magnetic multipole operators

M̂mag
lm =

∫
d3x

[
μ̂(x) +

1

l + 1
r × Ĵc(x)

]
·∇xlYlm (A.30)

This is recognized to be, within a numerical factor and powers of k, the
long-wavelength limit of the transverse magnetic multipole operator in
Eq. (A.9).
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