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Abstract. The main purpose of this paper is to give a topological and symplectic classification
of completely integrable Hamiltonian systems in terms of characteristic classes and other local

and global invariants.
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1. Introduction

In this paper we are concerned with topological aspects of completely integrable

Hamiltonian systems, or integrable systems in short. The problem of studying local

and global topological properties of integrable systems is a very natural problem,

with many possible applications, and it has attracted many mathematicians over

the past decades. There are even a few recent books on the subject (see, e.g., [2, 5,

8, 17, 23]).

The purpose of this paper is to give a topological and symplectic classification of

integrable systems in terms of characteristic classes and other local and global invari-

ants. Before trying to formulate our theorems, let us recall some of the main results

that have been obtained to date in this direction.

One of the most remarkable results is due to Duistermaat [14], who defined the

monodromy and the Chern class of the regular part of an integrable system. The

monodromy phenomenon has since then been studied by many authors, for both

classical and quantum integrable systems (see, e.g., [8, 9, 22, 35, 36]). It is observed

in [40] that the so-called focus-focus singularities are the main (if not the only prac-

tical) source of nontrivial monodromy for ‘real-world’ integrable systems. The work

of Duistermaat was developed further and extended to the case of complete isotropic

fibrations by Dazord and Delzant [10], and extended by Boucetta and Molino [6] to

include nondegenerate elliptic singularities of integrable systems.

On the other hand, Fomenko and his collaborators (see, e.g., [5, 17]) developed a

Morse theory for integrable systems, which takes into account corank-1 singularities.
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Fomenko and his school studied mainly systems with two degrees of freedom,

though some results are also valid for higher-dimensional systems. In particular, they

obtained a complete topological classification of nondegenerate integrable systems

on isoenergy 3-manifolds.

The main drawback of both Duistermaat’s and Fomenko’s theories is the absence

of higher-corank nonelliptic singularities in their picture. It is not surprising, since

the topological structure of higher-corank nonelliptic singularities was almost com-

pletely unknown until more recently. This drawback is quite significant, because

interesting things often happen at singularities, and a lot of global information is

contained there.

Lerman and Umanskii [23] were among the first people who attacked the problem

of describing the topology of corank-2 nondegenerate singularities of integrable

systems. However, their description is a little bit too complicated in our view, and

they restricted their attention to the case with only one fixed point in a system with

two degrees of freedom.

In a series of papers [39–42], we studied local and semi-local aspects of singulari-

ties integrable systems. Our main results include: the existence of a local converging

Birkhoff normal form for any analytic integrable system, the existence of local torus

actions and partial action-angle coordinates, and the topological decomposition of

nondegenerate singularities of higher corank into almost direct products of simplest

singularities (elliptic and hyperbolic corank-1 and focus-focus corank-2). In

particular, we gave a much simpler description of singularities studied by Lerman

and Umanskii.

What we do in this paper is to combine our knowledge of singularities with the

ideas of Duistermaat, Fomenko and others in order to study global aspects of ‘gen-

eric’ integrable systems with singularities. In particular, we will develop the notions

of monodromy and Chern class to take singularities into account. It was a non-tri

vial task, because we don’t know of a general recipe to define characteristic classes

for singular fibrations: In our case in general there are no ‘local sections’ or ‘trivial

systems’ to speak of, so the obstruction theory does not work directly. One may

try to define some kind of classifying space and universal system, but we have

no idea what they might look like at the moment. And one may try to use the

sheaf of local automorphisms, but this is a very big non-Abelian sheaf, not easy

to deal with. So our first attempts at defining characteristic classes [38] were not

very successful. We then realized that a more detailed study of the sheaf of local

automorphisms of an integrable system allows us to reduce this non-Abelian struc-

tural sheaf to a very nice finite-dimensional Abelian subsheaf, which we will call

the affine monodromy sheaf. Our main characteristic class, which will be called

the Chern class and which classifies ‘generic’ integrable systems topologically, is

an element of the second cohomology group of this affine monodromy sheaf. In

the regular part of the system, the affine monodromy sheaf is essentially the same

as the monodromy defined by Duistermaat, and our Chern class is also essentially

the same as the one defined by Duistermaat. In the case of 2-degree-of-freedom
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systems on isoenergy 3-manifolds studied by Fomenko et al., our affine mono-

dromy contains information about the ‘marks’ in the so-called ‘marked molecules’

in Fomenko’s classification.

Let us now formulate the main results of this paper.

Let F ¼ ðF1; . . . ;FnÞ : ðM
2n;oÞ ! Rz n be a smooth moment map of a completely

integrable Hamiltonian system with n degrees of freedom. We will always assume F

to be a proper map. In particular, regular connected components of the level sets of F

are Lagrangian tori, according to a classical theorem of Liouville. Denote by O the

space of connected components of the level sets of F. We will call O the base space, or

also the orbit space, of the system. We have a projection p from ðM 2n;oÞ to O and a
map ~F : O! Rn, such that F ¼ ~F � p. The topology of O is induced fromM 2n. For

‘generic’ integrable systems, O is a stratified n-dimensional manifold. We may view

p : ðM 2n;oÞ ! O as the projection map of a singular Lagrangian torus fibration. We

will call it the associated singular Lagrangian fibration of the system, and denote it by

L: fibers of L are connected components of preimages of F. If the original Hamilto-
nian system is nonresonant, then L is essentially unique, i.e. it does not depend on
the choice of the moment map F.

Since we are dealing with topological aspects of integrable systems, we will be

more interested in the singular fibration L than in the moment map F. In particular,

throughout this paper, we will adopt the following definition of integrable systems:

DEFINITION 1.1. A singular Lagrangian torus fibration p : ðM 2n;o;LÞ ! O is

called an integrable system (from the geometric point of view) if near each fiber of L
(i.e. preimage of p) it is defined by a set of n commuting (with respect to the Poisson
bracket) functionally independent functions on M 2n. Two integrable systems are

called topologically equivalent if there is a fibration-preserving homeomorphism

between them, and they are called symplectically equivalent if there is a smooth

fibration-preserving symplectomorphism between them.

Notice that, in the above definition, we don’t require the global existence of a

moment map. We just require it to exist in a neighborhood of every singular fiber.

The affine monodromy sheaf is a sheaf over the base space O and is defined as

follows (see Subsection 3.3):

DEFINITION 1.2. The sheaf R over the base space O, which associates to each

open subset U � O the free Abelian group RðU Þ of symplectic system-preserving

S
1-actions in ðp�1ðU Þ;o;LÞ is called the affine monodromy sheaf of the system.

Besides affine monodromy, we will need another notion of monodromy which we

call homological monodromy, which involves first homology groups of the strata of

the fibers of the system and of the fibers themselves, and which will be explained

in Subsection 4.1. In Subsection 4.1 we introduce the notion of rough equivalence

of integrable systems, which may be reformulated as follows:
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DEFINITION 1.3. Two integrable systems over the same base spaces are called

roughly topologically equivalent if they have the same singularities topologically, and

the same homological monodromy.

It is evident that if two systems are topologically equivalent, then they are also

roughly topologically equivalent, after an appropriate identification of their base

spaces. And under some hypotheses made in Section 3 about ‘genericity’ of systems

under consideration, if two systems are roughly topologically equivalent then they

will have the same affine monodromy.

In order to define the Chern class of an integrable system, we will have to compare

it to a reference system which is roughly topologically equivalent to it. (For regular

fibrations, there is a natural choice of the reference system, which is the one with a

global section, so one does not have to mention it. But in our general case there is no

such a-priori choice). The definition of the Chern class involves some cohomological

exact sequence and is explained in Subsection 4.2. The Chern class is an element of

H 2ðO;RÞ, where O is the base space andR is the affine monodromy sheaf. Our main
result is the following (see Subsection 4.5)

THEOREM 1.4. Two roughly topologically equivalent integrable Hamiltonian

systems are topologically equivalent if and only if they have the same Chern class

with respect to a common reference system.

What makes the above theorem effective is that in many cases it is relatively easy

to compute the cohomology group H 2ðO;RÞ. Though R is not a locally constant

sheaf in general, it is locally constant on the strata of O, and is a ‘constructible’ free

Abelian sheaf nevertheless.

Similarly, we have the following symplectic classification of integrable systems: in

Subsection 4.1 we introduce the notion of rough symplectic equivalence, which is

rough topological equivalence plus a condition of the symplectic nature of the

involved local automorphisms. In particular, if two systems are roughly symplec-

tically equivalent then their singularities are symplectically equivalent (see, e.g.,

[5, 13, 36] for some results on symplectic invariants of singularities of integrable sys-

tems). Then we introduce in Subsection 4.2 the Lagrangian class, which is a charac-

teristic class which lies in H1ðO;Z1=RÞ. Here Z1 is the sheaf of local closed
differential 1-forms on O (see Subsection 3.6), and there is a natural injection from

R to Z1. We have (see Subsection 4.5):

THEOREM 1.5. Two roughly symplectically equivalent integrable Hamiltonian sys-

tems are symplectically equivalent if and only if they have the same Lagrangian class

with respect to a common reference system.

Theorem 1.5 is in fact much easier to prove than Theorem 1.4, because the sheaf of

local system-preserving symplectomorphisms is much smaller than the sheaf of local
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system-preserving homeomorphisms. On the other hand, it is a highly non-trivial

problem to classify higher corank singularities of integrable systems symplecti-

cally. For systems without singularities or with only elliptic singularities, Theorem

1.5 coincides with some results obtained earlier by Dazord and Delzant [10] and

Boucetta and Molino [6].

A bonus of our classification results is the possibility to construct new integrable

systems and underlying symplectic structures from the old ones by means of

surgery. We call it integrable surgery, and give a few examples of this method

(exotic symplectic spaces, toric manifolds, K3, etc.) in Subsection 4.8.

In this introduction, we often use the word ‘generic’ without explaining what it is.

The problem is, though we know intuitively what does a ‘generic’ integrable system

mean, we don’t have a clear-cut definition, and we know very little about degenerate

higher corank singularities. So in Section 3, we will give a series of 7 ‘very reasonable’

hypotheses, (H1)–(H7), about singularities of integrable systems, and conjecture that

all singularities of a ‘generic’ integrable system, whatever it means, must satisfy

these hypotheses. These hypotheses have been verified for nondegenerate singu-

larities. Theorem 1.4 is proved under the assumption that hypotheses (H1)–(H5)

are satisfied, and Theorem 1.5 is proved under all 7 hypotheses.

The rest of this paper is organized as follows: In Section 2 we give an exposition of

the theory of regular Lagrangian torus fibrations developed by Duistermaat, Dazord

and Delzant [10, 14] (see also [6, 25]). Though most of the material of this section is

not new, we include it here for the convenience of readers, and to make it easier to

see the similarities between the regular case and the case with singularities. Section 3

contains the main preparation work of this paper, where we will study the structure

of the base space, local automorphisms of singularities, and write down a series of

hypotheses about singularities. In particular, we will define and study the necessary

sheaves for our characteristic classes there. Section 4 contains the definition of char-

acteristic classes, the classification theorems, and a discussion of the realization

problem and integrable surgery.

Remark. In some of our previous papers, we used the words ‘associated singular

Lagrangian foliation’ to call the associated fibration L of an integrable system, but
now we feel that the word fibration is a more correct one. Likewise, we will use the

word fiber instead of leaf when we talk about a connected component of a level set of

the moment map. This new convention will save us from confusions when dealing

with hyperbolic-type singular fibers, i.e. fibers that contain more than one orbit of

the Poisson action of the moment map, because each (singular) orbit of the

Poisson action is a (singular) leaf of the associated singular foliation in the sense of

Stefan-Sussmann.

2. Regular Lagrangian Torus Fibrations

If we throw out all singular fibers from an integrable system, then what remains is

a regular Lagrangian torus fibration.
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2.1. ACTION-ANGLE COORDINATES

Let p : ðM 2n;o;LÞ ! O be a regular Lagrangian fibration with compact fibers. Then

according to Arnold–Liouville theorem, each fiber of this fibration is a Lagrangian

torus of the symplectic manifold ðM 2n;oÞ, called a Liouville torus. Moreover, for
each point x 2 O there is a neighborhood Dn ¼ DðxÞ of x in O such that

ðp�1ðDnÞ;oÞ ! Dn can be written as ðDn 	Tn;
Pn
1 dpi ^ dqiÞ ! Dn via a fibration-

preserving symplectomorphism, where ð piÞ is a system of coordinates on Dn and

(qi mod 1) is a system of periodic coordinates on Tn. The functions pi and qi are

called action and angle coordinates, respectively.

If ðui; viÞ is another system of action-angle coordinates in ðp�1ðDnÞ;o;LÞ, then we
have

u1
g
un

0
@

1
A ¼ A p1

g
pn

0
@

1
Aþ c1

g
cn

0
@

1
A ;

v1
g
vn

0
@

1
A ¼ ðA�1ÞT q1

g
qn

0
@

1
Aþ g1ð piÞ

g
gnð piÞ

0
@

1
A;

where A is an element of GLðn;ZÞ, ci are constants, and
Pn
1 gi dpi is a closed differ-

ential 1-form on Dn.

In particular, the two local systems of action coordinates ð piÞ and ðuiÞ on O are

related by an integral affine transformation. Thus the base space O admits a unique

natural integral affine structure. This integral affine structure provides O with a

volume element, which is equal to dp1; . . . ; dpn in any local system of action coordi-

nates, and the volume of O is equal to the volume of ðM 2n;oÞ (for the standard
volume form on=n!). Each Liouville torus also admits a unique natural affine struc-
ture of a flat torus T

n
¼ R

n=Z
n, given by a system of angle coordinates.

Given a regular Lagrangian torus fibration p : ðM 2n;o;LÞ ! O, we can ask if

there are global action-angle coordinates. That is, can ðM 2n;oÞ ! O be written in

the form

O	T
n;
Xn
1

dpi ^ dqi

 !
! O

where ð piÞ : O! Rn is an immersion and (qi mod 1) is a system of periodic co-

ordinates on Tn.

A natural way to solve the above problem is via obstruction theory. If

p : ðM 2n;oÞ ! O admits a global system of action-angle coordinates, then it has

the following properties:

(a) p :M 2n! O is a principal Tn-bundle.

(b) p :M 2n! O has a global section.

(c) Moreover, it has a global Lagrangian section.

Conversely, if the above conditions are satisfied then one can show easily that

p : ðM 2n;oÞ ! O admits global action-angle coordinates.

130 NGUYEN TIEN ZUNG

https://doi.org/10.1023/A:1026133814607 Published online by Cambridge University Press

https://doi.org/10.1023/A:1026133814607


The obstruction for the condition (a) to be fulfilled will be called the monodromy,

or also the affine monodromy, because it can be determined completely by the affine

structure of the base space O. Obstructions to (b) and (c) will be characterized by the

so-called Chern class and Lagrangian class, respectively.

2.2. MONODROMY

Given a Lagrangian torus fibration p : ðM 2n;oÞ ! O, we will associate to it the

Zn-bundle of first homology groups of the fibers of L, denoted by EZ �����!
H1ðT

n;ZÞ
O:

The holonomy of this bundle and is an element of homðp1ðOÞ;GLðn;ZÞÞ, defined

up to conjugacy, and is called the monodromy of the torus fibration.

The symplectic form o gives rise to a natural isomorphism from the vector bundle

ER �����!
H1ðT

n;RÞ
O (of first homology groups over R of the fibers of L) to the cotangent

bundle T �O, defined as follows: Let Tx ¼ p�1ðxÞ be a fiber of L. Then Tx has a
unique canonical flat structure, and constant vector fields on Tx can be identified

with H1ðTx;RÞ via ‘rotation numbers’. On the other hand, if X is a constant vector

field on Tx, then the covector field aðXÞ ¼ �iXo is the pull-back of a covector a on O
at x, i.e. an element of T �O.

Notice that EZ �����!
H1ðT

n;ZÞ
O is a discrete subbundle of ER �����!

H1ðT
n;RÞ

O: Under the

aforementioned identification of ER with T �O, EZ maps to a discrete subbundle

of T �O, consisting of ‘integral’ covectors. We will denoted this subbundle, or the dis-

crete sheaf associated to it, by R. It follows from Arnold–Liouville theorem that

local sections of R are local differential 1-forms on O which can be written asP
mi dpi in some local system of action coordinates ð piÞ, with mi 2 Z. Thus R can

be completely determined by the integral affine structure of O. We will call R the

affine monodromy sheaf. Since EZ is isomorphic to R, the monodromy of the system
is completely determined by the integral affine structure of O, and will also be called

the affine monodromy.

There is another characterization of R as follows: Arnold–Liouville theorem

implies that each local differential 1-form on O of the type
P
mi dpi with mi 2 Z

in a local system of action coordinates ð piÞ gives rise to a symplectic vector fieldP
miXpi which generates a symplectic S

1-action which preserves the system, and vice

versa. Thus R is isomorphic to the sheaf of local system-preserving symplectic S
1-

actions.

First examples of integrable systems with nontrivial monodromy, namely the

spherical pendulum and the Lagrange top, were observed by Cushman and others

(e.g., [9, 14]). In these examples and all other known examples arising from classical

mechanics and physics, the nontriviality of the monodromy is due to the presence of

the so-called focus-focus singularities (see, e.g., [40]).

2.3. CHERN AND LAGRANGIAN CLASSES

The Chern class can be defined as the obstruction for the torus fibration M! O to

admit a global section. Let ðUiÞ be a trivializing open covering of O. Over each Ui
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there is a smooth section, denoted by si. The difference between two local sections si
and sj, over Ui \Uj, can be written as

mij ¼ sj � si 2 C
1ðER=EZÞðUi \UjÞ ffi C

1ðT �O=RÞðUi \UjÞ:

Here C1ð�Þ denotes the sheaf of smooth sections, and ER and EZ are the first

cohomology bundles defined in the previous subsection. It is immediate that ðmijÞ
is a 1-cocycle, and it defines a �Cech first cohomology class, not depending on the

choice of sections:

m̂ 2 H1ðO;C1ðT �O=RÞÞ:

Since C1ðT �OÞ is a fine sheaf, from the short exact sequence

0! R! C1ðT �OÞ ! C1ðT �O=RÞÞ ! 0

we obtain that the coboundary map d : H1ðO;C1ðT �O=RÞÞ ! H 2ðO;RÞ in the
associated long exact sequence is an isomorphism.

The image mC of m̂ in H
2ðO;RÞ under the isomorphism d is called the Chern class

[14]. In the case of trivial monodromy, mC coincides with the usual Chern class of
principal Tn bundles (cf. [10]).

If one requires local sections si to be Lagrangian, then one has that

mij 2 ZðT �O=RÞðUi \UjÞ

where Z means closed 1-forms, and it will define another cohomology class which we
will call the Lagrangian class:

mL 2 H
1ðO;ZðT �O=RÞÞ

There is another short exact sequence

0! R! ZðT �OÞ ! ZðT �O=RÞ ! 0;

which leads to the following long exact sequence

� � � ! H1ðO;RÞ !d̂ H1ðO;ZðT �OÞÞ � H 2ðO;RÞ ! H1ðO;ZðT �O=RÞÞ

!
D
H 2ðO;RÞ!d̂ H 2ðO;ZðT �O0ÞÞ � H 3ðO;RÞ ! H 2ðO;ZðT �O=RÞÞ ! � � �

Under the maps D and d̂ we have mL 7!
D
mC 7!

d̂
0:

Thus, if the integral affine manifold O is given, then any element of the first co-

homology group H1ðO;ZðT �O=RÞÞ will be the Lagrangian class of some Lagrangian
torus fibration over O, and the necessary and sufficient condition for an element m in
H 2ðO;RÞ to be the Chern class of some Lagrangian torus fibration is that d̂ðmÞ ¼ 0.
To each element mC 2 H

2ðO;RÞ such that d̂ðmCÞ ¼ 0, there are H 2ðO;RÞ=d̂H1ðO;RÞ
choices of the element mL such that DðmLÞ ¼ mC, and each choice corresponds to a
symplectically different Lagrangian torus fibration with the same Chern class mC.
If mL ¼ 0 then the corresponding fibration is symplectically equivalent to

T �O=R�!O (cf. [10]).
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In particular, if the base space O is 2-connected: p1ðOÞ ¼ p2ðOÞ ¼ 0, then there is
no room for the monodromy and the Lagrangian class, so there always exists a

global system of action-angle coordinates, as first observed by Nekhoroshev [32].

It is clear from the definition of the Chern class that if two regular Lagrangian

torus fibrations ðM1;o1;L1Þ ! O and ðM2;o2;L2Þ ! O over the same base space

O admit a diffeomorphism f :M1!M2 which projects to the identity map on O

and preserves the flat structure of each torus, then they have the same Chern class.

In fact, the Chern class is a topological invariant, in the sense that if f :M1!M2 is

a homeomorphism which projects to the identity map on O, but which need not be a

diffeomorphism and need not preserve the flat structure of the fibers, then the two

fibrations still have the same Chern class. In the following sections we will show this

fact for the more general case of systems with singularities.

EXAMPLE 2.1. Systems over flat tori and Kodaira–Thurston example. Assume

that O ¼ T2
¼ R2=Z2, the standard flat torus with the integral affine structure

induced from R2. Then H 3ðO;RÞ ¼ 0, and every element mDC 2 H
2ðO;RÞ ¼ Z2 is

realizable as the Chern class of some Lagrangian torus fibration over O. The

automorphism group of the base space acts on H 2ðO;RÞ, and the quotient space is
isomorphic to Zþ (nonnegative integers). Thus each integrable system with the base

space T2 is characterized topologically by a nonnegative integer m, and its ambient

symplectic manifoldM4
m has H1ðM

4
m;ZÞ ¼ Z3

� ðZ=mZÞ as can be computed easily.

For each m there are H 2ðO;RÞ=d̂H1ðO;RÞ ¼ R=Z choices of the symplectic struc-

ture on the fibration M4
m ! O, up to symplectic equivalence. Notice that the

fibrations M4
m! T2 are topologically the same as a series of elliptic fibrations over

an elliptic curve (see, e.g., [3]). In particular, when m ¼ 1, M4
1 is the well-known

Kodaira–Thurston example (see, e.g., [28]) of a manifold admitting both a complex

and a symplectic structure but not a Kähler structure.

If, for example, O ¼ Rk=S where S is a lattice of Rk, and k5 3, then not every

element m of H 2ðO;RÞ will satisfy the condition d̂ðmÞ ¼ 0. If the lattice S is irrational,
then it may happen that the operator d̂ is injective, and the only Lagrangian torus

fibration over O is the one which admits a section.

3. Base Space and Sheaves of Local Automorphisms

From now on, p : ðM;o;LÞ ! O will always denote an integrable system which may

admit singularities.

3.1. SINGULARITIES OF INTEGRABLE SYSTEMS

By a singularity of p : ðM;o;LÞ ! O we will mean the germ of the fibration L at a
singular fiber Nx ¼ p�1ðxÞ, x 2 O, and will denote it by p : ðUðNxÞ;o;LÞ ! ðUðxÞÞ,
where UðNxÞ ¼ p�1ðUðxÞÞ is a tubular neighborhood of Nx. Two singularities are
called topologically (resp. symplectically) equivalent if their fibration germs are

homeomorphic (resp. symplectomorphic).
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The rank of a singular fiber N of L is rankN ¼ maxp2N rank p, where, by

definition,

rank p ¼ max
F
dimhdF1ð pÞ; . . . ; dFnð pÞi;

where the maximum is taken over all possible moment maps F ¼ ðF1; . . . ;FnÞ :

ðM;o;LÞ ! Rn, and hdF1ð pÞ; . . . ; dFnð pÞi denotes the linear span of the covectors

dF1ð pÞ; . . . ; dFnð pÞ in T
�
pM.

We put corankN ¼ n� rank N and corank p ¼ n� rank p, where n ¼ 1=2 dimM.

If rank p < n, then p is called a singular point of the system. If rank p ¼ 0 then p is

called a fixed point. The rank and corank of a singularity p : ðUðNxÞ;o;LÞ ! UðxÞ is,

by definition, the rank and corank of Nx.

A fixed point p of the system is called nondegenerate if it satisfies the following

condition: there is a moment map ðF1; . . . ;FnÞ : ðM; p;o;LÞ ! ðRn; 0Þ such that

the quadratic parts F
ð2Þ
1 ; . . . ;F ð2Þn of F1; . . . ;Fn in a symplectic system of coordinates

at p will form a Cartan subalgebra of the Lie algebra of quadratic functions on R2n

under the standard Poisson bracket. Recall that the algebra of quadratic functions

on ðR2n;o0Þ is naturally isomorphic to the simple Lie algebra spð2n;RÞ, the func-

tions F
ð2Þ
1 ; . . . ;F ð2Þn Poisson-commute (because F1; . . . ;Fn Poisson-commute) and

span an Abelian subalgebra of spð2n;RÞ. The nondegeneracy condition means that

this subalgebra is of dimension n and consists of semi-simple elements, i.e. it is a

Cartan subalgebra. A classical theorem of Williamson [37] (which essentially classi-

fies Cartan subalgebras of spð2n;RÞ up to conjugacy) implies that, for a nondegene-

rate fixed point p, there is a moment map ðF1; . . . ;FnÞ whose quadratic part at p can

be decomposed into components of 3 types: elliptic (F
ð2Þ
i ¼ p

2
i þ q

2
i ), hyperbolic

(F
ð2Þ
i ¼ piqi), and focus-focus (F

ð2Þ
i ¼ piqi þ piþ1qiþ1;F

ð2Þ
iþ1 ¼ piqiþ1 � piþ1qi), in a

symplectic system of coordinates ð pi; qiÞ (the symplectic form is o ¼
P
dpi ^ dqi).

Note that each focus-focus component consists of two functions. If there are ke ellip-

tic, kh hyperbolic and kf focus-focus components ðke þ kh þ 2kf ¼ nÞ, then we will

say that the Williamson type of p is ðke; kh; kfÞ (cf. [39]). The local normal form the-

orem for nondegenerate fixed points of integrable systems says that an integrable

Hamiltonian system near a nondegenerate fixed point is locally symplectically

equivalent to a system given by a quadratic moment map on the standard symplectic

vector space ðR2n;o0Þ. This normal form theorem has been proved in the analytic

case by Rüssmann [33] and Vey [34] (see also [42]). In the smooth case, it has been

proved by Eliasson in his PhD thesis (see also [16]), and partially by Colin de Verdier

and Vey [7], and Dufour and Molino [12].

A singular point p with rank p ¼ r > 0 is called nondegenerate if it becomes a non-

degenerate fixed point for a local integrable Hamiltonian system with n� r degrees

of freedom after a local Marsden–Weinstein reduction. A singularity

p : ðUðNxÞ;o;LÞ ! UðxÞ is called nondegenerate if all singular points in Nx are

nondegenerate, plus a natural additional condition which is called ‘topological

stability’ in [39].
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Remark. In some references the above additional condition is not included in the

definition of nondegenerate singularities, but we will include in here so that we can

use the decomposition theorem mentioned below. In [5], Bolsinov and Fomenko

suggested another name for this additional condition, which looks better and more

to the point than our original name ‘topological stability’, but unfortunately I could

not translate this name into English.

In [39] we studied nondegenerate singularities of integrable Hamiltonian systems,

where we showed, among other things, that they are topologically equivalent to

almost direct products of simplest singularities. More precisely, if ðUðNxÞ;LÞ is a
nondegenerate singularity, then it is homeomorphic to

fðUðTrÞ;L rÞ 	 ðP
2ðN1Þ;L1Þ 	 � � � 	 ðP2ðNkeþkhÞ;Lkeþkh Þ	

	 ðP 4ðN 01Þ;L 01Þ 	 � � � 	 ðP 4ðN 0kf Þ;L
0
kf
Þg=G

where ðUðTrÞ;LrÞ denotes a regular system with r degrees of freedom near a regular
torus, ðP2ðNiÞ;LiÞ for 14 i4 ke þ kh denotes a corank-1 nondegenerate elliptic or

hyperbolic singularity of an system with 1 degree of freedom, ðP 4ðN0iÞ;L0iÞ for
14 i4 kf denotes a focus-focus singularity of a system with 2 degrees of freedom,

G is a finite group that acts on the above product freely and component-wise. More-
over, it acts trivially on all possible elliptic components of the product (there are ke
such components if ke > 0). Nondegenerate corank-1 singularities are called ‘atoms’

in the works of Fomenko and his collaborators (see, e.g., [5, 17]). Focus-focus

corank-2 singularities are classified topologically in [40].

To our knowledge, most singularities of integrable Hamiltonian systems are non-

degenerate. But starting with 2 degrees of freedom, there are also degenerate singu-

larities. The situation is similar to that of smooth functions: most singularities of

smooth functions are nondegenerate, but there are degenerate singularities whose

miniversal deformation is of finite dimension k and which can appear in a generic

way in k-dimensional families of functions (see, e.g., [41]).

We will make a series of hypotheses about singularities of ‘generic’ integrable

Hamiltonian systems. All nondegenerate singularities will satisfy these hypotheses.

We believe that ‘generic’ degenerate singularities will also satisfy these hypotheses.

The first hypothesis is:

(H1) Each fiber N of L is a disjoint union of a finite number of submanifolds Ni
such that if p 2 Ni then rank p ¼ dimNi.

Recall that if p 2 Nx �M has rank r, then there is a moment map

F ¼ ðF1; . . . ;FnÞ : ðM;oÞ ! Rn such that the rank of F at p is r, and the orbit of

the Poisson Rn-action generated by F which contains p is an immersed r-dimensional

submanifold contained in Nx. Hypothesis (H1) says that each such orbit is a stratum

of Nx in a natural sense. In particular, dimNx4 n for any fiber Nx of L. If, for
example, ðUðNxÞ;o;LÞ is a nondegenerate singularity of Williamson type ðke; kh; kfÞ
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with ke > 0 (where ke is the number of elliptic components), then dimNx ¼

n� ke < n.

3.2. STRATIFICATION OF THE BASE SPACE

The base space O of an integrable system p : ðM;o;LÞ ! O has a natural topology

induced from M. We will always assume O to be separated and paracompact (it

follows from the existence of a proper moment map). If L is regular, thenO is a mani-
fold. If L has only nondegenerate elliptic singularities then O is a manifold with cor-
ners (see, e.g., [6]). In the general case, O is not a manifold, but we can try to give it a

natural stratification.

In this paper, a separated paracompact topological space Q will be called a strati-

fied manifold of dimension n if Qi can be written as a disjoint union of topological

manifolds Qi, called strata of Q, in such a way that:

(a) max dimQi ¼ n

(b) For each i, the boundary of the stratum Qi is a union of strata of dimension

smaller than dimQi.

(c) If dimQi ¼ k then for each x 2 Qi there is a neighborhood UðxÞ of x in V which

is homeomorphic to the direct product of a k-dimensional disk Dk with a cone

over a stratified ðn� k� 1Þ-dimensional manifold with a finite number of strata.

Such a neighborhood will be called a standard, or star-shaped, neighborhood of x.

Given a singular point x of the base space O, we will denote by Sx the connected

component of the set of all points y 2 O such that the singularity at y (i.e. at the

singular fiber Ny ¼ p�1ð yÞ of the system) is topologically equivalent to the

singularity at x. If x is regular then Sx is a connected component of the regular part

of O. Our next hypothesis is:

(H2) The base space O is a stratified manifold for which each Sx defined above is a

stratum. If UðxÞ 2 O is a star-shaped neighborhood of a point x 2 O, and

f : UðxÞ ! Dk 	 VðxÞ is a homeomorphism, where Dk is a k-dimensional disk

and VðxÞ 2 O is a local stratified submanifold transversal to Sx at x (so VðxÞ is

homeomorphic to a cone over a ðn� k� 1Þ-dimensional stratified manifold),

then there is a homeomorphism F : p�1ðUðxÞÞ ! Dk 	 p�1ðVðxÞÞ which makes
the following diagram commutative:

p�1ðUðxÞÞ �!
F

Dk 	 p�1ðVðxÞÞ
p

  

ðid; pÞ

UðxÞ �!
f

Dk 	 VðxÞ

It is clear that Hypothesis (H2) has a local character: it is satisfied if it is satisfied

locally near every singular point. Hypothesis (H2) justifies the use of a tubular neigh-
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borhood of a singular fiber to denote a singularity. In fact, it follows from this

hypothesis that if U1ðxÞ and U2ðxÞ are two small star-shaped neighborhood of a

point x in O, then the singular fibration ðp�1ðU1ðxÞÞ;LÞ is topologically equivalent
to the singular fibration ðp�1ðU2ðxÞÞ;LÞ.
Let O ¼

F
Sx be the stratification of the base space O as above. Then we can

replace Si by thickened strata as follows: Order the strata of O by dimension:

S1;S2;S3; . . . ; with dimS14 dimS24 dimS34 � � � Denote by �S1 a small closed

tubular neighborhood of S1 in O, �S2 a sufficiently small closed tubular neighborhood

of ðO n �S1Þ \ S2 in ðO n �S1Þ, �S3 a sufficiently small closed tubular neighborhood of

ðO n ð �S1 [ �S2ÞÞ \ S3 in ðO n ð �S1 [ �S2ÞÞ, etc. Then we have O ¼
F

�Si. This decomposi-

tion of O into the disjoint union of �Si is unique up to homeomorphisms, and is called

a thickened stratification of O. The sets �Si are called thickened strata of O.

Similarly, if UðxÞ is a star-shaped neighborhood of a point x 2 O, then we also

have a thickened stratification of UðxÞ, UðxÞ ¼
F

�Ui, which consists of a finite num-

ber of thickened strata �Ui and is unique up to homeomorphisms. In an appropriate

thickened stratification of O, O ¼
F

�Si, we can put �Ui ¼ UðxÞ \ �Si (and then throw

out those �Ui ¼ UðxÞ \ �Si which are empty).

3.3. LOCAL S
1-ACTIONS AND AFFINE MONODROMY

Let U be an open subset of the base space O. We will denote by RðU Þ the set of

symplectic S
1-actions on ðp�1ðU Þ;oÞ which preserve the system (i.e. preserve every

fiber of L). We have the following obvious lemma:

LEMMA 3.1. RðU Þ is a free Abelian group of rank less or equal to n. If U1 is an open

subset of U then there is a natural injection from RðU Þ to RðU1Þ. If a is a system-
preserving symplectic S

1-action on p�1ðU1Þ and b is a system-preserving symplectic
S
1-action on p�1ðU2Þ such that their restrictions to p�1ðU1 \U2Þ are the same, then
there is a system-preserving symplectic S

1-action on p�1ðU1 [U2Þ which restricts to a
and b on p�1ðU1Þ and p�1ðU2Þ respectively.

Thus, the groups RðU Þ, U � O, form a free Abelian sheaf over the base space O.

We will denote this sheaf by R, and call it the affine monodromy sheaf, in analogy
with the case of regular Lagrangian torus fibrations.

If ðg1; . . . ; gmÞ is a basis of RðU Þ ffi Zm, then these S
1-actions g1; . . . ; gm com

mute, and together they generate a system-preserving symplectic Tm-action on

ðp�1ðU Þ;o;LÞ which is free almost everywhere. Conversely if there is a system-pre
serving symplectic action of a torus Tm on ðp�1ðU Þ;o;LÞ which is locally free some-
where, then the composition of this Tm-action with homomorphisms from S

1 to Tm

gives rise to a subgroup of RðU Þ which is isomorphic to Zm. The classical Arnold–

Liouville theorem is essentially equivalent to the fact that, if U is a disk in the regular

part of O, then RðU Þ is isomorphic to Zn. In [39] we have shown that if

p : ðp�1ðUðxÞÞ;o;LÞ ! UðxÞ is a nondegenerate singularity of rank r and Williamson
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type ðke; kh; kfÞ ðrþ ke þ kh þ 2kf ¼ nÞ, then RðUðxÞÞ is isomorphic to Zrþkeþkf . In

[41] we have shown that if p : ðp�1ðUðxÞÞ;o;LÞ ! UðxÞ is a degenerate singularity

of corank 1, then under some mild conditions RðUðxÞÞ will be isomorphic to Zn�1.

Another simple result which can be proved by the methods of [39, 41] is the

following:

LEMMA 3.2. If p : ðp�1ðUðxÞÞ;o;LÞ ! UðxÞ is a singularity of rank r such that

dim p�1ðxÞ ¼ n ¼ 1=2 dim p�1ðUðxÞÞ, then there is a locally-free system-preserving
symplectic action of Tr on ðp�1ðUðxÞÞ;o;LÞ. In particular, the rank of RðUðxÞÞ is
greater or equal to r.

Sketch of the Proof. Denote by P an n-dimensional stratum of p�1ðxÞ. It fol-
lows from the facts that P is an orbit of the Poisson action of a moment map

ðF� 1; . . . ;FnÞ : ðp�1ðUðxÞÞ;o;LÞ ! Rn and rank p�1ðxÞ ¼ r, that P is of the type
Tk
	Rn�k with k5 r. For each element g of the fundamental group of P, there are

numbers a1; . . . ; an 2 R such that the vector field
P
aiXFi is periodic of period 1 on

P and its orbits on P are homotopic to g. There is a unique way to extend ai into
smooth functions on p�1ðUðxÞÞ which are constant on each fiber of L, such that the
vector field

P
aiXFi is periodic on p�1ðUðxÞÞ. Arnold–Liouville theorem (for the

regular part of p�1ðUðxÞÞ) assures that the vector field
P
aiXFi is symplectic. It

follows that there is a system-preserving symplectic action of Tk on ðp�1ðUðxÞÞ;
o;LÞ which is free almost everywhere. We can choose a subgroup Tr

� Tk such

that the action of Tr will be locally-free everywhere in p�1ðUðxÞÞ. &

Let g : S
1
	 p�1ðU Þ �! p�1ðU Þ be a system-preserving symplectic S

1-action, where

U is an open subset of the base space O. Then for each stratum P of a fiber in p�1ðU Þ,
g preserves P and the orbits of g on P defines an element gP in the fundamental group
of P. The association P 7! gP 2 p1ðPÞ is continuous in the following sense: each con-
tinuous curve c : ½0; 1� ! p�1ðU Þ can be extended to a continuous family of loops
f : ½0; 1� 	 S1! p�1ðU Þ ðf j½0;1�	feg¼ c where e is a fixed element of S1) such that
each loop f jftg	S1 lies on some stratum PðtÞ of some fiber of p�1ðU Þ and is homotopic
to gPðtÞ on PðtÞ. It is evident that the set of continuous association fP 7! gP 2 p1ðPÞg is
an Abelian group, which we will denote by PðU Þ, and there is a unique natural
injective homomorphism from the group RðU Þ to PðU Þ. Our next hypothesis is:

(H3) If p : ðp�1ðUðxÞÞ;o;LÞ ! UðxÞ is a singularity of rank r, then RðUðxÞÞ is iso-

morphic to PðUðxÞÞ, and there is a locally-free system-preserving symplectic
Tr-action on ðp�1ðUðxÞÞ;o;LÞ. In particular, rank RðUðxÞÞ ¼ rankPðUðxÞÞ
5 rank p�1ðxÞ.

Since PðUðxÞÞ is clearly a topological invariant of ðp�1ðUðxÞÞ;LÞ, Hypothesis (H3)
implies in particular that the affine monodromy sheaf R is a topological invariant of

the system. Moreover, RðU Þ is naturally isomorphic to PðU Þ for each open subset
U of O.
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3.4. AFFINE STRUCTURE OF THE BASE SPACE

A local function f on the base space O is called an integral affine function if its

pull-back f � p is a local smooth function on M such that the Hamiltonian vector

field of f � p is periodic of period 1=k for some natural number k. In other words,
local integral affine functions are functions that generate local system-preserving

S
1-actions. Denote the sheaf of local integral affine functions on O by I . Then we
have the following natural short exact sequence:

0�!R�! I �!R�! 0:

We may view the sheaf I as the integral affine structure of O. A local function
on O is called affine if it can be written as a linear combination of integral affine

functions.

As a side note, we remark that the fact that O has a integral affine structure impo-

ses some conditions on the topology of O. For example, for two-dimensional base

spaces we have the following analog of a Theorem of Milnor [30] concerning affine

structures on 2-surfaces:

Let O be the base space of an integrable system with 2 degrees of freedom, whose

singularities are all nondegenerate. A subset C of O will be called a topological 2-stra-

tum of O if C is the union of a 2-dimensional stratum of O (with respect to the stra-

tification given in Subsection 3.2) with all possible focus-focus singular points lying

on its boundary.

PROPOSITION 3.3. Let C be a topological 2-stratum of the base O of an integrable

Hamiltonian system on a compact four-dimensional symplectic manifold M4 ðmaybe

with boundaryÞ. Assume that the system contains only nondegenerate singularities, and

the image of the boundary of M4 under the projection to O does not intersect with the

closure of C ðif M4 is closed then this condition is satisfied automaticallyÞ. Then C is

homeomorphic to either an annulus, a Mobius band, a Klein bottle, a torus, a disk, a

projective space, or a sphere ðin case of sphere or projective space, C must contain

focus-focus pointsÞ.

The proof of the above proposition is elementary and is left to the reader.

3.5. LOCAL HOMEOMORPHISMS

For each open subset U � O, we will denote by AtðU Þ the group of homeomor-

phisms f from ðp�1ðU Þ;LÞ onto itself which satisfy the following topological prop-
erties: f preserves each stratum of each fiber of ðp�1ðU Þ;LÞ and induces the identity
map on the fundamental group of each stratum, and f induces the identity map on
the first homology group (with integral coefficients) of each fiber of ðp�1ðU Þ;LÞ. The
association U 7!AtðU Þ is a non-Abelian sheaf over the base space O, which will be

denoted by At and called the sheaf of admissible local topological automorphisms of
the system. (Here t stands for ‘topological’).
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If g : ½0; 1� ! AtðU Þ is a continuous loop in AtðU Þ, then its orbits on the strata of

the fibers of ðp�1ðU Þ;LÞ define an element of PðU Þ (¼ RðU Þ by Hypothesis (H3)).
Moreover, it follows from the definition of AtðU Þ that every element of AtðU Þ

induces the identity map on PðU Þ. Thus there is a natural central extension
Â0tðU Þ of AtðU Þ by RðU Þ: 0! RðU Þ ! Â0tðU Þ ! AtðU Þ ! 0. Topologically (with

respect to the open-compact topology), Â0tðU Þ is an RðU Þ-covering of AtðU Þ,

such that if g is a loop in AtðU Þ with gð0Þ ¼ gð1Þ ¼ id and which corresponds

to an element g of PðU Þ ¼ RðU Þ, then it can be lifted to a curve ĝ in Â0tðU Þ such
that ĝð0Þ is the unity element in Â0tðU Þ but ĝð1Þ is the image of g in Â

0
tðU Þ via

the injection RðU Þ ! Â0tðU Þ. The association U 7! Â0tðU Þ is a presheaf,

which can be made in to a sheaf Ât whose stalk at each point x 2 O is

limUðxÞ!x ÂtðUðxÞÞ. Clearly, Ât is an extension of At by R: 0! R!
Ât ! At ! 0.

We will define a subgroup AcðU Þ of AtðU Þ, consisting of the so-called compa-

tible (with respect to the local S
1-actions) homeomorphisms of ðp�1ðU Þ;LÞ. For

this we will fix an appropriate thickened stratification O ¼
F

�Si of the base space

O (recall that such a thickened stratification is unique topologically), and assume

that U is compatible with this thickened stratification, i.e. the intersection of �Si
with U gives rise to a thickened stratification of U. Let y be a point in U. Then

there is a point x in U such that y and x belong to the same thickened stratum,

and that the stratum that contains x has the same index as the thickened stratum

that contains x. Let VðxÞ be a star-shaped neighborhood of x which contains y

and which lies in the thickened stratum that contains x. Then there is a natural

system-preserving action of Tr on p�1ðVðxÞÞ, where r ¼ rank RðVðxÞÞ, which is
unique up to automorphisms of Tr. In particular, there is a natural action of

the torus T
r on p�1ð yÞ which is unique up to automorphisms of T

r and which

does not depend on the choice of x. We will denote this action on p�1ð yÞ (up
to automorphisms) by Tð yÞ. We will say that an element f of AtðU Þ is a compa-
tible homeomorphism if it commutes with the torus action Tð yÞ on p�1ð yÞ for each
y 2 U. Evidently, the set of compatible homeomorphisms is a subgroup of

AtðU Þ, which we will denote by AcðU Þ. The association U 7!AcðU Þ gives rise

to a non-Abelian subsheaf of the sheaf At over O, which we will denote by
Ac. Of course, the definition of Ac depends on the choice of a thickened strati-
fication of O, but since such a stratification is unique up to homeomorphisms,

the sheaf Ac is also unique up to isomorphisms.
Similarly, if p : ðp�1ðUðxÞÞ;o;LÞ ! UðxÞ and p : ðp�1ðVð yÞÞ;o;LÞ ! Vð yÞ are two

topologically equivalent singularities, then we can talk about compatible homeo-

morphisms from ðp�1ðUðxÞÞ;LÞ to ðp�1ðVð yÞÞ;LÞ (with respect to a given thickened
stratification of UðxÞ and Vð yÞ). Our next hypothesis is that such compatible homeo-

morphisms always exist.

(H4) If two singularities ðp�1ðUðxÞÞ;o;LÞ and ðp�1ðVð yÞÞ;o;LÞ are topologically
equivalent, then for any fibration-preserving homeomorphism c from
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ðp�1ðUðxÞÞ;LÞ to ðp�1ðVð yÞÞ;LÞ which maps a given thickened stratification of
UðxÞ to a given thickened stratification of Vð yÞ, then there is a compatible

(with respect to the local S
1-actions and given thickened stratifications) home-

omorphism f from ðp�1ðUðxÞÞ;LÞ to ðp�1ðVð yÞÞ;LÞ such that f�1 � c belongs
to AtðUðxÞÞ.

Hypothesis (H4) can be verified directly for nondegenerate singularities. Similarly

to the case of AtðU Þ, the group AcðU Þ also has a natural central extension by RðU Þ,

which we will denote by Â0cðU Þ. In terms of sheaves, Ac has an extension byR, which
we will denote by Âc, and we have the following commutative diagram:

0 ! R ! Âc ! Ac ! 0
k # #

0 ! R ! Ât ! At ! 0

Our next hypothesis is:

(H5) If p : ðp�1ðUðxÞÞ;o;LÞ ! UðxÞ is a singularity then the group Â0cðUðxÞÞ is

contractible. Equivalently, AcðUðxÞÞ is homotopic to Tk where k ¼

rankR(U(x)):

Again, for nondegenerate singularities, Hypothesis (H5) can be verified directly,

and is similar to the fact that the space of homeomorphisms from a cube to itself

which are identity on the boundary is contractible (with respect to the open-compact

topology).

3.6. DIFFERENTIAL FORMS ON THE BASE SPACE

Recall that a differential k-form b on ðM 2n;LÞ is called a basic form (with respect to
the fibration L) if for any vector X on M 2n tangent to L we have iXb ¼ iX db ¼ 0.
We will denote the space of basic k-forms onM 2n (with respect to a given integrable

system p : ðM 2n;o;LÞ ! O) by OkðOÞ and consider it as the space of differential
k-forms on the base space O. (If O is regular then basic forms on M are pull-backs

of differential forms on O). In particular, the space of smooth functions on O,

denoted by C1ðOÞ, is the space of functions f : O! R such that f � p is a smooth
function on M 2n. For each k, the linear space OkðOÞ is a C1ðOÞ-module. The
differential of a basic form is again a basic form. Thus we have the following

DeRham complex of O:

0! C1ðOÞ!
d
O1ðOÞ!

d
O2ðOÞ!

d
� � �!

d
OnðOÞ!

d
0

The cohomology of this complex, known as basic cohomology, will also be called

the DeRham cohomology of O, and denoted by HkDRðO;RÞ. Of particular interest is
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the second cohomology group H 2
DRðO;RÞ: if b is a closed 2-form on O then oþ p �b

will be a new symplectic form onM for which p : ðM;oþ p �b;LÞ ! O remains an

integrable Hamiltonian system (see Subsection 4.6).

If all singularities over O are nondegenerate, then it is easy to see that C1 is a fine

sheaf over O, the Poincaré lemma holds for O (i.e. closed differential forms on O are

locally exact), and the DeRham cohomology of O is naturally isomorphic to its

singular cohomology. Indeed, near each nondegenerate singular point of the system

in the symplectic manifold there is a radiant-like vector field which preserves the

fibration, and one can use these radiant vector fields to prove the Poincaré lemma

for O by the same Thom-Moser path method as used in the book of Abraham

and Marsden [1].

When dealing with the symplectic classification of general integrable Hamiltonian

systems, we will make the following hypothesis:

(H6) The sheaf C1 of local smooth functions on O is a fine sheaf.

Notice that, when O contains degenerate singularities, closed 1-forms on O are still

locally exact: if b is a closed 1-form in a star-shaped neighborhood UðxÞ of O, then
since p �b vanishes on p�1ðxÞ and homotopically p�1ðUðxÞÞ is the same as p�1ðxÞ, the
cohomological class of p �b in H1ðp�1ðUðxÞÞ;RÞ is zero. Hence p �b ¼ dh for some
function h on p�1ðUðxÞÞ. It is obvious that h is constant on the fibers of the fibration,
i.e. h is a basic function. As a consequence, we have the following short exact

sequence of Abelian sheaves over O:

0�!R�!C1�!Z1�! 0;

where Z1 denotes the sheaf of local closed differential 1-forms. Since C1 is a fine
sheaf by Hypothesis (H6), the cohomology long exact sequence associated to the

above short exact sequence gives rise to a natural isomorphism from HkðO;Z1Þ to
Hkþ1ðO;RÞ (k5 1).

3.7. LOCAL SYMPLECTOMORPHISMS

Let X be a symplectic vector field on a singularity ðp�1ðUðxÞÞ;o;LÞ, which is tangent
to L. Then the time-1 map of X, denoted by g1X, is an element of the group AtðUðxÞÞ
of admissible homeomorphisms, which preserves the symplectic form. The inverse is

also true, at least for nondegenerate singularities:

LEMMA 3.4. Let ðp�1ðUðxÞÞ;o;LÞ be a nondegenerate singularity, and f a sym-

plectomorphism from ðp�1ðUðxÞÞ;o;LÞ onto itself which preserves every stratum of

every fiber of the system. Then f can be written as the time one map g1X of a symplectic
vector field X on ðp�1ðUðxÞÞ;oÞ which is tangent to L.
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Sketch of the proof. If the singularity contains only elliptic components, then one

can write an explicit formula for X in a canonical system of coordinates. If the

singularity does not contain any elliptic component, then the proof is similar to that

of Lemma 3.2. The general case is a combination of these two cases. &

We will make the above property into a hypothesis, our last one, which will be

used in the symplectic classification of integrable Hamiltonian systems:

(H7) Let ðp�1ðUðxÞÞ;o;LÞ be a singularity, and f a symplectomorphism from

ðp�1ðUðxÞÞ;o;LÞ onto itself which preserves every stratum of every fiber

of the system. Then f can be written as the time one map g1X of a symplectic
vector field X on ðp�1ðUðxÞÞ;oÞ which is tangent to L.

For each open subset U of O, we will denote by AsðU Þ the set of smooth symplec-

tomorphisms from ðp�1ðU Þ;oÞ onto itself which belong to the group of compatible
homeomorphisms AtðU Þ. It is obvious that AsðU Þ is a subgroup of the group of com-

patible homeomorphisms AcðU Þ (for any thickened stratification of O), and the

association U 7!AsðU Þ is a sheaf over O, which we will call the sheaf of local symplec-

tomorphisms of the system, and denote by As.
There is a natural projection from the sheaf Z1 of local closed 1-forms on O to As:

if b is a basic closed 1-form on ðp�1ðUðxÞÞ;o;LÞ, then the vector field X defined by
iXo ¼ b is symplectic and its time-1 map defines an element in AsðUðxÞÞ. On the other
hand, there is a natural injection from the sheaf R of local symplectic S

1-actions to

Z1: if g is a symplectic S
1-action on ðp�1ðUðxÞÞ;o;LÞ and X the symplectic vector

field that generates g, then iXo is an element of Z1ðUðxÞÞ. Hypothesis (H7) implies
that the projection from Z1 to As is surjective, and its kernel is the image of R in

Z1. In other words, we have the following exact sequence of Abelian sheaves
0�!R�!Z1�!Z1=R�! 0;

and As, is naturally isomorphic to Z1=R:

4. Characteristic Classes and Classification

4.1. HOMOLOGICAL MONODROMY AND ROUGH EQUIVALENCE

To define the characteristic classes of an integrable system, we will have to compare it

to another ‘reference’ system which is ‘roughly equivalent’ to it. Here two integrable

Hamiltonian systems will be called roughly equivalent if they have the same base

space, the same singularities, and the same ‘homological monodromy’, in the

following sense:

DEFINITION 4.1. Two integrable Hamiltonian systems ðMa;oa;LaÞ �!
pa
Oa and

ðMb;ob;LbÞ �!
pb
Ob are called roughly topologically equivalent if there is a homeo-

morphism f : Oa ! Ob, a covering of Oa by open subsets Ui, a homeomorphism
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Fi : p�1a ðUiÞ ! p�1b ðfðUiÞÞ for each i, such that pb � Fi ¼ f � pajp�1a ðUiÞ, and F�1i Fj
induces the identity map on the fundamental groups of the strata of p�1a ðxÞ and the
identity map on H1ðp�1a ðxÞ;ZÞ for each point x 2 Ui \Uj. The two systems are called

roughly symplectically equivalent if, in addition, Fi are smooth symplectomorphisms.

It follows from the above definition and the hypotheses made in the previous

section that, if two systems are roughly topologically equivalent, then they have

the same affine monodromy sheaf R. For regular Lagrangian torus fibrations, the
condition of rough topological equivalence is equivalent to the condition of having

the same base space up to homeomorphisms and the same affine monodromy.

If two systems are roughly symplectically equivalent, then their base spaces are

diffeomorphic and have the same integral affine structure, in the sense that there

is a homeomorphism between them which preserves the algebra of differential forms

and the sheaf of local integral affine functions. For two roughly topologically

equivalent systems to be roughly symplectically equivalent, a necessary and sufficient

condition is that their base spaces have the same affine structure and their

singularities are not only topologically equivalent but also symplectically equivalent.

Symplectic invariants of simplest singularities and systems (with one or one and a

half degrees of freedom) have been studied by some authors (see, e.g., [5, 13, 36]).

If two systems are roughly topologically (resp. symplectically) equivalent, then we

will also say that they have the same rough topological ðresp. symplecticÞ type. Given

an integrable Hamiltonian system p : ðM;o;LÞ ! O, we will denote its rough topo-

logical and symplectic types by Ôtop and Ôsymp respectively, and view them as framed

base spaces, with the framing given by singularities and ‘monodromies’. For each

rough topological or symplectic type, we will try and choose a ‘reference system’ with

this rough type. For example, if the base space O is regular, then the framing is given

by the affine monodromy, and the obvious reference system is the one which admits

a global (Lagrangian) section. In the general case, where there is no obvious choice,

we’ll pick an arbitrary system and call it the reference system for a given rough type.

4.2. DEFINITION OF CHARACTERISTIC CLASSES

Assume that an integrable Hamiltonian system p : ðM;o;LÞ ! O is roughly topo-

logically equivalent to a reference system p0 : ðM0;o0;L0Þ ! O over the same base

space O. By definition, there is a covering of O by open subsets Ui, a homeomor-

phism Fi : p�10 ðUiÞ ! p�1ðfðUiÞÞ for each i, such that p � Fi ¼ p0jp�1
0
ðUiÞ
, and

mij ¼ F�1i � Fj belongs to the group AtðUi \UjÞ (defined in the previous section,
for the reference system). Its clear that the family ðmij 2 AtðUi \UjÞÞ is a Cech
1-cocycle in the non-Abelian sheaf At, which will define an element m in H1ðAtÞ. The
first cohomology class m is a topological invariant of the system p : ðM;o;LÞ ! O,

and it is trivial if and only if p : ðM;o;LÞ ! O is topologically equivalent to the

reference system p0 : ðM0;o0;L0Þ ! O by a homeomorphism which projects to the

identity map on O.
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Similarly, if p : ðM;o;LÞ ! O is roughly symplectically equivalent to a given

reference system p0 : ðM0;o0;L0Þ ! O, then we will be able to define an element

mL in H
1ðAsÞ, where As is the sheaf of local symplectomorphisms of the reference

system. Recall that As ffi Z1=R (and is an Abelian sheaf). Thus we can write

mL 2 H
1ðZ1=RÞ.

For a given reference system, the short exact sequence 0! R! Ât ! At ! 0

gives rise to the following long exact sequence:

� � � ! H1ðÂtÞ ! H1ðAtÞ!
d
H 2ðRÞ ! H 2ðÂtÞ ! � � �

DEFINITION 4.2. The second cohomology class mC 2 H
2ðO;RÞ which is the image

of m under the coboundary map d : H1ðO;AtÞ ! H 2ðO;RÞ arising from the short

exact sequence 0! R! Ât ! At ! 0 is called the Chern class of the system

ðM;o;LÞ (with respect to a given reference system ðM0;o0;L0Þ). The first cohomo-
logy class mL 2 H

1ðO;Z1=RÞ is called the Lagrangian class of ðM;o;LÞ.

It is clear from the above definition that the Chern class is a topological invariant:

if two systems are topologically equivalent, then they will have the same Chern class

(with respect to any common reference system) after an appropriate homeomor-

phism of their respective base spaces. Similarly, the Lagrangian class is obviously

a symplectic invariant. Notice that in the definition of the characteristic classes,

we need a reference system, therefore the Chern and Lagrangian classes are not

‘absolute’ classes but rather ‘relative’ ones. In other words, they live in an affine

space rather than a vector space.

4.3. CHERN CLASS VIA COMPATIBLE HOMEOMORPHISMS

It follows from Hypothesis (H4) that, in the definition of the Chern class, we may

replace the sheaf At of local admissible homeomorphisms by the sheaf Ac of local
compatible (with respect to a given thickened stratification of the base space) homeo-

morphisms: we can choose homeomorphisms Fi : p�10 ðUiÞ ! p�1ðfðUiÞÞ such that
mij ¼ F�1i � Fj 2 AcðUi \UjÞ. Thus the cocycle mij defines an element �m 2 H

1ðO;AcÞ
which maps to m 2 H1ðO;AtÞ under the natural homomorphism H �ðO;AcÞ !
H �ðO;AtÞ. Under the long exact sequence

� � � ! H1ðÂcÞ ! H1ðAcÞ!
�d
H 2ðRÞ ! H 2ðÂcÞ ! � � �

we have �d �m ¼ mC.
If �m ¼ 0 then of course the system ðM;o;LÞ is topologically equivalent to the

reference system ðM0;o0;L0Þ, and vice versa. If we can show that H1ðO; ÂcÞ ¼ 0,
then we will have �m ¼ 0 if and only if the Chern class mC vanishes.

LEMMA 4.3. The sheaf Âc is acyclic. In particular, we have H1ðO; ÂcÞ ¼ 0.
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Proof. The idea is that, due to Hypothesis (H5), the sheaf Âc is similar to a fine
sheaf, though it is not Abelian. It suffices to prove the above lemma for an arbitrary

thickened stratum in O (more precisely, an arbitrary thickened open subset of a

stratum). The acyclicity of Âc over O will then follow from the Meyer–Vietoris exact
sequences. Let �S be a thickened stratum of O, and consider the sheaf Âc over �S. �S

may be considered as a locally trivial fibration over a stratum S, with the fiber being

local stratified submanifolds in �S which are transversal to S. We will consider only

open subsets of �S which are saturated by the fibers of this fibration. In other words,

we will consider Âc as a sheaf over the S. Then it will become the sheaf of local
continuous sections of a locally trivial fibration over S whose fibers are isomorphic

to a contractible topological group, which implies the acyclicity. &

4.4. ADDITIVITY OF CHARACTERISTIC CLASSES

The Chern class is additive in the following sense:

LEMMA 4.4. If three systems pi: ðMi;oi;LiÞ ! O, i ¼ 1; 2; 3; over the same base

space O, are roughly topologically equivalent, and the Chern class of ðMi;oi;LiÞ with
respect to ðMj;oj;LjÞ is mijC 2 H

2ðO;RÞ ðthe three systems have the same affine
monodromy sheaf RÞ, then we have m12C þ m23C þ m31C ¼ 0.
Proof. The proof is straightforward and uses the fact that R lies in the center

of Ât: Denote by ðUiÞ an appropriate open covering of O;Uij ¼ Ui \Uj, fabi :
p�1a ðUiÞ ! p�1b ðUiÞ (a; b ¼ 1; 2; 3) the homeomorphisms that define the rough
topological equivalences. We can assume that fbai ¼ ðf

ab
i Þ
�1 and f31i � f

23
i � f

12
i

¼ Id. Put fabij ¼ ðf
ab
i Þ
�1
� fabj 2 A

a
t ðUijÞ, and denote by cabij a lifting of fabij from

the group Aat ðUijÞ to the group Â
a

t ðUijÞ such that cabji ¼ ðc
ab
ij Þ
�1. Then mabijk

¼ cabij c
ab
jkc

ab
ki 2 RðUijkÞ is a 2-cocycle that defines the Chern class of the system

ðMb;ob;LbÞ with respect to the system ðMa;oa;LaÞ. If we can choose the elements
cabij in such a way that m12ijk þ m23ijk þ m31ijk ¼ 0 then we are done. Since f23ij ¼

f12i � f
13
ij ðf

12
ij Þ
�1
� ðf12i Þ

�1, we can choose cabij so that c
23
ij ¼ Adf12i

ðc13ij ðc
12
ij Þ
�1
Þ (the

operator Adf12i
: Â1t ðUijÞ ! Â2t ðUijÞÞ is well defined). Then we have:

m23ijk ¼ c23ij c
23
jkc

23
ki ¼ Adf21i

ðc23ij c
23
jkc

23
ki Þ

because Adf21i
is identity when restricted to

RðUijkÞ ¼ ðc
13
ij ðc

12
ij Þ
�1
Þ �Adc12ij

ðc13jk ðc
12
jk Þ
�1
Þ �Adc12ik

ðc13ki ðc
12
ki Þ
�1
Þ

¼ c13ij c
13
jk ðc

12
jk Þ
�1
ðc12ij Þ

�1c12ikc
13
ki

¼ ðc13kic
13
ij c

13
jk Þððc

12
jk Þ
�1
ðc12ij Þ

�1c12ik Þ

¼ m13ijk � m12ijk: &

Similarly, the Lagrangian class is also additive:
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LEMMA 4.5. If three systems pi: ðMi;oi;LiÞ ! O; i ¼ 1; 2; 3; over the same base

space O, are roughly symplectically equivalent, and the Lagrangian class of ðMi;oi;LiÞ
with respect to ðMj;oj;LjÞ is mijL 2 H1ðO;Z1=RÞ ðthe three systems have the same sheaf
Z1=RÞ, then we have m12L þ m23L þ m31L ¼ 0.

The proof is obvious. &

4.5. CLASSIFICATION THEOREMS

We can now present the main theorems. Their formulations are similar to the case

of regular Lagrangian torus fibrations.

THEOREM 4.6. If two roughly topologically equivalent integrable Hamiltonian

systems have the same Chern class ðwith respect to a common reference systemÞ, then

they are topologically equivalent.

The proof of the above theorem follows directly from Lemma 4.3 and

Lemma 4.4. &

THEOREM 4.7. If two roughly symplectically equivalent integrable Hamiltonian

systems have the same Lagrangian class ðwith respect to a common reference systemÞ,

then they are symplectically equivalent.

The proof of the above theorem follows directly from the definition. &

For a given reference system, the following commutative diagram of short exact

sequences,

0 ! R ! Ât ! At ! 0
jj " "

0 ! R ! Z1 ! As ! 0

give rise to the following commutative diagram of associated long exact sequences of

cohomologies over the base space O:

� � � ! H1ðÂtÞ ! H1ðAtÞ !
d

H 2ðRÞ ! H 2ðÂtÞ ! � � �

" " k "

� � � !
d

H1ðZ1Þ ! H1ðAsÞ !
D

H 2ðRÞ !d H 2ðZ1Þ ! � � �

k k

H 2ðO;RÞ H 3ðO;RÞ

In the above diagram, HkðO;Z1Þ are identified with Hkþ1ðO;RÞ via the isomor-

phisms arising from the short exact sequence 0! R! C1!
d Z1! 0. Remark

that, in the above diagram, the operators d depend on the topological type of the
reference system p0: ðM0;o0;L0Þ ! O, while the operators d̂ and D depend on its
rough symplectic type.

It follows from the above commutative diagram that if the system ðM;o;LÞ is
roughly symplectically equivalent to a reference system ðM0;o0;L0Þ, and both the
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Chern and the Lagrangian classes of ðM;o;LÞ are taken with respect to

ðM0;o0;L0Þ, then under the maps D and d̂ we have mL!
D
mC!

d̂
0. It is clear from

the construction of characteristic classes that any element in H1ðO;Z1=RÞ is the
Lagrangian class of some integrable Hamiltonian system which is roughly symplec-

tically equivalent to ðM0;o0;L0Þ. Thus we have the following proposition which is
similar to a result of Dazord and Delzant [10] for the regular case:

PROPOSITION 4.8. An element mC 2 H
2ðO;RÞ is the Chern class of some integrable

Hamiltonian system p : ðM;o;LÞ ! O roughly symplectically equivalent to a given

reference system p0 : ðM0;o0;L0Þ ! O over a given base space O if and only if

d̂ðmCÞ ¼ 0. Under this condition, the space of integrable Hamiltonian systems which are
roughly symplectically equivalent to p0: ðM0;o0;L0Þ ! O and which have mC as the
Chern class, considered up to symplectic equivalence, is naturally isomorphic to

H 2ðO;RÞ=d̂ðH1ðO;RÞÞ.

Notice that the above proposition does not solve the following problem: which

elements in H 2ðO;RÞ can be realized as the Chern class of a system which is roughly
topologically equivalent to p0: ðM0;o0;L0Þ ! O? The condition d̂ðmCÞ ¼ 0 needs not
hold for systems which are roughly topologically equivalent but not roughly

symplectically equivalent to the reference system (except for the case H 3ðO;RÞ ¼ 0,

when this condition is empty). I don’t know which conditions must mC satisfy in
general.

4.6. THE MAGNETIC TERM

In analogy with classical electromagnetism (see, e.g., [21]), by a magnetic term we

will mean (the pull-back p �b of) a closed 2-form b on the base space O of an inte-
grable system p: ðM;o;LÞ ! O. We have:

LEMMA 4.9. For any closed 2-form b on O, the form oþ p �b is a symplectic form on
M, and p: ðM;oþ p �b;LÞ ! O is an integrable system.

Proof. We will show that oþ p �b is nondegenerate everywhere on M, the rest is
obvious. Let p be an arbitrary point ofM. We will show that the kernel Kp of p �b at
p is a coisotropic subspace of the tangent space at p with respect to the symplectic

form o. Then for any vector X 2 Kp there is a vector Y 2 TpM such that

oðX;Y Þ þ p �bðX;Y Þ ¼ oðX;Y Þ 6¼ 0, and for any vector X 2 TpM not belonging to

Kp there is a vector Y 2 Kp such that oðX;Y Þ þ p �bðX;Y Þ ¼ oðX;Y Þ 6¼ 0.
According to Hypotheses (H1) and (H2), there is a sequence of regular points

pi 2M, i 2 N, of the fibration L which tend to p. Denote the tangent space of L at pi
by Ki. By taking a subsequence of ð ypÞ, we can assume that Ki tends to a subspace

K0 � TpM at p. Since each Ki is Lagrangian, K0 is also Lagrangian. On the other

hand, Ki lies in the kernel of p �b at pi, and it follows from the semi-continuity of the
kernel that K0 � Kp. Thus Kp is coisotropic. &
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It is easy to see that if the magnetic term b is locally exact on O, then the two
systems p : ðM;oþ p �b;LÞ ! O and p: ðM;o;LÞ ! O are roughly symplectically

equivalent, and if b is exact then the two systems are symplectically equivalent.
Assume in this paragraph that the Poincaré lemma holds for 2-forms on O, i.e. any

closed 2-form on O is exact, and denote by Z2 the sheaf of local closed 2-forms. Then
we have the following short exact sequence: 0! Z1! O1!

d Z2 ! 0, where the

sheaf O1 of local 1-forms on O is a fine sheaf (because C1 is a fine sheaf by Hypo-
thesis (H6)). The associated long exact sequence gives rise to the following isomor-

phisms: H 2
DRðO;RÞ ¼ H 0ðO;Z2Þ=dH 0ðO;O1Þ ¼ H1ðO;Z1Þ ¼ H 2ðO;RÞ. In other

words, the second DeRham cohomology group of O is isomorphic to the second sin-

gular cohomology group of O. This isomorphism, together with the natural operator

from H 2ðO;RÞ ¼ H1ðO;Z1Þ to H1ðO;Z1=RÞ, will send each closed 2-form b on O to
an element mLðbÞ 2 H

1ðO;Z1=RÞ which is nothing else but the Lagrangian class of
the system p: ðM;oþ p �b;LÞ ! O with respect to the system p: ðM;o;LÞ ! O.

In particular, if the Poincaré lemma holds for 2-forms on O, then any two systems

over O which are roughly symplectically equivalent and have the same Chern class

will differ from each other by only a magnetic term.

4.7. REALIZATION PROBLEM AND INTEGRABLE SURGERY

Given a stratified manifold O equipped with an integral affine structure (in the sense

of Subsection 3.4), one can ask whether it can be realized as the base space of some

integrable Hamiltonian system. If it is the case, we will say that O is realizable. Of

course, if O is to be realizable, it has to be locally realizable: each singular point y

in O corresponds to some singularity of some integrable system, that is a singular

Lagrangian torus fibration with the base space Uð yÞ where Uð yÞ is a neighborhood

of y in O, in such a way that the following compatibility is satisfied: If

Uð y1Þ \Uð y2Þ 6¼ ; then there is a fibration-preserving symplectomorphism Fy1y2
between the restrictions of the two fibrations to Uð y1Þ \Uð y2Þ; if Uð y1Þ \Uð y2Þ

\Uð y3Þ 6¼ ;, then the map Fy1y2 � Fy2y3 � Fy3y1 (on a restricted fibration over

Uð y1Þ \Uð y2Þ \Uð y3Þ) is isomorphic to identity. A stratified integral affine mani-

fold O equipped with such singularities will be called a formal rough symplectic type,

and denoted by Ôsymp as before.

A natural problem arises: given a formal rough symplectic type Ôsymp, is there any

integrable system roughly symplectically equivalent to it ? A natural way to solve this

problem is via integrable surgery. In this paper, by an integrable surgery, we mean a

surgery of an integrable Hamiltonian system which projects to a surgery on its base

space.

For example, given two integrable systems ðM1;o1;L1Þ!
p1
O1 and ðM2;o2;

L2Þ!
p2
O2 over two subsets O1 and O2 of a space O, such that they are roughly

symplectically equivalent when restricted to the common base space O1 \O2. Does

there exist an integrable system over O1 [O2 which is roughly symplectically equiva-

lent to the above systems when restricted to O1 and O2 ? The answer to this question

may be given in terms of characteristic classes:
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PROPOSITION 4.10. Denote the difference between the Lagrangian classes of the

systems ðM1;o1;L1Þ �!
p1
O1 and ðM2;o2;L2Þ �!

p2
O2 restricted to Q1 \O2 by

mL 2 H
1ðO1 \O2;Z1=RÞ. Then there is an integrable system with the base space

O1 [O2 which is roughly symplectically equivalent to the above two systems when

restricted to O1 and O2 if and only if mL lies in the sum of the images of H
1ðO1;Z1=RÞ

and H1ðO2;Z1=RÞ in H1ðO1 \O2;Z1=RÞ under the restriction maps. In particular, if
ðM1;o1;L1Þ �!

p1
O1 and ðM2;o2;L2Þ �!

p2
O2 are topologically equivalent when

restricted to O1 \O2, then the obstruction to the existence of the required system over

O1 [O2 lies in the quotient of the group H
2ðO1 \O2;RÞ=d̂H1ðO1 \O2;RÞ by the sum

of the images of H 2ðO1;RÞ=d̂H1ðO1;RÞ and H 2ðO2;RÞ=d̂H1ðO2;RÞ under the
restriction maps.

Proof. It is a direct consequence of the results of Subsection 4.5 &

For the case of systems with 2 degrees of freedom we have:

PROPOSITION 4.11. Any formal rough symplectic type Ôsymp with O two-

dimensional is realizable.

Proof. If O is 2-dimensional, then we can always choose O1 \O2 in Proposition

4.10 to be a tubular neighborhood of something one-dimensional, so all the obstruc-

tions vanish. &

Starting with 3 degrees of freedom, there are formal rough symplectic types which

are not realizable, as the following example shows.

EXAMPLE 4.12. A fake base space. Let ðS 2;oÞ be a symplectic 2-sphere, f:S 2! R

a Morse function with 2 maximal points of the same value (¼ 1), 2 minimal points of

the same value ð¼ �1Þ, two saddle points of different values ð¼ $1=2Þ, such that f is

invariant under an involution of S 2 which preserves the symplectic form. Denote the

base space of this integrable system with one degree of freedom by G ¼ Gþ [ G�,

where Gþ (resp., G�) corresponds to the part of the sphere with f5 0 (resp., f4 0).

G is a tree with 5 edges: 2 upper, 2 lower, and one middle. Denote by s the involution
of G which preserves f and the lower edges but interchanges the two upper edges (so

s cannot be lifted to an involution on S 2). Denote by K 2 the Klein bottle with a
standard integral affine structure. We have p1ðK 2Þ ¼ ha; b j abab�1 ¼ 1i. Denote by �K

the double covering of K 2 corresponding to the subgroup of p1ðK2Þ which is gen-
erated by a2 and b (so �K is again a Klein bottle), and denote the involution on �K

corresponding to that double covering also by s. Put O ¼ �K	s G ¼ ð �K	 GÞ=Z2,

with the induced integral affine structure from the direct product. We have

O ¼ Oþ [O�, with O� ¼ �K	s G� ¼ K
2 	 G�, and Oþ ¼ �K	s Gþ a twisted pro-

duct. The spaces O� and Oþ are base spaces of integrable systems induced from the

direct product of the subsystems over G� and Gþ with a system over K̂. These two

systems are roughly equivalent over O0 ¼ Oþ \O� % K
2, but they are not equi-

valent, hence they cannot be glued together to obtain a system over O. More
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precisely, the affine monodromy sheaf over O0 % K
2 in O is R ffi RK 2 �Z where

RK 2 is the affine monodromy of K
2 as an affine manifold itself;

H 2ðO0;RÞ ffi H 2ðK 2;RK2 Þ �H
2ðK2;ZÞ ¼ H 2ðK2;RK2Þ �Z2;

and we have a natural map to the second component: H 2ðO0;RÞ �!
r

Z2. Any sys-

tem over O� will have a Chern class which when restricted to O0 will map to 0 under

the map r, but any system over O� will have a Chern class which when restricted to
O0 will map to the nontrivial element of Z2. hence, those systems can never be glued

together to form a system over O. In other words, O is not realizable.

4.8. Some Examples of Integrable Surgery

EXAMPLE 4.13. Exotic symplectic R2ns. Start with the following two integrable

systems: The first one is given by the moment map F ¼ ðF1; . . . ;FnÞ ¼ ðpx21þ
py21; . . . ; px

2
n þ py2nÞ on the open ball of radius 1 of R2n with coordinates xi; yi and

with the standard metric and symplectic structure (i.e. a harmonic oscillator; here

p ¼ 3:14159 . . .). On the base space O1 of this system, the functions Fi are also
integral affine coordinates of the induced affine structures outside the singularities.

Let O2 be an open n-disk attached to O1 in such a way that O1 [O2 is diffeomorphic

to O1 rel. Singularities of O1, and O1 \O2 is contractible. Extend the functions

F1; . . . ;Fn from O1 to O2 in such a way that dF1 ^ � � � ^ dFn 6¼ 0 everywhere on O2
and there is a point y 2 O2 with F1ð yÞ ¼ � � � ¼ Fnð yÞ ¼ 0. O2 with the integral affine

structure given by the functions Fi is the base space of a unique integrable system

ðM2;o2Þ ! O2. This is our second system. By construction, our two systems can be

glued in a unique natural way into an integrable system living on a symplectic

manifold diffeomorphic to R2n. The preimage of y in this manifold is a Lagrangian

torus, and in fact it is an exact Lagrangian torus (i.e. for any 1-form a such that da is
equal to the symplectic form, the restriction of a on this torus is cohomologous to 0).
On the other hand, a famous result of Gromov [19] says that in the standard sym-

plectic space there can be no smooth closed exact Lagrangian submanifold. Thus our

symplectic space is exotic in the sense that it can not be symplectically embedded to

the standard symplectic space of the same dimension. This example is inspired by a

different example found by Bates and Peschke [4].

EXAMPLE 4.14. Toric manifolds. Consider a Hamiltonian Tn action on a closed

symplectic 2n-dimensional manifold ðM;oÞ, which is free somewhere. ðM;oÞ to-
gether with this torus action may be called a Hamiltonian toric manifold. The regular

(singular) orbits of this Tn action are Lagrangian (isotropic) tori, and they are fibers

of an integrable Hamiltonian system with only elliptic singularities. The base space

of this system is integral-affinely equivalent to a polytope in the Euclidean space Rn,

whose each vertex has exactly n edges and these edges can be moved to the principal

axis of Rn by an integral affine transformation. (This fact follows easily from the

normal form of elliptic singularities given by Eliasson [16] and Dufour and Molino
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[12].) A famous theorem of Delzant [11] says that each polytope satisfying the above

condition on vertices is the base space of a Hamiltonian toric manifold which is

unique up to symplectic equivalence. (These Hamiltonian toric manifolds admit a

Kähler structure which make them toric manifolds in the sense of complex algebraic

geometry.) The uniqueness in Delzant’s theorem is evident from our point of view:

Since R in this case is isomorphic to the constant sheaf Z
n, and the base space is

contractible, there is no room for characteristic classes. The existence is also simple:

one starts from a Lagrangian section, and reconstructs the system (and the ambient

manifold) in a unique way (see [6]).

EXAMPLE 4.15. Twisted Products. We may call a twisted product of two

integrable systems ðM1;o1;L1Þ �!
p1
O1 and ðM2;o2;L2Þ �!

p2
O2 an integrable

system over O1 	O2, which is not topologically equivalent but is roughly sym-

plectically equivalent to the direct product of the two systems, and with the

following property: The Marsden-Weinstein reduction of this system to fyg 	O2
(resp., O1 	 fyg) is symplectically equivalent to ðM1;o1;L1Þ (resp., ðM2;o2;L2Þ
for every point y 2 O1 (resp., y 2 O2). For example, if Mi if Mi are symplectic

tori, with the systems given by Morse functions, then H 2ðO1 	O2;RÞ ¼ Z4 (here

R is the corresponding affine monodromy sheaf, and the formula can be obtained

easily via Meyer-Vietoris sequences), and non-zero elements of this group corre-

sponds to twisted products.

EXAMPLE 4.16. Blow-ups. Blowing-up, one of the main tools in algebraic

geometry, is also useful in symplectic geometry (see, e.g., [20, 27, 28]), as well as in

the study of singularities of integrable Hamiltonian systems (see, e.g., [12]). To blow

up a point in a 2n-dimensional symplectic manifold, one can cut away a symplectic

ball containing this point, and then collapse the sphere which is the boundary of this

ball to CPn�1 by collapsing each characteristic curve on this sphere to a point. Since

a symplectic ball admits a simple natural integrable system, namely the harmonic

oscillator, blowing-up can also be done by integrable surgery: it amounts to cutting

out an appropriate simplex which contains a nondegenerate elliptic fixed point from

the base space. If instead of an elliptic fixed point, we have a stratum in the base

space which is closed and consists of nondegenerate elliptic singular points of con-

stant rank, then cutting the base space by an appropriate ‘hyperplane’ near this

stratum will lead to the symplectic blowing-up along the symplectic submanifold

which is the preimage of this stratum.

EXAMPLE 4.17. Dehn surgery. Consider an integrable system with 2 degrees of

freedom, p: ðM2;o; LÞ ! O, and let D2 2 O be a closed disk lying in the regular

part of O. Cut out the piece p�1ðD2Þ from the system, and then glue it back after

some twisting. This operation may be called an integrable Dehn surgery, in

analogy with the well-known Dehn surgery in low-dimensional topology. It is

easy to see that any two roughly symplectically equivalent systems with two
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degrees of freedom can be transformed to each other by performing Dehn sur-

geries and then adding a magnetic term to the symplectic form.

EXAMPLE 4.18. Hamiltonian Hopf bifurcation. There is a phenomenon called

Hamiltonian Hopf bifurcation, which happens in the Lagrange top and many other

Hamiltonian systems (see, e.g., [29]): under some parameter change (e.g. the energy),

two pairs of purely imaginary eigenvalues (of the reduced linearized system at an

equilibrium) tend to each other, coincide, and then jump out of the imaginary axe to

form a quadruple of complex eigenvalues which is symmetric with respect to both the

real axe and the imaginary axe. One can verify, for example, that a majority of

integrable systems arising from the so called argument shift method on coadjoint

orbits of compact Lie algebras (see, e.g., [31]) exhibit such bifurcations. In terms of

integrable systems, this bifurcation amounts to a (generic) degenerate corank 2

singularity which connects an elliptic-elliptic singularity (i.e. a nondegenerate sin-

gularity of corank 2 which has 2 elliptic components) to a focus-focus singularity in a

1-parameter family. From the integrable surgery point of view, the passage from an

elliptic-elliptic singularity to a focus-focus singularity can be done via a small

surgery, without the need of an 1-parameter family. I will omit the explicit operation

here.

EXAMPLE 4.19. K3, ruled manifolds, etc. It is easy to construct systems with

2 degrees of freedom for which a topological 2-stratum C of the base space is of any

of the allowed cases listed in Proposition 3.3. The most interesting case is S 2. The

sphere S 2 admits an integral affine structure with 24 singular points of focus-focus

type, which may be constructed as follows: Start with an integral affine triangle

(= base space of CP2 under a Hamiltonian torus action). Cut from this triangle 3

small homothetic triangles, each lying on one edge. Gluing together the pairs of

small edges that arise after we cut out the small triangles, we obtain a triangle with

an integral affine structure with 3 singular points of focus-focus type. We can glue 8

copies of this new triangle together to obtain a sphere with 24 focus-focus points.

Proposition 4.11 shows that this S 2 is the base space of some integrable Hamiltonian

system with 24 simple focus-focus singularities. Topologically, it is a torus fibration

over S 2 with 24 singular fibers of type Iþ in the sense of Matsumoto, and the ambient

space is diffeomorphic to a K3 surface (see [26] and references therein). We can also

go the other way around (less explicitly): start with a holomorphic integrable system

on a K3 surface (see [24]). Forgetting about the complex structure and taking the real

part of the complex symplectic form, we get an integrable system with 2 degrees of

freedom whose base space is homeomorphic to S 2. Similarly, we can construct a

system whose base space is homeomorphic to RP2, with 12 focus-focus singular

points. The ambient manifold will be diffeomorphic to an Enriquez surface.

Assume now that the base space has no focus-focus singular point and is diffeo-

morphic to the direct product of a graph or a circle with a closed interval (the affine
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structure on O needs not be a direct product). The ambient manifold of integrable

systems with such an orbit space O are rational and ruled manifolds in the sense

of McDuff (see e.g. [27, 28]), which are analogs of complex ruled surfaces (see,

e.g., [3]). It can be shown easily that in this case, as in the case of S 2 with 24

focus-focus points, we have H 2ðO;RÞ ¼ 0 (for any realizable affine structure on
O). If O is a product of 2 graphs which are not trees, then there will be many topo-

logically non-equivalent integrable systems over O, because H 2ðO;RÞ 6¼ 0, etc.
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