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Abstract. One-to-one correspondences are established between the set of all nondegenerate graded
Jacobi operators of degree — 1 defined on the graded algebra (M) of differential forms on asmooth,
oriented, Riemannian manifold M, the space of bundle isomorphisms L: T'M —T M, and the space
of nondegenerate derivations of degree 1 having null square. Derivations with this property, and
Jacobi structures of odd Z,-degree are also studied through the action of the automorphism group of
Q(M).

Key words: differential forms, graded Poisson brackets, graded symplectic forms, Jacobi structures

Introduction

Let M be a smooth manifold, and let (M) be its graded algebra of differential
forms. In this note we center our attention on the graded differential operators D of
order < 2 acting on (M), that define a graded Poisson structure on this algebra
through the bracket they generate in the sense of [Kz]. These are called graded
Jacobi operators. A Jacobi operator is nondegenerate if its corresponding Poisson
structure is nondegenerate. We determine here all the nondegenerate Jacobi oper-
ators of degree —1 by establishing a one-to-one correspondence between them,
and bundleisomorphisms L: T M —T M (Thm. 2.3). Thisis donethrough aninter-
esting duality defined, amongst the differential operators on 2(M), by the Hodge
operator associated to a Riemannian metric (Thm. 1.4). As a by-product, a rela-
tionship is established between graded Jacobi operatorsand differentialson Q (M );
that is, derivations whose square is zero (Thms. 1.8, and 2.2). We also describe
all the nondegenerate differentials, and all the nondegenerate Jacobi operators of
odd Z,-degree in terms of the action of the automorphism group of the algebra
Q(M) (Thm. 3.4): It is shown that the former are obtained as ¢ o d o ¢~ (Prop.
2.4), whereas the latter as ¢ o ¢ o o~ (Prop. 3.1), where ¢ is an automorphism of
Q(M) restricting to the identity on C>° (M) = Q°(M), and § is the codifferential
associated to a given Riemannian metric. We exhibit two main families of non-
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degenerate graded Jacobi operators parametrized respectively by nondegenerate
bivectors, and by Riemannian metrics on M (Prop. 4.3). We finally compute the
Hamiltonian vector fields associated to the generators of the algebra (M) for
these families of examples (Prop. 4.4).

1. Graded Jacobi operatorson Q(M)

Let M be a smooth manifold of dimension n, and let Q(M) = @}_o Q¥ (M) be
its Z-graded algebra of differential forms. An R-linear operator D: Q(M)—Q (M)
is said to be of degree |D| if D(a) € QFHIPI(M), for al o € QF(M). It is not
difficult to see that EndQ(M) = @7_ ,, End* Q(M), where End* Q(M) is the
subspaceof linear operatorsof degreek. Let F' and G betwo linear operatorshaving
degrees |F'|, and |G|, respectively. Their graded commutator is the linear operator
defined by [F,G] = F o G — (—1)/1I¢1G o F. A linear operator D € EndQ(M)
is a differential operator of order O if for any o € Q(M), [D, o] = 0, where
te € EndQ (M) denotes the linear operator of left multiplication by «. Note that
a € QF(M) definesvia ., adifferential operator of degree £ and order 0, and all
such operators are precisely of this form. Now D € EndQ(M) is a differential
operator of order < r, iff for each o € Q(M), [D, uy] is a differential operator
of order < r — 1. We shdll write [D, «] instead of [D, 11,] When no confusion
may arise. We shall denote by DF (M) the set of al differential operators of order
< r which have degree k. We shall also refer ourselvesto the Z,-graded structures
of both, the algebra Q(M), and the Q(M)-submodules ¥, DE(M). These are
naturally inherited from their corresponding Z-gradings. Wefix the convention that
a reference to an element of ‘odd degree’ is to be understood with respect to its
inherited Z,-graded structure: Therefore, it will be a sum of elements of every
possible odd Z-degree, unless stated otherwise.

DEFINITION 1. ([KZ]). Let D be a differential operator of order < 2, of odd
degree, and such that D(1) = 0. The bracket on (M) generated by D is:

[, Bl = (1)l (D(a A B) = D(a) A B = (=1)*la A D(B)).

Remark. Let D and D’ be two differential operators of order < 2, and odd
degree, with D(1) = D’(1) = 0. Itiseasy to seethat [,]p = [, ]p if and only
if D— D' € Dj(M); that is, if and only if they differ by some derivation. This
defines an equivalence class of operators. In this work we shall only be interested
in the equivalence classes obtained in this manner. A referenceto the ‘ equivalence
classes of operators', shall always mean these equivalence classes.

From the work in [Gr] on abstract Jacobi structures we adopt the following
terminology (we refer the reader to [BM 2] for the basics on graded Poisson struc-
tures):

DEFINITION 2. Let D be a differential operator of order < 2 and odd degree,
such that D(1) = 0. D is agraded Jacobi operator if its associated bracket, [, ] p,
is agraded Poisson bracket on Q(M).
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The first step in understanding the structure of graded Jacobi operators is the
following characterization given by Koszul

PROPOSITION 3. ([KZ]). Let D be a differential operator of order < 2, of odd
degree, and such that D(1) = 0. Then D is a graded Jacobi operator if and only
if D> = D o D isin fact a differential operator of order < 2.

Remark. Observe that D (M) = % (U, DE(M)) hasthe structure of an asso-
ciative R-algebra, and also the structure of a (left) Q2(A)-module. Both structures
arefiltered by the order and graded by the degree. The graded commutator satisfies,

[DE(M), DE(M)] € DEFE (M),

Note that a differential operator D like in the proposition above, satisfies D? =
%[D, D], and it is, in general, a differential operator of order < 3. This explains
the strength of Proposition 3, and the methods of this paper provide a criterion for
deciding whether or not D? € D, ?(M) when D € D, *(M). Thisis possible by
letting Riemannian metrics comeinto the description of differential operators; afact
that was already used in [BM 1] to obtain a decomposition theorem for operatorsin
D, L(M). Here we exploit the duality relationship between differential operators
of different orders and degrees established by the Hodge operator. This however,
requires the manifold M to be orientable. The precise statement is the following

THEOREM 4. Let M be an oriented Riemannian manifold of dimension n, and
let x € EndQ2(M) be the Hodge operator defined by the Riemannian metric g on
M.Themap D+ D, where D = (—1)@~F=Dk/24=1 oD o x|, ), restrictsto
a one-to-one correspondence between D (M), and D, fT(M )forall k+r>0.

Proof. Since x maps Qf(M) into Q™ *(M), it is easy to check directly that
the degree of the operator D is —k, whenever the degree of D is k. The nontrivial
assertion is that the order of D is < k + r when D is of order < r. This, however,
can be proved by induction on r + k. The actual source of the induction processis
found in the following Lemma. In the course of its proof, use is made of the fact
that any differential operator of order r and degree —r on (M) is uniquely of the
form i for some Q € I'(A"T'M); that is, it is given by total contraction against
Q. Indeed: Let D € D;"(M) (r > 1). Then, [D, f] = Oforany f € C®(M),
and D(B) = Ofordl g € Q°(M), with 0 < s < r — 1. In particular, D is
tensorial and it is completely determined by its value on r-forms. Let o« € Q" (M).
Since the elements of D (M) are local operators, the map o +— D(a) € QO(M)
defines a unique Q € I'(A"T'M), such that D(«) = iga. (The notation i¢ is
explained as follows: Let I'(T'M) be the C'°° (M )-module of vector fields on M.
Each X € I'(T'M) defines a differential operator of order 1 and degree —1 on
Q(M); namely, the contraction ix against X. Thefact that ix o ix = Oyieldsa
unique C*°(M)-linear extensionof ¢ toI'(AT' M), and i x; r..nx, = ix,0 - 0 iX,,
on generators).
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LEMMAGS. Let « € End2(M) be the Hodge operator defined by a given
Riemannian metric g onthe oriented nn-dimensional manifold M. Let u,, € D3(M),
and ix € Dy L(M) be the differential operators defined by multiplication by
a € QY(M), and contraction against X € I'(T'M), respectively. Then,

(="t o 0 ¥orar) = dgria)y  (—DF # Hoix o xlgran = g (x)s

where g: I'(T*M)—T'(TM), and ¢”: I'(TM)—T(T* M) are the natural isomor-
phisms associated to g.

Proof of the Lemma. Let v, € Q" (M) be the volume form associated to the
Riemannian metric g. Let 8 be a k-form. By definition, the Hodge operator on
Q(M) isgivenby 3 = (—1)kk=1/2;5 1, where iz is defined through the metric
g1 on Q(M), via g’l(iﬂ n,€) = (—1)k(k’l)/2g’l(77,,u,g €), and * fixed by the
property, xv, = 1. Since, g7} (e, ¢’ (X)) = a(X) = ix a = g(g*(e), X) for
any 1-form «, and vector field X, and since g~ is defined on (M) through a
determinant, one verifies in a straightforward fashion that themap n — i, nisa
derivation of degree — 1, whenever o € Q(M), andthatitisactually equal T
Since ¢! and ¢® areextendedto I'(AT* M) —T (AT M), and ' (AT M) —T(AT* M)
asalgebraisomorphisms, it alsofollowsthatig = i) € Dk‘k(M) for any k-form
prandthat iy gy = (~1)FED2g( g4 (8), g (v) ) for any 5, andy € QF(M).

We now compute the commutator [«,i]. This is a differential operator of
degree —(k — 1) and order < k£ — 1. Therefore, it is of the form ig, where ) isa
muitivector of degree k — 1. We claim that Q = ¢*(ia ) (= ¢ (ig() B))- In fact,
@ is completely determined by the value of [, i3] onak — 1 form+, but,

lavigly = =(=D¥igla Ay) = =(=1)Figs) (@ A7)
= — (=) EEDR (gt 8, gF (o A y))
= —(=D)FFI 2072 0 (8), )

= —(=1)kk+D/2g (4 (gt () (B) ) 9())

= (YD D ) ()

k2 —k+1;
= (=D "G, ) ()

Ug8(i 3 0 (8) (7>
which proves our claim. Finally,

+Loaox(B) = (DFE D2 Toao ig (i)

= (~D)FEY2 4 ofa, ig] (v)
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_ (_1)]6(]671)/2 *71 o igﬂ(z’gﬂ(a)(ﬂ)) (Vg)

= (=1 iz (o) (B)-

Thus, (—1)% 1+ oa o #|qr ) = igt(q)- The second assertion is now a conse-
guence of this one, and the well known formulae for « o « (cf, [Lh]). O

We may now conclude the proof of Theorem 4: The first step in the induction
process corresponds to k£ + r = 0, since the degree k of a differential operator is
always greater than or equal to —r; r being the order. Now, use the fact that any
differential operator of order < » and degree —r isgiven by total contraction against
some r-vector, Q € I'(A"T'M). Then, the lemma implies that conjugation of the
operator i by the Hodge operator yields, up to asign, the operator of multiplication
by the r-form ¢’ (Q). Therefore, D € D, " (M), doesimply, D € D§(M), where
D = (—1)@+r=Dr/24=10 D o x| (1) (Similarly, thelemmaimpliesthat for any
a € (M), we have (—1)En=PH=D2 o0 0 472 g1y = dgsg).

Now, let s be a natural number greater than 0. We suppose by induction
that the following statement holds true: If D € DF(M), with k& + r < s then,
D € D, (M). Let D € DF(M) withk +r = s + 1. We clam that [D, o] €
Dﬁ;’fwfl(M), whenever o € QY(M). Indeed, this commutator is equal (up to a
sign) to + 1 o [D,ig:(4)] o *, Since, acting on Q7 (M),

1D, o

(_1)(2p_k_l+2£)k/2(*_l oDosoa—qao*x *ToDo %)

(~)@HFHEDEO/2( L6 Doy 0% — (~1)%F x Loi, 0 Do)

= (=) @AHEDE=O2 470D iy (] 0 %.
Now, i, belongs to D;(M). This implies that, [D, iy )] € DEf_y(M).
Applying now theinduction hypothesis(as, (k—¥¢)+ (r+£4—1) = k+r—1= s),
weconcludethat [D, i ] isadifferential operator of order < k+r—1anddegree

¢~ k. Therefore, [D, o] € Dy *_, (M) asclaimed. Whence, D € D, (M) which

follows from the definition of the order of a differential operator. O

Remark. Theduality established in the Theorem 4 between differential operators
makes D; "~ (M) to correspond in a one-to-one fashion with D;~1(M). In
particular, the well-known decomposition theorem for derivations of degree &
(Thm. 6, below) givesrise—viaconjugation by « —to adecomposition theorem for
differential operators of order < 1+ & and degree —k. We recall that D; (M) =
Y)>-1D% (M) is agraded Lie submodule of D} (M) (since, [D¥ (M), D{(M)] C
DYTY(M) ), and that D} (M) ~ Der Q(M) & Q(M) (indeed: given D € Df (M),
for any homogeneous «, and 5 in Q(M), one has [[D, ], 5] = 0. Using this, it
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easly follows that D — D(1) € Der Q(M). The summand (M) in D (M) is
precisely D§(M)).

THEOREM 6. ([FN]). Let Der* Q (M) be the subspace of End* Q(M) consisting
of derivations of degree k (k > —1). For each D € Der* Q(M) there exist unique
TM-valued forms K € QF¥1(M; TM), and L € QF(M;TM), such that, D =
ix +[ir,d].

Remark. One observation to be made from thisdecompositionisthat the operator
[i,, d] isnot tensorial, anditiscompletely characterized by thefact that it commutes
with d; i.e., [[i,d],d] = 0. We adhere ourselves to the now standard notation
Ly, for the derivation [iz,d] (the generalized Lie derivative with respect to L €
Q(M;TM)), and cal it the nontensorial part of D.

The next result follows now as an easy consequence of Theorems 4 and 6.

PROPOSITION 7. There exists a one-to-one cor respondence,

Equiv. Classes Data:
of Operatorsin 3 +— { K € Q?(M;TM)
DN M) LeQYM;TM)

Infact, given D € D, (M), thereexistuniqueT M -valuedforms K € Q?(M; T M),
and L € QY(M;TM) ~ I'(EndT M), such that,

D= (-1)"P(xoigox L4x0Ly0 *71)|QP(M) (mod Der1Q(M)).

Proof. From Theorem 6, and the remark immediately above it, we see that a
differential operator from D1 (M) canbeuniquely writtenintheformi i + L1, + 14
Theorem4 says that an isomorphism is established between D} (M) and D5 (M)
upon conjugation by *. Therefore, for each D € D5 L(M), there exist unique
K e Q(M;TM),L € QY(M;TM),and o € Q(M), suchthat, (—1)? ¥ 1oDo
*lop(v) = ik + L1 + fia O

We are now in position of determining when does an operator D € Dy (M) has
the property of being Jacobi. Note that,

D2 = —( * O (’LK + ﬁL + H,a) [¢] *_1)2|QP(M)
= —xo(ig + L1)?0 *71|QP(M) (mod Dy %(M)),

whereas,

—(*7to Do x)?quar) = (ix + ££)?  (modD§(M)).
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THEOREM 8. Under the correspondence of Proposition7, the differential oper-
ator D € DyY(M) is a graded Jacobi operator if and only if the derivation
ix + L, € Der!Q(M) it comesfrom, has null square.

Proof. Supose D € D; (M) is Jacobi. Then, D? € D;%(M) implies — 1
oDZox|gn(rr) € D§(M). Therefore, (ix +L)? € D§(M) must be (multiplication
by) a2-form. But (i +£,)? isaderivation, sinceitisequal to 3[ix + L, ix +L1]-
Therefore, (i + £1)? = 0. The converseis trivial. O

2. Relationship with differentials of (M)

This section collects some properties of nondegenerate differentials defined on
Q(M) and their relationship with nondegenerategraded Jacobi operators. Themain
conclusion to be drawn is that there exist one-to-one correspondences between
nondegenerate graded Jacobi operators, bundle isomorphisms TM—T M, and
nondegenerate differentials of Q(M).

DEFINITION 1. An odd derivation D, with no component of Z-degree —1, isa
nondegenerate differential of Q(M) if D? = 0, and for any coordinate system
(U, {z'}) the system of differential forms { Dx'} generates Q(U).

Our next result characterizes the nondegenerate differentials of (M) having
Z-degreel:

THEOREM 2. Thereis a one-to-one correspondence between nondegenerate dif-
ferentials of Z-degree 1 and bundle isomorphisms L: TM—T M.

Proof. Given a bundle isomorphism L: TM—T M, we consider L*: T*M—
T*M, and its extension to an algebra isomorphism Q(M)—Q(M) (still denoted
by L*). The conjugation L* o d o (L*)~* of the exterior differential is clearly a
nondegenerate differential of Z-degree 1. We now show that this correspondence
is one-to-one. The injectivity is obvious. To prove the surjectivity, let D be any
nondegenerate differential of Z-degree 1, and writeitintheform D = ix + L,
where, K € Q?(M;TM), and L € QYM;TM). The nondegeneracy of the
differential impliesthat L defines a bundleisomorphism. Use thisisomorphism to
get L* odo (L*)~1. Notethat the derivation D — L* o d o (L*)~! actson smooth
functions as zero: Indeed,

(D~ L*odo (L)Y f = L(f) — L*(df) = df o L — L*(df) = O.
This now implies that (D — L* od o (L*)~Y)(Df) = Ofor any f € Q°(M) =
C>®(M). Since D is nondegenerate, it follows that D — L* o do (L*)~* vanishes

on generators of Q(U) for any open coordinate neighborhood U . Since derivations
arelocal operators, we concludethat D = L* o do (L*)~1. O
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Remark. Note that the derivation L* o d o (L*) ™%, according to the Frolicher—
Nijenhuis decomposition, isgivenby: L* odo (L*) ™' = L +i_ (12110, 1] x »
where [L, L]y stands for the Frolicher—Nijenhuis bracket of L with itself (cf.
[FN]). Thisfollows, since the value of L* o d o (L*)~! on asmooth function f is
L*(df) = L, f. Thus, writing the differential asix + £, one may easily obtain
the conditions needed to satisfy (ix + £1)2 = O: They are,

%[L,L]FN +ixgL =0 and,

(a) )
[LaK]FN + ?[Ka K]RN = 07

wherenow [K, K]y standsfor the Richardson—Nijenhuisbracket of K with itself
(cf. [NR]). Now, when L € QY(M;TM) ~ I'(EndT M) isabundleisomorphism,
thefirst equation fully determines K as,

K(X,Y) = —3L7Y([L,L]¢n(X,Y))
= —L YLX,LY]+[LX,Y]+ [X,LY] - LIX,Y],
and, the second equation in (a) awaysholdsfor sucha K.

Asit was mentioned in theintroduction, agraded Jacobi operator D € D, *(M)
is nondegenerate whenever the graded Poisson structure it defines on (M) is
nondegenerate. In view of thisremark, Proposition 1.7, and Theorem 2 above, we
may now conclude the following

THEOREM 3. There exists a one-to-one correspondence between (equivalence
classes of) nondegenerate graded Jacobi operators D of degree —1, and bundle
isomorphisms, L: TM—TM.

In the following section we shall indicate how an alternative proof of this fact
may be obtained. We shall close this section, however, by looking at the action of
the automorphism group of the algebra (M) on the nondegenerate differentials
of odd degree

PROPOSITION 4. Let D be a nondegenerate differential of (2(1/) of odd degree.
Then, there exists an algebra isomorphism ¢ € Aut (M), that restricts to the
identity on C>®°(M) = QO(M), and suchthat D = podo oL,

Proof. The derivation D can be uniquely written as Dy + D3, where Dy
is a derivation of degree 1 and D3 = D — Dj. Condition D? = 0 implies
D? = 0. Nondegeneracy of D implies nondegeneracy of D;. Therefore Dy is a
nondegenerate differential of (M) of degree 1 and then D; = L} odo (L})71,
where L; € QY(M; T M) is an isomorphism. Note that the composition (L3) 1 o
D o L7 isaderivation of theform d + D3 + D5, and its square is zero. Also note
that D3 satisfies [d, D3] = 0. Therefore, D3 is aderivation of the form £, where
Lz € Q3(M;TM). Now, it is easy to check that exp(—iy,) o (d + D3 + Dss) o
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exp(ir;) = d+ Ds + D 7. By repeating this process we get, after afinite number
of steps, that if p = exp(iy,) o - -- o exp(ir,) o L}, thenpodo 1 = D. O

3. Jacobi operatorsunder the action of Aut (M)

Theaim of this sectionisto complete our description of the graded Jacobi operators
by proving the following analog of Proposition 2.4.

PROPOSITION 1. Let M be an oriented Riemannian manifold, and let g be its
metric tensor. Let « be the Hodge operator associatedto g, and let 0 = (—1)" 7
odox1| ar () beitscorresponding codifferential operator. Given a nondegenerate
graded Jacobi operator D, there exists an automorphism ¢ of the algebra Q (M),
such that ¢ restricts to the identity on Q0(M) = C°(M),and D = g o §o p 1
(mod Der Q(M)).

The proof of this result makes use of some graded-geometry techniques. Since
nondegenerate Jacobi operators come from nondegenerate graded Poisson brackets
of odd degree, which in turn come from graded symplectic forms on (M) of odd
degree, the problem can be traced down to the structure of the latter. This was
understood in [BM2] by looking first at the graded symplectic structures of Z-
degree +1 (i.e., graded Poisson brackets of 7 -degree —1), and studying afterwards
their orbits under the Z,-graded automorphisms of the algebra (M)

PROPOSITION 2. ([BM2: Prop. 3.3 and Cor. 3.4]). There is a one-to-one corre-
spondence between graded symplectic forms of Z-degree +1 and bundle isomor-
phismsL: T*M—TM.

Remark. Note how our previous Theorem 2.3 can al so berecovered asacorollary
of thisresult, with L = L o ¢’. A few more comments about this Proposition arein
order: First of all, graded symplectic forms of odd degree on §2(M) are necessarily
exact. Thisisaconsequence of the fact that the cohnomology defined by the graded
exterior differential isisomorphic to the conomology of the base manifold. It isin
this way that a bijective correspondence is set between graded symplectic forms
on (M) of degree +1, and bundle isomorphisms L: 7" M—TM: Any graded
symplectic form of Z-degree +1 can be written as w,. = d“)\_, where \_ is the
graded 1-form of degree +1 defined by the linear isomorphism L: T*M—TM
(that graded 1-forms of degree +1 are in one-to-one correspondence with bundle
isomorphismsT* M —T M, is easy). The Z,-graded description is then compl eted
by looking at the orbits through the graded symplectic form w_, under the action
of the group of Z,-graded algebra automorphisms of Q (M)

PROPOSITION 3. ([BM2]). Any graded symplectic form on (M) of odd Zo-
degreeisof theform ¢* (wy_ ), where ¢ is an automor phismthat inducesthe identity
on M.
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Thus, any nondegenerate graded Poisson structure (resp., Jacobi operator) of
odd Z,-degree is reached from a graded Poisson structure (resp., Jacobi operator)
of Z-degree —1, by the corresponding action of Aut (M ). Therefore we conclude
the following

THEOREM 4. Any nondegenerate graded Jacobi operator is the conjugation by
an automorphism of (M) that induces the identity on M, of a nondegenerate
graded Jacobi operator of degree —1.

Proof. Let D be a nondegenerate graded Jacobi operator. Its nondegenerate
odd Poisson bracket is associated to an odd graded symplectic form wp, whichis
of the form ¢*(w ), and wy_ is the graded symplectic form of Z-degree 1 defined
by alinear isomorphism L: T M —T M ¢ being an automorphism of (M) that
induces the identity on M. Let D _; be the graded Jacobi operator of degree —1
correspondingto L = L o ¢*. Then, it iseasy to check that D = po D_j0 ™1
and,

[[O‘v/g]]D = W([[W_l(a)vw_l(/g)]]D_l)' o

We may now give the proof of Proposition 1

Proof of Proposition 1. According to Theorem 4, there exists an automorphism
@ of Q(M), restricting to the identity on Q°(M), suchthat, o 1o Doy = D_1is
agraded Jacobi operator of degree —1. By Theorem 2.3 its class defines a unique
bundleisomorphism L: M —T M. By Theorem 2.2, the operator L* o do (L*)~1
isanondegeneratedifferential of Q(M),and D_3 = (—1)" PxoL*odo (L*)"to
+~Y|gp (1), by Theorem 1.4. We may then consider theisomorphism L* : Q(M) —
Q(M) defined by meansof L* = o L* o +~ 1, so that,

D =¢poD_j0 90_1 =@po((=1)"PxoL*odo (L*)_l o *_1|QP(M)) ) (p_l
= poL*odo (E*)_logo_l.
Whence, D = ¢/odoy’ ~*, where, ¢’ = poL*,andd = (—1)" Pxodox g (pr). O

4. Main examples of Jacobi operators

From[Kz], and [BM 1], we know that agood source of nondegenerate graded Jacobi
operators is found amongst the nondegenerate Poisson bivectors P € T'(A2T'M);
namely, such a P yields the Jacobi operator D = Lp € D5 1(M). To exhibit this
family of general exampleswe need to recall the following alternative decomposi-
tion for differential operatorsfrom D, *(M).

PROPOSITION 1. Let M be an oriented Riemannian manifold, and let g be its
metric tensor. Let x be the Hodge operator associated to g, and let § be its cor-
responding codifferential operator. If D € D5 1(M) is a differential operator on
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Q(M), thenthereexist uniquesections P € T'(A’TM),Q € T9Y™T*M T M),
C eT(T*M ® A>’TM), and X € T(T'M), suchthat,

D:£p+5Q+’ic+ix,

wheredg = [ig, d], and I'"Y™(T* M ® T M) isthe space of T'M -valued 1-forms
Q satisfying g(Q(X),Y) = g(X, Q(Y)).

Proof. Forany f € C®(M),[D, f] € Dy *(M);i.e.,itis, aderivation of degree
—1.Thus, [D, f] = iy, for somevectorfield Hy € I'(T'M) dependingon f. Infact,
it dependsondf becausethemap C>(M) > f — Hy € I'(T'M ) iseasily seentobe
aderivation; i.e., Hy, = fHjy+hHj. Thisfollowsby applying [[[D, f], h], o] = 0,
for any « € Q(M), and any f,h € Q°(M), as D € Dy*(M). So we write
Hy = Hy, andthemap I'(T* M) > df — Hy € I'(TM) definesasection L ;, €
I(TM © TM), by letting L, (df; dh) = df (Hg). Conversely, each section L €
[(TM ® TM) uniquely definesa C*(M)-linear map HL:T'(T*M)—T(TM),
through Hj = L(df; ), where L(df; )h = L(df;dh).

Nowgiven L € I'(T'M ® T M), wemay decomposeitintheform L = L,+ L,
where L, € TI'(S?TM), and L, € I'(A>TM). Now, L, is used to construct
a g-symmetric endomorphism @) = Lg-‘” € I'(EndT'M), for a given Riemannian
metric g, by letting a (L (X)) = Ly(g(X, ); ), for any 1-forma. It followsthat
g(L¥(X),Y) = g(X, L\ (Y')). Now consider the operator D' = D—Lr,~0, ),
where L1, = [ir,,d], and 6ng) = [ing>,6] for the codifferential operato? J

associated to g. Thus, P = L,, and Q = L{Y). A straightforward computation
shows that D' is C°°(M)-linear, so it is uniquely of the form i + ix for some
C eT(T*M ® A>’TM), andsome X € T'(T'M). O

Given an isomorphism L: TM—T M, and a Riemannian metric g on M as
in Section 1, we shall write L = L o ¢*: T*M—T M. Since, each Jacobi operator
D € D, (M) definesaPoissonbracket [ , | p on (M) of degree —1, wemay now
relate our results in Section2 and Section 3, with the Poisson brackets previously
studied in [BM2] (see also [Kr]). We therefore start with the following

DEFINITION 2. Let L: AT*M— AT M be the algebra isomorphism defined by
the universal extension of the bundle isomorphism L : T*M—T M. The Poisson
bracket of degree —1on Q(M), [, ], associated to L is defined by,

[er, Bl = —L7H([L (@), L(B)]sn),

fora, 8 € Q(M). Here [, ]|sn, denotes the Schouten-Nijenhuis bracket on multi-
VEctors.

To further explicit the correspondence between the isomorphismsL and graded
Jacobi operators D of degree —1, we compare the brackets [, J. and [, ]p. In
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particular, from Definition 2 above we may compute its value on functions and on
exact 1-forms

Lf,h]L =0, [df, h]L = —dh(L(df)),
[df,dnr]L = —L~Y([L df,L dn]),

for f,h € C°°(M). These fromulae completely determine [ , ]J. on ©2(M). On
the other hand, Definition 1.2 yields:

[f,hlp =0,
[df, hlp = —D(hdf) + hD(df),
[of, dh]» = —(D(df A dh) — D(df)dh + D(dh) df),

for f,h € C*°(M). Now, to establish the desired correspondence note that the
following formula completely determines L when D isknown

L(df; dh) = df(L(dh)) = [f, dh]. = [, Al
— D(fdh) - fD(dh) = D, f](dh).

Thatis, Hy = L*(df) = df o L isthe unique vector field such that iy = D, f]
(seethe proof of Prop. 1 above). Conversely, if L isalinear isomorphism, then the
corresponding differential operator of degree —1 and order < 2 is determined by
the following conditions: First, for any smooth function f,

(b) [D,f1=1f 1o =f, I = iL=ap)-

This determines the nontensorial part of D, and therefore, its value on 1-forms
(see the proof of Prop. 1 above). The value of D on 2-forms is determined by the
formula

—(D(df Adh) — D(df) dh + D(dh) df)
() =I[df,dnlp
= [df,dh]L = —L~Y([L df,L dh]).

Now, it is very easy to check that the bracket generated by D isin fact the graded
Poisson bracket that L defines because they agree on generators.

SinceanisomorphismL:T*M—T M definesatensor field L € I'(TM T M),
we may now obtain two main classes of nondegenerate graded Jacobi operators:
those associated to linear isomorphisms T M —T M coming from symmetric ten-
sor fields g € I'(S?TM); i.e., Riemannian metrics on M, and those coming from
skew-symmetric tensor fields P € I'(A?T'M); i.e., nondegenerate bivectors (not
necessarily Poisson bivectors!). We shall denote by P: T M —T M the linear iso-
morphism corresponding to P.
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PROPOSITION 3. Under the correspondence between nondegenerate graded
Jacobi operators of degree —1 and linear isomorphismsT* M —T M, we have:

(1) A Riemannian metric ¢ € I'(S?T'M) corresponds to the Jacobi operator
— 09, where ¢ is the codifferential associated to g.

(2) A nondegenerate bivector P € T'(A?T'M) corresponds to the Jacobi oper-
ator Lp + ic, whereC' € T'(T* M ® A>T M) is determined by the condition

[P, Plsy = —=2C(P; ).

Proof. (1) According to Proposition1, asymmetrictensor L € I'(TM @ T M)
givesriseto adifferential operator of theform D = 6 + i for some Riemannian
metric g and ag-symmetrictensor Q € I'(T*M ® T M) ~ I'(End T'M). Infact, D
and L arerelated by [D, f] = i -4, Where, L(c, ) = a(Lg) for o, 8 € QY(M).
Since L is symmetric and nondegenerate, it defines a Riemannian metric. So
we choose ¢ so that L(a, 8) = g~ *(«,5). Now, Proposition1 says that @ is
defined through «(Q(X)) = L(g(X, ),«). So, our choice of g immediately
implies Q(X) = X. That is, g = dig = [iid,67]. In particular, the value of
D = [iyg, 09] + ic on exact 1-formsis

D(df) = [ing, 0°](df) + ic(df) = —0%(df),

where we have used the fact that i (df) = 0, i1q(df) = df, and i,q(k) = O for any
smooth functions f, and /. On the other hand, using egn. (c) above, we know what
the value of D on 2-formsdf A dh hasto be

D(df Adh) = D(df)dh — df D(dh) + L~2([L df, L dh])
= —0%(df) dh + df 8% (dh) + ¢’ ([g* (df), g (d)])
= —69(df Adh),

wherein the last step we have used the formula (see for example [Va)):
(d) 0%(anpf)=0d%a) AB+ (=DPand?(B) — g (g, ¢"Blsn),

for a € QP(M). We therefore conclude that, D = —§9 since they both coincide
on 1-forms and 2-forms, thus proving (1).

(2) Similarly, skew-symmetric tensorsproducedifferential operatorsof theform
D = Lp+ic for somebivector P, and some A2T M -valued 1-form C. The graded
Poisson bracket associated to D is determined by

[[flv fZ]]D = 07 [[dflu fZ]]D = P(df27dfl)7
[[flvde]]D = P(df27dfl)7 [[dflu de]]D = dP(df27 dfl) - C( ;df27df1)7
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for f1, f2 € C*°(M). Let us suposse that D is Jacobi. Then it comes from the
linear isomorphism L determined by (b). Then,

[f1. df2]p = df2P(df1) = P(df2,df1) = df1(—P(df2) ) = [f1,df2]-p,
and it followsthat L = —P. In particular, P is nondegenerate. Also note that
(e) dP(df2,df1) — C( ;df2,df1) = P~X([Pdf1, Pdfz]).

Both sides are differential forms of degree 1. Computing their value on a vector
field of the form P(df3), we obtain the desired condition

[P, Plsn (dfs, df1, df2) = —2C(Pdfs; df1, df2).

On the other hand, if P is a skew-symmetric, nondegenerate section of A2TM,
and,

[Pv P]SN(df37 dflvde) = —ZC(Pdfg, dflvde)

for al smooth functions f1, f2, f3, then [, |p = [, ]-p, because both brackets
yield the same value on generators. Therefore, [ , ]| p isagraded Poisson bracket,
since[, ]-pis; whence D isagraded Jacobi operator. O

Thefollowing proposition now computes some Hamiltonian graded vector fields
associated to the graded Poisson brackets of our main examples of graded Jacobi
operators. Note that it sufficesto compute Hamiltonian fieldsfor O-forms and exact
1-forms, since any other Hamiltonian graded vector field may then be computed
using the graded derivation property of the Poisson bracket [ , | p.

PROPOSITION 4. Let D be a nondegenerate graded Jacobi operator of degree
-1

(1) If D isof theform Lp + i for somebivector P, and C'isits corresponding
A2T M -valued 1-form, then,

[[fa ]]D = Z.l:’dfa [[df7 ]]D = ‘def - ZC( 7 odf)

for any f € C°°(M). Moreover, if Q is the differential 2-form associated to the
nondegenerate bivector P, then,

[[Qv ]]D =d+ 257
whereC' € Q(M; T M) isdefinedby C (X, Y; a) = 1 [P, Plsn (P71X, P71Y, ),

for X,Y € I'(TM) and o € Q}(M).
(2) If D isof the form —49 for some Riemannian metric g, then,

L, Ip = ige(qp), [df, Ip = —Lyz(gp) + Ga(er)

where g(df) € QY(M; TM) ~ T'(EndT M) is the T M-valued 1-form defined by
the map T M —T M, which is the composition of the map T'M —T* M, given by
X = (Lyiar) 9)( , X), and themap g*: T*M—T M.
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Proof. A direct consequence of the fact that the operator D is Jacobi of degree
—1,isthat [, ]p isinfact aderivation of degree k — 1 whenever o« € QF(M). In
particular, we shall use this formulainthe casesa = f € Q°(M), and o = df €
QY(M).Inany case [, ]p = [, ]u for the linear isomorphism L corresponding
to D, asit was shown in the proof of Proposition3. Thus, [f, ]. isaderivation of
degree —1 (of the form iy, for some X; € I'(1'M)), which will be completely
determined by its value on exact 1-forms

(f1) [f, IL(dh) = [f,dh]L = —[f,L dh]sn = (L dh) f = L(df;dh).

On the other hand, [df, ]. is aderivation of degree 0. It is therefore, completely
determined by its value on O-forms, and exact 1-forms:

[df, Tu(h) = [df, hlL = —[h, dflL = —L(dh; df),

(f2)
[df, J(dr) = [df,dh]. = —L~%([L df,L dA]).

Now, if D is of theform Lp + i, theisomorphism L is equal to —P, and using
formula (e) we get

[[f? dh]]*P = _P(df7 dh) = ’l'Pdf dh7
[d, dh] _p = P~Y([Pdf, Pdn]) = dP(dh,df) — C(;dh,df)
= Lear —ic(;,a)(dh).

Finally, note that the Hamiltonian [€2, ]p is a derivation of degree 1. So, it is
determined by its value on differentiable functions, and on exact one forms:

[[Qvf]]D = [[f? Q]]*P = iPde = df7
[Q,df]p = —[df, 2 p = —ipgr (dQ) +ic(; ) -

A straightforward calculation using (€), and,
dQ(Pdf, X,Y) = -1 [P, Plsn (P 1X,P 1Y, df),

determinesthe value of the differential 2-form [£2, df ] p on the pair of vector fields
(X,Y):

[[Q? df]]D(Xa Y) = _dQ(Pdfa X, Y) - O(X, P_]'Y, df)
+C(Y;P1X, df)
= 1P, Plsn(P1X, P Yy, df) = C(X,Y; df).
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We now prove (2): If D isof theform —§¢ theisomorphism L isequal to g* (which

we now write as g1, for consistency with the notation used in the first part of the
proof). Then, formulae (f1) and (f2) yield

[[fv ]]gfl(dh) = [[f7 dh]]g*1 = g_l(df7 dh) = igfl(df) dh7
[df, 1g-(dn) = [df, dh]g-+ = —g([g~*(df), g~ *(dR))).

Thenontensorial part of [df, J4-1 (whichisaderivation of degree0), is determined
by its value on O-forms:

[df, ]]g*l(h) = [df, h]]g*1 = —[h, df]]gfl = _‘Cgfl(df)h-

Therefore, itstensorial part is,

([df, Tg-1 + Lg-1(g))(dh) = —g([g*(df), g (dh)]) + Lg-1(qp) (dh).
Now note that, for any vector field X,
9(Lg-1gr) 9 H(dh)) (X) = g( Lg-11gr) g (dR) , X))
= Lg-1(q) (9@ (dh), X)) — (Lg-1gp) 9)(@*(dh), X)
—g(g7H(dh), Lg-1(gr) X)
= Lg-1(gp) (d(X)) = (Lg-y(a) 9)(9H(dh), X) — dh (L1 X).
Therefore,
([df; g1 + Lg-1(qr)) (dR)(X)
= (Lg-1(gr) dh)(X) — Lg-11q5) (dR(X))
+(Lg-1(g) 9)(@7(dh), X) + dh (Lg-1gp) X)
= (Lg-1(g) 9)(9 H(dh), X) = (ig(qg) dh)(X),
where the |ast step definesthe 7'M -valued 1-form g(df) of the statement. O

COROLLARY 5. Let Q bethedifferential 2-form associated to the nondegenerate
bivector P asin Proposition4, and let Ho = d + i be its Hamiltonian graded
vector field. Then Hy o Hg = Oif and only if P is a Poisson bivector.

Proof. The nontensorial part of the derivation H3 = 3[Hg, Hq)] is L. There-
fore, H3 = 0 implies C = 0, but then, [P, Plsy = O, i.e, P is a Poisson
bivector. O
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