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Abstract

Singular directions in a Veech surface are shown to be exactly the directions of its saddle connections.
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1. Introduction

A real d-dimensional vector α := (α1, . . . ,αd) ∈ Rd is singular if for any δ > 0, the
system of inequalities

⎧
⎪⎪⎨
⎪⎪⎩

max1≤k≤d |qαk − pk | < δ/T1/d

0 < q < T
(1.1)

admits solutions (p1 . . . , pd, q) ∈ Zd+1, provided that T is large enough. When δ = 1,
the classical Dirichlet theorem (see [11]) states that (1.1) admits solutions (p, q) ∈ Zd+1

for T large enough. It is well known that a real number α ∈ R is singular if and only if
α is rational. However, Cheung and Chevallier [4, 5] showed that when d ≥ 2, the set
of singular d-dimensional vectors has Hausdorff dimension d2/(d + 1).

A translation surface is a closed Riemann surface associated with a nonzero holo-
morphic one-form. The lattice Z2 makes a genus one translation surface, the flat torus
T2, such that each integer vector corresponds to the holonomy vector of some closed
geodesic. Conversely, it is classical that any genus one translation surface corresponds
to a unique rank-2 lattice in the plane R2. In general, a translation surface determines a
closed, discrete and centro-symmetric subset of the plane R2, the set of holonomy
vectors of oriented saddle connections in the translation surface (see [9, 14]).
Hence, it is interesting to investigate Diophantine approximation of real numbers in
the context of higher genus translation surfaces (see [1, 2]).
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[2] Singular directions in Veech surfaces 391

Let S1 be the set of unit vectors in the plane R2. Denote by ‖ · ‖ the Euclidean norm
of R2 and by ∠uv ∈ [0, π] the angle between two nonzero vectors u and v in R2.

DEFINITION 1.1. Let (X,ω) be a translation surface andZ the set of holonomy vectors
of oriented saddle connections. A unit vector θ ∈ S1 is a singular direction of (X,ω) if
for any δ > 0, the system of inequalities

⎧
⎪⎪⎨
⎪⎪⎩

‖v‖ |sin ∠vθ| < δ/T
‖v‖ |cos ∠vθ| < T

(1.2)

admits solutions v ∈ Z, provided that T is large enough.

Hubert and Schmidt [8] showed that the set of holonomy vectors of saddle
connections in a translation surface always has a finite Minkowski constant. As a
result, there exists δ > 0 such that (1.2) admits solutions v = (p, q) in this set for T
large enough.

A Veech surface has a large group of affine symmetries. In a celebrated paper
[13], Veech showed that the directional flows of such translation surfaces satisfy the
dichotomy: each directional flow is either uniquely ergodic or completely periodic.
McMullen [10] completed the classification of genus two Veech surfaces, and Smillie
and Weiss [12] gave various geometric characterisations of such translation surfaces.

The main result of this paper is the following theorem.

THEOREM 1.2. A direction of a Veech surface is singular if and only if it is parallel to
some saddle connection in the Veech surface.

2. Background

2.1. Cheung’s Z-expansion. Cheung’s Z-expansion theory generalises the geo-
metric interpretation of the classical continued fraction (for details, see [3, 6]).

Let Z be a discrete, closed and centro-symmetric subset of the plane R2 and
suppose that Z does not contain the origin. The Minkowski constant μ(Z) of Z is
the supremum of areas of bounded, convex and centro-symmetric subsets of the plane
R

2 which are disjoint from Z. Assume that Z has a finite Minkowski constant μ(Z).
Then for any δ > μ(Z)/4, (1.2) has solutions inZ, provided that T is large enough.

DEFINITION 2.1. An element v ∈ Z is said to be a Z-convergent to a unit vector
θ ∈ S1, if cos ∠vθ ≥ 0 and, for any u ∈ Z with cos ∠uθ ≥ 0:

(1) ‖v‖ cos ∠vθ ≤ ‖u‖ cos ∠uθ implies ‖v‖ sin ∠vθ ≤ ‖u‖ sin ∠uθ and
(2) ‖v‖ cos ∠vθ < ‖u‖ cos ∠uθ implies ‖v‖ sin ∠vθ < ‖u‖ sin ∠uθ.

The sequence {vk} of Z-convergents to θ is ordered so that ‖vk‖ cos ∠vkθ is increasing
strictly as k increases or, equivalently, ‖vk‖ sin ∠vkθ is decreasing strictly as k increases.

REMARK 2.2. For convenience, we also arrange the sequence of Z-convergents to a
unit vector θ so that the zeroth convergent v0 realises the minimal ‖v‖ cos ∠vθ with v
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FIGURE 1. The zerothZ-convergent.

taken over allZ-convergents. This makes sense because any vector of minimal length
in Z is a Z-convergent to any unit vector. In other words, the zeroth convergent v0 is
just one of the vectors v of minimal length in Z such that ‖v‖ cos ∠vθ is minimal (see
Figure 1). Under our convention, there may be two choices of the kth convergent for
each k ∈ Z.

2.2. Translation surface. A translation surface (X,ω) is a closed Riemann surface
X associated with a nonzero holomorphic one-form ω (see [9, 15] for details).
The integral of the holomorphic one-form ω induces a translation structure, that
is, an atlas of coordinates on the underlying surface between which the transition
functions are locally translations. Pulling back the Euclidean metric on the plane by
these coordinates induces a flat metric on the underlying surface, which has trivial
holonomy and zero Gauss curvature, except at a finite number of conical singular
points corresponding to zeros of the one-form.

Let S1 be the circle in the complex plane consisting of unit complex numbers.
For any θ ∈ S1, the line segments on the plane parallel to θ induce a foliation Fθ of
the surface, called the flow in the direction θ, whose leaves, named θ-trajectories,
are geodesics with respect to the flat metric. A saddle connection of a translation
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surface is a geodesic segment, which has conical points as end points and contains
no conical points in its interior. The holonomy vector of an oriented saddle connection
γ is the integral of ω along γ. A direction of (X,ω) is minimal if there is no leaf of the
directional flow which is a saddle connection.

DEFINITION 2.3. Let (X,ω) be a translation surface and letZ be the set of holonomy
vectors of its oriented saddle connections. A direction θ in (X,ω) is singular if θ is
Z-singular.

Two translation surfaces are affinely isomorphic if there is a homeomorphism
between them, given by an affine isomorphism, which preserves singular points and
is represented by affine maps under their translation structures. By the connectivity,
the linear part of these affine representatives is unique; it is called the derivative
of the affine isomorphism. When the derivative is the identity matrix, the affine
isomorphism is an isomorphism and the two translation surfaces are isomorphic. The
Veech group of a translation surface is defined as the group of derivatives of all its
affine self-isomorphisms. It is well known that a Veech group is a discrete sub-group
of SL(2,R) (see [7, 14]).

DEFINITION 2.4. A translation surface is called a Veech surface if its Veech group is
a lattice in SL(2,R).

LEMMA 2.5 [12]. A translation surface is a lattice surface if and only if it has no visual
triangle, that is, the setZ of holonomy vectors of its saddle connections satisfies

inf{|u × v| � 0 : u, v ∈ Z} > 0.

3. Proof of Theorem 1.2

In the remainder of this paper, we assume that (X,ω) is a Veech surface and Z is
the set of holonomy vectors of oriented saddle connections in (X,ω). Recall that the
Minkowski constant μ(Z) is finite.

A unit vector θ is said to be Z-minimal if the kth Z-convergent exists for any
positive integer k ∈ Z>0.

LEMMA 3.1. A unit vector θ is Z-minimal if and only if it is not parallel to some
vector inZ.

PROOF. Necessity. By contradiction, assume that θ is parallel to an element w in Z.
Recall thatZ is discrete and centro-symmetric and does not contain the origin. Hence,
there exists a unique element w0 ∈ Z, with ∠w0θ = 0, which is parallel to w and has
minimal length. As a result, ‖w0‖ sin ∠w0θ = 0 so that w0 is a Z-convergent to θ. It is
sufficient to show that

‖v‖ cos ∠vθ ≤ ‖w0‖
for anyZ-convergent v to θ, which contradicts the assumption that θ isZ-minimal. In
fact, if there is a Z-convergent u to θ such that ‖u‖ cos ∠uθ > ‖w0‖, then the definition
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ofZ-convergents implies that

‖u‖ sin ∠uθ < ‖w0‖ sin ∠w0θ = 0,

which cannot happen.
Sufficiency. Assume by contradiction that θ is not Z-minimal. Then there is a

Z-convergent v to θ such that

‖v‖ cos ∠vθ ≥ ‖u‖ cos ∠uθ

for any convergent u to θ. Since Z has a finite Minkowski constant, ‖v‖ sin ∠vθ = 0.
Otherwise, the infinite strip

{w ∈ R2 : ‖w‖ sin ∠wθ < ‖v‖ sin ∠vθ}

contains no point inZ and has infinite area. As a result, θ is parallel to v ∈ Z. �

LEMMA 3.2. Let vk and vk+1 be a pair of consecutiveZ-convergents to θ. Then

2 sin ∠vkvk+1< sin ∠vkθ cos ∠vk+1θ ≤ μ(Z)/‖vk‖‖vk+1‖. (3.1)

PROOF. From the definition ofZ-convergents, for any k ∈ Z, the system of inequalities
⎧
⎪⎪⎨
⎪⎪⎩

‖v‖ |sin ∠vθ| < ‖vk‖ sin ∠vkθ

‖v‖ |cos ∠vθ| < ‖vk‖ cos ∠vkθ

admits no solution inZ. Since vk+1 is the next convergent after vk,

‖v‖ sin ∠vθ ≥ ‖vk‖ sin ∠vkθ

for any v ∈ Z satisfying

‖vk‖ cos ∠vkθ < ‖v‖ cos ∠vθ < ‖vk+1‖ cos ∠vk+1θ.

Therefore, the rectangle

{w ∈ R2 : ‖w‖ |cos ∠wθ| < ‖vk+1‖ |cos ∠vk+1θ|, ‖w‖ |sin ∠wθ| < ‖vk‖ |sin ∠vkθ|}

contains no point inZ and has area

‖vk‖ sin ∠vkθ ‖vk+1‖ cos ∠vk+1θ

(see Figure 2). Together with the definition of the Minkowski constant μ(Z), this gives
the right-hand inequality of (3.1). The left-hand inequality of (3.1) follows from the
fact that the rectangle with four vertices ±vk and ±vk+1 has area

2|vk × vk+1| = 2‖vk‖ ‖vk+1‖ sin ∠vkvk+1

and is contained in the rectangle constructed above. �

THEOREM 3.3. A Z-minimal direction θ is Z-singular if and only if its kth
Z-convergent vk satisfies

lim
k→+∞

‖vk+1‖ cos ∠vk+1θ ‖vk‖ sin ∠vkθ = 0.
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FIGURE 2. A pair of consecutiveZ-convergents.

PROOF. As θ is Z-minimal, the height of its kth Z-convergent strictly increases to
infinity as k tends to infinity.

Sufficiency. Assume that

lim
k→+∞

‖vk+1‖ cos ∠vk+1θ ‖vk‖ sin ∠vkθ = 0.

Then for any δ > 0, there exists k0 such that

‖vk+1‖ cos ∠vk+1θ ‖vk‖ sin ∠vkθ < δ

for any k ≥ k0. Since ‖vk‖ cos ∠vkθ strictly increases to infinity as k increases to infinity,
for any T > ‖vk0‖ cos ∠vk0θ, there is a unique k ≥ k0 such that

‖vk‖ cos ∠vkθ < T ≤ vk+1 cos ∠vk+1θ.

As a result,

‖vk‖ sin vkθ <
δ

‖vk+1‖ cos ∠vk+1θ
≤ δ/T ,
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which means that vk is a solution of the system of inequalities
⎧
⎪⎪⎨
⎪⎪⎩

‖v‖ sin ∠vθ < δ/T
0 < ‖v‖ cos ∠vθ < T

for T > vk0 .
Necessity. By the definition of ω-singularity, for any δ > 0, there exists k0 such that

for any k ≥ k0, the system of inequalities
⎧
⎪⎪⎨
⎪⎪⎩

‖v‖ sin ∠vθ < δ/(‖vk+1‖ cos ∠vk+1θ)
0 < ‖v‖ cos ∠vθ < ‖vk+1‖ cos ∠vk+1θ

has solutions v ∈ Z. Either

0 < ‖v‖ cos ∠vθ < ‖vk‖ cos ∠vkθ

or

‖vk‖ cos ∠vkθ ≤ ‖v‖ cos ∠vθ < ‖vk+1‖ cos ∠vk+1θ.

The definition of the consecutive pair of |vk| and |vk+1| implies that

‖vk‖ sin ∠vkθ ≤ ‖v‖ sin ∠vθ

for both of the above cases. Therefore,

‖vk+1‖ cos ∠vk+1θ ‖vk‖ sin ∠vkθ < δ

for any k ≥ k0. Since δ > 0 is arbitrary,

lim
k→+∞

‖vk+1‖ cos ∠vk+1θ ‖vk‖ sin ∠vkθ = 0. �

PROOF OF THEOREM 1.2 To prove the theorem, we first note that the sufficiency
is obvious. For the necessity, by contradiction, we assume that θ is a singular and a
minimal direction of (X,ω). Combining Lemma 3.2 and Theorem 3.3,

lim
k→+∞

|vk × vk+1| = 0.

Since |vk × vk+1| � 0, this yields

inf{|u × v| � 0 : u, v ∈ Z} = 0.

Recall that (X,ω) is a Veech surface. By Lemma 2.5, we get the contradiction. �
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