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Abstract. For given € > 0 and b € R™, we say that a real m x n matrix A is e-badly
approximable for the target b if
liminf [g|"(Ag —b)" > e,
qeZ |lqll—>o00

where (-) denotes the distance from the nearest integral vector. In this article, we obtain
upper bounds for the Hausdorff dimensions of the set of e-badly approximable matrices
for fixed target b and the set of e-badly approximable targets for fixed matrix A. Moreover,
we give a Diophantine condition of A equivalent to the full Hausdorff dimension of the
set of e-badly approximable targets for fixed A. The upper bounds are established by
effectivizing entropy rigidity in homogeneous dynamics, which is of independent interest.
For the A-fixed case, our method also works for the weighted setting where the supremum
norms are replaced by certain weighted quasinorms.

Key words: Diophantine approximation, effective, Hausdorff dimension, badly approx-
imable
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1. Introduction

In classical Diophantine approximation, one wants to approximate an irrational number
o by rationals p/q for p, g € Z. Dirichlet theorem says that for every N € N, there exist
p,q € Zwith0 < g < N, such that

lgo — pl < 1/N < 1/q.

Check f
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2 T. Kim et al

In this way, one can see classical Diophantine approximation as studying distribution
of ga modulo Z near zero. Diophantine approximation for irrational numbers has been
generalized to investigating vectors, linear forms, and more generally matrices, and have
become classical subjects in metric number theory.

In this article, we consider the inhomogeneous Diophantine approximation: the distri-
bution of go modulo Z near a ‘target’ b € R. Although Dirichlet theorem does not hold
anymore, there exist infinitely many g € Z such that

lge —b — p| < 1/|q| forsome p € Z
for almost every («, b) € R2 and, moreover,

liminf |g|lge —b—p| =0
p-q€Ls|q|—>00
for almost every («, b) € R? by inhomogeneous Khintchine theorem [Cas57, Theorem I
in Ch. VII].

Similarly to numbers, for an m x n real matrix A € My, ,(R), we study Ag € R"
modulo Z™ near the target b € R™ for vectors ¢ € Z". In this general situation as well,
using inhomogeneous Khintchine—Groshev theorem ([Sch64, Theorem 1] or [Spr79,
Ch. 1, Theorem 15]), we have

liminf |g|"(Ag —b)" =0
g€ |lq||—o00
for almost every (A, b) € M, ,(R) x R™. Here, (v) def inf,ezm ||lv — p|l denotes the dis-
tance from v € R™ to the nearest integral vector with respect to the supremum norm || - ||.
The exceptional set of the above equality is our object of interest.

1.1. Main results. 'We will consider the exceptional set with weights in the following
sense. Let us first fix, throughout the paper, an m-tuple and an n-tuple of positive

reals r=(ry,...,ryu), S=(s1,...,8,) such that ry > --->ry, s1>--->1s,, and
di<i<m i =1 =23"1<j<, 5j- The special case where r; = 1/m and s; = 1/n for all
i=1,...,mand j =1,...,niscalled the unweighted case.

Define the r-quasinorm of x € R™ and s-quasinorm of y € R” by

def 1/r: def 1/s:
Ixlly = max |x;|"7 and [yls = max |y;]"/%.
1<i<m I<j=n

Denote (X)y définfpezm Ix — pllr. We call A, e-bad for b € R™ if

liminf lg[ls(Ag — b)r = €.

qeZ,||qlly—> 00

Denote

Bad(e) & {(A, b) € My, (R) x R™ : A is e-bad for b},

Bada(e) £ (b € R" : Alis e-bad for b}, Bads < | Bads(e),

e>0

Bad’(€) € {A € My, (R) : Als e-bad for b}, Bad” < | ] Bad’(e).

e>0
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Dimension estimates for badly approximable affine forms 3

The set Bad® can be seen as the set of badly approximable systems of m linear forms in n
variables. This set is of Lebesgue measure zero [Gro38], but has full Hausdorff dimension
mn [Sch69]. See [KTV06, KW10, PV02] for the weighted setting.

For any b, Bad” also has zero Lebesgue measure [Sch66] and full Hausdorff dimension
for every b [ET11]. Indeed, it is shown that Bad’ is a winning set [ET11] and even a
hyperplane winning set [HKS20], a property which implies full Hausdorff dimension.
However, the set Bad, also has full Hausdorff dimension for every A [BHKV10]. See
[BM17, Har12, HM17] for the weighted setting.

The sets Bad? and Bad, are unions of subsets Bad’ () and Bady4(¢) over € > 0,
respectively, and thus a more refined question is whether the Hausdorff dimension of
Bad’(¢), Bad (¢) could still be of full dimension. For the homogeneous case (b = 0),
the Hausdorff dimension Bad®(¢) is less than the full dimension mn (see [BK13, Sim18]
for the unweighted case and [KM19] for the weighted case). Thus, a natural question is
whether Bad? (¢) can have full Hausdorff dimension for some b. Our first main result says
that in the unweighted case, Bad’ (€¢) cannot have full Hausdorff dimension for any . We
provide an effective bound on the dimension in terms of € as well.

THEOREM 1.1. For the unweighted case, that is, r; =1/m and s; =1/n for all
i=1,....,mand j=1,...,n, there exist co > 0 and My > 0 depending only on d
such that for any € > 0 and b € R™,

dimgy Badb(e) < mn — coe™o.

As for the set Bad 4 (€), the third author, together with U. Shapira and N. de Saxcé,
showed that Hausdorff dimension of Bad 4 (¢) is less than the full dimension m for almost
every A [LSS19]. In fact, it was shown that one can associate to A a certain point x 4 in the
space of unimodular lattices SL;(R)/ SL;(Z) such that if x4 has no escape of mass on
average for a certain diagonal flow (see §1.2 for more details), which is satisfied by almost
every point, then the Hausdorff dimension of Bad 4 (¢) is less than m.

In this article, we provide an effective bound on the dimension in terms of € and
a certain Diophantine property of A as follows. We say that an m x n matrix A is
singular on average if for any € > 0,

1
lim —|{le{l,..., N}: there exists g € Z" such that
N—oo N

(Ag)r <27 and 0 < [|g|ls <2/} =1.

THEOREM 1.2. For any A € M,, ,(R) which is not singular on average, there exists
a constant c(A) > 0 depending on A such that for any € > 0, dimy Bad(¢) <m —

c(A)e/log(1/e).

Here, the constant c¢(A), which depends on n4 in Proposition 4.1 and H in equa-
tion (4.7), encodes the quantitative singularity on average.

However, the third author, together with Y. Bugeaud, D. H. Kim, and M. Rams, showed
that in the one-dimensional case (m = n = 1), Bad, (¢) has full Hausdorff dimension for
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some € > 0 if and only if @ € R is singular on average [BKLLR21]. We generalize this
characterization to the general dimensional setting.

THEOREM 1.3. Let A € M), ,(R) be a matrix. Then the following are equivalent.

(1) For some € > 0, the set Bad 4 (¢) has full Hausdorff dimension.
(2) Ais singular on average.

Note that the implication (1) = (2) of Theorem 1.3 follows from Theorem 1.2. The
other direction will be shown in §6.

1.2. Idea of the proofs. 'We mainly use entropy rigidity in homogeneous dynamics, a
principle that the measure of maximal entropy is invariant for a suitable group [EL10]. The
main tool in [LSS19] is a relative version of entropy rigidity. In this article, we effectivize
this phenomenon (Theorem 2.12) in terms of the static entropy and conditional measures.
To use the effective version of the entropy rigidity, for each invariant measure, we construct
a ‘well-behaved’ partition and a o -algebra, well-behaved in the sense that the ‘dynamical
§-boundary’ has a small measure which is controlled uniformly (see Definition 2.6 and
Lemma 2.7). We then compare the associated dynamical entropy and the static entropy.
Section 2 consists of these results in the general setting of real Lie groups as in [EL10],
which are of independent interest.

To describe the scheme of the proofs for main theorems, we consider a more specific
homogeneous space as follows. For d = m + n, let us denote by ASL;(R) = SL;(R) x
R the set of area-preserving affine transformations and denote by ASL,;(Z) = SL4(Z) x
74 = Stabasr,(R) (Z4) the stabilizer of the standard lattice Z¢. We view ASL4(R) as a
subgroup of SLy4+1(R) by ASL;(R) = {( g 11)) : g € SLy(R), v € R%},and take a lift of
the element g € SLy;(R) to ASL;(R) C SLy4+1(R) by g —> (g ? ),denoted again by g.
For given weights r € R” ) and s € R, ;, we consider the 1-parameter diagonal subgroup

{a; = diag(e’, ..., e, e, . e }ier

in SL;(R) and let a def ay be the time-one map of the diagonal flow a,. We consider

In A 0O Iy 0 b
U= 0 I, 0):AeM,,R);; W= 0 I, 0|:beR"},
0 0 1 0 0 1

both of which are unstable horospherical subgroups in ASL;(R) for a.

The homogeneous spaces SL;(R)/ SL;(Z) and ASL;(R)/ ASL;(Z) can be seen as the
space of unimodular lattices and the space of unimodular grids, that is, unimodular lattices
translated by a vector in RY, respectively. We say that a point x € SL;(R)/ SL;(Z) has
8-escape of mass on average (with respect to the diagonal flow a;) if for any compact set
QinSLy(R)/ SLy(2),

1
lim inf — 1,...,N}: > 4.
}vrri)g(l) N|{€€{, , N} rax ¢ O} =

A point x € X has no escape of mass on average if it does not have §-escape of mass on
average for any § > 0.
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For A € M, ,(R) and (A, b) € M, ,(R) x R™, we associate points

o In A —b
= V) Sl@ and yap S| 0 4 0| ASLi(@),
0 I ’ 0 O 1

respectively. In [LSS19], it was shown that dimy Bads(e) < m for all € > 0 if x4 is
heavy, which is a condition equivalent to no escape of mass on average. Note that x4 is
heavy for almost every A € M,, ,(R). However, we remark that A is singular on average if
and only if the corresponding point x4 has 1-escape of mass on average (with respect to
the diagonal flow ;) by Dani’s correspondence (see also [KKLM17]).

Now we give the outline of the proofs for Theorems 1.1 and 1.2. From the Dani corre-
spondence, we characterize the Diophantine property (A, b) € Bad(e) by the dynamical
property that the orbit (a;yap):>0 is eventually in some target L. (see §3.2). Using
this characterization, we construct a-invariant measures with large dynamical entropies
relative to W and U (Propositions 4.1 and 5.4), which are related to the Hausdorff
dimensions of Bad 4 (¢) and Bad” (¢), respectively. Here, we use ‘well-behaved’ o -algebra
constructed in Proposition 2.8. Then we associate the dynamical entropies with the static
entropies (Lemma 2.10). Finally, we obtain effective upper bounds for the Hausdorff
dimensions of Bad 4 (¢) and Bad® (¢) using an effective version of the variational principle
(Theorem 2.12).

To treat Bad 4 (¢) and Bad® (¢) at the same time, we need to consider the entropy relative
to an arbitrary expanding closed subgroup L normalized by a, which is more general than
[LSS19]; in [LLSS19], the special case L = W whose orbits stay in the compact fiber of
ASL4(R)/ ASL;4(Z) — SL4(R)/ SL;(Z) is considered.

For Bad(¢), we treat the case when x4 has some escape of mass on average as
well, whereas x4 has no escape of mass on average in [LSS19]. We need to consider
Le C ASLi(R)/ ASL4(Z), which is non-compact, whereas in [LSS19], for heavy x4, it
was enough to consider the set of fibers over a compact part of SL;(R)/ SL;(Z). In the
case of Bad’(¢), as fixing b does not determine the amount of excursion in the cusp, we
need an additional step (Proposition 5.3) to control the measure near the cusp allowing a
small amount of escape of mass.

Another new feature of this article is the use of the effective equidistribution of
expanding translates under the diagonal action on ASL;(R)/ ASL;(Z) and SL;(R)/ Ty,
where I'; is a congruence subgroup of SL;(Z), in the case of Bad’ (¢). The former result
is proved by the second author in [Kim], and the latter result is a slight modification of
[KM23].

Note that [Kim, KM23] hold in the weighted setting and the only reason we consider
the unweighted setting for the Hausdorff dimension of Bad® (¢) is the covering estimate in
Theorem 5.1 ((KKLM17, Theorem 1.5]).

The article is organized as follows. In §2, we introduce entropy, relative entropy,
and a general setup. In this general setup, we construct a partition with a well-behaved
‘dynamical §-boundary’ and a o-algebra in a quantitative sense. From this construction,
we compare the dynamical entropy and the static entropy. Finally, we prove an effective
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version of the variational principle for relative entropy in the spirit of [EL10, §7.55].
In §3, we introduce preliminaries for the proofs of dimension upper bounds including
properties of dimensions with respect to quasi-metrics. We also reduce badly approximable
properties to dynamical properties in the space of grids in R, In §§4 and 5, we construct
a-invariant measures on ASL;(R)/ ASL;(Z) with large relative entropy and estimate
dimension upper bounds of Theorems 1.2 and 1.1 using the effective variational principle.
We conclude the paper with §6, characterizing the singular on average property in terms
of best approximations and show the (2) = (1) part in Theorem 1.3 using a modified
version of the Bugeaud—Laurent sequence in [BL05].

2. Effective version of entropy rigidity

In this section, we will establish an effective version of entropy rigidity in [EL10, §7].
There have been effective uniqueness results along the line of [EL10] in various settings:
[Pol11] for toral automorphisms, [Kad15] for hyperbolic maps on Riemannian manifolds,
[Riih16] on p-adic homogeneous spaces, and [Khal7] for a p-adic diagonal action in the
S-arithmetic setting. However, in all of the above results as well as in [KLP23], there
exists a partition compatible with the given map or flow in the sense that images under
the iteration have boundaries of small measure with respect to any invariant measure of
interest.

In our setting of a diagonal action on a quotient of real Lie groups, one of the main
technical difficulties is that there is no such partition for all the invariant measures we
consider. We thus construct a partition # for each invariant measure p and control the
w-measure of its ‘dynamical §-boundary’ Es constructed out of images of thickenings of
the boundary P. The value u(Es) is bounded above uniformly over the partition £ and the
measure (. See Lemma 2.7.

2.1. Entropy and relative entropy. In this subsection, we recall the definitions of the
entropy and the relative entropy for o -algebras which we use in the later sections. We refer
the reader to [ELW, Chs. 1 and 2] for basic properties of the entropy.

Definition 2.1. Let (X, B, u, T) be a measure-preserving system on a Borel probability
space, and let A, C C B be sub-c-algebras. Suppose that C is countably generated.
Note that there exists an A-measurable conull set X’ C X and a system {;Lxﬂ|x € X'}
of measures on X, referred to as conditional measures, given for instance by [ELW,
Theorem 2.2]. The information function of C given A with respect to u is defined by

L,(CIA) (x) = — log n([x1c),

where [x]c¢ is the atom of C containing x.

(1) The conditional (static) entropy of C given A is defined by

mm%gﬁmm%mwm,

which is the average of the information function C given A. If the o-algebra A is
trivial, then we denote by H,(C) = H,,(C|A), which is called the (static) entropy
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of C. Note that the entropy of the countable partition & = {A, Ap, ...} of X is
given by

H, (&) = Hu(AD,..)=— Z w(A;) log u(A;) € [0, ool
i>1
where 0 log 0 = 0.
(2) Let A C B be a sub-o-algebra such that 7~ A = A. For any countable partition &
of X, let

def .1 nely _ soo L n—1
hy (T, &) _nlgIolonHu'(Eo )_r%rzlfl nHu(E() )s

def .. l n—1 _ l n—1
hu(T.E1A) S lim -~ Hy (55~ 1) = inf -~ H (& 10,

where £ 1= \/l'-’z_o1 T~'&. The (dynamical) entropy of T is

def
hy(T) S sup  hyu(T,&).
S:H#(S)«Xz

The conditional (dynamical) entropy of T given A is

def
hy(TIA) S sup  hy(T, E|A).

&:Hy(§)<oo

2.2. General setup. Let G be a closed real linear group (or connected, simply connected
real Lie group) and let I' < G be a lattice subgroup. We consider the quotient Y = G/ T’
with a G-invariant probability measure my and call it the Haar measure on Y. Let dg be
a right invariant metric on G, which induces the metric dy on the space Y = G/ I", which
is locally isometric to G. Let r, be the maximal injectivity radius at y € Y, which is the
supremum of r > O such that the map g — gy is an isometry from the open r-ball BrG
around the identity in G onto the open r-ball BY (y) around y € Y. For any r > 0, we
denote

Y(r)déf{er:ryzr}.

It follows from the continuity of the injectivity radius that Y (r) is compact. Since I' is a
lattice, we may assume that

Fimax def inf{r >0:ry <rforally e Y} <1 (2.1

by rescaling the right invariant metric dg on G. It follows that for any r > 1, Y (r) = @.
For any closed subgroup L < G, we consider the right invariant metric dy, by restricting
dg on L, and similarly denote by BrL the open r-ball around the identity in L.

In this section, we fix an element a € G which is Ad-diagonalizable over R. Let

Gt ={ge€Gla*ga™* > idask - —o0}

be the unstable horospherical subgroup associated to a (or equivalently the stable
horospherical subgroup associated to a~!), which is always a closed subgroup of G in
our setting.
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2.3. Construction of a~'-descending, subordinate algebra and its entropy properties.
In this subsection, our goal is to strengthen the results of [EL10, §7] for our quantitative
purposes.

Definition 2.2. [EL10, Definition 7.25] Let GT < G be the unstable horospherical

subgroup associated to a. Let u be an a-invariant measure on Y and L < G be a closed

subgroup normalized by a.

(1) We say that a countably generated o-algebra A is subordinate to L (mod ) if for
pn-almost every (a.e.) y, there exists § > 0 such that

Bi -y ClylacC By -y. 2.2)
(2) We say that A is a_l—descending if(aH 'A=aACA.

For each L < G and a-invariant ergodic probability measure w on Y, there exists a
countably generated o-algebra A which is ¢ ~!-descending and subordinate to L [EL10,
Proposition 7.37]. We will prove that such a o-algebra can be constructed so that we
also have an explicit upper bound of the measure of the set violating equation (2.2) for
fixed § > 0. To prove an effective version of the variational principle later, we need this
quantitative estimate independent of 1.

We first introduce some notation that will be used in this subsection. For asubset B C Y
and § > 0, we denote by ds B the §-neighborhood of the boundary of B, that is,

0s B def {y eY:infdy(y,z)+ inf dy(y,z) < 8}.
ZEB 7¢B
We also define the neighborhood of the boundary of a countable partition # by 95 et
Upep 9s P. We deal with the entropy with respect to a~!, and thus for a given partition
(or a o-algebra) P of ¥,
def g
P, <\ d'P
k=¢

for any extended integers £ < £’ in Z U {d-00}. We first construct a finite partition which
has small measures on neighborhoods of the boundary. The following lemma is the main
ingredient of the effectivization in this section. A key feature is that the measure estimate
below is independent of w.

LEMMA 2.3. There exists a constant 0 < ¢ < 1/10 depending only on G such that the
following holds. Let u be a probability measure on Y. For any 0 <r < 1 and any
measurable subset Q2 C Y (2r), there exist a measurable subset K C Y and a partition

P ={P1,..., Py} of K such that:
G .
I QckKc B(l]/lO)rQ’

(2) foreach1 <i < N, there exists z; € BrG/IOSZ such that

N
G G G .
Br/s'ZigpigBr *Zis KZUBr " Zis
i=1
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3) forany0 < § <cr,
s\ 1/2
G
n(0sP) < (;) /“L(B(lz/IO)rQ)'

Proof. Choose a maximal (9/10)r-separated set {y{, ..., yn} of Q.

CLAIM. There exist a constant 0 < ¢ < 1/10 depending only on G, and {g,} L, C Br/10
such that for z; = g;iy; and forany 0 < § < cr,

5\ /2
Z(M(&g(BrG 7)) + M(azS(BrG/z -2i))) < <;> N(Bgz/lo)rg)- (2.3)

Proof of the claim. To prove this claim, we randomly choose each g; with the independent
uniform distribution on BrG/lo- For 0 < § < r/10 fixed, we have

E( D @By - z,-»)
i
>y — / / 1 ) du(y) dmg (g)
= —_— G oy G .,y G [
i mG(Br(;]()) B,G/IO Y BH—E glyl\Br_§ 8iVi !

1
= Z Sdm G f mG({gi € Bjg:r =8 <d(giyi,y) <r+8) du(y)
4 y

< Z rdlmG /

For any y € B(12 /10)rQ’ the number of y; terms contained in B(G12 J0yr* Y is at most

pimG=1 g, 0 / Z LB/10-y: (V) A (y).-

B{1/10yr45"i Bl

(33/9)4m G gince Bg /20)r * Vi terms are disjoint and contained in Bg3 120" V- It implies

that 3 ; 1By 0,3 (V) < 44m G for any y € B(12/10)rQ‘ It follows that

) . )
E( > n(@s(B - z,-))> <= / . 49mG g (y) <« ;M(Bffzm)rﬂ%
i

B(12/10)rQ

where the implied constant depends only on G.
Applying the same argument for E)(s(BrG/2 - z;) instead of 35(BY - z;),

8
< Z(M(BS(BG Zi)) + ,u(aé(Br/z Zz)))) < ;M(B(Cl;Z/lO)rQ)'
It follows from Chebyshev’s inequality that

o 178\ 1/2 . s\ 1/2
(Z(H(aﬁ(B “zi)) + M(aﬁ(Br/z zi))) = E(;) H(B(12/10)r9)) < (;) .

Hence, we have

1/27ks\/?
P( N { D (w@yx5 (B - 20)) + (@15 (BS, - 2)) < E(T) u(ng/m),m})

k=0 i

s\ 172
>1—0((;> > (2.4)
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Thus, there exists 0 < ¢ < 1/10 so that the right-hand side of equation (2.4) is positive
for any 6 < cr. It follows that we can find {g,-}fv= | such that the z; = g;y; terms satisfy
equation (2.3) forany 0 < § < cr. O

Let ¢ > 0 and {g,'}f\':1 C BglO be as in the above claim. The set {z; = giy,-}f\’:1

is (7/10)r-separated since {y,}N1 is (9/10)r-separated. Let K = def Ul 1 BG zi. Since

BG 10y - vi € BY -z S B, 1), - Vi we have

N N
G G G
Q< BG 0, vi K S BGij0) - ¥i S Bl1j10) @
i=1 i=1

Now we define a partition # of K inductively as follows:

PdEfBrG%, (UP U U Br/2 z,)

Jj=i+1

for 1 <i <N. By definition, we have BSS ziC P, CBY .z and z € Br/lo.Q
for 1 <i < N. We also observe that the &-neighborhood of # is contained in

UINZI (85(B,G -z;) U 05 (BrG/2 - z;)). Hence, it follows from the above claim that

s\ 172
u(@sP) <Y (n@s(BY - 2i)) + n(@s(BS, - 20))) < (;) 1(B/10, )

i

forany 0 < § < cr. O

Remark 2.4. In Lemma 2.3, if y € Q is given and we let y; = y € Q in the proof, then
y € BrG/lO - 71, and thus y ¢ 09, which will be used in the proofs of Propositions 4.1
and 5.4.

We need the following thickening properties. It can easily be checked that for any
r > § > 0, we have

BSY(r) cY(r—8) and BEY(r)° C Y(r+8)". (2.5)

Using Lemma 2.3 inductively, we have the following partition of Y with its subpartition
having small boundary measures. Recall that Y (r) = & for any » > 1 by equation (2.1).

LEMMA 2.5. Let 0 < rg < 1 be given and p be a probability measure on Y. There exists

a partition {Ki )72 | of Y such that for each k > 1, the following statements hold:

(1) KeSY@H\rye ™,

(2) there exist a partition Py = {Pr1, . . ., Pen,} of Ky and apoint z; € BG
Joreach 1 <i < Ny satisfying

(1/10)rg2—k= 1 Kk

G G .
B(]/S)roz—k—l 12i & Pki - Broz—k—l *Zis

B3)  w@Pr) < (g 2O 20y @Y\ Y Q) for any 0 <8 < crg27F 2,
where ¢ > 0 is the constant in Lemma 2.3.
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Proof. We will construct {K;}x>1 and {Pk}r>1 using Lemma 2.3 inductively. For each
k > 1, let us say that Ky and Py satisfy (#) if they satisfy the three conditions in the
statement. We will also need auxiliary bounded sets K; C Y and corresponding partitions
P, of K i during the inductive process. Let us say that K; and P satisfy (&) if they
satisfy the following three conditions:

1) Y MHY\UZ K K Bgl/m),ozk (Y @Y\ U] K

(2) foreach 1 <i < N, there exists zz; € B(l/lO)r k= 1Kk such that

N
Bg/s)roz_k_. zki € P C Bf;z_k_, 72k and Kp = U Bgz_k_] - Zki
i=1
(3)  w@P) < (rg 2KV 2u(y 27F) \ Y (27FF3)) forany 0 < 8 < crg27F~ 1.

Here, U/ K Lhy,

We first choose 1 = Y (1) and apply Lemma 2.3 with r =927 and Q = Q| C

Y (ro/2). Then we have a subset K| C Y and a partition | of K| satisfying conditions
(1), 2) of (&), and

w(@sPy) < (ry '228)" /2 u(BS 221)

(12/10)r2~

for any 0 < 6 < cro2™ 2 1t follows from equation (2.5) that BG Y1) C Y(%),

Y1) C

(12/10)r 2-2
which implies condition (3) of (&) since Y (4) = @. Note that K "' BY
Y(3).

Now let 2, = Y(%) \ K{ and apply Lemma 2.3 again with r = ro2~2 and Q =
HLCY (ro/4). We have a subset K C Y and a partition P, of K} satisfying Q, C
K5 C BS o220 (2) of (#2), and n(3P%) < (rg '2°8)"/ ZM(B(lz/lo)r ,-3$2) for
any 0 <8 < cr02_3. Setting K| = K| \ K, condition (1) of (&2) and condition (1)
of (#) follow since Y (2) = &. Since K i D Y (1), it follows from equation (2.5) that
332 Hoyrg2322 C Y(4)\ ¥(2), which implies condition (3) of (&)

Define a partition Py = { P11, . . ., Py, } from P} = {PH, e, Pl’Nl}by P =P\ K}
foreach 1 <i < Nj.Foreach1l <i < N andyeB

(11/10)rg2~2

(1/5yre2-2 * 21i> observe that y ¢ K}
since B}’0272 "2 C Kl and K/ C B(ll/l()) 2— 392 C B(ll/lo) - 3(Y \ K{) Hence,

(Gl/5)r02*2 -z1; C Py1; holds, so condition (2) of (#) follows. Since P; = Pj; \ K}
foreach 1 <i < Nj, we have

1(3sP1) < 1(@P)) + 1 (@P)
< (rg 22 @7H\Y@H) + (ry 1229 Pur @7H \ Y(2)
< (ry'12°0)'2ur 27\ Y (2%)
forany 0 < § < cr02_3. Hence, condition (3) of (#) follows.

Our desired disjoint sets {Ky}x>1 and partitions {Pk}x>1 will be obtained by applying
this process repeatedly.
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CLAIM. Fork > 2, suppose that we have disjoint bounded sets K j of Y and corresponding
partitions P; satisfying (#;) for j = 1,...,k — 1, and a subset K; C Y and a partition
P, satisfying (). Then we can find Ky € K ¢ and a partition Py of Ky satisfying (@),
and K| C Y and a partition Py, of K; | satisfying (d+1).

Proof of the claim. Note that K C BY Yy *hcy@e*) and K;C

(11/10)rg2—*-1

Y(27)) C Y27 for each j=1,...,k—1. Let Q1 =Y2 )\ (UZ] K, UK))
and apply Lemma 2.3 with r =r027%"2 and Q = Q41 C Y (r027%~1). There exist
Ki,y CY and a partiion P ={P;, . ---, P(/k+1)Nk+1} of K; , satisfying

Qpy1 C Kk+1 C B(ll/lO)r02 2 2%+1, condition (2) of (1), and /JL(B(;P;C_H) <
(rg '2K+28)1 2 (B(12/10)r k2 Qu1) for any 0 <8 < crg27F2 Setting Ky = K\
K> condition (1) of (1) follows. Since [JSZ} K; > ¥(27%*2) and Ky C K C
Y27k \ U'};} K;, condition (1) of (#) follows. It follows from U’;;} KjUK; D
Y (27%+1) and equation (2.5) that

By 1oyttt C YD\ Y274,
which implies condition (3) of (&kﬂ) Define a partition Py = { Py, ..., Pxy, ) from
P = {P,él,...,P,éNk} by Py = Py \ K, for any 1 <i < Ni. For each 1 <i < N
and y € B(1/5) k-1 " Zkis observe that y ¢ Kk+1 since BG -2k € Ky and Kk+1
Bgl/lo)mz Qa1 C B(U/m) i (Y\ Kk) Hence, B(I/S) »4-1 * Zki C Pxi holds, so
condition (2) of () follows. Since Py; = P;; \ K}, 4 foreach I <i < Nj, we have

W@Pr) < 1@BPY) + 1@Pi)
< (ro_l2k+15)1/2,u(Y(2_k) \ Y(2—k+3)) 4 (ro_l2k+25)l/2,u,(Y(2_k_]) \ Y(2—k+2))
< (g 29 Ppr@T v

forany 0 < § < cr02_k_2. Hence, condition (3) of (#y) follows. O]
The claim concludes the proof of Lemma 2.5. O

By [EL10, Lemmas 7.29 and 7.45], there are constants & > 0 and dyp > 0 depending on
a and G such that for every r € (0, 1],

a*BS" " ¢ Bge_kar

(2.6)

for any k € Z. It implies that akBG —kc Bd v, fOr k = 0.

The following lemma is a quantitative strengthenmg of [EL10, Lemma 7.31]. We remark
that the constants below are independent of x and # while the ‘dynamical §-boundary’ Es
depends on .

Definition 2.6. We define the dynamical §-boundary of the partition P by

00
= U llk 8d0€_ka550.
k=0
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LEMMA 2.7. Given 0 <rg <1 and an a-invariant probability measure @ on Y, let
{Kj}j>1 and {P;}j>1 be the sets and the partitions in Lemma 2.5. Let ¢ > 0 and dy > 0
be the constants in Lemma 2.3 and equation (2.6), respectively. Let P be the countable
partition P &ef U?’;l PjofY.

There exist C1, Co > 0, depending only on ry, a, and G, such that for any 0 < § <
min((cro/16dy)?, 1), the dynamical §-boundary Es C Y satisfies

1(Es) < (Y \ Y(C18"%)) + C28'/4
and B(SG+ -y C Vlpg forany y € Y \ Es.

Proof. We split Es into two subsets

oo oo

E; = ak( U adoeka,;?’,) and
k=0 i=2+T(a/log 2k—(log 8)/(2 log 2)]
o 14 [(@/log 2)k—(log 8)/(2 log 2)]
£ = ak( U adoeka,gﬂ-).
k=0 i=1

We first claim that Ef C Y \ Y((do + d3)8'/?). Let y € Ej, that is, y € a* 3y —tas P
for some k>0 and P € P; for some i > 2+ [(a/log2)k — (log §)/(21og 2)]. By
Lemma 2.5,

PCK;C Y(z—l) \ Y(z—i+2) C Y(Z_i+2)c.
It follows from equation (2.5) that

dgye—tasP C B P C By, 1Y@ CcYQ ™+ doe ke 8)c. 2.7)

G
doe—ke§

Using equation (2.6), for any 0 < r < 1, a*¥ (r)¢ C Y (dpe*r)¢. Since ek*27+2 < §1/2,
combining with equation (2.7),

akadoe*kO‘SP C aky(z—i-l—z +doe—k018)c C Y((d() +d3)51/2)c
This proves the claim. It follows that
H(E5) < w(Y \ Y(C18'%)), (2.8)

where C; = dp + dg is a constant depending only on a and G.
Next we estimate 1 (Ey). It follows from the a-invariance of y that

oo 1+[(a/log2)k—(log 8)/(2 log 2)] 00 00
w(E) <> > 1B goetasP) = D > 1Bgpe-tasP)s (2.9)
k=0 i=1 i=1 k=k;

where k; € N denotes the smallest number of k such that 1+ [(«/log 2)k — (log §)/
(21og 2)] > i. Note that k; > (log 2/a)(i —2) + (log 8) /2.
However, by Lemma 2.5, we have

1 (BgpetasPi) < (rg "2 doe X 8) 2y @7 \ Y (271 (2.10)
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for any k > k;, since doe ™8 < dp271+281/% < crg27~2. By equations (2.9) and (2.10),

we have
WED) = Z H@gpe-tasPi) < Y Y (rg 12 doe™48) Py @7 TH\ Y @)
k=ki; i=1 k=k;

( 712i+4e—kiol5)l/2(1 _ e—ot/Z)—lM(Y(z—i—l) \ Y(Z_i+3))

M8 HMg

—_

<rg PPSAA — e T Y ureTTh\reT ) = 6t @

i=1
where Cp = 25r61/2(1 — ¢7*/2)~1 is a constant depending only on rg, a, and G. Combin-
ing equations (2.8) and (2.11), we finally have

W(Es) < n(Y \ Y (C18'%) + Co8'/*
and the constants C1, Cy > 0 depend only on rg, a, and G.
It remains to check that B(SG+ -y C [y]sogo foranyy e Y \ Es.Leth € BaG+ and suppose
[hy] P52 # [v] Pgo- There is some k > 0 such that a_khy and a~*y belong to different

elements of the partition #. Since a *ha* a’kBG a* c B¢
have

doe—kes by equation (2.6), we

dy (@ *hy,a™*y) < dg(a*hda*,id) < dye™**s.

It follows that both a ¥hy and a=*y belong to gye—kasP, and hence y € Es. It concludes
that BSGJr -y C [ylpy forany y € Y \ Es. O

The following proposition is a quantitative version of [EL10, Proposition 7.37]. Given
a-invariant measure s, the proposition provides a o -algebra which is a ~!-descending and
subordinate to L in the following quantitative sense.

PROPOSITION 2.8. Let 0 < rg < 1 be given, u be an a-invariant probability measure on
Y, and L < G be a closed subgroup normalized by a. There exists a countably generated
sub-o-algebra A" of Borel o-algebra of Y satisfying:

@))] aAL c AL, that is, AL is a_l-descending;

2 [yla C Bfoz_“, cyforanyy € YR\ YQ*2) withk > 1;

B3 f0<d< min((cro/16d0)2, 1), then

BSL -y Cylqe foranyy e Y(S)\ Es,

where c, dy > 0 are the constants in Lemma 2.3 and equation (2.6), and Es is the
dynamical §-boundary defined in Lemma 2.7.
In particular, the o -algebra AL is L-subordinate modulo .

Proof. For a given a-invariant probability measure  on Y, let # be the countable partition
of Y constructed in Lemma 2.7. We will construct a countably generated o-algebra P~ by
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taking L-plaques in each P € % as atoms of PL. Then, AL &f (a )g°> will be the desired

o -algebra.
For each P €%, by Lemma 2.5, there exist j>1 and z € P such that
PeYQ2 )\ Y2 /*?) and BS .zC P CBS -z. We can find Bp C G

_ (1/5)rg2=J =1 rg2=i=1
with diam(Bp) < rp27/ such that P = wy(Bp), where my : G — Y is the natural
quotient map. Let B, be the Borel o-algebra of the quotient G/L. Note that since
Lis closed, B¢/ is countably generated. Define the o -algebra

Pl =o({ny(BpNS): PP, SeBgL).

Then, P is a refinement of P such that atoms of P are open L-plaques, that is, for any
yePeP, [ylpr =[ylpN BrLoz—.f -y=V, -y, where V, C BrLOz—.i is an open bounded set.

It is clear that PL is countably generated, and hence A" = (P~ )o° is also countably
generated. By construction, we have aAl = (PL)‘fO c AL, which proves the assertion (1).

For any y € Y2 %)\ Y2 **2) with k> 1, take P € P such that y € P. By
Lemma 2.5, there exist j > 1 and z € P such that P e Y(27/)\ Y(2~/*?) and
P C By, ; -z Observe that 277+ > 27" and 27/ <2782 that is, j —2 <k <
Jj + 2. Hence, we have

lgr Cylpr =Vy-y C B,Loz_j "y C B,LOHH Y

which proves the assertion (2).

For a given 0 < § < min((cro/léd())z, 1) and y € Y(8) \ Es, assume that z = hy with
he B(SL. By Lemma 2.7, BSG+ -y C [y]pgc. Hence, it follows that for any k > 0, a—*y and
a ¥z belong to the same atom P C #. Then, we have

a_ky, a*z=a*nda* . (a_ky) € Py.

Note that for any y € Y(§), the map B‘SG+ > g > gy is injective, and hence the map
a_kBg+ak > g > ga ¥y is injective. Since a ¥ha* € a_kBgLak, a~*y and a =¥z belong

to the same atom of P~ This proves the assertion (3). O

As in [LSS19, Lemma 3.4], we need to compare the dynamical entropy and the static
entropy. In [L.SS19], the o-algebra 7 ~!(By) is used to deal with the entropy relative to
X, where By is the Borel o-algebra of X. To deal with the entropy relative to the general
closed subgroup L < G normalized by a, we consider the following tail o-algebra with
respect to AL in Proposition 2.8. Denote by

oo oo
AL € (M dat = NPhy. (2.12)
k=1 k=1

This tail o-algebra may not be countably generated but it satisfies strict a-invariance, that
is,aAL, = AL =a~'AL.

LEMMA 2.9. Let 0 < rg <1 be given, u be an a-invariant probability measure on Y,
L < G be a closed subgroup normalized by a, and A" be as in Proposition 2.8. Then,
the o-algebra (AX)>®,_ is the Borel o -algebra of Y modulo .
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Proof. Let PE be as in the proof of Proposition 2.8. Since (A~ X = (Pr * and
Y = Ui Y (27%)\ Y(27%*2), it is enough to show that for each k > 1 and for u-a.e.
y e Y275\ Y(275*2), we have [ty = (V)

For fixed k > 1, it follows from Poincaré recurrence (e.g. see [EW11, Theorem 2.11])
that for p-a.e. y € Y(275)\ Y (27%+2), there exists an increasing sequence (k;);>1 C N
such that

diyey@ ™\ Y2 *?) and k — coasi —> .
By Proposition 2.8(2), it follows that for each i > 1,
[ y]qe = 10" V] piyee C By iy - abiy.
. ki _ k[ _ ki . .
Since [a y](PL)go =a“[yl, -« @l = a [y](PL):iok[, using equation (2.6), we have

L
doeiaki r02_k+1 Y

gy, © ahiBl i -diy=a"MBl, d%.yCB
Taking i — oo, we conclude that [y](PL)iC = {y}. -

PROPOSITION 2.10. Let 0 < ro < 1 be given, 4 be an a-invariant probability measure on
Y, L < G be a closed subgroup normalized by a, A" be as in Proposition 2.8, and .?{éo
be as in equation (2.12). Then, we have

hy(alAL) = hy(a '\ AL) = Hy (AL jaAL). (2.13)
Moreover, equation (2.13) holds for almost every ergodic component of |1.

Proof. Let PL be as in the proof of Proposition 2.8. Since P is countably generated, we
can take an increasing sequence of finite partitions (P,f) k>1 of Y such that 7),% J PL. By
Lemma 2.9, we have By = (P X = \/,fil(P,f * . modulo p, where By is the Borel
o-algebra of Y. It is clear that (P,f )%, € (P,f 1) for all k € N. Hence, it follow from
Kolmogorov—Sinar” theorem [ELW, Proposition 2.20] that

hy(a " AL) = Jim hy(a™', PEIAL).
— 00
Using the future formula [ELW, Proposition 2.19(8)], we have
lim h,(a™", PEIAL) = lim H,(PEI(PEHT v AL).
k— 00 k— 00

It follows from monotonicity and continuity of entropy [ELW, Propositions 2.10, 2.12, and
2.13] that for any fixed k > 1,

Jim Hy PEIPOT VAL < HyPEIPOT VAL < Tim Hy (PEIPOT v AL),
and hence, we have

Hy(PEIPH v AL) < H (PEIPPT v AL) < Hy (PHPEH v AL).
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Taking k — o0, it follows that
Jim H (PEPOT VAL = Hu(PHPHT v AZ) = Hy (A" |aAD),

which concludes equation (2.13).

Note that By = (P *o=Vie 1(7’,% )%, modulo almost every ergodic component
of w. Thus, following the same argument as above, we can conclude equation (2.13) for
almost every ergodic component of /. O

The quantity H, (ALjaAL) is called empirical entropy and is the average of the
conditional information function

L(A" |aAL) (x) = — log u™ ([x]),

and indeed the entropy contribution of L (see [EL10, 7.8] for definition).

2.4. Effective variational principle. This subsection is to effectivize the variational
principle. We first recall the following ineffective variational principle. Combining [EL10,
Proposition 7.34] and [EL10, Theorem 7.9], we have the following upper bound of an
empirical entropy (or entropy contribution), and the entropy rigidity.

THEOREM 2.11. [EL10] Let L < G* be a closed subgroup normalized by a and let |
denote the Lie algebra of L. Let . be an a-invariant ergodic probability measure on Y. If A
is a countably generated sub-o-algebra of the Borel o-algebra which is a™'-descending
and L-subordinate, then

Hy (AlaA) < log|det(Adq|p)|

and equality holds if and only if i is L-invariant.

Let L < G be a closed subgroup normalized by a, m, be the Haar measure on L, and
be an g-invariant probability measure on Y. Let A be a countably generated sub-o -algebra
of Borel o-algebra which is a~!-descending and L-subordinate modulo . Note that for
any j € Z=o, the sub-o-algebra a’ A is also countably generated, a~!-descending, and
L-subordinate modulo .

For y € Y, denote by V, C L the shape of the A-atom at y € Y so that V, - y = [y]a.
It has positive m-measure for p-a.e. y € Y since A is L-subordinate modulo . Note that
forany j € Z>o, we have [yl ;4 = a’ Va__,-ya_j - y.

As in [EL10, 7.55] which is the proof of [EL10, Theorem 7.9], let us define t;?’ﬂ for
p-a.e y € Y to be the normalized push forward of mz|, iV, a under the orbit map,
that is,

j 1
J
Ta?(

= *Wl[ﬂ i Ca—J
Y mp (@l Vy-j,a=i) @ ey .

which is a probability measure on [y],; .
The following proposition is an effective version of Theorem 2.11.
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THEOREM 2.12. Let L < GT be a closed subgroup normalized by a and | be an
a-invariant ergodic probability measure on Y. Fix j € N and denote by J > 0 the maximal
entropy contribution of L for a’, that is,

J = log|det(Ad,;|).

Let A be a countably generated sub-o -algebra of Borel o -algbera which is a~'-descending
and L-subordinate. Suppose there exist a measurable subset K C Y and a symmetric
measurable subset B C L such that [yla C B -y for any y € K. Then, we have

H,(Ala’ A) < J + / log r;’jﬂ((y \ K) U B Supp 1) du(y).
Y

Proof. By for instance [EL10, Theorem 5.9], for yu-ae. y €Y, ,u‘;jﬂ is a probability
measure on [y],j # = a’ Vaija’j -y, and Hy, (Ala’ A) can be written as

H,y(Ala) 7) = — /Y log 1A ([yla) dpu(y).
Note that my (a’ Ba=/) = e’ m (B) for any measurable B C L. Let

def j s def j
P = 8 (e and Py = (V1)
Then, we have

Haar( _ mL(Vy) _ mL(Vy) —J
mp(alV-jya=)  mp(Vyjy)

p >
and hence, applying the ergodic theorem, we have — fY log pHaar(y) du(y) = J.

Now we estimate an upper bound of H,(Ala’A) — J following the computation in
[EL10, 7.55]. Following [EL10, 7.55], we can partition [y],; # into a countable union of
A-atoms as follows:

o0
Ylaia = (Jxila U Ny,

i=1

where N, is a null set with respect to /x‘;m‘. Note that /x‘;m‘ is supported on Supp u
for w-a.e y. Since B C L is symmetric, if x; € K\ B Supp u, then [x;]q C B -x; C
K \ Supp ¢, and hence we have uf;'/ﬂ([xi]y() =0. If x, € Y\ K)UB Supp u and
[xila ¢ (Y \ K) U B Supp p, then there exists x| € [x;]# such that x] € K \ B Supp p,
and hence u?,jﬂ([x,-]ﬂ) = u‘y‘]ﬂ([xlf];,z{) = 0. Thus, we denote by Z the set of x; terms in
(Y \ K) U B Supp u such that [x;]# C (Y \ K) U B Supp . It follows that

Hy(Ala! A) — J = — /y (log p(z) — log P (2)) duu(2)

=/nyy(10g P () —log p(2)) dud’ A (z) dp(y)

Z/YZ

xXi€Z

[ o pn) ~ tog () dud @) ducy)
z€[xi]a
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A\
/ 3 o ( "“) 18 A (il ()

iez A([xi 1)

/ log ( > “"‘([mm) dp(y)

x,€Z
< /Y log /(Y \ K) U B Supp 1) du(y).

The second last inequality follows from the convexity of the logarithm. This proves the
proposition. O

In particular, if A is of the form ak AL for k € Z, then Theorem 2.12 still holds without
assuming the ergodicity of .

COROLLARY 2.13. Let 0 < rg < 1 be given, . be an a-invariant probability measure on

Y, L < G7 be a closed subgroup normalized by a, and A* be as in Proposition 2.8. Then,
Theorem 2.12 holds for A of the form a* AL for k € Z.

Proof. Writing the ergodic decomposition u = f ,u‘;’ du(z), we have
(@ | AL) = / @)\ AL) dpn(2),
where ﬂCL,O is the o-algebra as in equation (2.12). By Proposition 2.10, we also have
Hy (A" al AY) = / H,e(A" |/ AY) dpu(2).
It follows from the a-invariance of © and uf that
Hy (Ala’ A) = / H,&(Ala’ A) du(2).
Applying Theorem 2.12 for each u‘?, we obtain
Hy(Ala’ A) = / Hﬂg(ﬂ|aj&7() du(z)
<J+ /Y fY log 10" M'(B? Supp &) dul(y) dp(z)

<J +/ log ©"7(B? Supp 1) d (). 0

3. Preliminaries for the upper bound
From now on, we fix the following notation:

d=m+n, G=ASLy(R), ' = ASLy(Z), and Y = G/T.

We use all notation in §2.2 with this setting. In particular, we choose a right invariant
metric dg on G so that r,,4, < 1. Denote by d, the metric on G induced from the max
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norm on M 1 4+1(R). Since dg and d are locally bi-Lipschitz, there are constants
0 < rp < land Cy > 1 such that for any x, y € B,C(f,

1
C—Odoo(x, y) <dg(x,y) < Codo(x, y). (3.1)

Note that g and Cp depend only on G. In the rest of the article, all the statements from
Lemma 2.5 to Proposition 2.10 will be applied to this rg.

Recall the notation a;, a = a1, U, and W in the introduction. The subgroups U and
W are closed subgroups in G normalized by a, where G™ is the unstable horospherical
subgroup associated to a. Denote by u and tv the Lie algebras of U and W, respectively.
We now consider the following quasinorms on u = R™"* = M,, ,(R) and v = R™: For
AeM,,,(R)and b € R™, define

IAllrgs = max |A;;|V/") and [|b]ly = max |b;]"/".
1<i<m 1<i<m

1<j=n

We call these quasinorms r ® s-quasinorm and r-quasinorm, respectively.
We remark that for A, A’ € M, ,(R) and b, b’ € R™, using the convexity of functions
s > sYUits) and s > s1/7,

1A + A'llrgs < 207 Omtsm D/ Entsn) (| Al rgs + 1A lIr@s);

(3.2)
15+ B ||y < 20 (B 4 16 ]]1).

It also holds that
|Ad,, Allrgs = €' || Allrgs  and || Adg, bllr = €' |||

forany A € M, ,(R) and b € R™.

By a quasi-metric on a space Z, we mean a map dz : Z x Z — Rxo which is a sym-
metric, positive definite map such that for some constant C, for all x, y € Z, dz(x, y) <
C(dz(x,z)+dz(z,y)). The r ® s-quasinorm (respectively r-quasinorm) induces the
quasi-metric drgs (respectively dy) on u (respectively tv). Note that the logarithm map
is defined on U and W, and hence the quasi-metric drgs (respectively dy) induces the
quasi-metric on U (respectively W) via the logarithm map. For simplicity, we keep the
notation drgs and dy for the quasi-metrics on U and W, respectively. We similarly denote by
BY™®S (respectively B,”") the open r-ball around the identity in U (respectively W) with
respect to the quasi-metric drgs (respectively dr). For any y € Y, we also denote by drgs
(respectively dy) the induced quasi-metric on the fiber Bg - y (respectively Brvt’ - y).

As in Theorem 2.11, we can explicitly compute the maximum entropy contributions for
L =Uand L = W.For L = U, the restricted adjoint map is the expansion Ad, : (4;;) —
(¢"T%i Ajj) of A € My, ,(R), and hence

m n
log |det(Ady )l = ) Y (ri +s)) =m+n.
i=1 j=1

For L = W, the restricted adjoint map is the expansion Ad, : (b;) — (¢'b;) of b € R™,
and hence
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m
log |det(Adylw)| = D ri = 1.
i=1
Denote by X = SL;(R)/ SLy(Z) and by 7 : ¥ — X the natural projection sending
a translated lattice x + v to the lattice x. Equivalently, it is defined by 7((§|)I') =
g SLy(Z) for g € SLy(R) and v € R¢. We also use the following notation: w(v) = ( Ié” ’]’ )
for v € RY.

3.1. Dimensions. Let Z be a space endowed with a quasi-metric dz. For a bounded
subset S C Z, the lower Minkowski dimension dim, S with respect to the quasi-metric
dz is defined by

b}

. def . . . log Ns(S)
dlm]{ZS = h?l}glf l()g—l/8

where Ns(S) is the maximal cardinality of a §-separated subset of S for dz.

Now, for subsets § C u=R"" and §’' C o = R™ in the Lie algebras u and to, we
denote the lower Minkowski dimensions of these subsets as follows:

. def . . /def . /
dim oS = dim, ,r®sS, dim S" = dim ,rS .

We will also consider Hausdorff dimensions dimg S and dimg §’, always defined with
respect to the standard metric.

LEMMA 3.1. [LSS19, Lemma 2.2] For subsets S C wand S’ C w:
(1) dimgu = Zi,j(ri +sj))=m+nanddimro =73, r =1;
(2) dim,g¢S > (m +n) — (r; +s1)(mn — dimg S);

(3) dim.S > 1 —ri(m — dimy S).

3.2. Correspondence with dynamics. For y = (f)' 1{ )T eY with g eSL;(R) and
v € RY, denote by A, the corresponding unimodular grid g7 4+ v in RY. We denote

the (r, s)-quasinorm of v = (X, y) € R™ x R" by [[v]lrs = max{|x|¥", [ly|</"}. Let

Y {yeY: forallve Ay, [[vllrs > €},

which is a (non-compact) closed subset of Y. Following [Kle99, §1.3], we say that the
pair (A, b) € My, ,(R) x R™ is rational if there exists some (p, g) € Z™ x Z" such that
Ag — b+ p =0, and irrational otherwise.

PROPOSITION 3.2. For any irrational pair (A, b) € M,, ,(R) x R", (A, b) € Bad(e) if
and only if the a;-orbit of the point ya p, is eventually in L, that is, there exists T > 0 such
that a;yap € Le forallt > T.

Proof. Suppose that there exist arbitrarily large ¢ terms satisfying a;yap ¢ Le. Denote

def .. def ..
e = diag(e’t’, ..., e"') € My, (R) and e = diag(e®!, . . ., e*') € M, ,(R). Then,
the vectors in the grid A4y, , can be represented as

(6 7)) ()= ()
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for (p, q) € Z" x Z". Therefore, a;xa ¢ Lc implies that for some g € Z",
e'(Ag —b)r < €™ and e||q|s < €4, (3.3)

and thus ||ql|ls(Ag — b)r < €. Since (Aqg — b)y # 0 for all g, we use the condition
(Ag — b)r < e~te™/d for arbitrarily large ¢ to conclude that ||g||s(Ag — b)r < € holds for
infinitely many ¢ terms. This is a contradiction to the assumption that (A, b) € Bad(e).
However, if (A, b) ¢ Bad(¢), then since (A, b) is irrational, there are infinitely many
q € 7" such that ||q|ls{Aq — b)r < €. Thus, we can choose arbitrarily large ¢ so that
equation (3.3) holds, which contradicts the assumption that the a;-orbit of the point y4 5 is
eventually in L. O

Remark 3.3. We claim that for a fixed b € R™, the subset Badg(e) of rational (A, b) terms
in Bad” (¢) is a subset of Bad(¢). Indeed, if A € Bad” (e) for some b and (A, b) is rational,
then (Ago — b)r = 0 for some go € Z™ and lim inf)4 ;0 lIglls(Ag — b)r > €, and thus
lim infj4 ), 00 lglls{A(g — q0))r > €. Therefore, we have

€
— < mn
log 1/€
for some constant ¢, , > 0 [KM19]. For a fixed A € M, »,(R), the subset of Bad 4 (¢) such
that (A, b) is rational is of the form Aq + p for some g, p € Z™ and thus has Hausdorff
dimension zero.

dimy Bad)(¢) < dimy Bad’(¢) = mn — cpup

In the rest of the article, we will focus on the elements y4 p that are eventually in L.

3.3. Covering counting lemma. To construct measures of large entropy in Proposition 4.1
and 5.4, we will need the following counting lemma, which is a generalization of [LLSS19,
Lemma 2.4].

Here, we consider two cases: L = U and L = W. Denote by ¢ = (c1, . . . , Cdim 1) €ither
r®s (for L="U) or r (for L = U), and denote by | - || either | - ||rgs (for L = U)
or |- |lr (for L = W). Let J;, be the maximal entropy contribution for L. Recall that
Ju=m+nand Jy = 1.

Before stating the main result of this subsection, we fix the following notation. Fix a
‘cusp part’ ng C X thatis a connected subset such that X \ ng has compact closure. Set
O = a1 (ng) and denote by 7 (Qso) > 0 the infimum of injectivity radiuson Y \ Q.
For any D > Jp, choose large enough 7p € N such thatforalli =1,...,dim [,

(0T < oiTo(D=J1)/dim | (3.4)

For ryp > 0 and Cp > 1 from equation (3.1), fix 0 < rp = rD(QgO) < min(rg, 1/2) small
enough so that

BhS C Blingo (1/0r(0my A4 B (Y\ Qo0) CY(57(Qc)).  (3.5)

21/min ccorll)/max CTD

LEMMA 3.4. For any ng C X and D > Ji, we fix the above notation. Let y € Y \ Qo
and I = {t e N|a;y € Quo}. For any non-negative integer T, let

Eyr={z€ B} -y| forallt € {l,...,T}\ I, dy(a;y,a;2) < rp}.
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The set Ey 7 can be covered by CePUNLTN d _balls of radius rlD/max “eT, where Cisa
constant depending on ng and D, but independent of T.

Proof. Fors €{0,...,Tp — 1} and k € Zx>o, let us denote I;x(Tp) = {s,s +Tp, ...,
s + kTp} and

Ey,={ze BrLD -y forallt € I (Tp) \ 1, dy(asy, a;z) < rp}.

Following the proof of [LSS19, Lemma 2.4] with E;,k instead of E, 7, we obtain the
following claim.

CLAIM. The set E;’k can be covered by CyeLTp=D+DNINLL(TD)l g balls of radius

Cor})/malx €e=6+kTD) ywhere Cy is a constant depending on ng, D, and s, but independent
of k.

Proof of the claim. We prove the claim by induction on k. Since the number of d,-balls of
radius Corg M€= needed to cover B,LD -y is bounded by a constant Cs depending on
ng, D, and s, the claim holds for k = 0.

Suppose that E; «—1 can be covered by Ny_1 = CyeYLTp=D+D)INL -1 (Tp)| d¢-balls
{Bj:j=1,...,Ne_1} of radius Cor™ Se=6+*=DTo) By the inequality in

equation (3.4), any d,-ball of radius Cor ll)/ X €o=(+*=DTb) can be covered by

dim [ "e—(S‘F(k—l)TD)Ci dim [ dim [
i=1

W—‘ = [Jre™1 < [ e™retP~/r)rdimt
e v i
i=1 i=1

_ LT gD=J1 _ GJL(Tp=1)+D

d-balls of radius CorlD/max €e=G+KID) Thus, if s + kTp € I, then E; « can be covered by
Ni = etT0=D+D Ny de-balls of radius Cor ™ Ce~(+TD),

Suppose that s + kTp ¢ I. Since E;’k C E;’kfl, the sets E;’k NBj with j=1,...,
Ni_1 cover Ei’k. We now claim that for any 1 < j < Nj_1 and x1, x2 € E;’k N Bj, we
have )

1/mi 1/maxe — kT
dpe(x1, xg) < 2/ CCor M ST HHTD),

Indeed, since B; is a dp ¢-ball of radius Corgmax Ce~(+(k=DIp) anq X1, x2 € Bj C

L
B,LD -y, there are h € BrLD and hy, hy € BC(’;

X3 = hohy. Tt follows from s+ kT; ¢ I and x1,x7 € E;’k that a”dey CY\ O
and dy(a*T*Tpy, a***¥Tpx,) < rp for £ = 1,2, and hence by equation (3.5), we have
astkTpy) ¢ Bg(Y \ Ox0) C Y(%r(Qoo)) and dy (a* %0 x, a*tkT0 x,) < 2rp. Observe
that by equation (3.5),

mase, (s p) such that x; = h1hy and

s+kTp —1_—(s+kTp) s+kTp pL.c —(s+kTp)
a hihy " a Ca B21/mmcC0rll)/maxce,(s+<k71)TD)a

_ nplLc CBL~
- 21/min CCOr})/maxchD min(ro,(1/2)r(Q))*
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Thus, it follows from equation (3.1) and the above observations that

2"D > dy(as-‘rkTDxl’ aS-i-kTDx2) — dL(aS-‘rkTDhlhzfla—(S-ﬁ—kTD)’ ld)

1 ) . .

> C_Od (a3+kTDh1h2_1a7(’+kTD), ld)
1 o

— i (s+kTp) -1

= max e log hihsy )|,
Co i=1,..dim |(log 7117, il

where (log h1h; 1); is the ith coordinate of log hihy ! with respect to the standard basis
{e; : 1 <i <dim [} of [. Since L = U or L = W, that is, a commutative subgroup of G,
foreachi =1, ..., dim [, we have

|(log h1hy )il = |(log h1 — log ho);| < 2rpCoe i HKTD),
Note that

die(x1,x2) =dpe(hi, ho) = _max  |(log hy —log ho)i |/,

.....

Therefore, we have

(s 7 1/ma (g
dL,c(xla x2) S max (2rDCO)1/L,e (é+kTD) S 21/mm CCOrD/mdx ce (A+kTD).
i=1,...,dim [

It follows from the claim that E; « N Bj is contained in a single dy c-ball of radius

Corgmax €e~G+kTD) for each j=1,..., Nr—1. Hence, E;’k can be covered by
Ni = Ni_1dp e-balls of radius Cor ™ ¢e~6+k7p), O
Now, for any non-negative integer 7, we can find s € {0,...,Tp — 1} and k € Z>
such that
TplINLx(Tp)| <IN{L,...,T}} and T —-Tp<s+kTp<T

from the pigeon hole principle. By the above observation, Ey 7 C E;’k can be covered
by CyeLTp=D+DNNLL(TD)l g, balls of radius Corp] ™ e~ T+T0) Since T — Tp < s +
kTp < T and D > Jp, Ey 1 can be covered by (maxo<s<7p—1 Cs)emm{1 """ T} d,-balls of
radius CoeTD rg T €o—T Hence, there exists a constant C > 0 depending on ng, r, and

D, but independent of T such that £ 7 can be covered by C ePINL-TH 4 balls of radius
’ 1/max ce‘_T 0

D
4. Upper bound for Hausdorff dimension of Bad 4 (¢)
In this section, we will prove Theorem 1.2 by constructing an a-invariant probability
measure on Y with large entropy. Here and in the next section, we will consider the
dynamical entropy of a instead of a~! in contrast to §2. Hence, let us use the following
notation. For a given partition Q of Y and a integer g > 1, we denote

g—1
Qv =\/a"Q
i=0
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4.1. Constructing measure with entropy lower bound. Let us denote by X and Y the
one-point compactifications of X and Y, respectively. Let A be a given countably generated
o-algebra of X or Y. We denote by A the o-algebra generated by A and {oo}. The
diagonal action a; is extended to the action on X and Y by a,(00) = oo for t € R. For

a finite partition Q = {Q1, ..., On, Qco} of Y which has only one non-compact element

0o, denote by Q the finite partition {Q1, ..., Oy, Oco def Qoo U {00}} of Y. Note that

QY = é(‘” for any ¢ € N. Denote by Z(X) the space of probability measures on X, and
use similar notation for ¥, X, and Y.

In this subsection, we construct an a-invariant measure on ¥ with a lower bound on the
conditional entropy for the proof of Theorem 1.2. Here, the conditional entropy will be
computed with respect to the o-algebras constructed in §2. If x4 has no escape of mass,
such measure was constructed in [LLSS19, Proposition 2.3]. The following proposition
generalizes the measure construction for x4 terms with some escape of mass.

PROPOSITION 4.1. For A € M,, ,(R) fixed, let
na = sup{n : x4 has n-escape of mass on average}.
Then, there exists up € P(X) with pa(X) = 1 — na such that for any € > 0, there exists
an a-invariant measure [t € 9(?) satisfying:
(1) Supp& C LeUT \Y);
(2) 7« = 4, in particular, there exists an a-invariant measure u € (Y) such that
n==0=nan+nade,

where 8o is the dirac delta measure on' Y \Y;,
3) et AY be as in Proposition 2.8 for u, ro, and L = W, and let ﬂovg be as in equation
(2.12). Then, we have

hz(@AY) > 1 — na — ri(m — dimy Bad 4 ().

Remark 4.2.

(1) Note thatif n4 > 0, then x4 has n4-escape of mass on average;

(2) one can check that n4 = 0 if and only if x4 is heavy, which is defined in [L.SS19,
Definition 1.1].

Proof. Since x4 has n4-escape of mass on average but no more than 4, we may fix an
increasing sequence of integers {k; };>1 such that

ki—1
1 . -
= > gty —> 1a € 2(X)
' k=0

with ua(X) =1 —na.
Let us denote by T = [0, 1]/~ the torus in R™, where the equivalence relation is
modulo 1. Consider the increasing family of sets

RAT Eip e T forall 1 > T, aryap € L) NBady(e).
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By Proposition 3.2 and Remark 3.3, (J7_, R*T has Hausdorff dimension equal
to dimg Bad4(¢). For any y > 0, it follows that there exists 7, € N satisfying
dimy RATy > dimy Badj (¢) — Y.

Let ¢4 : T" — Y be the map defined by ¢4(b) = ya . Note that ¢4 is a one-to-one
Lipschitz map between T and ¢4 (T™), so we may consider a quasinorm on ¢4 (T™)
induced from the r-quasinorm on R” and denote it again by || - ||.

For each k; > T,,, let S; be a maximal e_ki—separated subset of RATy with respect to
the r-quasinorm. By Lemma 3.1(3),

lim inf log 5]
i—00 i

> dim, (R*T) > 1 — ri(m + y — dimy Bada(e)).

def . .
Let v = (1/]Si]) > bes; Oyap be the normalized counting measure on the set

D; &f {yap :b e S;} CY. Extracting a subsequence if necessary, we may assume that
qer 193 w* -
Wi = Z vy 5 ow e 2(Y).
b k=0
The measure w? is a-invariant since a,jt; — (4; goes to zero measure.

Choose any sequence of positive real numbers (y;) j>| converging to zero and let {"/ }
be a family of a-invariant probability measures on ¥ obtained from the above construction
for each y;. Extracting a subsequence again if necessary, we may take a weak®-limit
measure 1 € Z(Y) of {ui}. We prove that & is the desired measure. The measure &
is clearly a-invariant.

(1) We show that forall y > 0, u¥ (Y \ L¢) = 0.Forany b € S; € R aryap € Le
holds for T > T,,. Thus, we have

ki—1

T,
. _ 1 ko I g
mi¥\ Lo = ¢ ;a*vl(Y\Le) =z ]ga*w\&)

: > Su,(Y\ L) < Ty
= s ay =T
kilSil | plozker, ki

By taking k; — oo, we have u” (Y \ L) = 0 for arbitrary y > 0, and hence

R(Y\ L) = lim pVi (Y \ Le) =0.
J—>0o0

(2)Forally > 0, mupu” = 4 since myv; = 8y, foralli > 1.1t follows that m. it = 4.
Hence,

ﬁ(Y\Y)=J_lgrolouyf(Y\Y)=uA(7\X)=nA,

so we have a decomposition it = (1 — n4) 4 + 1480 for some a-invariant u € FA(Y).

(3) Wefirstfixany D > Jy = 1 and ng C X such that X \ ng has compact closure.
As in [LLSS19, Proof of Theorem 4.2, Claim 2], we can construct a finite partition Q of Y
satisfying:
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e Qcontains an atom Q4 of the form 7! (ng);

o forall Q € Q\{Qx},diam Q <rp = rD(QgO), where rp is from equation (3.5);

e forallQ e, forallj >1, u@Q) =0.

Remark that for all i > 1, D; C ¢4 (T™), which is a compact set in Y; therefore, we can
choose QY so that

OuND; = 2. .1

We claim that it suffices to show the following statement. For all ¢ > 1,

1 =@ . _

EHH(Q 1 Iﬂoﬂé) >1—ri(m—dimyg Bada(€)) — Du(Qoo). “4.2)
Indeed, by taking ¢ — oo, we have

hi(@|AY) > 1 — ry(m — dimy Bady(¢)) — DI(Quo).

Taking D — 1 and Q% C X such that @W(Qe) = (Y \Y) =n4 and D — 1, we
conclude equation (3).

In the rest of the proof, we show the inequality in equation (4.2). It is clear if
1(Qs) =1, so assume that w(Qs) < 1, and hence for all large enough j > 1,
1Y (Qx) < 1. Now, we fix such j > 1 and write temporarily y = y;.

Choose 8 > 0 such that u” (Qs) < B < 1. For large enough i > 1, we have

1 1 0
Hi(Qo0) = o > 8uy(Qu0) = o D 8, (0%) < B.
yveD; 0<k<k; 0<k<k;

In other words, there exist at most Sk; number of akx A terms in ng, and thus for any
y € D;, we have

Hk € {0, ... ki — 1} :d*y € Ouo}l < Bki.

From Lemma 3.4 with L = W and equation (4.1), if Q is any non-empty atom of Q™)
fixing any y € D; N Q, the set

DiNnQ=D;N [y]Q(ki) C Eyx-1

can be covered by CePPki many rll)/ "¢~k _balls for dy, where C is a constant depending
on ng and D, but not on k;. Since D; is e X -separated with respect to dy and rll)/ < %,
we get

Card(D; N Q) < CePPki (4.3)

Now let AV = (PW)SO = \/?io a'PW be as in Proposition 2.8 for j, ro, and L = W,
and let ﬂo‘z be as in equation (2.12).

CLamM. H, (Q*|AY) = H, @Q*)).

Proof of the claim. Using the continuity of entropy, we have

Hy, @1 A%) = lim H, @*1PY)F).
— 00
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Now we show H,, (Q(ki)I(PW)‘l?O = H,, Q%Y for all large enough ¢ > 1. Let E5 be
the dynamical §-boundary of # as in Lemma 2.7 for w and rp. As mentioned in
Remark 2.4, we may assume that there exists y € ¢4 (T™) such that y ¢ dP. Since
Es = Clkadoe—kaé‘y), there exists § > O such that y € Y \ Es. For any £ > 1, we have
a~tyeY\aYEs C Y\ Es. Hence, it follows from equation (2.6) and Proposition 2.8
that

gy = a'la™ Vg = a'Ta™ ¥lgw > a' B a™y 2 B} iy y.

Since the support of v; is a set of finite points on a single compact W-orbit ¢4 (T™),
v; is supported on a single atom of (Pw)zo for all large enough ¢ > 1. This proves the
claim. O

Combining equation (4.3) and the above claim, it follows that
H,, @\ AY) = H, Q") > log |S;| — DPk; —log C. (4.4)
For any ¢ > 1, write the Euclidean division of large enough k; — 1 by g as
ki —1 =gk +swiths €{0,...,q — 1}.
By subadditivity of the entropy with respect to the partition, for each p € {0, ..., q — 1},
Hy, Q" AY) < Haryy @PNAL) + -+ - + Hypogrr, Q9| AY) +2g log |Q.
Summing those inequalities for p =0, ...,qg — 1, and using the concave property of

entropy with respect to the measure, we obtain
ki—1
qHy, @1 AY) < 3 Hor,, (@9 AL)Y + 297 log |Q)
k=0
< ki Hyy, @ AY) + 247 log |, (4.5)

and it follows from equation (4.4) that

1 _ 2g log |Q|
k_H“" @AY - %
i i

v

1
el @Q91AY)

v

1
i, (og ISi| — Dpki —log C — 24 log |Q)).
1

Now we can take i — oo because the atoms Q of Q and hence of G_I(q) satisfy u?(0Q) = 0.
Also, the constants C and |@| are independent to k;. Thus, we obtain

1 [P
S @?1AY) > 1 — ri(m +y — dimp Bad()) — Dp.
By taking 8 — 2(Qwo) and y = y; — 0, the inequality in equation (4.2) follows. O

4.2. The proof of Theorem 1.2. In this subsection, we will estimate the dimension upper
bound in Theorem 1.2 using the a-invariant measure with large relative entropy constructed
in Proposition 4.1 and the effective variational principle in Theorem 2.12. To use the
effective variational principle, we need the following lemma.
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Forx € X and H > 1, we set
def _
ht(x) = sup{ligvl ™' : x = gSL4(Z), v € Z¢\ {0},
Xep ®xeX ht) <HY, Yo Ea'Xop).

Note that ht(x) > 1 for any x € X by Minkowski’s theorem, and X<y and Y<y are
compact sets for all H > 1 by Mahler’s compact criterion.

LEMMA 4.3. Let A be a countably generated sub-o-algebra of Borel o-algebra which
is a~'-descending and W-subordinate. Let us fix y € Y<p and suppose that BBW’r -y C
[yla C BrW’r -y for some 0 <8 <r. Forany0 <e <1, if j1 > log((2d HI=1)1/rms=1y
and jo > log((de_l)l/S"e_”/d), then t;"”ﬂ(a_jz.[:e) <1 —e i=ip=lemld \yhere

ty“'”ﬂ isasin §2.4.

Proof. For x =n(y) € X<pu, there exists g € SLy(R) such that x = gSL;(Z) and
infycza\ oy llgvll = H~'. By Minkowski’s second theorem with a convex body [—1, 1]¢,
we can choose vectors guvy, . .., gug in gZ% so that ]_[fl=1 llgvill < 1. Then, for any
1 <i<d,
lgvill <] lgv;ll™" < H™".
J#
Let A C R? be the parallelepiped generated by gui, . .., gug, then ||b|| < dH?~! for
any b € A. It follows that ||bT | < (dH*Yrm and ||b~||s < (dH? 1)/ for any
b=(t,b") e A, where b* € R” and b~ € R". Note that the set 7 '(x) C Y is
parameterized as follows:
7l x)={wh)gh e Y : b e Al

Write y = w(bg)gl" for some by = (b, by) € A. Denote by V, C W the shape of
A-atom so that Vy -y = [y],j 4, and & C R™ the corresponding set to V) containing
0 given by the canonical bijection between W and R”™. Since a/! expands the r-quasinorm

. . ; s s . R™, — R™,
with the ratio e/!, we have BEWHZ -y Cy)iig C B:y]: -y, that is, Beilsr CEC Bejlrr'
Then the atom [y],,j, 4 is parameterized as follows:

Vi = {w®)gl : b= (bT,by), b € bf + E},

and tfv"j'ﬂ can be considered as the normalized Lebesgue measure on the set
b +E C R™.

Let us consider the following sets:

Ot E it e R bty <e 2™} and O~ B (hm e R b ||s < 2.

If b= b1, b7)e®F x©®, then [|e"2bT |, < €™/? and |l 52b||s < €"/¢, where
e2pt and e752b~ denote the vectors such that a/2b = (e"2b™, e=S72p7). Tt follows
that w(b)gl" ¢ a2 L, since

a?w®dt, b)gl = w(e™2bt, e 52b7)a2gT ¢ L.

by the definition of L.
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R™

01 x 07

FIGURE 1. Intersection of @ x ©®~ and [¥]eh &

Now we claim that the set ®F x {by} is contained in the intersection of
(ba' + E) x {by } and ®T x ®~. See Figure 1. It is enough to show that ®F C ba' + &
and b, € ©". Since |b,|s < (dH d=1yl/sn  the latter assertion follows from the
assumption j, > log((d H4~1)!/sne="/d) To show the former assertion, fix any b* € @%.
By the quasi-metric property of || - || as in equation (3.2), it follows from the assumptions
j1 > log((2d H=1H)V/ms=1y and j, > log((dHY~")!/$1e="/4) that

6% — b lle < 2077 (b e + 1By Hle) < 207 (™2™ 4 (@H AT )
S 2(17rm)/rm ((defl)fl/SnE + (defl)l/rm) S 2(17r,,l)/rm+1(defl)l/rm
< els.
Thus, we have b™ € bj + BS:”;
By the above claim, we obtain

C bar + &, which concludes the former assertion.

=" a2 L) = 10" (Y \ a2 L)

R™ r .
mpm (®+) - mpRm (Bg—./zem/d) _ 6_126m/d
~ mpn (b +8) mRm(BE,'l"r’r) er
This proves the lemma. O

Proof of Theorem 1.2. Suppose that A € M,, ,(R) is not singular on average, and let
na = sup{n : x4 has n-escape of mass} < 1.
By Proposition 4.1, there is an a-invariant measure @ € ?(Y) such that

Supp L C LU \Y), mii=ps € ZX)and LY\ Y) = us(X \ X) = na.
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This measure can be represented by the linear combination

w=>0-na)u+nadx,

where 8+ is the dirac delta measure on Y \ ¥ and p € Z(Y) is a-invariant. There is a
compact set K C X such that p4(K) > 0.99u4(X). We can choose 0 < r < 1 such that
Y(r) D 7~ (K) and u(Y (r)) > 0.99. Note that the choice of r is independent of € since
14 is only determined by fixed A.

Let AV be as in Proposition 2.8 for u, rg, and L = W, and let ﬂg’o be as in
equation (2.12). It follows from equation (3) of Proposition 4.1 that

hﬁ(alﬂ_ﬁﬁ) = (I —na) —ri(m — dimy Bady(€)).

Since the entropy function is linear with respect to the measure, it follows that

hu(a)AY) = (@l AY) > 1 — —— (m — dimy Bady(e)).
1—n4 1 —n4
By Proposition 2.10, we obtain
Wi agW 1 .
H A" |aA") > 1 - 1 (m — dimy Bada(€)). (4.6)
—NA

By Lemma 2.7, there exists 0 < § < min((cro/ 16dp)2, r) such that the dynamical
8-boundary has measure ((Es5) < 0.01. Note that since o depends only on G, the constants
C1,C2 > 0 in Lemma 2.7 depend only on a and G, and hence § is independent of €
even if the set £Es might depend on €. We write Z = Y (r) \ E; for simplicity. Note that

w(Z) = pn(Y(r)) — n(Es) > 0.98.
To apply Lemma 4.3, choose H > 1 such that

Y(r) C Y<H. 4.7
Note that the constant H depends only on r. Set
ji = Nog(@dH*™Hms' =] and  jo = Mog((@H*~")/ne=/,

where 8’ > 0 will be determined below.

Let A=a*AY for k = [log(2!/"me~"/?)] + j,. By Proposition 2.8, [ylqw C B,‘g’ -y
forally € Y, and BJW +y C [ylgw forall y € Z since § < r. It follows from equation (3.1)
that

forally € Y, [ylgaw C Bg)’féw -y and forally € Z, B;;/’Cdow <y C [ylgw,

where B e §s the do-ball of radius r around the identity in W. For simplicity, we may
assume that rop < 1/Cq by choosing rg small enough. This implies that

w, w,
forally € Y, [ylyv C B/ "-y and forallye Z, B(a/rco)l/rm -y C [ylgw.
Thus, forany y € Y,

la=a*a*ylqv ca B "a -y =BYF -y c BTy, 4.8)
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where ' = 2~ Vrmeg=i2em/d, Similarly, it follows that for any y € a*z,

By " -yclylac B)" -y, 4.9)

where 8’ = e~ 1(8/Co) /"y’

Now we will use Corollary 2.13 with L =W, K =Y, and B = Brv,v,r. Note that the
maximal entropy contribution of W for a/! is j;, and u is supported on a™ /2L, since
Supp u € L¢ and p is a-invariant. Thus, we have

W, Wr —i i W, i W, .
Br, r Supp n C Br/ l’a ]2.55 =a ]ZBejg::/Le =a szz—ll;rmém/dLG Ca jz.Lz—d/mrme
(4.10)

by using the triangular inequality of r-quasinorm as in equation (3.2) and the definition
of L for the last inclusion. Using equation (4.8), it follows from equation (4.10) and
Corollary 2.13 with L = W, K = ¥, and B = B))"" that

H,(Ala A) < ji + / log r;"‘ﬂ(a—fu:ﬂ/mrme) di(y). (4.11)
Y
Using equation (4.9), it follows from Lemma 4.3 with § = §" and r = r’ that for any
yea*zZnvyoy,
T;!j'ﬂ(a—jZLTd/Wme) <1- 2= Vrmg=it=ja /=1 em/d _ | _ e_jl’
and hence — log t;?jlﬂ(a’jzﬁgfd/mrme) > ¢~ J1. Since ;L(a’kZ NY<p) > %, it follows
from equation (4.11) that
1 . 1 .
1— Hy(AY [aAY) =1 — —H, (A e/ AY) = | — —H, (Ala)' A)
J1 J1
1 ajlfl . e_jl
> log 7i" (@™ 2 Ly-amrm) du(y) = ——.
Jt Ja—*zny_y ) 2j1
(4.12)
Recall that j; is chosen by
J1 = Mog(dH*™")/me(8/ Co)~!/m2/rme e /4]
E rlog((Zde—l)1/rm+l/S,leZ(8/C0)—l/rmzl/rme—n/de—m/d)'|
< log((RdH=Y)rm+ s o35/ Coy~1/rmal/rmy —Jog e.

Here, the constants H and 6 depend on fixed A € M, , (R), not on €. Combining equations
(4.6) and (4.12), we obtain

m —dimy Bad(e) = C(A)m’

where the constant c(A) > 0 depends only on d, r, s, and A € M,, ,(R). It completes the
proof. O
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5. Upper bound for Hausdorff dimension of Bad® (¢)
In this section, as explained in the introduction, the target vector b is fixed and we only
consider the unweighted setting, that is,

r={1/m,...,1/m) and s=(/n,...,1/n).

5.1. Constructing measure with entropy lower bound. ~ Similar to §4.1, we will construct
an a-invariant measure on Y with a lower bound on the conditional entropy to the
o -algebra AY obtained in equation (2.12) and Proposition 2.8 with L = U. To control the
amount of escape of mass for the desired measure, we need a modification of [KKLM17,
Theorem 1.1] as Proposition 5.3 below.

For any compact set & C X and positive integer k > 0, and any 0 < n < 1, let

k—1
def 1
Fie = {A eT" C My, (R) : . 2; Sai, (X \ &) < n}.
P

Given a compact set S of X, k € N, n € (0, 1), and ¢ € N, define the set

k—1
def 1
Z(&,k,t,n) = {A €T : + ;aat,»xA(X\G) > n}.
=

In other words, it is the set of A € T™" such that among O, ¢,2t, ..., (k — 1)¢, the
proportion of times i for which the orbit point a’/x4 is in the complement of & is at
least 1. The following theorem is one of the main results in [KKLM17].

THEOREM 5.1. [KKLM17, Theorem 1.5] There exist to > 0 and C > 0 such that the
Jollowing holds. For any t > tg, there exists a compact set G = &(t) of X such that for
any k € N and n € (0, 1), the set Z(S, k, t,n) can be covered with Ct3kgmtn—mmntk
balls in T of radius e~ MMk,

Remark 5.2. Note that we can take &(¢) to be increasing in ¢, that is, &(r) € &(¢') for any
o<t <t.

The following proposition is a slightly stronger variant of [KKLM17, Theorem 1.1]
which will be needed later. We prove this using Theorem 5.1.

PROPOSITION 5.3. There exists a family of compact sets {S,}o<y<1 of X such that the
following is true. Forany 0 < n < 1,

. . nmn
dimg ( T™ \ lim su Fk ) <mn— ————. 5.1
o (v [ P ) =m = s el

Proof. For n € (0,1), let 1, >4 be the smallest integer such that (3logt,)/t; <
(nmn/10), and G;, be the set &(#;) of Theorem 5.1. For [/ > 4, denote by n; > 0
the smallest real number such that #,, =1[. Then, n; > (3m;,-1/4) for any [ > 5. For
n' € [m, ni—1), let us define 6;]’, = G/,“. For any € (0, 1), we set &, = U—fnSfon a’G%’
so that for any —7, <7 < t, and x € 6;7’, a'x € G,.
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Now we prove that this family of compact sets {&,}o<;<1 satisfies equation (5.1).
Suppose A ¢ F Gy which implies (1/k) Zk 18 (X \ 6;) = n. For sufficiently

uxA
large k,
1 [k/ty]1=1 1 1y (Tk/ty1=1) 9
Symiy (X \6)) > X\6
i ; iy X\ 2 s g Baina X\ &) 2 o,

Hence, T™" \ F,I;’Gn C Z(&), [k/ty], ty, (9/10)n) for any 0 <n <1 and sufficiently
large k € N.

For any 1, < n' < m—1, we have 1, =1 and the set Z(GZ,, [k/ty1, ty, (9/10)n") is
contained in Z(Gm, [k/ty 1,1, (9/10)n;). It follows that for any 0 < n < 1,

t
k 9 ! k 9
Tmn\ m F,Gk g U (6///, ’7 —‘ t?’] s 1_07]/> g U <6;”, ’7_—‘,1, 1_07][>9
/ r] 4

n'=n n'=n I=
and hence

T™" \ lim sup m F,, &, S U ﬂ U ( - ’7——‘,1,%771)

k—oo ey ko>1 k=ko I=4

By Theorem 5.1, the set Uz - Z(& ,Tk/11,1, (9/10)n;) can be covered with

n’
In In
Z Cl3|'k/l'|e(m+n7(9/10)m)mn(k/l'll < Z Ct36(3 logl)/lke(m+n7(9/10)n1)mn(k+t,7)
=4 =4
In
< Z Ctse(ern)mnt,;e(m+n7(8/10)171)mnk
=4

< Ct;le(m—i-n)mnt,,e(m+n—r7/2)mnk

balls in T of radius e~ *"k Here, we used Ny, = (3n/4) which follows from

n > (3n;—1/4) for any [ > 5. Thus, for any sufficiently large kg € N,

. log(Ct,‘;e(me")m"fn e(m+n*17/2)mnk)
dlmH< m U ( .’ ’7_—‘ l’ '71)) =< lim sup — log(e_(m+n)k)

k=ko =4 k—o0

, log(Crye™t™mniny 4 (m 4 n — n/2)mnk
= lim sup =mn — nmn/2(m + n),
k— 00 (m + I’l)k

and hence we get dimp (T™" \ lim sup;_, o, ;> F,];, &) <mn—nmn/2(m +n). O
- )

In the rest of this subsection, we will prove the following proposition which gives the
bound of dimy Bad”(¢). The construction of the a-invariant measure with large relative
entropy roughly follows the construction in Proposition 4.1. However, the situation is
significantly different, as fixing b does not determine the amount of excursion in the cusp.
The additional step using Proposition 5.3 is necessary to control the measure near the cusp
allowing a small amount of escape of mass.

https://doi.org/10.1017/etds.2024.81 Published online by Cambridge University Press


https://doi.org/10.1017/etds.2024.81

Dimension estimates for badly approximable affine forms 35

PROPOSITION 5.4. Let {Sy}0<,<1 be the family of compact sets of X as in Proposition 5.3.
For fixed b eR™ and € >0, assume that dimy Bad’(¢) > dimy Bad’(e). Ler

) &ef 2(m 4+ n)(1 — (dimy Bad®(€))/mn). Then, there exists an a-invariant measure
e P(Y) such that:

(1) Supp € LU \Y);
Q) mu(X\&y) < forany no <n' <1, in particular, there exist p € Z(Y) and
0 <7 < no such that
= -mu+nde,

where 8o is the dirac delta measure on’Y \'Y;
(3) let AY be as in Proposition 2.8 for u, ro, and L = U, and let ﬂoUo be as in
equation (2.12). Then, we have

hip(alAL) = (1 =7%)(d = 310 — dn'/?).
Remark 5.5. We remark that this proposition is valid for the weighted setting except for

the construction of {&,}0;<1 since it depends on the unweighted result (Theorem 5.1) in
[KKLM17]. So, we keep the notation r and s for weights in the following proof.

Proof. For € > 0, denote by R the set Bad’ (¢) \ Badlo’(e), and let

RTE(AcRNT™ C My, (R)|forallt > T, a;xpp € Le).

The sequence {R”}r>; is increasing, and R = U7, RT by Proposition 3.2.
Since dimy Bad’(e) > dimy Bad’(e) > dimy Badj(e), it follows that dimy R =
dimgy Badb(e). Thus, for any y > 0, there exists 7}, > 1 satisfying

dimg R” > dimy Bad®(e) — y. (5.2)

Letn =2(m +n)(1 — (dimgy Badb(e) —y)/mn). If0 <y <mn/2(m +n) — (mn —
dimy Bad’(€)), then 0 < 5 < 1. For k € N, write Ff]‘ défﬂ

Recall that we have

k . ..
W'>n Fﬂ’ﬁn/ for simplicity.

dimp (T \ lim sup FX) < mn — —"_ — dimy Bad’(¢) — y (5.3)

k=00 2(m +n)

by Theorem 5.3. It follows from equations (5.2) and (5.3) that

dimp (RTV N lim sup ﬁ,f) > dimy Bad®(e) — y.

k— 00

Thus, there is an increasing sequence of positive integers {k;} — oo such that
dimy (R N Ff) > dimy Bad”(e) — y.

For each k; > T, let S; be a maximal ek -separated subset of R N f,]; I with respect
to the quasi-distance drgs. By Lemma 3.1,
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log |S;
lim inf 108 /51!

i—00 i

> dim, g (R"Y N FN) > m +n — () + 51)(mn — dimpy Bad®(¢) + y)

m-+n . b
=m+n— ——(mn —dimg Bad’(¢) + y)
mn

_mtn (dimy Bad’ () — y). (5.4
mn

Let v; € (1/IS:) Xyep, 8y = (1/IS:D Yacs, Sy, be the normalized counting mea-

sure on the set D; def {vap:A €S} CY andlet u¥ be a weak*-limit of p;:

ki—1
1 * —
Wi défz Z akv; 2w e 2(0).

' k=0
By extracting a subsequence if necessary, we may assume that ;% is a weak*-accumulation
point of {x;}. The measure uV is clearly an a-invariant measure since a,p; — i; goes to
Zero measure.
Choose any sequence of positive real numbers (y;) j>1 converging to zero and (1) j>1
be the corresponding sequence such that

dimy Bad’(e) — y;
mn '

nj =2(m+n)<1 —

Let {%/} be a family of a-invariant probability measures on Y obtained from the above
construction for each y;. Extracting a subsequence again if necessary, we may take a
weak*-limit measure 1 € Z(Y) of {i¥/}. We prove that 1 is the desired measure. The
measure [ is clearly a-invariant.

(1) We show that for any y, u?” (Y \ L¢) =0. For any A € S; € RT», aTyA,b e L.
holds for T > T,,. Thus,

ki—1

T,
. _ ! ky o LSS k I
wi(Y \ Le) = o ;}w )sVi (Y \ Le) = o é(a )i (Y \ Le) < o

By taking the limit for k; — oo, we have u” (Y \ L¢) = 0 for arbitrary y, and hence,

A\ Lo) = lim u/(Y \ L) =0.
Jj—>00

. ki ki .
(2) Forany y = y;, if AeS; C Fy} = ﬂn/zm Fn’,Gn/’ then for all i € N and 5; <

W <1, (1/k) Y42y 84k, (X \ &) < 1. Therefore, foralli € Nand n; <’ < 1,

ki—1
1 1 <
i (X \ Gyy) = s > o > Suki X\ &) <7,
aes; Tt k=0

and hence . (X \ S, = lim; o0 Tyt (X \ &,y) < 1. Since n; converges to 1o as
Jj — 00, we have

n*ﬁ(f\ 67)/) = 7)/
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for any ' > no. Hence,
mY\Y) < lim muX\&,) < no,
= 1o

so we have a decomposition 7t = (1 — M) + 7o for some w € L(Y) and 0 <77 < no.
For the rest of the proof, let us check the condition (3).
(3) We first fix any D > Jy = m + n. As in the proof of Proposition 4.1, there exists a
finite partition Q of Y satistying:
e Qcontains an atom Q4 of the form 7! (ng), where X \ ng has compact closure;
o forall Q €e Q\{Qx},diam Q <rp = rD(QgO), where rp is as in §3.3;
e forallQ e, forallj >1, u(@Q) =0.
Remark that foralli > 1, D; C {yap : A € [0, 11", b € [0, 1]™}, which is a compact set
in Y; therefore we can choose ng so that

QoND; =02. (5.5)
To prove condition (3), it suffices to prove that for all ¢ > 1,

=@ U

—H Q@71 AY) = (1 - M(Qoo)l/z)< — % dimy Bad®(e) — Dﬁ(@)‘/z) (5.6)

Indeed, taking D — m + n and ng C X such that t(Qu) — 7, it follows that
h(@|AY) > (m + n)(1 — n1/2)<— dimy Bad’(¢) — n1/2)
=1-7" (d — 5= dA‘”)

It remains to prove equation (5.6). It is trivial if 7(0s0) = 1, so assume that
7(0s) < 1, and hence for all large enough j > 1, pu%i (Ox) < 1. Now we fix such
J = 1 and write temporarily y = y;.

Choose 8 > 0 such that 47 (Qs) < B < 1. Then, for large enough i,

1
HiQo) =1—cr D, Sy (Q) < B
i1Sil yeD; 0<k<k;

In other words, there exist at most Bk;|S;| number of ak y terms in Q« with y € D; and
0<k<k;.
Let Slf C S; be the set of A € §; terms such that

{0 <k < ki :dyap € Oull = B ki 5.7

Thus, we have [S; \ S| < B'/2|S;|, and hence
1571 = (1= BY2)]5;1. (5.8)
Let v/ &f (/18D Z}G 5! 8y be the normalized counting measure on D:, where D. = def

{yA,b Ae Sl/} C Y. By deﬁn1t10n vi(Q) > |S{|/|S [v/(Q) for all measurable set Q0 C Y.
Thus,

https://doi.org/10.1017/etds.2024.81 Published online by Cambridge University Press


https://doi.org/10.1017/etds.2024.81

38 T. Kim et al

Hy@=- > logwi(Q)i(@Q) — > logi(Q)vi(Q)
vi(Q)=<l/e vi(Q)>1/e
IS, \ISH,
— 1
> W(QX)_;W Og(|5| (Q))|S| [(Q)

S]] IS 18]l /
=—T00 3 logv{(Q)v(Q) -~k log S Y v(Q)
ISil s o= 1e IS 1S o2

:s:{H @+ Y log(VZ(Q))v,f(Q)}
vi(Q)>1/e
> (1- ﬂ”%(HU;(a) - %) (59)

In the last inequality, we use the fact that v/ is a probability measure, and thus there can be
at most two elements Q of the partition for which v/(Q) > 1/e.
To compute H, (Q*)), note that for any y € D!, y ¢ Qco. From Lemma 3.4 with
L = U, equations (5.5) and (5.7), if Q # Qoo is any non-empty atom of Q%" , fixing any
y € D/ N Q, the set
Dl/ no= Dl/ N [y]Q(ki) C Ey,k,-—l
can be covered by CePVPkidygo-balls of radius r/ "' **Ve~%, where C is a constant

depending on QO and D, but not on k;. Since D; is e~ ki _separated with respect to dygs

and r 1/(V1+Sl) <

, we get
|S/[v/(Q) = Card(D] N Q) < CePVPHi,
and hence we have

va(Q(kf)) > log |S/| — DB"/?k; —log C. (5.10)

Now let AV = (PU)O = \/ —o @ iPU be as in Proposition 2.8 for w, ro, and L = U,
and let ﬂgo be as in equation (2.12).

cLam. H, Q% 1AY) = H,, @Q*)).
Proof of the claim. Using the continuity of entropy, we have
H,, Q)| AY) = Jim A, Q%) PY)).
—00

Now we show H,, (Q(ki>|(PU)?°) = H,, Q%)) for all large enough ¢ > 1. Let P
and Es; be as in Lemma 2.7 for u and ro. As mentioned in Remark 2.4, we may
assume that there exists y € {yap: A € T C Mp»(R)} such that y ¢ 9P. Since
Es =i akadoefka(;?), y € Y\ E; for some small enough § > 0, which implies that
atyeY\aYEs C Y\ Es. Hence, it follows from equation (2.6) and Proposition 2.8
that

[y](,Du)?o = ae[a_ey](gou)80 = ae[a_ey]ﬂy ) aeB(SUa_Zy D Bg%ewsy.
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Since the support of v; is a set of finite points on a single compact U-orbit, v; is supported
on a single atom of (PU);X’ for all large enough £ > 1. This proves the claim. O

Combining equations (5.8)—(5.10), and the above claim, we have

Hy, QAL = H, @) = (1 — ﬂ1/2)<Hv.’(Q(k")) - %>
! e

2
> (1 - W)( log |Si| = DB'/*ki —log C — = +log(1 — ﬁ‘/2>>.

(5.11)
As in equation (4.5), it follows from equation (5.11) that
! 1 . 2 log |Q
Pl @Q1AZ) = = Hy @A) — %M
i i

1 2
> ;((1 - ﬂ”z)< log |$i] — D'/*k: —log € — = + log(1 ~ ﬁ1/2)> —2q log |Q|>,
L

Now we can take i — oo because the atoms Q of Q and hence of QY satisfy u”(0Q) = 0.

Also, the constants C, 8, and |@Q| are independent of k;. Thus, it follows from the inequality

in equation (5.4) that

m +
mn

éHW @“1AT) > (1 - ﬁ‘/2>( % (dimpy Bad®(e) — y) — Dﬁm)-

By taking 8 — 1(Qoo) and y = v; — 0, the inequality in equation (5.6) follows. O

5.2. Effective equidistribution and the proof of Theorem 1.I. 1In this subsection, we
recall some effective equidistribution results which are necessary for the proof of
Theorem 1.1. Let g = Lie G(R) and choose an orthonormal basis for g. Define the (left)
differentiation action of g on C°(X) by Zf (x) = df (exp(tZ)x)/dt|;=o for f € C°(X)
and Z in the orthonormal basis. This also defines for any / € N, L?%-Sobolev norms S; on
CX(Y):

SN E Y nto ' DI,
D

where D ranges over all the monomials in the chosen basis of degree </ and ht o is
the function assigning 1 over the smallest length of a vector in the lattice corresponding
to the given grid. Let us define the function ¢ : (T¢ \ Q%) x RT — N measuring the
Diophantine property of b:

b, T) X min {N e N: min |gb]| .
’ - .ISqSN q Z— N M

Then there exists a sufficiently large / € N such that the following equidistribution
theorems hold.

THEOREM 5.6. [Kim, Theorem 1.3] Let K be a bounded subset in SL;(R) and V C U
be a fixed neighborhood of the identity in U with smooth boundary and compact closure.
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Then, for any t > 0, f € C°(Y), and y = gw(b)T with g € K and b € T\ Q¢ there
exists a constant a1 > 0 depending only on d and V so that

1
my (V)

/ fanuy) dmy (u) = / fdmy + O(Si(Hgb, ™M=, (5.12)
v Y
The implied constant in equation (5.12) depends only on d, V, and K.

For g € N, define

def

X, = (gwp/q)T € Y : g € SLy(R), p € Z9, ged(p, ) = 1},
def

T, = {y € SLy(Z) : ye; = e (mod g)}.

LEMMA 5.7. The subspace X, C Y can be identified with the quotient space SLy(R)/T'y.
In particular, this identification is locally bi-Lipschitz.

Proof. The action SLy(R) on X, by the left multiplication is transitive and
Stabsr, &) (w(e1/q)I") = T'y. To see the transitivity, it is enough to show the transitivity
on each fiber, that is,

SLy(Z)er = {p € Z : ged(p, g) = 1} (mod ).

Write D = ged(p) and p’ = p/D. Since ged(D, g) = 1, there are a, b € Z such that
aD+bg =1. Take A € My4(Z) such that det(A) = D and Ae; =p. If we set u=
bp’ + (a — 1) Aes, then by direct calculation, we have p + qu = (A +u x ‘(ge; + e2))e;
and A +u x “(ge; + e2) € SL4(Z), which concludes the transitivity. Bi-Lipshitz property
of the identification follows trivially since both X, and SL;(R)/ I, are locally isometric
to SL;(R). O

THEOREM 5.8. [KM12, Theorem 2.3] Forq € N, let SLy;(R)/T'y ~ X, C Y. Let K and
V be as in Theorem 5.6. Then, foranyt > 0, f € C°(Y), andy = gw(p/q)I" withg € K
and p € 74, there exists a constant ay > 0 depending only on d and V so that

1
my (V)

/ flaguy) dmy () = / fdmx, + O(Si(HIT1 : Tgl'e ). (5.13)
14 X,
The implied constant in equation (5.13) depends only on d, V, and K.

Proof. This result was obtained in [KM12, Theorem 2.3] in the case ¢ = 1. For general
q, we refer the reader to [KM23, Theorem 5.4] which gave a sketch of the required
modification. [KM23, Theorem 5.4] is actually stated for different congruence subgroups
from our I'y, but the modification still works. O

Since we assume the unweighted setting, £ = {y € Y : forallv € Ay, ||v] > el/d}.

LEMMA 5.9. For any small enough € >0 and q €N, my(Y_.-1\ L) <€ and
mx, (Ve \ L&) > g%,
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Proof. Using the Siegel integral formula [MM11, Lemma 2.1] with f =1 B_1/4(0)> which

is the indicator function on €'/¢-ball centered at 0 in R?, we have m y(Y—1\ L) K €.
However, by [AthlS, Theorem 1] with A = B,1,4(0), we have my(.&)_< 1/(1 +24).
It follows from the Siegel integral formula on X that my (Y, 1) = mx(X_ 1) < 24¢d,
Since d > 2, we have

d

my(Yoe1 \ L) = my(Y \ L) —my(Y_ 1) > —2%! > €

14 2de
for small enough € > 0, which concludes the first assertion.

To prove the second assertion, observe that for any x € X_ —1/4, there exists g € SLy(R)
such that x = g SLy(Z) and | gei| < €'/, Then, gw(e;/q)T € nq_l(x) N\ L),
where m,; : X, — X is the natural projection. Since |7rq_1(x)| <g% and mx(x € X :
e 4 < nt(x) < e 1) < €, we have

-1
|7Tq (x)ﬂ(Y\'EGH —1/d

my,(Yoe-1\ Le) > myx(xeX:e
- g L)l

<ht(x) <e 1> g e

O

PROPOSITION 5.10. Let A be a countably generated sub-o -algebra of the Borel o -algebra
which is a~'-descending and U-subordinate. Fix a compact set KCY. Let1 < R <R,
k= L(mn log R')/4d|. Suppose that y € a**K satisfies By, Usdoo -y ClylaC BUdOo .
where Br o s the do-ball of radius r around the identity in U. Fore > 0, let Q C Y be
a set satisfying QU a=*kQ C Lo There exist M, M’ > 0 such that the following holds.
IfR > e M then

R/ mn d
A M+1
1 - Ty (2) > (E) € s
where the implied constant depends only on K.

Proof. Denote by V, C U the shape of A-atom of y so that V), -y =[yln. Set
V= ij’doo. Since (mn log R")/d — 4 < 4k < (mn log R')/d, we have

BV Ca*va = B, < Bt v,
It follows that
11—t = : Iy\o(uy) dmy ()
my(Vy) Jy,

z ]Ud
mU(BR’ )

4d R/ mn 1
S e S — 1 d
2 (%) (Grorvamm Ly o amo)

_ —4d 5/ " 1 / 4k —dk
=e (R) <—mU(V) V]ly\g(a ua y)de(u)>.

/ Ly q(uy) dmy )
kY g~k
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It remains to show that

1
my(V)

/ ]ly\g(a4kua_4ky) dmyu) > M+l (5.14)
1%

We will approximate the characteristic function in the above integrand by a smooth
function ¥ and use effective equidistribution results from Theorems 5.6 and 5.8.
Since w(K) C X is compact, we can choose gg € SL;(R) such that ||go|| < Cx with
a constant Cg > 0 depending only on K, and a“”‘y = gow(bp)I" with by € R4, For
the constants «; in Theorem 5.6 and @, in Theorem 5.8, let @ = min(«q, @p) and
M = (1/a)2 +1 + (dim G)/2d). By [KM96, Lemma 2.4.7(b)] with r = Ce'/4 <1,
we can take the approximation function 6 € C2°(G) of the identity such that 6 > 0,
Supp 6 € BF(id), [ 6 =1, and §;(0) < e V/DEHEMOD) Tet g =05 y__\r,45
then we have ]lyg(zerl\ Loy = YU < ]lygzg—l\ Lo Moreover, using Young’s inequality, its
Sobolev norm is bounded as follows:

S’ =) lttom) DWW, e Y I1DO) * Iy__\r.4ll75
D D

< ey sl Yo IDO)N: < 7' S19)%,
D

and hence S; () < € /28;(0) < e~ U+dim G)/2d)

We will prove equation (5.14) applying Theorems 5.6 and 5.8 to the following two
cases, respectively:
ro

Case (i) {(bo,ezk/m)zme_M and  Case (ii) ;(bo,eZk/m)<CI:°COE—M.

Case (i): Applying Theorem 5.6, we have

1
my (V)

1
my (V)

/ Iy\e(@®ua=*y) dmy (u) >
%

1
/ ¥ (@™ ugow(bo)T) dmy (u) = / Ydmy + O(Si (W)t (bo, /™))
my (V) Jy Y

2 mY(YS(ze)—l \LG/S) + 0(67(1+(dimG)/2d)EM0().

/ v (@*ua=**y) dmy (u)
1%

It follows from Lemma 5.9 and Mo = 2 4+ (I + (dim G)/2d) that

1
my (V)

/ Ine(@ua=*y) dmy(u) > my (Y<ae)-1 \ Les2) + 0(e?) = € > MF1,
14

Case (ii): The assumption ¢ (b, e2k/my (ro/CKCo)e’M implies that there exists
g < (ro/Cg Co)e M such that ||gbollz < g%e2*/™, whence

Sqe—Zk/mEr_Oe—Me—ﬂc/m (5.15)
CgCy
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for some p € Z%. Let y' = a**gow(p/q)T. Then, for any u € V,

dy (a*ua*y, d*ua=*y"

P
I k by — —
SdG(akugow(bo),akugow<B)) =dg || “ ”g°< 0 q) id
) 1

M —k/m

P
Ji k by — = )
< Codoo | [ " “”go(o q) Jid | < Coe/™ g0l bo—qBHSVOG_ e

1

by equations (3.1) and (5.15). Hence, we have

[y (@Fua=*y) — y (@ ua=*y") | <« Si(W)dy (@ ua=*y, dbua=**y"y « Sj()e Me=*/m,
(5.16)

It follows from the assumption a*kQc L, /2, equation (5.16), and Theorem 5.8 that

1 1
my (V) ./v Iya(@¥ua™*y) dmy (u) = — fv Ly g ua=*y) dmy (u)
S / (@ ua*y) dmy (u)
“my(V) Jy
- / Y (@ ua=*y"y dmy (u) + 0(S;(y)e Me /M)
my (V) Jv

= / ¥ dmy + O(Si(¥)q"*e™* + Siypye Me M)
Xq
> qu (Yf(ze)—l \LG/S) + 0(6—(Z+(dim G)/2d)—dM/2e—0lk + 6—(l+(dim G)/Zd)—Me—k/m)‘
Let M’ = min(4d /a (I 4 (dim G)/2d+3d M /2+2), 4dm (I +(dim G) /2d +(d+ 1) M +2)).
If R/ - efM” then 674(1/{ < e4d€M/, SO ef(H»(dim G)/2d)7dM/2670(k < 6L1M+2 and
e~ AWM G)2d)=M p=k/m o cdM+2 Combining this with Lemma 5.9, it follows that
1
my (V)
> C]idé + 0(6dM+2) > €dM+1 + 0(6dM+2) > EdM+l' O

/ Lya(@®ua*y) dmy ()
14

Proof of Theorem 1.1. For fixed b, let no = 2(m + n)(1 — (dimpy Badb(e))/mn) as in
Proposition 5.4. It is enough to consider the case when Bad” (¢) is sufficiently close to the
full dimension mn, so we may assume dimg Bad’(¢) > dimy Bad®(¢) and no < 0.01.
By Proposition 5.4, there is an a-invariant measure it € Z(Y) such that Supp iz € L, U
(Y\Y),and . ;(X \ &,y) < n' forany ny < n’ < 1. We also have a-invariant u € 2(Y)
and 0 < 77 < 59 such that

m= (1= + ndos.

In particular, for " = 0.01, we have u(n_l(6o,01)) > 0.99. We can choose 0 <r < 1
such that Y (r) D 7~ 1(Sp01). Note that the choice of r is independent of € and b since
So.01 is constructed in Proposition 5.3 independent to € and b.
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Let AY be as in Proposition 2.8 for u, rg, and L = U, and let ﬂgo be as in equation
(2.12). It follows from item (3) of Proposition 5.4 that

hz(@lAL) = (1 =7 (d = 310 — d7'/?).
By the linearity of the entropy function with respect to the measure, we have
hu(@lA%) = (L +773)7Hd = 5m0 = d7'?) = d =247 = 310. (5.17)

However, we shall get an upper bound of hu(a|ﬂgo) from Proposition 2.10 and
Corollary 2.13. By Lemma 2.7, there exists 0 < 4§ < min((cro/16d0)2,r) such that
w(Es) < 0.01. Note that since rg depends only on G, the constants Ci, C» > 0 in
Lemma 2.7 depend only on a and G, and hence § is independent of € even if the set
Es depends on €. We write Z = Y (r) \ E; for simplicity. Note that u(Z) > u(Y (r)) —
Ww(Es) > 0.98.

By Proposition 2.8, [y] zu C Brlé -yforall y eY, and ng Yy Cylgq forally € Z
since § < r. It follows from equation (3.1) that

U,dso
Coro

U.ds

forally € Y, [ylqu C B -y and forally € Z, Ba/co -y Clylqu, (5.18)

where BY o s the do-ball of radius r around the identity in U. For simplicity, we may
assume that ro < 1/Cy by choosing ro small enough.
Let M and M’ be the constants in Proposition 5.10, r' =1—1/21/4 R’ = M,

R = ¢"™/4Cy/8R’, and k = |(mn log R')/4d|. Let A; =a " AY and A, = a2 AY,

where
. mn log 7/ and i mn o é
= —_ r = _— — .
71 da B /2 d B CoR

By equation (5.18), we have that forany y € Y,

[vla, = a1 [ajly]ﬂu C ch‘B]U’dC’oaj1 -y C Br({’d“ Y. (5.19)
Similarly, it follows from equation (5.18) that Bg,’d“’ -y Clyla, C Bg’dm -y for any

yealZz.
Let Q = Brl{’d” Supp w. Forany v € R? with |Jv] > €/4 and u € Y

r/ 9’
luv]l = vl = | — idyv]| = (1 —r)e'/? = (e/2)'/7,
and hence Q2 C Br({’d“’Le C L 2. Since Supp w is an a-invariant set, we also have

aing — (a73kB:{,dooa3k)a73k Supp wC (a73kBrl{,dooa3k)£E c Le/2-

Applying Proposition 5.10 with K = Y (r), A = A, and the same R’, R, Q as we just
defined, for any € > O and y € a**Y (r) Na2Z,

1= 1/2(Q) » eMH! (5.20)

since R’/R is bounded below by a constant independent of e.

https://doi.org/10.1017/etds.2024.81 Published online by Cambridge University Press


https://doi.org/10.1017/etds.2024.81

Dimension estimates for badly approximable affine forms 45

By Proposition 2.10, we have

(i + j2)d = hy (@l AL)) = (i + j2)d — Hy(AY1aAY)) = (i + jo)d — Hu (A1 A).
(5.21)

Note that the maximal entropy contribution of U for a/1 772 is (j; + ]2)d Using equation
(5.19), it follows from Corollary 2.13 with A = A, K = Y,and B = B 4o that

1+ j2)d — Hy(A[A) = — / log T;%(Q) dp(y). (5.22)
Y
Combining equations (5.20), (5.21), and (5.22), since w@*y(r)yna2z) > %, we have
S 1
Ui+ j2)d — hu(alAL)) = / (- () du(y) > el
a*y@rna2z 2

It follows from equation (5.17) and j; + j» < log(1/€) that

/2> 247" + Lng > d — hy,(a|AL) > M2,

Since ng = 2(m + n)(1 — (dimgy Badb(e))/mn), we have

mn — dimg Bad'(¢) > ¢o e2dM+2)

for some constant ¢y > 0 depending only on d. O

6. Characterization of singular on average property and dimension estimates
In this section, we will show (2) = (1) in Theorem 1.3. Let A € M, , and consider two
subgroups

GA) Az + 7" cR™ and GA) ¥ azm + 77 c R
If we view alternatively G(A) as a subgroup of classes modulo Z™, lying in the
m-dimensional torus T, Kronecker’s theorem asserts that G(A) is dense in T™ if
and only if the group G(A) has maximal rank m +n over Z (see [Cas57, Ch. III,
Theorem IV]). Thus, if rankz(G(A)) < m +n, then Bads(e) has full Hausdorff
dimension for any € > 0. Hence, throughout this section, we consider only matrices A
for which rankz(G(A)) = m + n.

6.1. Best approximations. We set up a weighted version of the best approximations
following [CGGMS20]. (See also [BKLLR21, BL05] and for the unweighted setting.)

Definition 6.1. Given A € M,, ,, we denote
M(y) = inf Ay — qs.
qez”

A sequence (y;);>1 in Z" is called a sequence of weighted best approximations to 'A if the
sequence satisfies the following properties:

(1) setting ¥; = |lyillr and M; = M (y;), we have
Yi<Yo<--- and M| >My>---;

(2) M(y) = M; for all non-zero 'y € Z™ with ||y|ly < Yi+1.
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Our assumption rankz(G(A)) = m + n guarantees that M(y) > 0 for all non-zero
y € Z™, and hence the existence of a sequence of best approximations to ' A. Moreover,
the following lemma says that (¥;);> has at least geometric growth.

LEMMA 6.2. [CGGMS20, Proof of Lemma 4.3] There exists a positive integer V such
that foralli > 1,

Yiyv 22V
In particular, there exist ¢ > 0 and y > 1 such that foralli > 1, ¥; > cy’.

Remark 6.3. From the weighted Dirichlet’s theorem (see [Kle98, Theorem 2.2]), one can
check that My Y41 < 1 forallk > 1.

6.2. Characterization of singular on average property. In this section, we will char-
acterize the singular on average property in terms of best approximations. At first, we
will show A is singular on average if and only if ‘A is singular on average. To do this,
following [Cas57, Ch. V], we prove a transference principle between two homogeneous
approximations with weights. See also [GE15, Ger20].

Definition 6.4. Given positive numbers Ay, . . ., Ay, consider the parallelepiped
P={z=(1n....z) R |z| <k i=1....d}

We call the parallelepiped
1 4
d. ;
P*:{Z:(Zl,...,Zd)ER |Z,|§A—ll_[1)\j,l=1,,d}
j=

the pseudo-compound of P.

THEOREM 6.5. [GE15] Let P be as in Definition 6.4 and let A be a full-rank lattice in R9.
Then,

P N A" £ {0} = PNA # {0},

where ¢ = dY?@=D and A* is the dual lattice of A, that is, A* = {x € RY:x. yETZL
forall y € A}.

COROLLARY 6.6. For positive integer m,n, let d =m +n, and let A € M,,, and
0 < € < 1 be given. For all large enough X > 1, if there exists a non-zero q € Z" such
that

(AQr < eT™' and |qls <T, 6.1)
then there exists a non-zero'y € 7" such that
(Ay)s < C(]/Vm+1/Sn)ErmSn/(Sn+r1(1*Sn))T1—1 and |yl < Ti,

where ¢ is as in Theorem 6.5 and Ty = ¢'/"me=rmd=sn)/Gntrid=s) T
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Proof. Consider the following two parallelepipeds:

ri T P
Q=1z= zd)eRd-lmfe T7", i=1,...,m
lemejl <TY, j=1,...,n
d lzil < Z", i=1,....m
P=1z=(21,...,20) €eR": o ,
lzmej| <859 Z7%, j=1,...,n

where

S = ermsn/(5n+rl(l_5n)) and Z = E_rr7z(l_sn)/(sn+rl(l_sn))T_

Observe that the pseudo-compound of # is given by
lzil <8277, i=1,....,m
n

P =1z2=(21,...,24) €eRY: e
|Zm+]| E 8 ‘Y"ZS'“ .] = 1’ LR ]

and that Q C P* since ¢"iT~"i <8Z " and T < &8'=5iZ% forall i =1,...,m and
j=1...,n

Now, the existence of a non-zero solution q € R} of the inequalities in equation
(6.1) implies that (1m I’: )Z¢ intersects Q, and thus P*. By Theorem 6.5, (f’;f’1 I YA
intersects ¢®, which concludes the proof of Corollary 6.6.

COROLLARY 6.7. Let m, n be positive integers and A € My, ,. Then, A is singular on
average if and only if 'A is singular on average.

Proof. 1t follows from Corollary 6.6. O

Now, we will characterize the singular on average property in terms of best approxima-
tion. Let A € M, , be a matrix and (yx)r>1 be a sequence of weighted best approximations
to ‘A and write

Ye = Iyklles My = inf |Ayx — qls.
qezn

PROPOSITION 6.8. Let A € My, , be a matrix and let (yi)k>1 be a sequence of best
approximations to 'A. Then, the following are equivalent:

(1) A is singular on average;

(2) foralle >0,

li | <k :MY; =0.
kinolo log Yk|{l - iYivt > €l

Proof. (1) = (2):Let0 < € < 1. Observe that for each integer X with Yy < T < Yi41,
the inequalities

|Ap —qlls <eT™' and O <|pllr<T (6.2)

have a solution if and only if T < (¢/Mjy). Thus, for each integer £ € [log, Yk, log, Yi+1)
the inequalities in equation (6.2) have no solutions for 7 = 2¢ if and only if

log, € —log, My < £ < logy Yiy1. (6.3)
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Now we assume that ‘A is singular on average. For given § > 0, if the set {k €¢ N :
M Yy41 > &8} is finite, then it is done. Suppose the set {k € N : MYy > &} is infinite
and let

keN: MYis1 >8) ={j(1) <j@) <---<jk) <---:keNJ

Set € =§/2 and fix a positive integer V in Lemma 6.2. For an integer £ in [log, ¥ x)+1 — 1,
log, Yjk)+1), observe that

log, € —logy, Mjx) <logy Yju+1 — 1.

Hence, the inequalities in equation (6.2) have no solutions for T = 2¢ by equation (6.3).
By Lemma 6.2, log, Yjy+14+v — 1 > 10gy Yj)+1. So, we have log, Yjuyvyr1 —1 >

logy Yjx)+1- Now fixi =0, ...,V — 1. Then, the intervals
Hog, Yjitsvy+1 — 1,108 Yjivsvy+1), s=1,...,k
are disjoint. Thus, for an integer N € [log, Y;itkv)+1, 108 Yji+k+1)v)+1), the number
of £1in {1, ..., N} such that equation (6.2) has no solutions for 7 = 2¢ is at least k. Since
'A is singular on average,
k 1 . . )
< —|{€ e{l,..., N}:equation (6.2) has no solutions for T = 2°}|

log, Yjivr+nvy+1 ~ N

tends to O with k, which gives (i + 1+ kV)/log, Yi+14kv) tends to O with k for all
i =0,...,V — 1. Thus, we have k/log, Y ;) tends to O with k.
For any k£ > 1, there is an unique positive integer s such that

JGsk) <k < jlse+ 1),
and observe that sy = |{i < k : M;Y;4+1 > &}|. Thus, by the monotonicity of Y, we have

. . . Sk
lim <k: MY, >6<Ilim — =0
k—oo log, Yi i = it = k—o0 log, Yj(sk)

(2) = (1): Given 0 < € < 1, the number of integers £ in [log, Y%, log, Yi+1) such
that equation (6.2) has no solutions for T = 2¢ is at most

[logy, MyYiy1 —logy €] <logy MyYi+1 —log, € + 1.

Thus, for an integer N in [log, Y, log, Yi+1), we have

1
N|{£ e {l,..., N} :equation (6.2) has no solutions for T = 2£}|

1 k
<= 21: max (0, logy M;Yi | —log, € + 1)
1=

k

Z max(0, log, M;Y;11 —log, € + 1).
i=1

- 1
~ logy ¥
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Since M;Y;y1 < 1foreachi > 1,

k
1
og, T - Z max(0, log, M;Y;+1 —log, e + 1)
< (—logy € + DIfi <k : M;Yip1 > €/2}].
log, Yi
Therefore, ’A is singular on average. O

6.3. Modified Bugeaud—Laurent sequence. In this subsection, we construct the follow-
ing modified Bugeaud-Laurent sequence assuming the singular on average property. We
refer the reader to [BLOS, §5] for the original version of the Bugeaud—Laurent sequence.

PROPOSITION 6.9. Let A € My, ,, be such that 'A is singular on average and let (yi)r>1 be
a sequence of weighted best approximations to 'A. For all S and R with S > R > 1, there
exists an increasing function ¢ : Z>1 — Zx>1 satisfying the following properties:
(1) for any integeri > 1,
Yoit+1) = RYpi) and My Ypi+1) < R; (6.4)
2
1

k
lim sup . (6.5)
k—oo 108 Yoy — log S

Proof. The function ¢ is constructed in the following way. Fix a positive integer V in
Lemma 6.2 and let J = {j € Z>1 : M;Yj11 < R/S3}. Since ‘A is singular on average, by
Proposition 6.8 with e = R/S 3. we have

i <k:ieJ) =0. (6.6)

lim
k— o0 log Yi

If the set 7 is finite, then we have limj_, o Yk1 Tk — oo by equation (6.6), and hence the
proof of [BKLR21, Theorem 2.2] implies that there exists a function ¢ : Z>1 — Z> for
which

Yoi+1) = RYyi) and  Ypi11 = R™ Y.

The fact that M;Y; 1 < 1 for all i > 1 implies My(;)Yyi+1) < R. Equation (6.5) follows
from limg_, oo Yk] k 00, which concludes the proof of Proposition 6.9.

Now, suppose that 7 is infinite. Then there are two possible cases:
(i) g contains all sufficiently large positive integers;
(i) there are infinitely many positive integers in J°.

Case (i). Assume the first case and let ¥ (1) = min{j : J D Z> ;}. Define the auxiliary
increasing sequence (¥ (i));>1 by

Y@+ 1) =min{j € Z>1 : SYy) <Y},
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which is well defined since (Y;);> is increasing. Note that ¥ (i + 1) < ¥ (i) 4 [log, STV
since Yy (i)+flog, s7v = SYy (i) by Lemma 6.2. Let us now define the sequence (¢(i));>1
by, for each i > 1,

oy = V@ if My Yyisn < R/S,
Y@@ +1)—1 otherwise.

Then, the sequence (¢(i));>1 is increasing and ¢ > .
Now we claim that for each i > 1,

Yo+ = SYpi) > RYpa)  and - My Ypi+1) < R, (6.7)

which implies equation (6.5) since Y,y > S*~1¥,() for all k > 1. Thus, the claim
concludes the proof of Proposition 6.9.

Proof of equation (6.7). There are four possible cases on the values of ¢(i) and ¢ (i + 1).
e Assume that ¢(i) = ¥ (i) and ¢(i + 1) = ¥ (i + 1). By the definition of ¥ (i + 1),
we have

Yoivn) = Yy+1) = SYyi) = SYp().
If (i) # ¥ (@ 4+ 1) — 1, then by the definition of ¢ (i), we have
Moy Ypi+1) = My Yyi+1 = R/S < R.
Ify@)=v@G@+1)—1,then (@ + 1) = (i) + 1, and hence
My@iyYpit+1) = Myi)Ypi)+1 =1 < R.

This proves equation (6.7).
e Assume that (i) =¥ (i) and ¢(i + 1) =¥ (i +2) — 1. By the definition of ¥ (i + 1),
we have

Yot = Yyi+2-1 = Yyi+1) = SYyi) = SYe0)-

It follows from the minimality of ¥ (i +2) that SYyiy1) > Yyis2)—1- f ¥ G+ 1) >
Y (@) + 1, then My )Yy i+1) < R/S by the definition of ¢(i). Hence, we have

My Ypi+1) = My i) Yyi+2-1 = SMy i)Yy = R
If Y@@+ 1) =v@)+ 1, then My i) Yy@i)+1 < R/S3 since ¥ (i) € J. Hence,
My Y1) = My Yyir-1 < SMy@) Yy < R/S* < R.

This proves equation (6.7).
e Assume that p(i)=v({+1)—1and ¢i+1) =¥ @G+1). Since v(i+1) —1€ 9,
we have

M) Yoii+1) = Myr1-1Yyir1) < R/S* < R.
If (i +1) — 1 = ¥ (i), then by the definition of ¥ (i 4+ 1), we have

Yoiry _ Yyatn _ Yyavn _

Yoiy  Yyarn-i Yy i
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If (i +1) — 1 > ¥ (i), then we have My Yy i+1) > R/S by the definition of ¢ (i), and
we have Yy i+1)—1 < SYy @) < SYy(i)+1 from the minimality of v (i + 1). We also have
Myi)Yy@i)+1 < R/S3 since ¥ (i) € J. Therefore,

Yourn _ Yyarn _ MyoYya+n R/S R/S

= = > > =S.
Yo Yya+n-1 My Yyain-1 ~ SMynyYyap+1 — R/S?

This proves equation (6.7).
e Assume that (i) = ¥ (i + 1) — 1 and (i + 1) = ¥ (i + 2) — 1. As in the previous
case, we have
Yoit+n _ Yya+2)-1 - Yyi+n
Yoiy — Yyat+n-1 ~ Yyu+n-1
We have SYyi11) > Yy (i+2)—1 from the minimality of v (i + 2). Thus, since ¥ (i + 1)
—1 € 9, we have

> S.

Yyi+2)-1
My Ypi+1) = Myi+D)-1Yyi+2-1 = Myi+)-1Yya+n Yoo <R
Y(i+1)

This proves equation (6.7). O

Case (ii). Now we assume the second case and let jo = min . Partition Z j, into
disjoint subset

szozcll_lDll_JCzl_lDzl_l--- ,
where C; C J and D; C J° are sets of consecutive integers with
max C; < min D; < max D; < min Cj4

for alli > 1. We consider the following two subcases.
Case (ii)-1. If there is ip > 1 such that |C;| < 3[log, STV for all i > io, then we have,
for ko = min C,

k - ko + (3[log, STV + DI{i <k:i e J}|
log Y, — log Y ’

since there exists an element of J° in any finite sequence of 3[log, STV + 1 consecutive
integers at least kg. Therefore, klim Yk1 = 0o by equation (6.6) and this concludes the

0
proof of Proposition 6.9 following the proof when 7 is finite at the beginning.
Case (ii)-2. The remaining case is that the set

{i :1Ci| = 3log, STV} ={i(1) <i(2) <---<i(k) <--:keN}

is infinite.
For each k > 1, let us define an increasing finite sequence (V¥ (i))1<i<m,+1 of positive
integers by setting ¥ (1) = min C;) and by induction,

Yr(@ + 1) =min{j € Ciw) : SYy, ) < Yj},

as long as this set is non-empty. Since C;) is a finite sequence of consecutive
positive integers with length at least 3[log, STV and Yiifiog, s7v = SY; for every
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i > 1 by Lemma 6.2, there exists an integer my > 2 such that ¥ (i) is defined for
i =1,...,mg+ 1. Note that ¥ (i) belongs to J since C; ) C J.

As in Case (i), let us define an increasing finite sequence (@i (i))1<i<m, of positive
integers by

oy = | VFO if My i) Yyi+1) < R/S,
Yr(i +1) —1 otherwise.
Following the proof of Case (i), we have foreachi =1, ..., m; — 1,
Youi+1) =S¥y and - My i)Yo i+1) < R. (6.8)

Note that ¢y (my) < @x+1(1). Let us define an increasing finite sequence (<p,/< ) 1<i<ng+1
of positive integers to interpolate between @i (my) and @r41(1). Let jo = @g+1(1). If the
set {j € Z>g(my) - Yj, = RY;} is empty, then we set ny = 0 and (p,/{(l) = jo = @k+1(1).
Otherwise, following [BKLR21, Theorem 2.2], by decreasing induction, let n; € Z>1
be the maximal positive integer such that there exists ji, ..., j,, € Z>; such that for
£=1,...,n, the set {j € Z>gp,(my) : Yj,_, = RY;} is non-empty and for £ =1,...,
ni + 1, the integer j, is its largest element. Set go,’((i) =juy+i—i fori=1...,n+ 1
Then, the sequence (go,/((i Ni<i<n,+1 1s contained in [¢k (my), @k+1(1)] and satisfies that
fori =1,...,ng,

Yo Z RYypy and - Moy Yy iiny = R ©.9)

from the proof of [BKLLR21, Theorem 2.2].
Now, putting alternatively together the sequences (¢ (1)) 1<i<m;—1 and (go,’( (@))1<i<r, as

k ranges over Z>1, we define Ny = le;}(mg — 14 ny) and

(i) (i — Ni) if 1+ Ny <i <mp— 14 Ng,
(i) = _
Qi+ 1—mg—No) ifme+ N <i < —1+my + N

Here, we use the standard convention that an empty sum is zero. With equation (6.8) for
i=1,...,m—2and equation (6.9) fori =1, ..., ng, since ¢ (nx + 1) = @ry1(1), it
is enough to show the following lemma to prove that the map ¢ satisfies equation (6.4).

LEMMA 6.10. For every k € Z>1, we have
Y(p/’((l) > RY(pk(mk—l) and M(/)k(mk_l)Y(ﬂ;((]) < R. (6.10)
Proof. Since go,’c(l) > @ (my) and equation (6.8) with i = my — 1, we have

Yoy = Youim = SYgome—1) = RY g my—1)

which proves the left-hand side of equation (6.10). If go,’((l) = @i (my), then equation (6.8)
with i = my — 1 gives the right-hand side of equation (6.10).

Now assume that (p,/((l) > @i (my). By the maximality of ny, we have Y‘/’JQ(I) < RYy (mp)-
First, we will prove that ¢p(my) = Yx(my). For a contradiction, assume that
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ox(my) = Y (mr + 1) — 1 > ¢r(my). Following the third subcase of the proof of
equation (6.7), we have

Yoo Myomo Yynomt)
Yyrmer-1 Myponp) Yy ome+ -1

> S.

Hence, by the construction of (p,’c(l), we have go,/c(l) = ¢ (my), which is a contradiction to
our assumption (p,/{(l) > @r(my).

To show the right-hand side of equation (6.10), we consider two possible values of
or(mg — 1).

Assume that gx(my — 1) = Y (my — 1). If Y (my — 1) > Y (my) — 1, then by the
definition of @i (my — 1), we have My, m;—1) Yy omp) < R/S. I Y (myp — 1) = Y (my) — 1,
then My, my—1) Yypmp) < R/S3 < R/S, since Yy (my) — 1 € 7. Since @i (my) = Y (my),
we have

Yo
M(Pk(mk—l)Y(p;((l) = M‘/’k(mk—l)YV/k(mk) Y <R,
ok (mg)

which proves the right-hand side of equation (6.10).

Assume that @i (my — 1) = Y (my) — 1. Since @i (my) = Y (my) and Yr(mg) — 1€ 7,
we have

Yo
M imi=1)Y g 1) = Myyomo—1Yormo | 3 <R,
@ (my)

which proves the right-hand side of equation (6.10), and concludes the proof of
Lemma 6.10. O

Finally, we will show equation (6.5) for the map ¢. Since there exists an element of
J° in any finite sequence of 3[log, STV + 1 consecutive integers in the complement of
U k=1 Ci (), there exists ¢p > 0 such that for every k > 1, we have

j <e®) :j & U1 Cim}l _ G+ (3log, STV + DI{j < k) : j € I}
log Yo - log Yo ’

which converges to 0 as k — +o00 by equation (6.6). Let us define
nk) =i =k:Ypi) = SYpit+n}l

For each integer ¢ > 1, since Yitnog, sv = SY; for every i > 1 by Lemma 6.2, and
by the maximality of m, in the construction of (¢¢(i))1<j<m,>» We have [{j € C;) :
J = pe(mp)}| <2[log, STV. If (i) belongs to Cj) but ¢(i +1) does not, then
@) = @e(my). If (@) and ¢(i + 1) belong to C;(£), then ¢ and ¢; coincide on i and
i + 1. Thus, by equation (6.8), we have

k — I’l(k) = |{l <k: Y(p(,‘) < SY(/)(H—I)}'

< (2log, ST V>Hj <o :j¢|J ci<k>H-

k>1
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Therefore, we have

. k . nk) + k —n(k) . n(k)
lim sup ———— =limsup —————  =limsup ————
k—oo 102 Ypk)  k—oo log Yy k) log Yo
k 1
< lim sup n(k)

koo log STO=1Y, ) “log S’

This proves equation (6.5) and concludes the proof of Proposition 6.9.

6.4. Dimension estimates. Following the notation in [BHKV10], given a sequence {y;}
in Z"™ \ {0} and @ € (0, 1/2), let

Badfy,) O R 10 yilz > aforalli > 1.

PROPOSITION 6.11. [CGGMS20] Let A € My, be a matrix and let (yr)k>1 be a
sequence of weighted best approximations to 'A, and let R > 1 and o € (0, 1/2) be

given. Suppose that there exists an increasing function ¢ : Z>1 — Z>1 such that for any
integeri > 1,

Mp@iyYgi+1) = R.
Then, Bad{y  is a subset of Bad(e), where e = (1 /R)(a? /4mn)'/? and § = min{r;, s :

1<i<m,1<j<n}

Proof. In the proof of [CGGMS20, Theorem 1.11], the condition Yy(y4+1 > R’le(,-H)
is used. However, the assumption M) Yy +1) < R also implies the same conclusion. [

PROPOSITION 6.12. [CGGMS20] For any o € (0, 1/2), there exists R(«) > 1 with the
following property. Let (yi)i=1 be a sequence in Z" \ {0} such that ||yi+1llc/l¥kllr >
R(a) forall k > 1. Then,

dimH(Bad‘{)‘y,}) >m—C limsup ——
' k—oo log Iykllx

for some positive constant C = C ().

Proof. The proof of [CGGMS20, Theorem 6.1] concludes this proposition. O

The two propositions are used in [BKLR21, Theorem 5.1] in the unweighted setting.

Proof of Theorem 1.3 (2) = (1). Suppose A is singular on average. By Corollary 6.7,
'A is also singular on average. Let (yx)r>1 be a sequence of weighted best approximations
to ‘A. Then, by Propositions 6.9, 6.11, and 6.12, for each S > R(a) > 1, we have

dimpy (Bad (¢)) > dimy (Badl{xywm})

>m — C lim sup ——
koo 108 Yo

C
>m — —
- log S
where € = (1/R)(a)(e?/4mn)'/®. Taking S — oo, we have dimy(Bads(€)) =m for
€ = (1/R())(a?/4mn)'/?. O
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