Proceedings of the Edinburgh Mathematical Society (2012) **55**, 507–511 DOI:10.1017/S0013091509001023

AN ARGUMENT OF A FUNCTION IN $H^{1/2}$

TAKAHIKO NAKAZI¹ AND TAKANORI YAMAMOTO²

 ¹School of Economics, Hokusei Gakuen University, Sapporo 004-8631, Japan (200547@hokusei.ac.jp)
²Department of Mathematics, Hokkai-Gakuen University, Sapporo 062-8605, Japan (yamamoto@elsa.hokkai-s-u.ac.jp)

(Received 19 July 2009)

Abstract Let $H^{1/2}$ be the Hardy space on the open unit disc. For two non-zero functions f and g in $H^{1/2}$, we study the relation between f and g when $f/g \ge 0$ a.e. on ∂D . Then we generalize a theorem of Neuwirth and Newman and Helson and Sarason with a simple proof.

Keywords: Hardy space; argument; boundary value

2010 Mathematics subject classification: Primary 30H10

For $0 , <math>H^p$ denotes the usual Hardy space on the open unit disc D.

When f and g are in $H^{1/2}$, and $f/g \ge 0$ a.e. on ∂D , we want to know the relation between f and g. Neuwirth and Newman [5] showed that if g = 1, then $f = \gamma g$ for some positive constant γ . That is, they proved that there exists no non-constant positive function in $H^{1/2}$. Independently, Helson and Sarason [2] showed that if $g = z^n$ and $n \ge 0$, then f is a polynomial with degree in the range [n, 2n]. In fact, they proved that f/g is a rational function with degree less than or equal to 2n. In order to generalize the result of Helson and Sarason, suppose $g = z^n h$, where h is in $H^{1/2}$ and h^{-1} is in H^{∞} . Then $f/g = h^{-1}f/z^n$ and $h^{-1}f$ is in $H^{1/2}$. Hence, if $f/g \ge 0$ a.e. on ∂D , then by the result of Helson and Sarason, $h^{-1}f$ is a polynomial p with degree in the range [n, 2n] and so f = ph.

For 0 , a non-zero function <math>h in H^p is called strongly outer (or p-strongly outer) if h satisfies the following: if f is a non-zero function in H^p such that $f/g \ge 0$ a.e. on ∂D , then $f = \gamma g$ for some positive constant γ . It is known [3] that there is no strongly outer function in H^p when $0 . When <math>\frac{1}{2} \le p \le \infty$, if h is in H^p and h^{-1} is in H^∞ , then h is a p-strongly outer function by the Neuwirth–Newman Helson–Sarason Theorem (see Lemma 4). Examples of 1-strongly outer functions are known, for instance, when h^{-1} is in H^1 or when $\operatorname{Re} h \ge 0$. We have two characterizations of 1-strongly outer functions [1, 4]. But these characterizations are not easy to check. A 1-strongly outer function is also called a rigid function, and if it has a unit norm, then it is an exposed point in the unit ball of H^1 .

© 2012 The Edinburgh Mathematical Society

507

T. Nakazi and T. Yamamoto

Unfortunately, we do not know of any examples except the above for $H^{1/2}$, that is, when h^{-1} belongs to H^{∞} . Moreover, we do not have any characterization for $\frac{1}{2}$ -strongly outer functions. However, it is natural to ask the following question.

Question 1. Let f be a non-constant function in $H^{1/2}$, let $n \ge 0$ and let h be a strongly outer function in $H^{1/2}$. If $f/z^n h \ge 0$ a.e. on ∂D , then does f = ph hold for some polynomial p with degree in the range [n, 2n]?

In this paper we answer the above question positively.

Theorem 2. Suppose n is a non-negative integer and h is a strongly outer function in $H^{1/2}$. If f is a non-zero function in $H^{1/2}$ such that $f/z^n h \ge 0$ a.e. on ∂D , then f = ph and p is a polynomial with degree in the range [n, 2n]. In particular,

$$p = \gamma \prod_{j=1}^{n} (z - a_j)(1 - \bar{a}_j z),$$

where γ is some positive constant and a_j , $1 \leq j \leq n$, are some complex constants.

Lemma 3. Suppose h_0^2 is strongly outer in $H^{1/2}$ and $0 \leq j < \infty$. If $\bar{z}^j \bar{h_0}/h_0 = \bar{Q}\bar{k}/k$, where Q is inner and k is outer in H^1 , then Q is a Blaschke product with degree less than or equal to j.

Proof. If $Q = q_1 \cdots q_{j+1}$ and q_ℓ is a non-constant inner function for $1 \leq \ell \leq j+1$, then

$$\bar{q}_{\ell} = \frac{1 - q_{\ell}(0)q_{\ell}}{q_{\ell} - q_{\ell}(0)} \frac{1 - q_{\ell}(0)\bar{q}_{\ell}}{1 - \overline{q_{\ell}(0)}q_{\ell}} = \bar{z}\bar{\tilde{q}}_{\ell} \frac{1 - q_{\ell}(0)\bar{q}_{\ell}}{1 - \overline{q_{\ell}(0)}q_{\ell}}$$

and so

$$\bar{z}^{j}\frac{\bar{h_{0}}}{h_{0}} = \bar{z}^{j+1}\prod_{\ell=1}^{j+1}\bar{\tilde{q}}_{\ell}\frac{\prod_{\ell=1}^{j+1}(1-q_{\ell}(0)\bar{q}_{\ell})}{\prod_{\ell=1}^{j+1}(1-\overline{q_{\ell}(0)}q_{\ell})}\frac{\bar{k}}{k}$$

where \tilde{q}_{ℓ} is inner for $1 \leq \ell \leq j + 1$. Hence, setting

$$g = \prod_{\ell=1}^{j+1} (1 - \overline{q_{\ell}(0)}q_{\ell})k$$
 and $\tilde{Q} = \prod_{\ell=1}^{j+1} \tilde{q}_{\ell},$

we then obtain that g is still outer and

$$\frac{\bar{h_0}}{h_0} = \bar{z}\bar{\tilde{Q}}\frac{\bar{g}}{g} = \frac{\overline{(1+z)}(1+\tilde{Q})\bar{g}}{(1+z)(1+\tilde{Q})g}$$

Hence, $h_0^2 = \gamma(1+z)^2(1+\tilde{Q})^2g^2$ for some constant $\gamma > 0$ because h_0^2 is strongly outer in $H^{1/2}$. Therefore, $z(1+\tilde{Q})^2g^2/h_0^2 \ge 0$ and so $h_0^2 = \gamma z(1+\tilde{Q})^2g^2$ for some constant $\gamma > 0$. This contradicts the statement that h_0 is outer and so Q is a finite Blaschke product of degree $\ell \le j$.

508

Proof of Theorem 2. Let $h = h_0^2$ for an outer function h_0 in H^1 . Let $f = qk^2$ for an outer function k in H^1 and an inner function q. Let $\phi = |f|/f$. Then

$$\phi = \bar{z}^n \frac{\bar{h}_0}{h_0} = \bar{q} \frac{\bar{k}}{k}.$$

In particular, by Lemma 3, q is a Blaschke product of degree less than or equal to n. Hence, $H^1 \cap \bar{\phi} \bar{H}^1$ contains $\{z^j h_0\}_{j=0}^n$ and qk. Since $h_0(0) \neq 0$, there exists a polynomial p_n in \mathcal{P}_n such that $qk - p_n h_0 = z^{n+1}s$ and $s \in H^1$ where \mathcal{P}_n is the set of all analytic polynomials of degree less than or equal to n. If $qk \notin \mathcal{P}_n \times h_0$, then $s \not\equiv 0$. Hence, if g is the outer part of s, then $0 \neq z^{n+1}g \in H^1 \cap \bar{\phi}H^1$. Therefore, there exists a function $\psi \in H^1$ such that $z^{n+1}g = \bar{\phi}\bar{\psi}$. Since $|\phi| = 1$, $\psi = Qg$ for some inner function Q. Thus, $\bar{z}^n\bar{h}_0/h_0 = \bar{z}^{n+1}\bar{Q}\bar{g}/g$. This contradicts Lemma 3 because g is outer and $z^{n+1}Q$ is inner. Thus, $qk = p_n h_0$ for some p_n in \mathcal{P}_n with degree less than or equal to n. Now it is enough to prove the theorem only when the degree of p_n is just n. Hence,

$$qk = \gamma_1 \prod_{j=1}^n (z - \alpha_j)h_0,$$

where $\gamma_1 \in \mathbb{C}, \, \alpha_j \in \mathbb{C}, \, |\alpha_j| < 1, \, 1 \leqslant j \leqslant \ell$, and $|\alpha_j| \ge 1, \, j \ge \ell + 1$, and so

$$q = \prod_{j=1}^{\ell} \frac{z - \alpha_j}{1 - \bar{\alpha_j} z}.$$

Hence,

$$k = \gamma_1 \prod_{j=1}^{\ell} (1 - \bar{\alpha_j} z) \prod_{j=\ell+1}^{n} (z - \alpha_j) h_0.$$

Therefore,

$$f = qk^2 = \gamma_1^2 \prod_{j=1}^{\ell} (z - \alpha_j)(1 - \bar{\alpha_j}z) \prod_{j=\ell+1}^{n} (z - \alpha_j)^2 h_0^2.$$

Since

$$\left(\prod_{j=1}^{\ell} (z-\alpha_j)(1-\bar{\alpha_j}z)\right)\frac{1}{z^{\ell}} \ge 0,$$

we have

$$\left(\gamma_1^2 \prod_{j=\ell+1}^n (z-\alpha_j)^2\right) \frac{1}{z^{n-\ell}} \ge 0,$$

and necessarily $|\alpha_j| = 1$, $\ell + 1 \leq j \leq n$, because if $|\alpha_j| > 1$ and $(z - \alpha_j)^2/z \ge 0$, then

$$\frac{z-\alpha_j}{1-\bar{\alpha}_j z}|1-\bar{\alpha}_j z|^2 = \frac{(z-\alpha_j)^2}{z} \ge 0.$$

This contradiction shows $|\alpha_j| = 1, \ell + 1 \leq j \leq n$. Now the theorem follows.

Lemma 4. If g is a function in $H^{1/2}$ such that g^{-1} belongs to H^{∞} , then g is a strongly outer function in $H^{1/2}$.

Proof. Suppose f is in $H^{1/2}$ and $f/g \ge 0$ a.e. on ∂D . Then $f = qh^2$, where q is inner and h is outer in H^1 . Since g is outer, $g = g_0^2$, where $g_0 \in H^1$ and g_0^{-1} belongs to H^{∞} . Since $qh^2/g_0^2 \ge 0$ a.e. on ∂D , $qhg_0^{-1} = \bar{h}\bar{g}_0^{-1}$. Hence, qhg_0^{-1} is a constant c because $H^1 \cap \overline{H^1} = \mathbb{C}$. Therefore, hg_0^{-1} and q are constants. Thus, qh^2/g_0^2 is a positive constant. This implies the lemma.

Corollary 5. Suppose F is a non-zero non-negative function such that qF belongs to $H^{1/2}$ for some inner function q. If q is a constant, then F is a non-negative constant. If

$$q = \prod_{j=1}^{n} \frac{z - b_j}{1 - \bar{b}_j z}$$

and $|b_j| < 1, 1 \leq j \leq n$, then there are complex numbers $a_j, 1 \leq j \leq n$, such that

$$F = \gamma \prod_{j=1}^{n} \frac{(z - a_j)(1 - \bar{a}_j z)}{(z - b_j)(1 - \bar{b}_j z)},$$

where γ is some positive constant.

Proof. If q is a constant, then F is a non-negative constant because 1 is strongly outer in $H^{1/2}$. If f = qF, then f belongs to $H^{1/2}$. Since

$$q = z^n \prod_{j=1}^n \frac{|1 - \overline{b}_j z|^2}{(1 - \overline{b}_j z)^2}$$
 and $\frac{f}{q} \ge 0$ a.e. on ∂D ,

we have

$$\frac{f}{z^n} \prod_{j=1}^n (1 - \bar{b}_j z)^{-2} \ge 0 \quad \text{a.e. on } \partial D$$

By Theorem 2 and Lemma 4, there exist a positive constant γ and complex numbers a_j , $1 \leq j \leq n$, such that

$$f = \gamma \prod_{j=1}^{n} (z - a_j)(1 - \bar{a}_j z) \times \prod_{j=1}^{n} (1 - \bar{b}_j z)^{-2}$$

and so

$$F = \gamma \prod_{j=1}^{n} \frac{(z - a_j)(1 - \bar{a}_j z)}{(z - b_j)(1 - \bar{b}_j z)}.$$

Acknowledgements. The authors thank the referee for many comments that improved the original manuscript. This research was partly supported by Grant-in-Aid for Scientific Research 20540148.

References

- H. HELSON, Large analytic functions, II, in Analysis and partial differential equations (ed. C. Sadosky), Lecture Notes in Pure and Applied Mathematics, Volume 122, pp. 217–220 (Marcel Dekker, 1990).
- 2. H. HELSON AND D. SARASON, Past and future, Math. Scand. 21 (1967), 5-16.
- 3. J. INOUE AND T. NAKAZI, Nonnegative functions in weighted Hardy spaces, *Complex Variables* **49** (2004), 837–843.
- 4. T. NAKAZI, Functions in N_+ with the positive real parts on the boundary, and extremal problems in H^1 , Complex Variables 44 (2001), 259–279.
- 5. J. NEUWIRTH AND D. J. NEWMAN, Positive $H^{1/2}$ functions are constants, *Proc. Am.* Math. Soc. 18 (1967), 958.