# AN ARGUMENT OF A FUNCTION IN $H^{1 / 2}$ 

TAKAHIKO NAKAZI ${ }^{1}$ AND TAKANORI YAMAMOTO ${ }^{2}$<br>${ }^{1}$ School of Economics, Hokusei Gakuen University, Sapporo 004-8631, Japan (z00547@hokusei.ac.jp)<br>${ }^{2}$ Department of Mathematics, Hokkai-Gakuen University, Sapporo 062-8605, Japan (yamamoto@elsa.hokkai-s-u.ac.jp)

(Received 19 July 2009)


#### Abstract

Let $H^{1 / 2}$ be the Hardy space on the open unit disc. For two non-zero functions $f$ and $g$ in $H^{1 / 2}$, we study the relation between $f$ and $g$ when $f / g \geqslant 0$ a.e. on $\partial D$. Then we generalize a theorem of Neuwirth and Newman and Helson and Sarason with a simple proof.


Keywords: Hardy space; argument; boundary value
2010 Mathematics subject classification: Primary 30H10

For $0<p \leqslant \infty, H^{p}$ denotes the usual Hardy space on the open unit disc $D$.
When $f$ and $g$ are in $H^{1 / 2}$, and $f / g \geqslant 0$ a.e. on $\partial D$, we want to know the relation between $f$ and $g$. Neuwirth and Newman [5] showed that if $g=1$, then $f=\gamma g$ for some positive constant $\gamma$. That is, they proved that there exists no non-constant positive function in $H^{1 / 2}$. Independently, Helson and Sarason [2] showed that if $g=z^{n}$ and $n \geqslant 0$, then $f$ is a polynomial with degree in the range $[n, 2 n]$. In fact, they proved that $f / g$ is a rational function with degree less than or equal to $2 n$. In order to generalize the result of Helson and Sarason, suppose $g=z^{n} h$, where $h$ is in $H^{1 / 2}$ and $h^{-1}$ is in $H^{\infty}$. Then $f / g=h^{-1} f / z^{n}$ and $h^{-1} f$ is in $H^{1 / 2}$. Hence, if $f / g \geqslant 0$ a.e. on $\partial D$, then by the result of Helson and Sarason, $h^{-1} f$ is a polynomial $p$ with degree in the range $[n, 2 n]$ and so $f=p h$.

For $0<p \leqslant \infty$, a non-zero function $h$ in $H^{p}$ is called strongly outer (or $p$-strongly outer) if $h$ satisfies the following: if $f$ is a non-zero function in $H^{p}$ such that $f / g \geqslant 0$ a.e. on $\partial D$, then $f=\gamma g$ for some positive constant $\gamma$. It is known [3] that there is no strongly outer function in $H^{p}$ when $0<p<\frac{1}{2}$. When $\frac{1}{2} \leqslant p \leqslant \infty$, if $h$ is in $H^{p}$ and $h^{-1}$ is in $H^{\infty}$, then $h$ is a $p$-strongly outer function by the Neuwirth-Newman Helson-Sarason Theorem (see Lemma 4). Examples of 1-strongly outer functions are known, for instance, when $h^{-1}$ is in $H^{1}$ or when $\operatorname{Re} h \geqslant 0$. We have two characterizations of 1-strongly outer functions $[\mathbf{1}, \mathbf{4}]$. But these characterizations are not easy to check. A 1-strongly outer function is also called a rigid function, and if it has a unit norm, then it is an exposed point in the unit ball of $H^{1}$.

Unfortunately, we do not know of any examples except the above for $H^{1 / 2}$, that is, when $h^{-1}$ belongs to $H^{\infty}$. Moreover, we do not have any characterization for $\frac{1}{2}$-strongly outer functions. However, it is natural to ask the following question.

Question 1. Let $f$ be a non-constant function in $H^{1 / 2}$, let $n \geqslant 0$ and let $h$ be a strongly outer function in $H^{1 / 2}$. If $f / z^{n} h \geqslant 0$ a.e. on $\partial D$, then does $f=p h$ hold for some polynomial $p$ with degree in the range $[n, 2 n]$ ?

In this paper we answer the above question positively.
Theorem 2. Suppose $n$ is a non-negative integer and $h$ is a strongly outer function in $H^{1 / 2}$. If $f$ is a non-zero function in $H^{1 / 2}$ such that $f / z^{n} h \geqslant 0$ a.e. on $\partial D$, then $f=p h$ and $p$ is a polynomial with degree in the range $[n, 2 n]$. In particular,

$$
p=\gamma \prod_{j=1}^{n}\left(z-a_{j}\right)\left(1-\bar{a}_{j} z\right)
$$

where $\gamma$ is some positive constant and $a_{j}, 1 \leqslant j \leqslant n$, are some complex constants.
Lemma 3. Suppose $h_{0}^{2}$ is strongly outer in $H^{1 / 2}$ and $0 \leqslant j<\infty$. If $\bar{z}^{j} \overline{h_{0}} / h_{0}=\bar{Q} \bar{k} / k$, where $Q$ is inner and $k$ is outer in $H^{1}$, then $Q$ is a Blaschke product with degree less than or equal to $j$.

Proof. If $Q=q_{1} \cdots q_{j+1}$ and $q_{\ell}$ is a non-constant inner function for $1 \leqslant \ell \leqslant j+1$, then

$$
\bar{q}_{\ell}=\frac{1-\overline{q_{\ell}(0)} q_{\ell}}{q_{\ell}-q_{\ell}(0)} \frac{1-q_{\ell}(0) \bar{q}_{\ell}}{1-\overline{q_{\ell}(0)} q_{\ell}}=\bar{z} \overline{\tilde{q}}_{\ell} \frac{1-q_{\ell}(0) \bar{q}_{\ell}}{1-\overline{q_{\ell}(0)} q_{\ell}}
$$

and so

$$
\bar{z}^{j} \frac{\overline{h_{0}}}{h_{0}}=\bar{z}^{j+1} \prod_{\ell=1}^{j+1} \overline{\tilde{q}_{\ell}} \frac{\prod_{\ell=1}^{j+1}\left(1-q_{\ell}(0) \bar{q}_{\ell}\right)}{\prod_{\ell=1}^{j+1}\left(1-\overline{q_{\ell}(0)} q_{\ell}\right)} \frac{\bar{k}}{k}
$$

where $\tilde{q}_{\ell}$ is inner for $1 \leqslant \ell \leqslant j+1$. Hence, setting

$$
g=\prod_{\ell=1}^{j+1}\left(1-\overline{q_{\ell}(0)} q_{\ell}\right) k \quad \text { and } \quad \tilde{Q}=\prod_{\ell=1}^{j+1} \tilde{q}_{\ell}
$$

we then obtain that $g$ is still outer and

$$
\frac{\overline{h_{0}}}{h_{0}}=\bar{z} \overline{\tilde{Q}} \frac{\bar{g}}{g}=\frac{\overline{(1+z)} \overline{(1+\tilde{Q})} \bar{g}}{(1+z)(1+\tilde{Q}) g}
$$

Hence, $h_{0}^{2}=\gamma(1+z)^{2}(1+\tilde{Q})^{2} g^{2}$ for some constant $\gamma>0$ because $h_{0}^{2}$ is strongly outer in $H^{1 / 2}$. Therefore, $z(1+\tilde{Q})^{2} g^{2} / h_{0}^{2} \geqslant 0$ and so $h_{0}^{2}=\gamma z(1+\tilde{Q})^{2} g^{2}$ for some constant $\gamma>0$. This contradicts the statement that $h_{0}$ is outer and so $Q$ is a finite Blaschke product of degree $\ell \leqslant j$.

Proof of Theorem 2. Let $h=h_{0}^{2}$ for an outer function $h_{0}$ in $H^{1}$. Let $f=q k^{2}$ for an outer function $k$ in $H^{1}$ and an inner function $q$. Let $\phi=|f| / f$. Then

$$
\phi=\bar{z}^{n} \frac{\bar{h}_{0}}{h_{0}}=\bar{q} \frac{\bar{k}}{k} .
$$

In particular, by Lemma $3, q$ is a Blaschke product of degree less than or equal to $n$. Hence, $H^{1} \cap \bar{\phi} \bar{H}^{1}$ contains $\left\{z^{j} h_{0}\right\}_{j=0}^{n}$ and $q k$. Since $h_{0}(0) \neq 0$, there exists a polynomial $p_{n}$ in $\mathcal{P}_{n}$ such that $q k-p_{n} h_{0}=z^{n+1} s$ and $s \in H^{1}$ where $\mathcal{P}_{n}$ is the set of all analytic polynomials of degree less than or equal to $n$. If $q k \notin \mathcal{P}_{n} \times h_{0}$, then $s \not \equiv 0$. Hence, if $g$ is the outer part of $s$, then $0 \neq z^{n+1} g \in H^{1} \cap \bar{\phi} \overline{H^{1}}$. Therefore, there exists a function $\psi \in H^{1}$ such that $z^{n+1} g=\bar{\phi} \bar{\psi}$. Since $|\phi|=1, \psi=Q g$ for some inner function $Q$. Thus, $\bar{z}^{n} \bar{h}_{0} / h_{0}=\bar{z}^{n+1} \bar{Q} \bar{g} / g$. This contradicts Lemma 3 because $g$ is outer and $z^{n+1} Q$ is inner. Thus, $q k=p_{n} h_{0}$ for some $p_{n}$ in $\mathcal{P}_{n}$ with degree less than or equal to $n$. Now it is enough to prove the theorem only when the degree of $p_{n}$ is just $n$. Hence,

$$
q k=\gamma_{1} \prod_{j=1}^{n}\left(z-\alpha_{j}\right) h_{0}
$$

where $\gamma_{1} \in \mathbb{C}, \alpha_{j} \in \mathbb{C},\left|\alpha_{j}\right|<1,1 \leqslant j \leqslant \ell$, and $\left|\alpha_{j}\right| \geqslant 1, j \geqslant \ell+1$, and so

$$
q=\prod_{j=1}^{\ell} \frac{z-\alpha_{j}}{1-\overline{\alpha_{j}} z} .
$$

Hence,

$$
k=\gamma_{1} \prod_{j=1}^{\ell}\left(1-\overline{\alpha_{j}} z\right) \prod_{j=\ell+1}^{n}\left(z-\alpha_{j}\right) h_{0} .
$$

Therefore,

$$
f=q k^{2}=\gamma_{1}^{2} \prod_{j=1}^{\ell}\left(z-\alpha_{j}\right)\left(1-\overline{\alpha_{j}} z\right) \prod_{j=\ell+1}^{n}\left(z-\alpha_{j}\right)^{2} h_{0}^{2} .
$$

Since

$$
\left(\prod_{j=1}^{\ell}\left(z-\alpha_{j}\right)\left(1-\overline{\alpha_{j}} z\right)\right) \frac{1}{z^{\ell}} \geqslant 0
$$

we have

$$
\left(\gamma_{1}^{2} \prod_{j=\ell+1}^{n}\left(z-\alpha_{j}\right)^{2}\right) \frac{1}{z^{n-\ell}} \geqslant 0
$$

and necessarily $\left|\alpha_{j}\right|=1, \ell+1 \leqslant j \leqslant n$, because if $\left|\alpha_{j}\right|>1$ and $\left(z-\alpha_{j}\right)^{2} / z \geqslant 0$, then

$$
\frac{z-\alpha_{j}}{1-\bar{\alpha}_{j} z}\left|1-\bar{\alpha}_{j} z\right|^{2}=\frac{\left(z-\alpha_{j}\right)^{2}}{z} \geqslant 0
$$

This contradiction shows $\left|\alpha_{j}\right|=1, \ell+1 \leqslant j \leqslant n$. Now the theorem follows.

Lemma 4. If $g$ is a function in $H^{1 / 2}$ such that $g^{-1}$ belongs to $H^{\infty}$, then $g$ is a strongly outer function in $H^{1 / 2}$.

Proof. Suppose $f$ is in $H^{1 / 2}$ and $f / g \geqslant 0$ a.e. on $\partial D$. Then $f=q h^{2}$, where $q$ is inner and $h$ is outer in $H^{1}$. Since $g$ is outer, $g=g_{0}^{2}$, where $g_{0} \in H^{1}$ and $g_{0}^{-1}$ belongs to $H^{\infty}$. Since $q h^{2} / g_{0}^{2} \geqslant 0$ a.e. on $\partial D, q h g_{0}^{-1}=\bar{h} \bar{g}_{0}^{-1}$. Hence, $q h g_{0}^{-1}$ is a constant $c$ because $H^{1} \cap \overline{H^{1}}=\mathbb{C}$. Therefore, $h g_{0}^{-1}$ and $q$ are constants. Thus, $q h^{2} / g_{0}^{2}$ is a positive constant. This implies the lemma.

Corollary 5. Suppose $F$ is a non-zero non-negative function such that $q F$ belongs to $H^{1 / 2}$ for some inner function $q$. If $q$ is a constant, then $F$ is a non-negative constant. If

$$
q=\prod_{j=1}^{n} \frac{z-b_{j}}{1-\bar{b}_{j} z}
$$

and $\left|b_{j}\right|<1,1 \leqslant j \leqslant n$, then there are complex numbers $a_{j}, 1 \leqslant j \leqslant n$, such that

$$
F=\gamma \prod_{j=1}^{n} \frac{\left(z-a_{j}\right)\left(1-\bar{a}_{j} z\right)}{\left(z-b_{j}\right)\left(1-\bar{b}_{j} z\right)},
$$

where $\gamma$ is some positive constant.
Proof. If $q$ is a constant, then $F$ is a non-negative constant because 1 is strongly outer in $H^{1 / 2}$. If $f=q F$, then $f$ belongs to $H^{1 / 2}$. Since

$$
q=z^{n} \prod_{j=1}^{n} \frac{\left|1-\bar{b}_{j} z\right|^{2}}{\left(1-\bar{b}_{j} z\right)^{2}} \quad \text { and } \quad \frac{f}{q} \geqslant 0 \text { a.e. on } \partial D
$$

we have

$$
\frac{f}{z^{n}} \prod_{j=1}^{n}\left(1-\bar{b}_{j} z\right)^{-2} \geqslant 0 \quad \text { a.e. on } \partial D
$$

By Theorem 2 and Lemma 4, there exist a positive constant $\gamma$ and complex numbers $a_{j}$, $1 \leqslant j \leqslant n$, such that

$$
f=\gamma \prod_{j=1}^{n}\left(z-a_{j}\right)\left(1-\bar{a}_{j} z\right) \times \prod_{j=1}^{n}\left(1-\bar{b}_{j} z\right)^{-2}
$$

and so

$$
F=\gamma \prod_{j=1}^{n} \frac{\left(z-a_{j}\right)\left(1-\bar{a}_{j} z\right)}{\left(z-b_{j}\right)\left(1-\bar{b}_{j} z\right)}
$$

Acknowledgements. The authors thank the referee for many comments that improved the original manuscript. This research was partly supported by Grant-in-Aid for Scientific Research 20540148.

## References

1. H. Helson, Large analytic functions, II, in Analysis and partial differential equations (ed. C. Sadosky), Lecture Notes in Pure and Applied Mathematics, Volume 122, pp. 217-220 (Marcel Dekker, 1990).
2. H. Helson and D. Sarason, Past and future, Math. Scand. 21 (1967), 5-16.
3. J. Inoue and T. Nakazi, Nonnegative functions in weighted Hardy spaces, Complex Variables 49 (2004), 837-843.
4. T. NAKAZI, Functions in $N_{+}$with the positive real parts on the boundary, and extremal problems in $H^{1}$, Complex Variables 44 (2001), 259-279.
5. J. Neuwirth and D. J. Newman, Positive $H^{1 / 2}$ functions are constants, Proc. Am. Math. Soc. 18 (1967), 958.
