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Abstract
Small-angle X-ray scattering (SAXS) has been widely used as a microstructure characterization technology. In this
work, a fully connected dense forward network is applied to inversely retrieve the mean particle size and particle
distribution from SAXS data of samples dynamically compressed with high-power lasers and probed with X-ray free
electron lasers. The trained network allows automatic acquisition of microstructure information, performing well in
predictions on single-species nanoparticles on the theoretical model and in situ experimental data. We evaluate our
network by comparing it with other methods, revealing its reliability and efficiency in dynamic experiments, which is of
great value for in situ characterization of materials under high-power laser-driven dynamic compression.
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1. Introduction

The dynamic mechanical properties of materials are strongly
dependent on the temporal evolution of material structures
at the micro mesoscale, and have important applications in
extreme scenarios such as celestial evolution and inertial
confinement fusion[1–3]. The average grain size and grain
distribution are the key microstructure characteristics that
affect the physical and chemical properties[4–6], representing
the fundamental qualities of polycrystalline materials, and
therefore are of vital importance in predicting material
responses, evaluating the kinetic phase transformation pro-
cess and gaining insight into the physical properties.

As a microstructure characterization technology, small-
angle X-ray scattering (SAXS) is of significant value in
high-pressure material science[7–10] and high-power laser
experiments[11,12]. In a typical scattering experiment, the
X-ray impacts the sample at a small angle and is scattered.
The intensity of the scattered wave is measured and recorded
by the detector and presented as a scattering pattern. For
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example, in the dynamic compression experiment of polymer
dissociation, nanocrystalline solid particles can be formed
and then consolidated into larger particles[13,14]. In the pro-
cess of nucleation and subsequent phase transformation in
such materials[15], the average particle size, grain size dis-
tribution, particle shape, spacing, particle content and other
microstructure characteristics will all affect the morphology
and intensity of the scattering spectrum.

The inversion of nanoparticles due to phase transition
in extreme conditions is a major challenge. Extracting
particle size distribution from the scattering pattern is a
typical ill-posed problem. Algorithms such as maximum
entropy, renormalization, regularization, the non-negative
least squares method and other methods have been widely
used to extract the particle size distribution from the
scattering data and extensively implemented in software such
as Irena, IsGISAXS and McSAS[16–20]. These algorithms are
mainly searching for optimization parameters that satisfy
the condition of χ2 = constant, where χ2 describes the
degree of correlation of the fitting. Among them, McSAS
adopts the Monte Carlo method, which uses rejection
sampling for optimization by replacing model contributions
in the dataset. At the end of the optimization process, the
fitting parameter values from each model in the dataset

© The Author(s), 2024. Published by Cambridge University Press in association with Chinese Laser Press. This is an Open Access article, distributed under
the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0), which permits unrestricted re-use, distribution and
reproduction, provided the original article is properly cited.

1
https://doi.org/10.1017/hpl.2024.27 Published online by Cambridge University Press

http://dx.doi.org/10.1017/hpl.2024.27
https://orcid.org/0000-0001-5416-456X
https://orcid.org/0000-0002-2593-573X
https://orcid.org/0000-0001-6363-1780
https://orcid.org/0000-0002-4890-7440
mailto:hezy1213@foxmail.com
mailto:dominik.kraus@uni-rostock.de
https://creativecommons.org/licenses/by/4.0
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/hpl.2024.27&domain=pdf
https://doi.org/10.1017/hpl.2024.27


2 Z. He et al.

determine the final size distribution. During the SAXS
analysis and the microstructure inversion, it is usually
necessary to establish a sample model first, run simulations
of the scattering process and compare them with the
experimentally observed pattern, and then repeat the process
numerous times as well as adjust several parameters until
this model is closest to the experimental result. Running
simulations for each optimization step is time-consuming
and requires considerable computing power[21].

With the emergence of fourth generation X-ray free
electron lasers, it is possible to quickly image and obtain
in situ response of materials, for example, in dynamic
shock-compression environments[22]. Large quantities of
data, with laser shock drivers reaching repetition rates of
up to 10 Hz[23], also pose a demand for rapid inversion
of SAXS. In recent years, with the continuous advent of
machine learning, it is possible to quickly retrieve scattering
images and conduct on-site analysis. In view of the strong
mapping ability of artificial neural networks (ANNs), it can
be well applied to in situ classification and quantification
of scattering images, including grazing-incidence small-
angle scattering (GISAS)[24], coherent diffraction imaging
(CDI)[25], microstructural characterization in 3D samples[6],
etc. The ability of ANNs to quickly and accurately identify
the main characteristics is very important for the rapid
characterization of crystal grain distribution, thus having
a practical significance for the research in microstructure
and phase transformation of dynamically compressed
materials.

In this work, we apply a fully connected, dense, feedfor-
ward network according to the principle of SAXS to extract
the mean grain size and grain size distribution of nanocrys-
tals from in situ SAXS images in experiments, allowing auto-
matic acquisition of microstructure information and avoiding
the traditional tedious manual fitting process. Using the
trained network, the particle distributions obtained from
simulation data are verified to be in good agreement with
the theory. Taking a typical nanoparticle transformation
experiment as an example[22], we use the network to retrieve
the average grain size as well as the grain distribution, and
compare it with other methods to ensure that the neural
network prediction is meaningful and applicable for SAXS.
This network is also suitable for the case of spherical voids
in porous materials. The beneficial modifications based on
our network are applicable to the arbitrary size inversion of
other shapes with density contrast from SAXS, which is of
great value for the on-site characterization of materials under
dynamic compression.

2. Training the neural network

According to the principle of SAXS, we can establish a fully
connected feedforward network that corresponds exactly to
our physical phenomena. The dataset with various particle

distributions as well as their volume fractions (representing
particle concentration) is used as the labels of the network,
while the corresponding scattering intensities are used as the
input dataset. For the predicted particle distributions from
the neural network, the loss function of the training and
validation data can be calculated and the network parameters
are adjusted to minimize the loss. The process can then be
repeated for several epochs until an acceptable loss value is
reached.

2.1. Data generation

The dataset for the neural network is generated on the
basis of the classical SAXS theory. The expected scattering
intensity Iabs in absolute units can be defined using the
following[26]:

Iabs(q) = ϕ (1−ϕ) · (�ρs)
2 ·V · |F(q)|2 ·S(q), (1)

where q is the wavenumber, ϕ is the volume fraction of the
nanoparticles, 1–ϕ is the volume fraction of the solution, V is
the volume of a single nanoparticle, �ρs is the total scatter-
ing length density contrast between solids and solutions and
F(q) and S(q) represent the form factor and structure factor,
respectively. When assuming spherical nanoparticles in one
case, the form factor F(q) can be expressed as follows:

F(q) =
∫ R

0

∫ 2π

0

∫ π

0
ejqr cosθ r2 sinθdθdϕdr

= 4
3
πR3 ·3

sin(qR)−qRcos(qR)

(qR)3 , (2)

where R is the effective radius of the scatterer. By intro-
ducing the repellent potential U(r) of the hard-sphere in
the Percus–Yevick closure[27–30], the structure factor can be
described as follows:

S(q) = 1+ρpart

∫
g(r) · e−iqrdV . (3)

We created a dataset of scattering intensity generated by
hard-spheres with an effective particle size range of 1–9 nm
and a volume fraction range of 0.1–0.5, which corresponds
exactly to our physical conditions[13,15,22]. For example, we
estimated the size of the generated nanoparticles from shock-
compressed polymer samples via other diagnostics (such as
X-ray diffraction) to be several nanometers, with a volume
fraction between 10% and 50%. Considering the possi-
ble distribution range of actual grain size in these experi-
ments, we chose particle size distribution between 0.9 and
9.9 nm as the target labels, represented by 100 equally
discrete probability values. When creating a random parti-
cle size distribution, we selected the composition of three
Shulz distributions with random effective radii as the total
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Figure 1. Schematic of the training process.

Table 1. Parameter ranges during data generation.

Parameter Min value Max value Unit
q 0.4 1.05 nm−1

Effective radius 1.0 9.0 nm
Particle distribution 0.9 9.9 nm
Volume fraction 10.0 50.0 %

probability for different particle sizes. To assess the robust-
ness of the network, we artificially added 0–3% noise to the
theoretical SAXS intensity data. This is based on the fact
that the error of SAXS lineouts obtained on a high-energy
X-ray light source is mainly related to the instrument and
light source quality, which causes an intensity error of less
than 2%[22]. ANNs can generalize well to any particle size
distribution by training on this simple data. In addition, the q
range that can be detected by an SAXS detector from beam-
line experiments is about 0.4–1.05 nm−1. Correspondingly,
we selected the same q range of scattering intensity in our
ANN dataset, and took 1000 equally discrete intensity values
within this range as well as the volume fractions (which can
be estimated by comparing static experiments with dynamic
experiments) as the input set (see Figure 1 for the input and
output parameters). The detailed parameter information in
the dataset is shown in Table 1. We set 80% of the data in
the dataset as the validation set and the remaining 20% as the
testing set.

In order to prevent the slow convergence of features
during optimization[31], it is necessary to preprocess and
normalize the data, which is an important step of neural
network training. The entire dataset was scaled after creating
the training-validation databases so that all the input and
target features were in the range [0, 1] according to the
following:

z′
i = zi −min(z)

max(z)−min(z)
, (4)

where z represents the dataset of a certain feature, zi repre-
sents a sample of z and max(z) and min(z) are the maximum
and minimum values of z, respectively. The scaling is undone
afterward.

2.2. Compilation and training of the ANN

The compilation of the neural network and the training were
performed using the Keras package running the TensorFlow
backend[32].

We established a fully connected dense feedforward net-
work according to our physical case with a rectified linear
unit (ReLU)[33] as the nonlinear activation function. The
input layer includes 1000 discrete intensity values as well as
one volume fraction value, while the output layer contains
100 discrete probability values representing size distribution.
The middle three hidden layers have 128, 64 and 32 neurons,
respectively. We chose the mean absolute error (MAE) as
the loss function in the training and testing process (see
Equation (5)). The backpropagation[34] and the stochastic
gradient descent optimization algorithm[35] were used to
adjust the weights and biases iteratively until the loss func-
tion was minimized. In each iteration process, the network
calculated the gradient of the batch loss relative to the weight
and then updated the weight accordingly:

MAE(X,h) = 1
m

m∑
i=1

|h(xi)− yi| . (5)

The ANN was trained along with adjusting the memoriza-
tion capacity (the number of hidden layers or neurons) to
find the optimal network structure, avoiding an underfit and
overfit. In each training process, 4680 datasets with more
than 4 million trainable parameters were trained.

Figure 2 shows the training and validation loss or accuracy
as a function of epoch. The validation loss is very close
to the training loss, indicating that although the model is
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Figure 2. Training and validation loss as well as accuracy of the neural
network which contains three middle hidden layers with 128, 64 and 32
neurons, respectively.

complex, it does not overfit the training data, and has good
generalization ability in the verification dataset.

3. Evaluation of the trained network

Based on the trained neural network, the grain distribution
can be quickly and reliably retrieved from scattering data.
Therefore, the property of the trained network should be
evaluated by measuring its performance in a large number
of theoretical data.

3.1. Applying the ANN to the theoretical models

Figure 3 depicts the predictions of the trained ANN on
several theoretical data. After inputting the theoretical SAXS
intensity lineout data with 0–3% noise to the trained ANN,
the network can directly give the particle distribution, as
shown in the blue histogram in the right-hand column
of Figure 3. Aiming at arbitrary particle distribution with
various patterns, our predicted particle distribution and the
effective radius are in good agreement with the theoretical
ones. Conversely, the corresponding SAXS lineout can also
be calculated from the predicted distribution, as shown in
the left-hand column of Figure 3, which is almost consistent
with the original theoretical SAXS lineout in the majority
of cases, implying a high reliability in the prediction of
arbitrary particle distributions from theoretical data with
noise.

However, for simple distributions with small particle radii,
the difficulty of fitting increases due to the tiny variation of
scattering intensity in the range of 0.4–1.05 nm−1, as shown
in the first panel in the right-hand column of Figure 3. The
more complex the intensity curve and the larger the particle
radius, the higher the fitting accuracy.

3.2. Applying the ANN to the experiments

In order to evaluate the performance of the ANN on the
experimental data, we assess the ANN with the real-time
in situ SAXS experimental data measured in dynamic
experiments. Five SAXS intensity data of shock-compressed
100 µm polyethylene terephthalate (PET)[36] at various
probing times under approximately 100 GPa were obtained
at the Linac Coherent Light Source (LCLS) laser facility.
The details of the experiment can be found in previous
work[22]. The in situ SAXS lineout data were used as input of
the network, then the particle distribution can be predicted
by the trained ANN. As shown in Figure 4, the predicted
distributions at various probing times are compared with
those obtained from an analytical method (applying the
non-negative least squares method)[26] and the Monte Carlo
method[19,20]. The left-hand panel reveals the particle radius
distribution obtained by the three methods, while the right-
hand panel exhibits the corresponding fitting lineouts.
Interestingly, the three methods consistently point out that
the mean particle size gradually increases with time in the
shock-compressed PET. It can be seen that the mean size
predicted by the ANN is relatively close to that of the Monte
Carlo method, and both of these methods can obtain arbitrary
size distribution and find a more discrete distribution at the
last two probing times. As an analytical model, a Schultz
distribution[37,38] is assumed with the polydispersity p =
σ /R ≈ 0.1, resulting in systematically larger effective radius
at latter times than that of the other two methods. In fact,
due to the complexity of the dynamic compression process,
the nanoparticles generated from the sample are usually
too discrete and too arbitrary to be simply represented by a
certain distribution. Therefore, the acquisition of arbitrary
distribution from raw SAXS data will better reflect the
actual situation, as predicted by the ANN and Monte Carlo
method. Of course, in the actual experimental process,
one still needs to azimuthally integrate the original 2D
scattering pattern as well as subtract the backgrounds, which
requires batch processing on written codes and usually takes
a few minutes to complete. Afterwards, among the three
methods, the ANN can invert the particle distribution from
the scattering data with a few milliseconds of computing
time on a standard laptop, while the Monte Carlo method
takes 10–30 minutes and the analytical method requires even
more time per shot because it often requires manual input
to achieve good convergence, and therefore poses challenges
when scaled to high-repetition-rate experiments or online
analysis. Comparatively, in the experimental process of
compact beam time from raw images to size distribution,
the ANN is very suitable for in situ data analysis, which is of
great significance for the promotion of physical experiments
and timely parameter adjustment. In further research, the
process parameters of the Monte Carlo method, such as
the local volume fraction and scattering length density, can
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Figure 3. Applying the ANN to the theoretical models. Seven arbitrary particle distributions predicted by the ANN (right-hand panel) and their
corresponding fitting curves (left-hand panel) compared with the initial theoretical models.

Figure 4. The nanoparticle distributions generated from shock-compressed PET obtained by the ANN, Monte Carlo method and analytical model (left-hand
panel) and their corresponding SAXS fitting curves compared with the experimental data (right-hand panel). The red dots indicate the resulting mean particle
radius from the three methods. The color bar represents the various probing times.
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serve as intermediate inputs for the ANN to finely tune
the network. This kind of physics-informed neural network
(PINN) is very promisingly beneficial for improving the
accuracy of size distribution inversion from experimental
data.

Other aspects of actual experiments, such as the bandwidth
and the high harmonics of the probe light spectrum, can
also affect the size distribution inversion from SAXS[39].
For the shock-compression phase transition described above,
the accuracy of the experiment is not that high and the
influence of the spectral bandwidth and high harmonics
can be ignored. Of course, in some more precise SAXS
inversion problems, the influence of the spectrum cannot
be ignored. In these cases, the ANN can be constructed
through the following methods: directly input the scatter-
ing spectrum and particle size distribution obtained from
the specified spectrum into the ANN for training, or add
parameters representing the spectral features to the ANN for
training.

4. Conclusions

To conclude, in view of the request for rapid analysis of
generous SAXS data at large-scale laser facilities, in this
work, we apply a dense forward network to inversely retrieve
the mean grain size and particle distribution from SAXS
data, allowing automatic acquisition of microstructure infor-
mation without tedious manual fitting in traditional methods.
Our trained network performs well in grain distribution pre-
diction on experimental data with single-species particles.
The predicted results have good consistency with the Monte
Carlo method, which also inversely retrieve the arbitrary
distribution and is more efficient.

Since the scattering intensity comes from density contrast,
theoretically, our trained network can also be applied to the
case of void distribution with spherical shapes in porous
materials, but its effectiveness still needs further experimen-
tal verification. In further work, two possible improvements
can be considered if this network is to be applied to non-
spherical particles or voids. One is that the network needs
to be retrained for particles or voids of specific shapes, and
the method of constructing and training the network can be
consistent with this work. A more universal approach is to
add additional factors representing the shape of particles to
the input of the network on the basis of this method, and
then retrain the network. In short, the powerful advantages
of the ANN can be utilized in the study of dynamic physical
processes by adding scattering shape parameters, optimiz-
ing model structures, etc. In addition, improvements in the
diagnosis of the experiment, such as increasing the scattering
angle range and improving the signal-to-noise ratio, can also
enhance the accuracy of the results obtained from the ANN
model.
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