
Introduction

In the April 2000 issue of CJEM, Wood and colleagues
compared titrated IV meperidine to single-dose IV ketoro-
lac in patients with acute renal colic.1 They achieved suc-
cessful pain relief in 72% of patients who were adminis-
tered ketorolac vs. 64% of patients who were administered
meperidine, yet concluded “equivalence.” Why? To com-
pound the confusion, they indicate that they tested the null-
hypothesis that meperidine is 20% better than ketorolac.
But isn’t that backwards? Isn’t the “null hypothesis” that
there is no difference between groups?

What we have here is a different animal — an equivalence
trial — and you’ll be seeing many more of these in the future.

What is an equivalence trial?

Medical science is preoccupied with improving existing
treatments, so most clinical trials are designed to show that
a new treatment is better than placebo or better than stan-
dard therapy. And rightly so, otherwise the textbooks would
still cite “leeches” and “eye of newt” as time-honoured
therapies. But when proven therapies already exist and a
new treatment is unlikely to have superior efficacy (but may
be safer, easier to use or less expensive), we sometimes
want to know whether the new treatment is “as good as”
standard therapy. Equivalence trials are used to prove that
two treatments work equally well, in contrast to traditional
“superiority trials,” which set out to show that one treatment
is better than another.

Defining “equivalence”

Since no two treatments are exactly equal, we must define
what difference in effects would be clinically important.
This clinically important effect size (delta) will differ
depending on the condition being studied. In thrombolytic
trials, an absolute mortality difference of 1% is often
defined as the minimal clinically important difference. In
most other situations (e.g., migraine headache), a 20% dif-
ference would be considered important and a 1% difference
meaningless. 

When looking for small differences in treatment effect,
large patient samples are required. This is because it is diffi-
cult to distinguish small treatment effects from background
sampling error. On the other hand, large treatment effects may
be statistically significant despite small sample sizes because
sampling error rarely causes large differences in study out-
comes. Norman and Streiner2 have referred to this as the“sig-
nal-to-noise ratio.” To illustrate, it took over 40,000 patients to
show that tPA was statistically superior to streptokinase for
acute myocardial infarction (AMI) (6.3% vs. 7.2% mortality;
p = 0.001), but only 98 patients to show that dexamethasone
was superior to placebo for migraine headache (18% vs. 45%
headache recurrence; p = 0.005).3,4 This is because the effect
size was much larger in the latter study. 

Hypothesis testing

After defining what we think would be a clinically impor-
tant outcome difference, how can we prove that Treatment
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A is equivalent to Treatment B? Nearly all of us have been
exposed to the concept of classical hypothesis testing*
(although most deeply resent the experience). Tapping into
these repressed memories, we remember that the first step
is to formulate a null hypothesis: “Treatment A has the
same response rate as Treatment B.” We then perform the
study and determine whether the two treatments did,
indeed, produce similar response rates. If our study shows
a statistically significant difference, we reject the null
hypothesis and accept the alternate hypothesis (that one
treatment is better than the other).

Equivalence trials reverse this logic. In an equivalence
trial, the “null hypothesis” states that Treatment A (standard
therapy) is better than Treatment B (usually the newer, eas-
ier, cheaper or safer agent) by the predefined clinically
important difference. If our data subsequently reject this
null hypothesis (of “non-equivalence”) then we can accept
the alternate explanation that the two treatments work
equally well.

So what sadist came up with this twisted scheme? Were
lawyers and politicians behind it? Why not keep it simple
and use the traditional study design? Why not? Because, to
paraphrase Churchill, “For every complex problem, there is
a simple solution. And it’s the wrong solution.” The fact is,
if we attempt to prove equivalence using a superiority
design, we are destined for trouble, as the following exam-
ple illustrates.

Echinacea for asthma

Consider a study in which 30 asthmatic patients were ran-
domized to receive either echinacea or salbutamol. After 5
minutes of therapy, 4 of 15 echinacea recipients (27%) and
7 of 15 salbutamol recipients (47%) reported improvement,
with no significant difference between groups (p = 0.55).
The authors stated that, with a sample size of 30 patients,
the study had 80% power to detect a 50% difference in
response rates. They therefore concluded that echinacea is
as effective as salbutamol for asthma exacerbations.

Thirty patients doesn’t seem like many, yet these authors
reported that their study had 80% power. Doesn’t this mean
they had enough patients to rule out important differences
between the treatments? The answer is No. Their study had
80% power, but 80% power to detect a very large (50%)
outcome difference, which means that clinically important

differences (e.g., 40%) could go undetected. When evaluat-
ing power statements, readers must consider what effect
size the investigators defined as clinically important.

The echinacea investigators used a classic superiority
design. Its results could be accepted if they showed one
agent to be statistically better than the other. But they did-
n’t, and with a negative study, all bets are off. Failure to
show superiority doesn’t prove equivalence, and just
because the study failed to show that echinacea is better
than salbutamol, we can’t conclude they are the same.

We must be suspicious of studies like this, because using
a superiority study design when an equivalence design is
more appropriate rewards sloppiness. Note that by measur-
ing their outcome early (at 5 minutes) and by delivering
standard therapy in a suboptimal manner (e.g., not coaching
or using a spacer device), the echinacea authors ensured
that both treatments would appear equal — equally bad!

Enrolling too few patients is another common pitfall.  The
smaller a study, the less able it is to find a statistically sig-
nificant difference. When trying to prove that two treatments
are essentially equal, then a larger study is more convincing.

Sampling and sample size

Sampling is a critical part of study design, and the echi-
nacea conclusions are invalid because sample size was
inadequate. Remember that patients in any study represent
only a sample of the larger population of interest, and that
doing a study is like sticking your hand into a box of
Cracker-Jacks®. If you pull out a handful of popcorn, you
might conclude that there aren’t any peanuts in the box.
Children familiar with the true composition of Cracker-
Jacks® would call this a sampling error. We can call it plain
bad luck.

Studies, like diagnostic tests, suffer from 2 types of sam-
pling error: false-positive results (type I, or alpha error) and
false-negative results (type II, or beta error). Finding no
peanuts in a handful of Cracker-Jacks® when there actually
are peanuts in the box is an example of a false-negative
study or type II error. By convention, we accept a 20%
chance (beta = 0.2) that a study’s results will be falsely neg-
ative due to “bad luck” or sampling error. The “power” of a
study is a more macho way of saying this: A study with a
20% chance of type II error has 80% power to find the pre-
defined clinically important difference if it actually exists.

Power is related to sample size, and small studies are
prone to sampling error. The only sure way to determine the
true popcorn:peanuts ratio is to study the whole population,
in this case the entire box of Cracker-Jacks®. A highly
skilled researcher might be willing to tackle this, but when
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*Hypothesis testing is the most common method, but other statistical approach-
es can be used for equivalence trials. For example, precision estimation com-
pares the confidence interval of the two treatments’ response rates. If these are
seen to overlap within a specified range, then equivalence can be concluded.
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you’re studying people with diseases, it’s usually impossi-
ble to study the whole population. Fortunately, studying a
large enough sample of patients can provide accurate esti-
mates of truth. Prior to embarking on a study, researchers
perform a sample size calculation to determine the mini-
mum number of patients necessary to reduce the chance of
sampling error to an acceptable level.

Statistical significance vs. clinical importance

Consider what might happen if the GUSTO investigators
turned their attention to otitis media, and found, in a study
of 40,000 children, that imipenem is superior to amoxicillin
(cure rate 96.1% vs. 95.2%; p = 0.002). This difference is
statistically significant but clinically unimportant. Contrast
this to the findings of the asthma study, where success rates
were 27% for echinacea and 47% for salbutamol (p = 0.55).
The latter results are clinically important but statistically
insignificant. When interpreting the outcome of any study,
physicians should consider both the reported effect size
(best estimate of truth) and the p value (likelihood that this
difference arose by chance). If the effect size was clinically
important, but the p value insignificant, the sample size was
probably too small (underpowered study). If the effect size
was clinically unimportant but the p value significant, the
sample size was probably too large (overpowered study).

Physicians should be aware that pharmaceutical manu-
facturers may be tempted to design overpowered studies, in
the hopes of finding small but statistically significant dif-
ferences that will increase use of their product. These dif-
ferences may be clinically unimportant, and one of our
great challenges as physicians is to establish consensus
about what are clinically important outcome differences for
various disease states. 

Equivalence in renal colic

In the renal colic study,1 Wood and colleagues defined the
clinically important effect size as 20% and acknowledged a
5% chance of type I error (alpha = 0.05), and a 20% chance
of type II error (beta = 0.2). Based on these parameters, they
calculated that 126 patients were necessary to prove equiv-
alence. After analyzing their data, they concluded that
ketorolac and meperidine are statistically equivalent (p =
0.02). In this case, equivalence was the target; therefore the
trial was positive. Given positive trial results, our first ques-
tion should be: What is the likelihood that this was a false-
positive (type I error) study? (Remember that, in an equiv-
alence trial, type I error means to incorrectly conclude
equivalence, while type II error means to incorrectly con-

clude non-equivalence.) The p value (for equivalence) of
0.02 tells us that, given the difference seen in the study,
there is a 2/1000 chance that meperidine is actually better
by the predefined delta of 20%. If the trial had failed to
show equivalence (negative trial), the authors could state,
based on an 80% power calculation (beta = 0.2), that they
are 80% sure that meperidine and ketorolac are not equiva-
lent (true negative study). They could not conclude that one
treatment was better than the other: That’s not the point of
an equivalence trial.

These authors avoided many of the “equivalence pitfalls”
demonstrated in the echinacea study. They compared suffi-
cient, titrated doses of meperidine to a single and, arguably,
low dose of ketorolac. Their primary outcome (successful
pain relief) was measured after sufficient time had passed to
allow both drugs to produce their effect. To address the con-
cern that ketorolac might relieve mild but not severe pain,
they excluded patients with mild pain. Finally, as described,
they specified a null hypothesis of non-equivalence. If we
agree with their clinically important effect size, then we can
conclude with confidence that meperidine and ketorolac
have equivalent effectiveness in relieving the pain from
renal colic.

Conclusion

As more treatments become available for illnesses where
satisfactory therapies already exist, equivalence trials will
become increasingly common. Emergency physicians will
need to understand how to interpret published results of
equivalence trials, and how to recognize the specific pitfalls
that can arise in their design and execution. 
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