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This study investigates experimentally the pressure fluctuations of liquids in a column
under short-time acceleration. It demonstrates that the Strouhal number St = L/(c �t),
where L, c and �t are the liquid column length, speed of sound, and acceleration duration,
respectively, provides a measure of the pressure fluctuations for intermediate St values.
On the one hand, the incompressible fluid theory implies that the magnitude of the
averaged pressure fluctuation P̄ becomes negligible for St � 1. On the other hand, the
water hammer theory predicts that the pressure tends to ρcu0 (where u0 is the change in
the liquid velocity) for St ≥ O(1). For intermediate St values, there is no consensus on the
value of P̄. In our experiments, L, c and �t are varied so that 0.02 ≤ St ≤ 2.2. The results
suggest that the incompressible fluid theory holds only up to St ∼ 0.2, and that St governs
the pressure fluctuations under different experimental conditions for higher St values.
The data relating to a hydrogel also tend to collapse to a unified trend. The inception of
cavitation in the liquid starts at St ∼ 0.2 for various �t, indicating that the liquid pressure
goes lower than the liquid vapour pressure. To understand this mechanism, we employ a
one-dimensional wave propagation model with a pressure wavefront of finite thickness that
scales with �t. The model provides a reasonable description of the experimental results
as a function of St.
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1. Introduction

Abrupt liquid motion causes pressure fluctuations inside the liquid column, resulting in
significant fluid motion. For example, a large deformation of the free surface (i.e. jets) can
occur in Pokrovski’s experiment, where a liquid-filled container falls under gravity and hits
the floor (Antkowiak et al. 2007). The pressure impulse approach under the incompressible
fluid assumption explains the jet formation. Nevertheless, Kiyama et al. (2016) found
that sufficiently large acceleration causes cavitation accompanied by jet formation with
a vibrating interface. This implies that the acoustic pressure waves propagate in the liquid
column (Bao et al. 2023), meaning that the jet liquid behaves as a weakly compressible
fluid.

To describe the liquid compressibility, scaling analysis (Batchelor 1967, § 6.3 and
p. 168) provides three important terms related as∣∣∣∣ 1

ρc2
∂p
∂t

− 1
2c2

Dq2

Dt
+ aU

c2

∣∣∣∣ � U
L

, (1.1)

where ρ is the liquid density, c is the speed of sound, p is the pressure, q is a quantity
having the same dimensions as velocity, a is the typical acceleration, U is the typical
velocity of liquid (e.g. the impact velocity in an example of Pokrovski’s experiment), and
L is the typical length scale of the liquid system. Note that the flow is assumed to be
isentropic. When each term on the left-hand side has a much smaller magnitude than the
spatial derivatives of the components of liquid velocity U/L, the liquid behaves as if it were
incompressible. This consideration gives three dimensionless incompressibility conditions
relating to the Mach number Ma, Strouhal number St, and Froude number Fr, defined as

L
c �t

= St � 1, (1.2)

U
c

= Ma � 1, (1.3)

aL
c2 = Fr−1 � 1, (1.4)

where �t is the duration required for the development of the pressure field. The Strouhal
number St is the ratio of the duration of acceleration �t to the acoustic time scale L/c; a
detailed explanation will be provided in § 3.1. Note that the Froude number Fr is generally
expressed as the ratio of inertial force to gravitational force. The physical meaning of
Fr in the above equation is the competition between the pressure change due to the
body force (acceleration including gravity) ∼ ρaL and the ambient pressure ∼ ρc2. This
dimensionless number aL/c2 is equivalent to Fr−1, and is also the product of the other two
dimensionless numbers (i.e. Fr−1 ∼ St Ma) when the typical acceleration can be scaled as
a ∼ U/�t.

In a previous example of Pokrovski’s experiment with fluid compressibility effects
(Kiyama et al. 2016), the typical values were found to be U ∼ O(100) m s−1, c ∼
O(103) m s−1, L ∼ O(10−1) m, �t ∼ O(10−4) s and a ∼ O(104) m s−2. Under such
conditions, Ma ∼ O(10−3) � 1, St ∼ O(100) and Fr−1 ∼ O(10−3) � 1. This suggests
that the compressibility effect in Pokrovski’s experiment might be scaled with the Strouhal
number St, rather than with Ma and Fr. However, Kiyama et al. (2016) did not consider
the influence of the acceleration duration (i.e. St).

We tested the above hypothesis in a preliminary experiment. Figure 1 shows the time
series of the acceleration a measured at the top of a container filled with silicone oil
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Figure 1. Measured acceleration of a liquid-filled glass container after collision with the floor. Red and blue
curves show the acceleration with different floor materials and drop heights. The acceleration during the impact
is marked by the shaded area. Although both cases have similar peaks and mean accelerations at impact, the
magnitudes of the subsequent acceleration fluctuations are quite different.

(10 cSt) as it impacts the floor. The red line indicates the data taken from the tube
impacting a metal floor, where the duration of acceleration is �t ∼ 0.11 ms (indicated
by the red shading). The blue line presents the data for a resin floor (�t ∼ 0.27 ms, blue
shading). The dimensionless parameters are St ∼ 3.1 × 10−1, Ma ∼ 8.2 × 10−4 � 1 and
Fr−1 ∼ 3.6 × 10−5 � 1 (red) and St ∼ 1.2 × 10−1, Ma ∼ 2.1 × 10−3 � 1 and Fr−1 ∼
3.6 × 10−5 � 1 (blue). Although both cases exhibit similar peaks and mean accelerations
at impact, the magnitude of later acceleration fluctuations is quite different. The case with
the larger Strouhal number St (i.e. a smaller �t) exhibits more significant acceleration
fluctuations for t > �t. This confirms that the short-term acceleration induces pressure
waves in the liquid column, even when Ma � 1 and Fr−1 � 1. We conjectured that
the influence of �t (and thus St) became visible there, as the other two dimensionless
parameters (Ma, Fr−1) remain much smaller than unity, implying that they are less
important. The effects of the acceleration duration �t are also visible in the fluid motion
inside test tubes dropped from the same height (i.e. the same velocity U; see figure 2).
The resin floor induces a smooth jet (figure 2a), while the metal floor triggers surface
vibrations (figure 2b) and cavitation (figure 2c); see supplementary movies available at
https://doi.org/10.1017/jfm.2024.1190.

To the best of our knowledge, the role of �t in the development of the pressure field in
Pokrovski’s experiment has not been investigated systematically. Most existing research
took a pressure impulse approach, assuming an incompressible flow and a constant �t
that is greater than the acoustic time scale L/c, i.e. St � 1 (Antkowiak et al. 2007; Pan
et al. 2017). In this approach, the pressure field of the liquid is fully developed immediately
after the impact, thus the liquid pressure does not change as a function of time. Another
approach takes the water hammer theory into account (Kiyama et al. 2016), and thus
assumes an instant increment in pressure, i.e. �t = 0 (Ghidaoui et al. 2005; Bergant,
Simpson & Tijsseling 2006), where St = ∞. This assumption predicts periodic pressure
fluctuations P̄ with magnitude ρcU, but does not capture the role of �t in the development
of the pressure field. Existing research has considered one or other of these approaches,
but the intermediate region between St � 1 and St = ∞ has rarely been studied.

This paper focuses on the role of St in the pressure fluctuations, especially in the
intermediate St regime. We first define the physical meaning of St in § 3.1 as a function
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Figure 2. Photographs taken at 100 000 fps using a high-speed camera (Photron SA-X) with a back-light
method. The typical velocity is mostly constant (≈2.0 m s−1), and the height of the jet does not change
significantly in each case. (a ii–c ii) Magnified views of the free surface at t = 4.6 ms. (a) Test tube impacting a
resin floor, where the free surface remains smooth. (b) Test tube impacting a metal floor, where the free surface
vibrates periodically and exhibits a rough texture (marked by a white arrow). (c) Test tube impacting a metal
floor, where cavitation occurs inside the liquid. The free surface exhibits a similar response to that in (a). See
the supplementary movies.

of �t, and examine the experimental data with various liquid depths L, velocities U,
acceleration durations �t, and liquid types. The experimental data collapse onto a single
curve, suggesting that St is suitable for describing the pressure fluctuations (§ 3.2). The
conditions for the onset of cavitation are derived in § 3.2.2, and the pressure fluctuations
in a hydrogel are examined in § 3.2.3. In both cases, the present results are shown to be
in line with existing pressure results for fluids. We also develop a simple model that takes
the effect of the finite thickness of the pressure wavefront into account. This model is used
to describe the liquid pressure fluctuations at t > �t based on the one-dimensional wave

1003 A20-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

11
90

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1190
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Figure 3. Schematic illustration of the experimental set-up. The accelerometer attached to the top of the
container records the acceleration a acting on the system. A change in the floor material allows us to change
the duration of acceleration �t. The depth L of the liquid in the container is also varied in our experiments.

equation (§ 3.3). We then compare the output from the proposed model with a wide range
of experimental data. The influence of the motion of the surrounding container and the
profile of the pressure wavefront is also discussed.

2. Experiments

Figure 3 shows the experimental set-up. The container, which is partially filled with a
liquid/hydrogel, falls freely and eventually collides with the floor. This accelerates the
liquid in the vertical direction opposite to the direction of gravity g. The acceleration
of the container is measured with an accelerometer (2350, Showa Sokki Co., sensibility
0.3 pC (m s−2)−1) attached to the top of the container, where the accelerometer is tightly
glued. The accelerometer outputs a charge that is converted to a voltage by a charge
amplifier (5015A, 5011B, Kistler Co.), and the voltage is recorded by an oscilloscope
(Iwatsu Co., ViewGo II, DS 5554-A).

Note that the connection between the accelerometer and the amplifier is established
using a stiff wire. It sometimes tilts the falling test tube. While we assume that the output
from the system was robust enough, it poses a clear limitation of this set-up. However,
we would also note that the same limitation should apply even when using other sensors,
such as a needle-type hydrophone, which allows us to measure the underwater pressure
directly. It could thus be said that the acceleration measurement has some merits as it
does not disturb either the flow or the pressure fields during the measurement (see also
supplementary material).

The control parameters are the depth of the liquid column L, the change in the liquid
velocity induced by the impact u0, the duration of acceleration �t, and the type of
liquid/hydrogel. The depth of the liquid column L ranges from 30 to 285 mm. We use two
borosilicate glass containers of different sizes and masses (see table 1). The characteristic
velocity U in this experiment corresponds to the impact velocity u0, which is varied from
0.5 to 3 m s−1 by adjusting the drop height of the container. The duration of acceleration
�t ranges from 0.1 to 2.2 ms. To control �t, different floor materials are used: steel,
aluminium, epoxy resin, ABS resin and rubber. We use different fluids (silicone oils
with 1 and 10 cSt obtained from Shin-Etsu Chemical Co., pure water, and ethanol) and
a weak gelatin gel (5 wt%) that is expected to flow when it experiences rapid deformation
(Kiyama et al. 2019) and exhibits similar cavitation to water (Rapet, Tagawa & Ohl 2019).
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Tube Length (mm) Weight (g) Inner diameter (mm) Wall thickness (mm)

Short 130 19 14 1
Long 300 66 12 2

Table 1. Specifications of the containers.

Media Speed of sound c (m s−1) Density ρ0 (kg m−3)

Silicone oil (10 cSt) 966.5 935
Silicone oil (1 cSt) 901.3 818
Water 1483 998
Ethanol 1168 789
Gelatin 1391 1052

Table 2. Physical properties of media in a tube. Speed of sound in gelatin is calculated from the acceleration
frequency and liquid depth.
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Figure 4. (a) Acceleration of the container partially filled with silicone oil (10 cSt). The grey and red lines
represent raw data and data subjected to a low-pass filter; �t is the duration of acceleration. After t0 (defined
in § 2), fluctuations in acceleration are visible. The inset shows the acceleration of an empty glass container.
(b) Acceleration of each floor type is shown by different colours. Data are obtained from the impact of an empty
test tube on each floor material. The Young’s modulus is specified in the legend, where superscript ∗ denotes
the tensile strength.

The physical properties of these media are summarized in table 2. The tube dimensions and
media properties allow us to estimate a degree of the fluid–structure interaction through
the parameter β = (c2

l /c2
s )(ρl/ρs)[(din + h)/h] (e.g. Kiyama et al. 2016). As for water, we

estimated β < 1 for all tube types used, suggesting that the tube deformation does not play
a non-negligible role.

A measured acceleration profile is shown in figure 4(a). A positive value of the
acceleration indicates upward vertical acceleration. The grey curve shows the raw
acceleration data, whereas the red curve shows the low-pass-filtered data. For filtering,
the cut-off frequencies for the 130 and 300 mm tube lengths are 11 000 and 5000 Hz,
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Pressure fluctuations of liquids under acceleration

respectively; these values are estimated based on the tube length and the speed of sound in
glass (c ∼ 5.4 × 103 m s−1) and are finalized while following the empirical considerations.
The filter threshold was set to cut not the oscillation of the liquid but that of the tube.
The raw data suddenly change at t = 0 when the container impacts the floor, and the
acceleration exceeds 1000g immediately after the impact. We note that the acceleration
change before t < 0 was much smaller than the main acceleration due to the impact,
meaning that the observer in our system is stood on a test tube. We define �t as the duration
from the collision until the filtered acceleration falls back to 0 m s−2. It is assumed that all
of the acceleration changes that occurred during the impact event were covered within
this �t. Periodic fluctuations in acceleration are then observed – see figure 4 for t > t0.
At t > t0, no fluctuations are visible for an empty container (see inset), indicating that
there must be some liquid/hydrogel in the container to observe fluctuations.

The acceleration during �t for each floor type is shown in figure 4(b). The container is
dropped from the same height so that the integral of the acceleration over �t is similar for
all cases. However, a stiffer floor introduces a higher magnitude of acceleration a within a
shorter �t.

The measured acceleration is translated to pressure according to the momentum
conservation law, which can be written as

mv + ρA
∫ L

0
u dx = H(const.), (2.1)

where m is the mass of the container, v is the velocity of the container, ρ is the liquid
density, A is the cross-sectional area of the liquid column, and u is the velocity of the
liquid. This equation encompasses the entire system (i.e. both the liquid and the container).
We do not take the contribution of gravitational acceleration g into account because it is
expected to be sufficiently small when compared to the acceleration imposed by the impact
(g � u0/�t), where u0 is the initial velocity change due to the impact estimated through
the experiment.

Equation (2.1) can also be rewritten as

mv̄ + mv′ + ρA
∫ L

0
ū dx + ρA

∫ L

0
u′ dx = H(const.), (2.2)

while introducing u = ū + u′ and v = v̄ + v′. Here, velocities u and v were decomposed
into the time-averaged (ū and v̄) and respective fluctuations (u′ and v′) components.
Considering the extremes, the momentum change in the liquid may be expressed as

ΠL = ρA

(∫ L
0 u dx

)
max

−
(∫ L

0 u dx
)

min
2

. (2.3)

Let Ū be the amplitude of the time-averaged velocity component, calculated across the
entire liquid depth from the bottom of the liquid to the gas–liquid interface as

Ū =

(∫ L
0 u dx

)
max

−
(∫ L

0 u dx
)

min
2L

, (2.4)

for convenience. Then (2.3) can finally be reformulated by using Ū as

ΠL = ρALŪ. (2.5)

1003 A20-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

11
90

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1190


C. Kurihara, A. Kiyama and Y. Tagawa

1.0

0.8

0.6

0.4v
 (

m
 s

–
1
)

vmax

vmin

0.2

0 1 2 3

t (s)

t0

4

(×10–4)

�t

Figure 5. Temporal velocity of the container (i.e. the test tube) from the beginning of impact, as calculated
by integrating the acceleration data. The peak velocities vmax and vmin are marked.

Similarly, the amplitude of the velocity fluctuation of the container V can be expressed
as

V = vmax − vmin

2
. (2.6)

The amplitude of the change in momentum of the container is thus expressed as

ΠT = mV, (2.7)

where m is the mass of the container (see table 1). Coupling (2.5) and (2.7) gives the
expression

Ū
u0

= m
ρAL

V
u0

. (2.8)

We can determine the right-hand side of (2.8) experimentally. We estimate the velocity
of the container V by integrating the acceleration data (see figure 4a). We focus on the
velocity after t = t0, and detect the velocity fluctuations vmax and vmin (see figure 5). Note
that vmax and vmin are taken from the first period after t = t0 to reduce the influence of
drift noise.

Assuming the relationship P̄ = ρcŪ, we obtain

Ū
u0

= P̄
ρcu0

. (2.9)

Hereafter, the experimental data P̄/(ρcu0) are estimated as the representation of
mV/(ρALu0).

We note that the vibration of the acceleration data is assumed to represent the pressure
wave propagation in the liquid (Kiyama et al. 2016), in which the peak frequency
was expected to be estimated as ∼ cl/(4L). We have found that the frequency of the
acceleration data follows the trend (see the supplementary material). This trend agrees
qualitatively with the frequency response of the direct pressure measurement, which
further supports the hypothesis. The detailed discussion can be found in the supplementary
material.
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Pressure fluctuations of liquids under acceleration

3. Results and discussion

3.1. Strouhal number St as an indicator of liquid compressibility
We first derive the Strouhal number St for the one-dimensional system. We assume an
infinitesimal disturbance to the velocity, pressure and density in the inviscid flow. We then
obtain the continuity and Euler equations in terms of the density ρ, velocity u, time t,
length x and pressure p as

∂ρ

∂t
+ ρ0

∂u
∂x

= 0, (3.1)

∂u
∂t

+ 1
ρ0

∂p
∂x

= 0. (3.2)

Here, ρ0 is the characteristic liquid density in the far field. The speed of sound in the liquid,
c, is defined as c2 = ∂p/∂ρ. Coupling (3.1) and (3.2) yields the wave equation (Leighton
1994) in the form

∂2Φ

∂t2
− c2 ∂2Φ

∂x2 = 0, (3.3)

where Φ is the velocity potential (Fujikawa et al. 2005). Introducing dimensionless
quantities, the wave equation can be written as

St2
∂2Φ∗

∂t∗2 − ∂2Φ∗

∂x∗2 = 0, (3.4)

where St = x/(ut) is the Strouhal number. The superscript ∗ denotes dimensionless
quantities. In this work, the length of the liquid column L, speed of sound c, and duration
of acceleration �t are substituted for the characteristic length x, speed u and time t,
respectively. The Strouhal number St for our experiments is thus defined as

St = L
c �t

, (3.5)

which is the same form as (1.2). In this form, St can be considered as the ratio between
the characteristic length of the geometry L and the length scale required to develop the
acoustic nature, i.e. the thickness of the wavefront of the pressure wave.

Equation (3.4) also provides a theoretical insight into the fact that St reflects the fluid
compressibility, as reported by Reijers, Snoeijer & Gelderblom (2017). For St � 1, (3.4)
can be rewritten as

∂2Φ∗

∂x∗2 = 0, (3.6)

which describes incompressible and irrotational flow, indicating that the pressure
fluctuations due to wave propagation are negligible, as evidenced experimentally in
figure 1. In contrast, for St 
� 1, the liquid compressibility and pressure fluctuations
become visible (figure 1). The pressure fluctuations are derived from the Euler equation
(3.2). Integrating this equation with respect to x, and assuming p = p0 and u = 0 in the far
field, gives

p − p0 = ρcU, (3.7)

where ρcU is known as the water hammer pressure; this expression is known as
Joukovski’s equation (Batchelor 1967; Thompson 1972), a classical formulation for
predicting the maximal pressure fluctuations in one-dimensional flows. As explained
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Figure 6. Magnitude of pressure fluctuation P̄/(ρcu0) versus Strouhal number St. Data points show
experimental results, and each plot colour denotes a different floor type. The shapes of the data points
correspond to the different liquid types (including a hydrogel), as indicated in the legend. An inset compares
the amplitude of the velocity fluctuations of the container V/u0 and Strouhal number St.

earlier, in the limit �t ≈ 0, an instantaneous pressure rise is assumed, and the pressure in
the liquid jumps from zero to ρcU. According to the above discussion, in our experiments
where the characteristic speed is U = u0, the development of pressure P̄ is expected to be
dominated by the Strouhal number St, which successively connects P̄ = 0 at St � 1, and
P̄ = ρcu0 at St � 1.

3.2. Experimental results and remarks

3.2.1. Pressure fluctuations in liquids
The amplitude of the velocity fluctuations of the container, V/u0, increases with Strouhal
number St, as shown in the inset of figure 6. As discussed, an increase of St values induces
larger velocity fluctuations for different floor materials (i.e. �t). One might notice that the
slope for each �t is different. At the same Strouhal number St, the net liquid height L has
to be different by definition, suggesting that a proper normalization is desired to scale the
influence of either L or �t as discussed in (2.8) and (2.9).

Based on this, figure 6 examines the relationship between the amplitude of the spatially
averaged liquid pressure change (hereafter, the pressure fluctuation) P̄ and the Strouhal
number St for different values of �t and L. The use of different floor materials results in �t
varying from 0.1 to 2.2 ms, as indicated in the legend. The use of water (

�
), 1 cSt silicone

oil (�) and ethanol (♦) allows us to vary the speed of sound c and the liquid density ρ,
which are related to the water hammer pressure. In particular, the speed of sound c in water
is approximately 1.6 times faster than that in 1 cSt silicone oil. The density ρ of water is
approximately 1.3 times higher than that of ethanol.

The experimental data fall onto a single curve that is insensitive to the experimental
parameters tested. All of the data for St > 0.2 overlap significantly and approach
P̄/(ρcu0) ≈ 1.0 when St ≥ O(1), whereas the data using resin floors for St ≤ 0.2 are
scattered. The collapse of the data in figure 6 indicates that the Strouhal number St
describes the gradual pressure development in a one-dimensional tube. Of the conditions
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Pressure fluctuations of liquids under acceleration

tested, St ∼ 0.2 is the threshold at which the pressure fluctuations become visible and the
transition begins (P̄/(ρcu0) ≈ 0.1).

Figure 6 also contains data for 10 cSt silicone oil (©). This has a greater viscosity than
the other liquids, but the same trend can be observed because the viscous boundary layer
δ ∼ √

ν �t ∼ O(10−2) mm is expected to be sufficiently thinner than the container radius
∼ O(1) mm, as argued in the case of jetting experiments (Onuki, Oi & Tagawa 2018;
Gordillo, Onuki & Tagawa 2020). The surface tension does not significantly affect the
pressure fluctuations in the present experiments, despite the surface tension of water being
approximately 4.3 times higher than that of 1 cSt silicone oil. From the above, the Strouhal
number St provides a powerful means of describing the pressure fluctuations inside widely
used low-viscosity liquids.

Previous research on similar systems suggests that the accelerating fluid can be modelled
as either a compressible fluid (Fogg & Goodson 2009; Kiyama et al. 2016; Daou et al.
2017; Yukisada et al. 2018; Kamamoto et al. 2021a) or an incompressible fluid (Niederhaus
& Jacobs 2003; Killian, Klaus & Truscott 2012; Daily et al. 2014; Garcia-Atance Fatjo
2016; Pan et al. 2017; Gordillo et al. 2020; Kamamoto, Onuki & Tagawa 2021b; Krishnan,
Bharadwaj & Vasan 2022), even if the Strouhal number is in the intermediate region
St ≈ O(1). Our experimental results (figure 6) obviously show that the pressure wave
appears at moderate values of St, and its magnitude scales with St: the transition from
the ‘incompressible fluid’ region starts at St ∼ O(10−1) (St ≈ 0.2 in this experiment),
and the ‘compressible fluid’ region is established at St ∼ O(101). This is reasonably
consistent with the case of laser ablation onto a droplet (Reijers et al. 2017), in which fluid
compressibility appears in the flow field (and accordingly the pressure field) at St � 1.

3.2.2. Cavitation inception following pressure fluctuations
It is thus expected that the Strouhal number St could provide a measure of the tendency
for cavitation in a one-dimensional fluid system. The cavitation number for the accelerated
liquid (Pan et al. 2017) is written as

Ca = Patm − Pv

ρaL
, (3.8)

where a = Ū/�t. Employing the first-order approximation ρL(Ū/�t) ∼ St ρcu0, we
obtain

Ca ∼ St−1 Patm − Pv

ρcŪ
. (3.9)

This expression makes sense for situations in which the influence of �t is dominant over
that of other parameters. If �t is dominant, then Ca and St−1 play similar roles and are
thus interchangeable. Increasing St decreases Ca, meaning a greater pressure reduction,
as expected, and a higher possibility of cavitation occurring (Daily et al. 2014; Pan
et al. 2017; Eshraghi et al. 2022). This perhaps explains the findings in previous studies
(Garcia-Atance Fatjo 2016; Pan et al. 2017; Xu et al. 2021; Wang et al. 2022), in which
the overall cavitation tendency was reasonably classified by considering only Ca as the
significance of �t remained largely unchanged.

Figure 7 shows the probability curves of cavitation in silicone oil (10 cSt) for
different floor types. Each marker shows the cavitation probability determined through
10 separate experimental runs. The gradual increase in probability is fitted by the sigmoid
function (Maxwell et al. 2013; Bustamante, Singh & Cronin 2017; Hayasaka, Kiyama &
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Figure 7. Cavitation probability of silicone oil (10 cSt) for various floor materials, as indicated by colours. The
probabilities were determined experimentally through 10 separate experimental runs. The fitting curves were
obtained based on (3.10), where the fitting parameters are α = 0.431 and β = 0.109 for SS400, α = 0.456 and
β = 0.113 for aluminium, α = 0.396 and β = 0.053 for epoxy resin, and α = 0.249 and β = 0.0032 for ABS
resin.

Tagawa 2017; Oguri & Ando 2018; Bustamante & Cronin 2019) as

Prob. = 1
2

[
1 + erf

(
St − α

β
√

2

)]
, (3.10)

where erf() is the error function implemented in Matlab, and α and β are the fitting
parameters. Overall, cavitation starts at St values as low as 0.2, which agrees well with
the condition for noticeable pressure fluctuations. Closer observation reveals the influence
of the floor material. For relatively stiff floors (i.e. SS400 and aluminium), a 50 %
probability of cavitation is reached at St = 0.43 and 0.46, respectively. For softer floors,
the probability curve is steeper (i.e. smaller β values), and the minimum St value required
does not vary significantly. The physical reasoning behind this remains unclear, and further
investigation is needed. The �t value varies for softer floors (figure 6), so its influence on
the results needs to be clarified.

3.2.3. Pressure fluctuations and cavitation in a hydrogel
The Strouhal number St is still a powerful tool for describing the pressure fluctuations
in hydrogels. In figure 6, the gelatin data (squares) for various floor types are in good
agreement with the other data for standard fluids. The 5 wt% gelatin gel is a water-based
viscoelastic material, which behaves as a soft solid in the rest state. At the moment
of impact, it is expected that the gelatin gel could flow due to the fast deformation
(�t ∼ O(0.1) ms). The above discussion on the Strouhal number St and the water hammer
pressure ρcu0 can be applied to the accelerated hydrogel, although further investigations
are needed for a quantitative understanding. Our findings provide an experimental
understanding of the inception of cavitation inside the gel (Kang et al. 2017a,b; Kang
& Raphael 2018); see the supplementary material. This phenomenon has been used to
address brain injury issues (Yu et al. 2020; Lang et al. 2021).
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3.3. Analysis of the pressure fluctuations
We now discuss the basic theoretical framework for predicting the pressure fluctuations.
First, we consider a gradual pressure increment at the pressure wavefront to confirm
the smooth connection between the ‘incompressible fluid’ region (St � 1) and the
‘compressible fluid’ region (St > 1) as a function of the Strouhal number St (§ 3.3.1).
We then compare the theoretical models and the experimental data (§ 3.3.2). We discuss
the influence of both the container mass and the pressure wavefront profile.

3.3.1. Model considering thickness of pressure wave
This paper focuses on the case St = L/(c �t) ≈ 1, where the length of the liquid column L
is similar to the length c �t. We call c �t the thickness of the pressure wavefront because
it corresponds to the length required to establish the water hammer pressure. In such cases,
the pressure fluctuations are not determined by the classical formulation assuming an
instantaneous pressure rise (3.7), but are caused by both the temporal pressure change
during �t and the reflection of the pressure wave at the boundaries.

The liquid column in the container has a gas–liquid interface at one end, and a
solid–liquid interface at the other end. First, we define the function f ∗(ξ∗, t∗) describing
the liquid pressure change, where ξ∗ and t∗ are the distance from the solid–liquid
interface and the time from the initial impact, respectively. Here, f ∗, ξ∗ and t∗ are
dimensionless values expressed as f ∗ = f /ρcu0, ξ∗ = ξ/c �t and t∗ = t/�t. The pressure
change propagates in the direction of ξ∗. The wavefront is located at ξ∗ = t∗. We express
f ∗(ξ∗, t∗) as

f ∗(ξ∗, t∗) =

⎧⎪⎨
⎪⎩

1 (t∗ − 1 ≥ ξ∗),
I∗(ξ∗ − t∗ + 1) (t∗ − 1 ≤ ξ∗ ≤ t∗),
0 (t∗ ≤ ξ∗),

(3.11)

where I∗(η) is the pressure change in the pressure wavefront, which is modelled as

I∗(η) = 1
2

sin
(
ηπ + π

2

)
+ 1

2
; (3.12)

see also figure 8. This sinusoidal-wave-type model is chosen as one of the conventional
models that expresses a smooth transition from zero to one. At the same time, it is an
intuitive choice from the first-order simplification of our system, in which we might be
able to treat the struck tube as the freely vibrating spring–mass system. The reflection of
the pressure wave at the boundaries is modelled by assuming the principle of superposition
(Thompson 1972). We assume that the mismatching of the acoustic impedance at the
gas–liquid and solid–liquid interfaces is significant, hence we neglect the energy loss
upon reflection. The sign of the pressure reverses when the pressure wave reflects at
the gas–liquid interface, but does not change when the pressure wave collides with the
solid–liquid interface, as discussed in Kiyama et al. (2016). The local pressure in the liquid
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ξ∗t∗ – 1 t∗
0

f ∗

1

Figure 8. Outline view of the function of pressure change f ∗, described by the dimensionless time t∗ and
dimensionless position ξ∗. Red, blue and black lines show models with the assumptions that the thickness of
the wavefront is 0 (i.e. water hammer theory), that the liquid is incompressible, and that the wavefront has a
finite thickness, as modelled herein, respectively.

column p∗ is calculated as

p∗(ξ∗, t∗, St) =
ceil((t∗/St)−1)∑

i=0

g∗(ξ∗, t∗, St, i), (3.13)

g∗(ξ∗, t∗, St, i) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f ∗(i St + St − ξ∗, t∗) (i = 4n − 1),

−f ∗(i St + ξ∗, t∗) (i = 4n − 2),

−f ∗(i St + St − ξ∗, t∗) (i = 4n − 3),

f ∗(i St + ξ∗, t∗) (i = 4n),

(3.14)

where i represents the number of pressure wave reflections, and n is a natural number.
This model allows us to estimate the temporal changes in pressure. We then calculate

the amplitude of the spatially averaged pressure in the liquid, P̄. Hereafter, the amplitude
of the pressure change P̄/(ρcu0) calculated from the above model is compared with that
estimated from the experiments, mV/(ρALu0).

3.3.2. Comparison and discussion
We now compare the experimental results (dataset visualized in figure 6) with the
model in figure 9(a). The black solid line expresses our model with consideration of
the pressure wavefront thickness (see § 3.3.1). Figure 9(b) shows a magnified view. For
St = O(10−2), the fluctuations are not obvious in either the model or the experimental
results (P̄/(ρcu0) < 10−2), suggesting that the liquid behaves as an incompressible fluid.
For St = O(10−1), the fluctuations in both the experimental results and the model increase
notably, which is associated with an increase in the Strouhal number St. Therefore, the
effect of liquid compressibility appears at St = O(10−1). The proposed model predicts the
onset of pressure fluctuations (see figure 9(b), St ∼ 0.2) and captures the overall trend of
these fluctuations with respect to St, but overestimates the magnitude of the fluctuations
for higher St values (St < O(100)). Though the model implies that the water hammer
pressure (P̄/(ρcu0) = 1.0) is reached at higher St values, the experimental results saturate
at approximately P̄/(ρcu0) ∼ 0.7 for St ∼ 1. Although no data could be obtained for
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Figure 9. Dimensionless amplitude of the spatial pressure in a liquid as a function of the Strouhal number St.
Data points show experimental results, and each plot colour corresponds to a different floor type. The shapes
of the data points correspond to different liquids. The red and blue lines show the pressure calculated under
the assumptions of compressible and incompressible liquids, respectively. The thin black line represents the
calculation result using the model (§ 3.3.1).

St > O(101) due to experimental limitations, we expect that the experimental scenario
would differ for higher St values as well because of the influence of the container motion
and the profile for the pressure wavefront, as discussed below.

First, we investigate the effects of the container motion. Equation (2.1) can be
reformulated as follows in dimensionless quantities:

mv∗u0 + Aρu0c �t
∫ St

0
u∗ dx∗ = H(const.). (3.15)

The momentum conserved in the system, H, is calculated using v∗ and u∗ immediately
after the impact. The velocity of the container v∗ is then calculated from the constant
momentum H and the instantaneous velocity in the liquid u∗. We incorporate the function
f ∗ in § 3.3.1 into the velocity of the container, v∗, as

f ∗(ξ∗, t∗) =
⎧⎨
⎩

v∗ (t∗ − 1 ≥ ξ∗),
I∗(ξ∗ − t∗ + 1) (t∗ − 1 ≤ ξ∗ ≤ t∗),
0 (t∗ ≤ ξ∗).

(3.16)

The pressure in the liquid is calculated from (3.13) using the function f ∗. The velocity of
the liquid, u∗, is calculated from the equation

u∗(ξ∗, t∗, St) =
ceil((t∗/St)−1)∑

i=0

h∗(ξ∗, t∗, St, i), (3.17)

h∗(ξ∗, t∗, St, i) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−f ∗(i St + St − ξ∗, t∗) (i = 4n − 1),

−f ∗(i St + ξ∗, t∗) (i = 4n − 2),

f ∗(i St + St − ξ∗, t∗) (i = 4n − 3),

f ∗(i St + ξ∗, t∗) (i = 4n).

(3.18)
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Figure 10. Effect of container motion on the pressure fluctuations in a liquid. Open circles show experimental
results using short tubes, whereas the closed circles represent the long tubes data. The dotted and dashed lines
respectively show the model results considering the motion of the short and long containers.

The velocity of the container, v∗, is dependent on the momentum of the liquid, which
implies some dependence on L, m, A and ρ (see (3.15)), and can be interchanged with
the pressure, as we did for the experimental data. Considering the velocity change of the
container, the amplitude of the pressure fluctuations in the liquid is defined by the Strouhal
number St and the water hammer pressure.

The revised model is compared with the experimental results in the case of an epoxy
resin floor (figure 10). We used two different tubes to vary the mass; the filled and open
circles represent the data for the long and short tubes, respectively. The dashed and dotted
lines correspond to the model for the long and short tubes, respectively. The revised model
taking the change in container velocity into account improves accuracy in terms of the
overestimation observed in the original models. The revised model for different tubes also
predicts the influence of the tube types, whereas such variations might not necessarily be
visible in the experimental data.

We also tested the effect of the pressure wavefront profile. For comparison purposes, we
used a simple profile, illustrated by the dot-dashed line in figure 11(a). This is expressed
by I∗(η) in (3.11), which is defined as

I∗(η) = 1 − η. (3.19)

This model overpredicts the pressure fluctuations for smaller St values (St < O(10−1)), but
gives better agreement for larger St values (figure 11b). This suggests that the profile of
the pressure wavefront could affect the accuracy of the model predictions, which provides
a possible explanation for the difference between the experimental results and the original
model (figure 9). In our experiments, the profile of the pressure wavefront is assumed
to be dependent on the floor material. Hence the effect of the pressure profile causes
variations in the pressure fluctuations measured experimentally at the same St, as well
as the cavitation trend for each floor type. Our recent attempt to measure the pressure
directly suggested that the two different shapes of the wavefront that we tested here might
be still too simple to model the actual phenomena (see the supplementary material). The
discussion above should be considered as a starting point, thus further research would be
needed.
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Figure 11. (a) Profile of the pressure wavefront. (b) Dimensionless fluctuations in water hammer pressure
with respect to Strouhal number. The solid and dot-dashed lines represent different wavefront profiles.

In addition to the above considerations, there are two possible reasons for differences
between the model and experiments: the vibration of the container and the curvature of the
bottom of the container. Although the model does not consider the effect of vibrations in
the container, the liquid can vibrate due to the propagation of the pressure waves, inducing
the fluid–structure interaction. The momentum in the experimental system is converted
to vibrations. The vibration of the container after the rebound might also be related to
the amount of liquid inside the system (Killian et al. 2012; Kiyama et al. 2016; Andrade
et al. 2023). Another important aspect of the tube vibration is that in the radial direction.
Although it is not considered the primary source of the free surface vibration that we have
been discussing as the additional measurements on pressure wave in liquid column and
acceleration at the container wall suggested (see the supplementary material), it perhaps
assists in the formation of fine droplets when the top of the tube is not tightly glued
(Kiyama et al. 2016). It would emphasize the rich physics contained in this rather simple
system and indeed be an important aspect of future work. Additionally, the model does
not consider the curvature of the bottom of the container, which leads to the formation of
a plane wave in this region. However, we used a container with a rounded bottom in the
experiments. A radial phase lag is likely to occur, and the fluctuations will differ from those
of the model. Related to this, in Kiyama et al. (2016), it is discussed that the rounded tube
bottom might change the frequency response of the system slightly. It might resolve the
slight discrepancies observed in the comparison between the model and the experiments
(i.e. acceleration, free surface vibration, and pressure, as discussed in the supplementary
material).

4. Conclusions

This paper has shown that the Strouhal number St provides a measure of the fluid
compressibility in a one-dimensional system, unlike other dimensionless indicators such as
Ma and Fr. Experiments with various liquid column depths inside a tube were performed
for different liquid velocities, acceleration durations and media types (four standard
liquids and one hydrogel), producing a wide range of Strouhal numbers, 0.02 ≤ St ≤ 2.2.
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The pressure fluctuations, which were calculated based on the measured acceleration,
indicate a unified trend as a function of St for a wide range of parameters (figure 6),
suggesting that St gives a good measure of the liquid compressibility in cases where
the pressure impulse approach breaks down. Our experimental findings regarding the
importance of St are consistent with those from numerical work on bursting droplets
(Reijers et al. 2017), suggesting that our discussion related to St might even be applicable
in different geometries. We also found that St is useful for describing the cavitation
tendency (figure 7). In addition to empirical relations, we derived a conceptual model
in which a modified version of water hammer theory accounts for the finite thickness of
the pressure wavefront. This simple model describes the overall trend of the experimental
data: the magnitude of the pressure fluctuations increases as the Strouhal number St
increases (figure 9). Implementing corrections in the model allowed us to show that both
the motion of the surrounding container and the profile of the pressure wavefront influence
the pressure development (see figures 10 and 11).

Supplementary material. Supplementary material and movies are available at https://doi.org/10.1017/jfm.
2024.1190.
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