WEAKLY SEMI-SIMPLE FINITE-DIMENSIONAL
ALGEBRAS

W. EDWIN CLARK

Let A be a finite-dimensional (associative) algebra over an arbitrary field
F. We shall say that a semi-group .S is a translate of A if there exist an algebra
B over F and an epimorphism ¢: B — F such that A = 0¢~! and S = 1¢~ .
It is shown in (2) that any such semi-group .S has a kernel (defined below)
that is completely simple in the sense of Rees. Following Stefan Schwarz (4),
we define the radical R(S) of S to be the union of all ideals I of S such that
some power /" of [ lies in the kernel K of S. First we prove that the radical of
a translate of 4 is a translate of the radical of 4. It follows that 4 is nilpotent
if and only if it has a translate S such that R(S) = S. We then investigate the
opposite extreme, i.e., the case in which R(S) = K. If R(S) = K, we shall
say that S is K-semi-simple. We declare that A is weakly semi-simple if some
translate S of 4 is K-semi-simple. It is shown that 4 is weakly semi-simple if
and only if fAf is semi-simple for some (hence every) principal idempotent
fin A4; equivalently, 4 = fAf ® R(A4) (as vector spaces) where R(A4) is the
radical of A. This result enables us to give a characterization without the use
of idempotents of the algebras of class Q studied by R. M. Thrall in (5).

1. Preliminaries.

1.1. A non-empty subset I of a semi-group S is said to be an ideal of S if
SI'\U IS C I. The intersection K of all ideals of S, if not empty, is a minimal
ideal of .S called the kernel of S. K is completely simple if it is a union of groups
and has no proper ideals. For further information concerning completely
simple semi-groups see (3).

1.2. Let S be a semi-group with kernel K. An ideal I of S is said to be K-
potent if some power I" lies in K. The radical R(S) of S is the union of all
K-potent ideals of .S.

1.3. We shall assume that the reader is familiar with the basic theory of
finite-dimensional algebras as expounded for example in (1). However, we
wish to emphasize that by ideal of A where A is an algebra we shall mean as
usual a subspace of the underlying vector space which is at the same time an
“ideal’” (in the sense of 1.1) of the multiplicative semi-group of A. On the other
hand, when we speak of an ideal of a translate of 4 (see 1.5) we imply no
more than the definition of 1.1.
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It is easily shown that if S is the multiplicative semi-group of a finite-
dimensional algebra, then R(S) as defined in 1.2 coincides with the usual

definition of the radical of an algebra. We shall accordingly denote the radical
of an algebra 4 by R(A4).

1.4. Anidempotent e (possibly zero) in an algebra A4 is said to be a principal
idempotent if u* = u and ue = eu = 0 together imply u = 0.

1.5. A semi-group S will be said to be a translate of an algebra 4 over F
if there exists an algebra B over F and an epimorphism ¢: B — F such that

= l¢~tand 4 = 0¢~1. Alternatively, one may see that a semi-group S is a
translate of A if there exists an algebra B containing 4 as an ideal such that
S =4 4+ xforsomex € B,x ¢ A;themultiplication in Sis, of course, assumed
to coincide with that in B Note that if S= 4 + x, then S = 4 4+ 5 for
any s € S.

1.6. We shall need the following facts from (2) concerning a translate .S of
a finite-dimensional algebra A over a field F:

(1) S has a completely simple kernel K.

(if) Some power of every element of S lies in a subgroup of S.

Gii) If ar,...,a, € F are such that )} a; =1, then Y a;s; € S for any
S1, ..., 8 €8S

(iv) The kernel K of S is not in general a linear variety (i.e., a translate of
a subspace of 4). However, if we let 4/ (K) be the smallest linear variety con-
taining K, then M (K) is a K-potent ideal.

(v) Let T be a faithful representation of the algebra B as an algebra of
matrices. Then all elements of I'(K) have the same rank k. Moreover, an
element s of S lies in K if and only if the rank of I'(s) is k.

(vi) Let ¢2 = ¢ € K. Then (2, 1.7, 1.8, and 2.4) imply that eM(K)e — ¢
and (1 — e)M(K)(1 — e) are both nilpotent subalgebras of A = S — ¢, where
by (1 — e)m(1 — ¢) we mean m — em — me + eme.

2. The radical of a translate of an algebra.

2.0. LEmMA. Let S be a translate of a finite-dimensional algebra A, and let K
be the kernel of S. Then, if e = ¢ € K,

M(K) — MK) = M(K) — e
is a nilpotent ideal of A.

Proof. Since M(K) is a linear variety (see 1.6 (iv)), it is clear that
M(K) —x = M(K) — yfor any x, y € M(K). Thus

M(K) — e = M(K) — M(K)
fore =e? ¢ K C M(K).
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To see that M(K) — e is a left ideal, note that
AMK) —e) = (S —e)(M(K) —e) = SM(K) — eM(K) — M(K)e
+eC MK) — MK) — M(K) +e.
Now since M(K) is a linear variety, M(K) + M(K) — M(K) = M(K),
whence
AMK) —e)Ce— M(K) = M(K) — e.
Similarly, M (K) — e is a right ideal of 4.
Now let M = M(K) — e. It is easily seen that
1) M=eMe+eM(1 —e)+ (1 —e)Me+ (1 —e)M(1 —e)
is a direct sum decomposition of M as a vector space. Since M (K) is an ideal
of S as well as a linear variety, each summand of (1) is indeed contained in M.
By 1.6 (vi), eMe = eM(K)e — ¢ and
A—e)MA —-e)=010—e)MK)A —e)
are both nilpotent. Since (1 — ¢)M (1 — e) is nilpotent, it follows that
M1 — e) and (1 — €)M are both nilpotent ideals of M and therefore con-
tained in the radical R(M) of M. Now clearly the last three summands of (1)
are contained in M (1 —e) + (1 — ¢)M and hence lie in the radical. This
together with the fact that eMe is nilpotent implies that R(M) = M, i.e.,
M is nilpotent.

2.1. LEMMA. Let S, K, and A be as in 2.0. If I is a K-potent ideal of S, then
I —x C R(A4) forall x € I.

Proof. Since K is the minimal ideal of S, we have KX € I. We may assume
without loss of generality that I = M(I), the smallest linear variety containing
I. For since

M) = {Xa;si: Xa; = lands; € I},

it is clear that M ()" € M(K) if I" € K; then since M(K) is K-potent (1.6
(iv)), it follows that M (1) is also K-potent.
Since K & I, we have M(K) € M(I) = I. Let e = ¢* € K; then

I—e=1—-x
for anv x £ I since [ is a linear variety. Now
Al—e)=S—e)(I—eCSI—el—Ie+eC (I —I—-1 +e
=e—([I+I1-1)Ce—IT=1—ce.

Hence A(I — e¢) © (I —e) and I — e is a left ideal of 4. Similarly, one may
show that I — e is a right ideal.

Now to complete the proof we need only show that / — e is nilpotent. We
first claim that

I—-e"=1"— M(K) forn =1,2,...,
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This is obvious for # = 1 since ¢ € M (K). Suppose our claim holds for n = k;
then

I —eftl =L —e{ —e)F
C (I —-eI"— M(K))
C ' —el* + eM(K) — IM(K)
C '+ — (M(K) — M(K) + M(K))
C "1 — M(K).
Now if I" C K, then
I—e"CI"— MK)CK—MK)CS M(K) — M(K) = M(K) —e
which by 2.0 is nilpotent. Consequently, I — e must also be nilpotent.
2.2. COROLLARY. Let S, 4, and K be as in 2.0. Then R(S) & R(4) + e for
anye = e* € K.

Proof. By definition, R(S) is the union of all K-potent ideals I of S. By the
preceding lemma, I © R(A4) + e for any e in I; and since K C I, we may
choose ¢ to be any idempotent in K. Hence R(S) C R(4) + e.

2.3. LEMMA. Let S, 4, and K be as in 2.0. Then R(A) + e is a K-potent ideal
of S for any idempotent e in K.
Proof. Since S = 4 + e,
(R(A4) + S = (R(A) +e)(4 + ¢
C R(A)e+ed + R(A)A + e
C de+ed + R(A) +e.
Hence, to show that R(A) 4+ e is an ideal of S, it suffices to show that
Ade\Jed C R(A). This follows immediately from 2.0, since
Ae + ¢ = (4 + e)e = Se C K,
implying that
1eC K —eC M(K) — e C R(A).

Similarly, ed € K — e & R(4).

It remains to show that R(4) + e is K-potent. To do this, first we establish
that
) M(K)A U AM(K) C M(K) — e.
If x € M(K), then x — e € M(K) — ¢, which by 2.0 is an ideal of 1. Let
a € A. Then xa — ea = (x — e)a € M(K) — e, and since by the first para-
graph of this proof eA C M(K) — e, we obtain that xa € M (K) — ¢. Thus
x4 © M(K) — e. Similarly .1x © M(K) — ¢, and (2) holds.
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We now use (2) to obtain
3) (R(A4) +e)" C RA)" + M(K), forn =1,2,....
Suppose this holds for #, then
(R(4) + )" = (R(4) + ¢)(R(A)" + M(K))

S RA)" + eR(A)" + R(A)M(K) + eM(K)
S RA)"™ + M(K)A + AM(K) + M(K)
S R(A)"™ + M(K) — e + M(K)
C RA)"* 4+ M(K).

Thus (3) holds, and if # exceeds the index of nilpotency of R(4), we obtain
(R(4) + )" € M(K). Now since M (K) is K-potent, R(4) + e must be also.

2.4. THEOREM. Let S be a translate of a finite-dimensional algebra A, and let
e be an idempotent in the kernel of S. Then

R(S) = R(4) +e.

Proof. By 2.3, R(4) + e is a K-potent ideal of S and is therefore contained
in R(S). On the other hand, we know from 2.2 that R(S) C R(4) + e.

2.5. COROLLARY. If S s as above, then R(S) is a K-potent ideal of S and hence
the unique maximal K-potent ideal of S.

2.6. COROLLARY. IfSand A are as above, and if R(S) = S, then A is nilpotent.

3. Weakly semi-simple algebras.

3.0. If a translate S of the algebra A4 has a multiplicative zero, i.e., if
K = |z}, then s > s — 2 is an isomorphism from .S onto the multiplicative
semi-group of A. Hence the only translates of S that are of interest are those
for which K is non-trivial. Corollary 2.6 above deals with the case R(S) = S.
In this section, we single out for consideration those algebras that have trans-
lates S whose radical and kernel coincide. To this end, we shall say that a
semi-group S with kernel K is K-semi-simple if R(S) = K; and that an algebra
A is weakly semi-simple if it possesses a K-semi-simple translate.

3.1. LEMMA. Let S be a K-semi-simple translate of a finite-dimensional algebra.
A. Let K be the kernel of S and e an idempotent in K. Then
(i) M(K) = K
and
(i1) x = ex + xe — exe for all x € K.

Proof. Since by 1.6 (iv) M(K) is K-potent, we have M (K) C R(S) = K;
whence K = M(K).
Let T be a faithful matrix representation of a super-algebra of 4 which
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contains.S as a translate of 4, and let e be an idempotent in K. Now by choosing
a suitable basis for the representation space, we may assume that

=[]

where I, is the £ X k identity matrix. Now let x € K. Since K = M (K), the
element y = x — ex — xe + exe + e lies in K. Thus

ro) = [ o€ v

where C is some (# — k) X (n — k) matrix; here #» denotes the degree of the
representation. By 1.6 (v), since y and e both lie in K, the rank of I'(e) must
equal the rank of I'(y). This implies that C = 0. Hence I'(y) = I'(e). Since
T is faithful, this shows that ¥ = e. This clearly implies (ii).

3.2. LEMMA. Let S, 4, K, and e be as 1n 3.1. Then
R(A) = ed + Ae + ede = eA + Ae.

Proof. We know from the first paragraph of the proof of 2.3 that e4 and 4e

are always contained in R(4). It follows that
ede C eR(4) Ced C R(A).
Hence ede + ed + Ae € R(A).

Now let » € R(A4). Since S is K-semi-simple, K = R(S); hence 2.4 implies
that R(4) = K — e for some idempotent ¢ in K. Thus » = x — ¢ for x € K.
By 3.1 (ii), x = ex + xe — exe, and so

r=ex+xe —exe —e=ce(x —e) + (x —e)e — e(lx — ee,
which is an element of e4d + Ae + ede since x — e € S — e = A. This shows

that R(4) = eA + Ae + ede. Since ed is contained in 4, ede C Ade and
therefore de 4+ ed = Ae + ed + eAe.

3.3. LEMMA. Let A be a subalgebra of a finite-dimensional algebra B, and let
e be an idempotent of B such that R(A) = eA + Ae. Then there exists a principal
idempotent f in A such that fAf is semi-simple.

Proof. First, since ed \U 4e € R(A), we have
ede T eR(4A) Ced C R(A).
ed + Ade + ede. It follows that if we let
1 —eAQ —¢€) = {a —ea —ae + eae:a € A},

Whence R(A4)

/40

we obtain that 4 = R(4) 4+ A, is a direct sum as vector spaces, i.e., 4¢ is
complementary to the radical of 4. It follows that 4, must be semi-simple.
Since 4, is semi-simple, it contains an identity, say f. Now
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since f € (1 — e)4 (1 — e) implies fe = ¢f = 0. To see that f is principal in 4,
let g2 = g € 4 such that fg = g¢f = 0. Then g = r 4+ ¢ where a € 4y and
r € R(4), whence 0 = fgf = faf = a. This implies that g = r, and therefore
¢ = 0 since R(A4) contains no non-zero idempotents.

3.4. LEMMA. Let A be a finite-dimensional algebra such that A = fAf + R(A)
is a direct sum as vector spaces for some idempotent f in A. Then every principal
idempotent in A s of the form f + n where n € R(A4) and n = nf + fn + nfn.

Proof. Let h be a principal idempotent in 4. Then & = g + n where g € fAf
and n € R(A4). The idempotency of % easily implies that g2 = g and
gn + ng + n? = n.

Let & = f — g. Since g € fAf, we have k? = k. Our aim is to show that £ = 0.
Since % is a principal idempotent, it suffices to show that 2% = kk = 0. From

kh=(f—g(g+mn =(F—gn=fn—gn
and hk = (g+n)(f—g =n(f—2g =nf—ng

it is clear that we need only show that fn = gr and nf = ng. To do this, we
first note that

fn = f(gn + ng + n*) = gn + fng + fn* = gn + fn?

since fng = fngf € fAf M R(4) = (0). Similarly, nf = ng 4+ n*. We now
show that fn? = n*f = 0. Since frng and fr?g lie in fAf M R(4) = (0), we have
fn? = fn(gn + ng + n?) = fn® implying that fn? = fr® = ... =fmF =0 if k
exceeds the index of nilpotency of #. A similar argument shows that »?% = 0.
We have therefore established that g = f.

From the above paragraph we know that n = nf 4 fn 4+ #? and that
n*f = fn? = 0. Now

n(nf + fn + n? = ¥ + nfn + 0 = nfn + nd
since 7% = 0. Thus
(4) n? = nfn 4 nd.
This implies that

n® = n(n?) = n(nfn + n®) = n¥n 4+ n* = n,

since n% = 0. Now since 7 is nilpotent, #® = n* implies that #® = 0. From
(4) we now conclude that n? = nfn; whence

n = nf + fn + n* = nf + fn + nfn.

3.5. LemMA. If 4 and f are as in 3.4, and h is a principal idempotent of A4,
then hAk is semi-simple.
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Proof. By 3.4, we know that 2 = f + n where u € R(A). It is well known
(1, p. 25) that R(hAh) = hR(A)k. Therefore to show that h4k is semi-simple,
it suffices to show that hR(4)k = 0. Let hah € hR(A)h. Then

hah = (f + n)a(f + n) = fan + naf + nan,
since faf € fAf M R(4) = (0). It remains to show that fan = naf = nan = 0.
From 3.4 we know that n = nf + fn + nfn, whence
fan = fa(nf + fn + nfn) = fanf + fafn + fanfn = 0
since fR(A)f = 0. Similarly, naf and nan = 0.

3.6. LEMMA. Let A be a finite-dimensional algebra over F which contains a
principal idempotent f such that fAf is semi-simple. Then A is weakly semi-simple.

Proof. Let B be the algebra obtained by adjoining an identity to 4 in the
usual way. Then A is an ideal of B and B/A is isomorphic to F; so, clearly,
S = 4 + 1is a translate of A. Let K denote the kernel of S. We must show
that R(S) = K. By 2.4 we have R(S) = R(4) + e for any idempotent e in
K. Thus it suffices to show that R(4) + ¢ = K.

Now since f is a principal idempotent, it follows from (1, Lemma 9, p. 26)
that

RA) = QA -NAf+fAQ =) + A —HAQ — [),
and 4 = fAf + R(A4) is a vector-space direct sum. Whence
RA)S A —-HA+AQ = f);
furthermore
A-=N4=QqQ-=H{FAf+ R(4)) = QA — ))R(4).
Similarly, 4 (1 — f) = R(4)(1 — f); consequently,
R(4) = 1 = HRMA) + RA)A — /).
Now R(A4) + 1 — f) = (R(4) — f) + 1 is a left ideal of S = 4 + 1, for
A4+1DRA) + A =/) SARA) + RA) +4AQ =)+ 1 =)
SR+ A -5

since AR(A) € R(4) and 4(1 — f) = R(A)(1 — f) € R(A) as shown above.
Similarly, R(4) + (1 — f) is a right ideal of S and therefore an ideal of S.
Let g =1 — f. We now show that R(4) + g has no proper ideals. First
note that G = g(R(4) + g)g = gR(A)g + gisagroup;forify = gng + g € G,
then yz = 2y = g where
z=g(—m+n*—...—nhg +g,

for any 7 exceeding the index of nilpotency of n. Now if [ is an ideal of
R(A) + g, gIg T I N G. Since G is a group, G must be contained in I. In
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particular, g € 1. Now let y be any element of R(4) + g. Let gyg be the inverse
of gyg in the group G, and set z = ygg¥ygy. We now have gz = gy, z¢g = vg,
and gzg = gyg. By the above, we know that R(A)g + gR(A) = R(4); it
follows that w = gw 4+ wg — gwg for any w in R(4) + g. This implies that
y = 2. Now from z = yggygy and g € I, we obtain y = z € I. This shows that
I =R(4) + ¢

Since R(A4) + g is an ideal, it follows immediately from the preceding
paragraph that K = R(4) + g. Clearly, then, R(4) + g = R(A4) + e for any
idempotent e of K.

3.8. THEOREM. If 4 is a finite-dimensional algebra, the following are equivalent:
(1) A4 1s weakly semi-simple.
(1) There exists a principal idempotent f in A such that fAf is semi-simple.
(iii) For all principal idempotents f in A, fAf is semi-simple.
(iv) A = fAf 4+ R(A4) s a vector-space divect sum for some idempotent f in A.
Moreover, if A is weakly semi-simple, then every subalgebra of A that comple-
ments the radical is of the form fAf for some principal idempotent f in A.

Proof. The equivalence of (i), (i), (iii), and (iv) follow immediately from
the foregoing lemmas together with the fact that (ii) is equivalent to (iv),
which is a direct result of the Peirce decomposition of 4 with respect to the
principal idempotent f; cf. (1, pp. 25 ff.).

To establish the last sentence of the theorem, assume that 4 is weakly
semi-simple and that A = D + R(A4) is a vector-space direct sum for some
subalgebra D. D must be semi-simple and therefore has an identity, say f.
Then D C fAf trivially. To show the converse we need only show f to be
principal, for then by (1, §9, p. 25) we have dim (fAf) = dim D.Letg = g2 € 4
such that gf = fg = 0. Now g =d 4+ » when d € D and r € R(4). Hence

0=fg=fd+7r=d+Jr

implying d = 0. Therefore g = » € R(A4); since g is idempotent and 7 is
nilpotent, g = 0.

3.9. COROLLARY. If a finite-dimensional algebra A is a direct sum of a semi-
simple algebra and a nilpotent algebra, then A is weakly semi-simple.

After R. M. Thrall (5), we shall say that an algebra 4 is of class Q if it
possesses an idempotent e satisfying
(i) eAe is semi-simple,
(i1) ded = A4,
and (iii) 4 = ede ® R(A4) (as vector spaces).

We observe that (iii) always implies (i) and that they are equivalent if e
is a principal idempotent in (i). In any case, it is clear from the above theorem
that (i) and (iii) are equivalent to weak semi-simplicity. This fact enables us
to characterize without idempotents the algebras of class Q:
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3.9. THEOREM. A weakly semi-simple finite-dimensional algebra A is of class
Q if and only if A* = A and R(4)® = 0.

Proof. The necessity of these conditions follows immediately from (5,
Corollary 1) and Condition (ii). To show their sufficiency, let e be a principal
idempotent such that 4 = ede + R(A). Then

A = A? = A% = (ede + R(A))* C Aded + R(A)® = Aed;
whence 4 = Aed.
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