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Probabilistic Reasoning in Expert Systems Reconstructed

in Probability Semantics

Roger M. Cooke

Delft University of Technology

Probabilistic reasoning is traditionally represented by inferences
of the following form (also called probabilistic explanations):

1) P(A | B) - q

where A and B are one-place predicates in a first order language,
P(A | B) is the conditional probability of observing A among individuals
having property B, and q is close to one.

This argument is not logically valid, as the premises may be true
while the conclusion is false. Moreover, as it stands, the premises do
not even make the conclusion plausible. It may be the case that 90% of
the population dies before the age of 85, and that individual j is a
member of the population, but this in itself does not make it plausible
that individual j will die before the age of 85. There may be all sorts
of other statistically relevant information which decisively influence
j's probability of dying before the age of 85.

The problem of representing valid probabilistic reasoning is
traditionally tied up with the problem of the reference class: to which
population should j be assigned in order to determine the probability
(in the sense of limiting relative frequency) that j has the property A?
For example, we know that age, sex and smoking habits are statistically
relevant for longevity. If j is a 40 year old male non-smoker, can we
determine "the" probability of j dying before 85 by observing the
relative frequency of death before 85 in the population of male non-
smokers of age 40?

If we have some method to determine "the best" reference class for
"estimating" P(A(j)), then we may also use this method to identify valid
probabilistic inferences. We accept as valid schemes of the form (1)
only when property B defines the "best" reference class, and when q is
close to one. In this way we ensure that the conclusion has high
probability. The same method could be used to construct "probabilistic
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inference engines" to drive expert systems. Indeed, in trying to
capture the reasoning of an expert in a specific domain, the designer of
an expert system is immediately confronted with the problem of
representing valid probabilistic inference.

Hempel's requirement of maximal specificity (1968) is representative
of attempts to define valid probabilistic reasoning via a solution to
the problem of the reference class. His solution involves constraints
on the state of knowledge at the time an inference is made. Roughly,
the requirement of maximal specificity says that P(A | B) must equal
p(A | B') whenever B' is a "maximally specific statistical predicate"
such that B'(j) holds.

This type of solution is unsatisfactory for three reasons.
a) A valid probabilistic inference of the form (1) may become invalid
when new statistical knowledge is acquired. The new knowledge may even
involve frequencies in reference classes to which j does not belong
(Cooke 1981).
b) Valid probabilistic inferences should be valid theorems in
probability, regardless of how probability is interpreted. If (1) were
valid in Hempel's sense, then it is certainly not a theorem that
P(A(j)) - q; indeed, it is not even clear how P(A(j)) should be defined.
In a frequency interpretation, P(A(j)) is either undefined, or defined
through a valid argument of the form (1); albeit that validity may not
be preserved under conservative increases of knowledge. If probability
is interpreted subjectively, then P(A(j)) can be defined in a variety of
ways, but it need nave no relation to the number q in a valid inference
of the form (1).
c) Probabilistic reasoning in expert systems provides us with inferences
which cannot be analysed in terms of the scheme (1). These inferences
involve not only a "probability conditional" as a major premise but the
minor premise may be probabilistic as well. In other words, instead of
the premise B(j) we might have the premise "P(B(j)) - r".

The thrust of this paper is to de-couple the problem of valid
probabilistic inference from the problem of the reference class, and to
interpret valid probabilistic inference as valid theorems in
probability. The probability semantics of Los (1963) is used for this
purpose. The inference schemes in this solution differ somewhat from
(1). Probability will be assigned to sentences as well as one-place
predicates. Moreover, several "probability conditionals" can be
distinguished in Los' framework, and it turns out that the ordinary
conditional probability statements for one-place predicates are just not
the right conditionals for probabilistic inference. With this more
powerful formalism it is also possible to analyse certain aspects of
probabilistic reasoning In expert systems.

Section 1 reviews Los' probability semantics in a suitably
simplified form. . Section 2 applies this to the problem of
reconstructing probabilistic inference. Section 3 reviews the relevant
aspects of probabilistic reasoning in the expert system MYCIN, and
Section 4 uses the foregoing analysis to reconstruct this reasoning in
the framework of probability semantics. A final section offers
conclusions.
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1. Los' Probability Semantics

In this section we give a brief account of Los' probability
semantics. For our purposes it suffices to restrict ourselves to very
simple first order languages and to one-place predicates.

A first order language L is said to be of finite domain with
cardinality D if, in addition to the usual axioms of the first order
predicate logic, L contains axioms requiring the existence of exactly D
distinct individuals each having distinct names in L. Let M(L) denote
the set of models of L, (we assume that M(L) is a set), (P(M(L)) the
powerset of M(L). Let S(L) denote the set of sentences of L, and let A
be a one-place predicate in L. Given a model M e M(L), we define:

PM(A) :- |A
M|/D,

where |AM| is the cardinality of the interpretation AM of A in M. %( A )
is the relative frequency with which we would observe the property A in
M in a long sequence of random samples (with replacement) from the
domain of M.

Let P: <?(M(L)) -> [0,1] be a probability measure on <P(M(L)). For
Q e S(L) we define:

P(Q) :- P(M e M(L) | M |- Q)

For any one-place predicate A in L, we define:

P(A) :- I M £ M ( L ) PM(A)P(M)

We shall call P a probability model for L. It is natural to think of PM

as an objective relative frequency within M, and to think of P as a
subjective probability over the set M(L). (Of course, we could replace
PJJ with an arbitrary probability over the subsets of the domain of M,
however, the above is natural for the applications in Section 4.) The
conditional probability P(A | B) is evaluated by the quotient
P(A and B)/P(B). Note that

P < A I B> 'EMeM(L) P M< A I B>P<M>-
If BM - 0, for some M with positive probability, then the right hand
side will not be meaningful, whereas the left hand side may well be
meaningful. If Q, R e S(L), then of course P(Q | R) - P(Q and R)/P(R).

2. Probabilistic Reasoning

From now on we assume that A and B are one-place predicates in a
first order language L of finite domain with cardinality D. Los's
probability semantics enable us to isolate at least four distinct
semantic probability conditionals. Consider the following statements in
the metalanguage:

i) P(A | B) - q i
il) Vx P(A(x) and B(x)) - q,P(B(x))
iii) P(Vx(B(x) •+ A(x))) - q3

iv) Vx P(B(x) - A(x)) - qh
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In (ii) and (iv) the operator "Vx" does not range over elements in a
domain, but rather ranges over the individual names in L. The
restrictions on L are intended to make this type of quantification a
useful operation.

All of these statements are semantical, that is, they are not
sentences in the formal language L, but are statements about a
particular probability model P for L. Nonetheless, any of them could in
principle be used in probabilistic reasoning by someone whose belief
state corresponded with P. Since conditional probability is not an
operation on sentences in the formal language (conditionalization cannot
be nested, whereas the material implication can be), it is hardly
surprising that probabilistic reasoning is inherently "semantical".

(ii) may not look like a probabilistic conditional at first sight,
but it is equivalent to the statement "for all names x, if P(B(x)) * 0,
then P(A(x) | B(x)) - q2".

Assuming that (i) - (iv) hold, the reader can easily verify the
following trivial relations. If one of the q's - 1, then they all equal
one. qi - 0 is equivalent with (only) q~ - 0. If q^ - 0, then in every
model with positive probability, every element has the property B and no
element has the property A. (ii) may hold for some q while (iv) does
not hold for any q . Indeed, let j be such that P(B(j)) - 0. Then
P(B(j) -• A(j)) - 1, so (iv) can hold only if (iii) holds with q3 - 1.
However, (ii) may hold when q3 * 1 and P(B(j)) - 0.

Since if P(B(j)) - 0, for some j, (iv) can only hold with q4 - 1,
(iv) is not very interesting for probabilistic reasoning. (iii) is also
not very interesting, as B can "almost" be a subset of A in every model
while (iii) holds with q3 - 0. (i) and (ii) are the only interesting
candidates for the role of major premise in probabilistic arguments.

It is easy to verify that (i) may hold while (ii) fails for every
qy- However, if (ii) holds, then the following Fubini theorem shows
that q, - P(A | B), if this latter quantity is defined. We introduce
the following notation:

P(A || B) -(>) q if for all names x P(A(x) and B(x)) -(>) qP(B(x)),
and P(B) * 0.

Theorem 1: If P(A || B) -(>) q, then P(A | B) -(>) q.

Proof: Put XB.(K) - 1 if M - B(j) and - 0 otherwise. With abuse of
notation, let t) denote the set of names of L and the cardinality of this
set.

- P(B)D.
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The definition of P(A || B) implies

X I and

Using the above, the theorem now follows. ///

Note that finiteness of D is used in reversing the order of summation in
the above proof. If D is not finite a uniformity condition would be
required. Note also that the theorem would not hold if P., were an
arbitrary probability measure on the domain of H.

Remark: If P(A II B) -(>) q and P(B(j)) -(>) r, then P(A(j)) > qr.
equality holds in the conditions and if for all M with positive
probability AM BM, then P(A(j)) - qr.

If

Proof: P(A(j)) > P(A(j))
equality holding if AM BM

and B(j)) - P(A(j) | B(j))P(B(j)) , with
for all M with positive probability.

Theorem 1 shows that P(A || B) > q is a special case of P(A | B) > q.
Moreover, P(A || B) - q forces the predicate B to behave a bit like a
maximally specific predicate in Hempel's sense. Indeed, if P(B(j)) r* 0,
then restricting the predicate to the individual j does not change the
conditional probability, as P(A | B) - P(A(j) | B(j)). However, there
may be a predicate B' such that P(Vx(B'(x) -> B(x))) - 1, but
P(A || B') - r does not hold for any r (see figure 1).

Figure -1: Let P ^ ) = P(M2) - P(M3) - 1/3, and let B
ni - Mi 1 < i < 3.

Let AMi be represented by the figures inside M. 1 < i < 3. Then
P(A || B) = 2/3. Let B' - B except that B'M3 - 0. P(A || B') = r does
not hold for any r.

Consider now the inference:

2) P(A || B) > q
> r
> rq

The remark to theorem 1 implies that the conclusion of (2) is true
whenever the premises are true. Hence, if rq is close to one we may
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consider (2) as a valid probabilistic explanation for the explanandum
A(j). The premises do by themselves make the explanandum plausible.
The following theorem shows that we cannot replace the major premise in
(2) by the ordinary conditional probability P(A | B).

Theorem 2: Let 0 < q, r < 1 be rational numbers. Then there is a
language L of finite domain with cardinality D with one-place predicates
A and B and with probability model P such that P(A B) - q, P(B(j)) - r
and P(A(j)) - 0, for some individual j.

Proof: First choose positive integers a and b such that

3) q - (1 - r)/((ra)/b + (1 - r)),

and choose D such that D > (max a,b)+l. Choose M, N e M(L) satisfying:

|BM| - a; |BN| - b; j M < BM; j N / BN; AM - 0; AN - BN.

Define P(M) - r, P(N) - 1 - r. One easily verifies:

- r
P(B) - ra/D + (1 - r)b/D
P(A and B) - (1 - r)b/D

Using (3) it is easy to check that:

P(A | B) - q, and P(A(j)) - 0. ///

3. Probabilistic Inference in MYCIN

The argument (2) bears a formal resemblance to the probabilistic
inference schemes used in the so-called "production rule" expert
systems. The best known system of this type is MYCIN (Buchanan and
Shortliffe 1975) developed at the Stanford Heuristic Programming Project
in collaboration with the Infectious Disease Group at the Stanford
Medical School. MYCIN was designed to assist physicians in the
diagnosis and treatment of certain kinds of bacterial infections.

A full discussion of MYCIN lies beyond the scope of this paper. A
good summary can be found in O'Shea and Eisenstadt (1984), and a full
discussion can be found in Buchanan and Shortliffe (1984).

The most distinctive feature of MYCIN's probabilistic inference
schemes is its use of "certainty factors". Shortliffe and Buchanan
define the certainty factor for hypothesis h given evidence e, CF(h | e)
as follows:

4) CF(h | e) - 1 if P(h) - 1
- -l.if P(h) - 0
- (P(h
- (P(h

if P(h | e) > P(h)
e)-P(h))/P(h) if P(h | e) < P(h).

The following is an example of an inference rule, or production rule
from MYCIN:
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If: (1) the stain of the organism is gram positive, and
(2) the morphology of the organism is coccus, and
(3) the growth conformation of the organism is chains

Then: there is suggestive evidence (0.7) that the identity of the
organism is streptococcus.

The numerical value for the certainty factor 0.7 is elicited from
experts with the prompt: "On a scale from 1 to 10, how much certainty
do you affix to this conclusion?" (Buchanan and Shortliffe 1975, p.
357). Buchanan and Shortliffe claim that the CF function captures the
way experts reason from evidence. They claim that evidence which
strengthens belief in hypothesis h does not necessarily weaken belief in
not-h. They note, however, that at the beginning of a consultation P(h)
is small for all h. In this case CF(h | e) may be regarded as an
"approximation" to P(h | e), in their view. To be used in a rule, a
certainty factor must be at least 0.2.

MYCIN also provides a mechanism for combining the certainty factors
for a given conclusion h when this can be derived from different rules,
with different evidential premises. Suppose we dispose over evidence e
and e', and we have rules with certainty factors CF(h | e) and
CF(h | e'). As we cannot in general calculate P(h | e and e') from
P(h | e) and P(h | e ) Buchanan and Shortliffe introduce the following
"approximation technique (we restrict ourselves to the case where
CF(h | e) > 0, and CF(h | e') > 0). The combined certainty factor
CCF(h | e and e') is defined as:

5) CCF(h | e and e'):-CF(h | e) + CF(h | e') - CF(h | e)CF(h | e').

Adams (1976) showed that this rule and a similar rule for negative
certainty factors are consistent with the probabilistic interpretation
given previously (i.e., CCF(h | e and e') - CF(h | e and e')) if e and
e' are independent in h, in not-h and in the population as a whole.

Certainty factors are also attributed to singular statements, such
as "the stain of the organism is gram positive". These factors may be
estimated directly or derived from other rules. Rules of combination
are also provided for deriving a certainty factor for the premise of a
rule. Letting g and h denote clauses to which certainty factors have
previously been assigned, then:

6) CF(g and h) - min(CF(g), CF(h))
CF(g or h) - max{CF(g), CF(h)}.

Letting e denote the premise of a rule, the above combination rules
enable us to calculate CF(e) from the certainty factors of the clauses
in e. The certainty factor attaching to the conclusion of the rule when
the premise is known with certainty factor CF(e) is taken to be the
product of the certainty factor of the rule, CF(h | e) and CF(e) .

In 1977 the MYCIN inference mechanism was overhauled (see Buchanan
and Shortliffe 1984, p. 216). The only significant change concerning
the rules discussed here involved the combination rule (5), but as this
will not play a large role in the discussion of the next section we
shall not pursue these developments.
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MYCIN may be considered a very successful expert system, at least
when "success" is defined in terms of passing a Turing test. Yu et al.
(1979) present two evaluations by expert judges of MYCIN's treatment
recommendations concerning respectively 15 cases of bacteraemia and 10
cases of meningitis. MYCIN's therapy recommendations were judged
"unacceptable" in 27% and 35% of these cases respectively. The latter
study also involved 8 recommendations by clinicians of varying seniority
in a blind experiment. All eight human experts had a higher percentage
of their recommendations judged "unacceptable" than MYCIN.

Finally, it should be noted that some of the people who have worked
on MYCIN have distanced themselves from the probability interpretation
of the certainty factors given above. Van Melle et al. (1981) claim
that certainty factors are to be interpreted as "single numbers
combining subjective probabilities and utilities. As such they
represent the importance of the fact." (Cited in Spiegelhalter and
Knill-Jones (1984, p. 41)). Gordon and Shortliffe (1984) have recently
argued that the Dempster-Shafer theory of belief functions may yield a
better representation of probabilistic reasoning than the theory
presented here.

4. Reconstruction of MYCIN's Inference Engine

In this section we consider the problem of giving a formal
representation of MYCIN's probabilistic reasoning. Such reasoning is
almost always concerned with establishing the identity of an organism in
a specific culture taken from a patient. It is natural then to let an
individual name refer to an organism in a specific culture. It is also
natural to consider a MYCIN rule as some sort of probabilistic
conditional, and to consider a statement asserting the premise of a rule
as a probabilistic singular statement. It is then apparent that the
traditional formalism of probabilistic explanation as expressed in (1)
is not appropriate, and the probabilistic semantics developed in Section
(2) would seem to provide a natural formal setting for representing this
type of reasoning.

The goal of this section is twofold. First we wish to determine
whether a valid probabilistic inference scheme exists for the type of
situation in which MYCIN operates. Second, we wish to determine whether
the MYCIN scheme itself has a valid interpretation in terms of
probability semantics. We content ourselves with an Informal definition
of validity for probabilistic inference schemes: An inference scheme
will be termed probabilistically valid if its conclusion holds in every
probability model in which its premises hold.

The remark to theorem 1 shows that the scheme:

2) P(A || B) > q

> qr

is probabilistically valid. In order to determine whether this scheme
is applicable, we must verify that the probabilistic conditional
appearing as the major premise in (2) is appropriate, and we must show
how the probability of B(j)'can be bounded from below.
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Given that the clauses in the premise of a MYCIN rule concern an
individual organism, named j, we may interpret B(j) as the appropriate
Boolean combination of these clauses. With the prompt:

"What is the greatest lower bound for the probability that A(x),
given that B(x)?"

we could solicit a value from experts which could be filled in for "q"
in (2).

We must also show how P(B(j)) can be bounded from below. The min
function in (6) won't work, as min (P(B(j)), P(B'(j))} is an upper bound
for P(B(j) and B'(j)). However, the following will work:

7) P(B(j) and B'(j)) £ P(B(j)) + P(B'(j)) - 1.
P(B(j) or B'(j)) S: max{P(B(j)),
P(not-B(j)) - 1

Whenever the clauses in B(j) can be inferred from other rules, (7) will
allow a lower bound to be calculated for P(B(j)), which can then be used
in (2).

These lower bounds are crude, which of course is appropriate when no
further information on the dependence of the clauses is available. Any
serious implementation of this mechanism in an expert system would
involve "teaching" the system to extract global estimates of
dependencies from its data base (or alternatively, to use its data to
update default values of dependency). Such estimates would allow the
bounds in (7) to be improved considerably. For example, if it were
known that the clauses B(j) and B'(j) were not negatively correlated,
then we could underestimate their conjunction via:

P(B(j) and B'(j)) £ P(B(j ))P(B'(j )) .

A strategy for choosing rules would be. Look for rules with
premises whose probability can be estimated efficiently from below.

The above scheme would seem to be perfectly suitable to the MYCIN
type of situation. We must now consider what happens when a conclusion
can be derived via two different inference rules. Suppose, in addition
to the above rule, we also have:

P(A || C) 2= s
( t

P(A(j)) 2: st

As noted in Section 2, we cannot say anything in general about
P(A || B and C). The only "rule of combination" which can be applied for
these two rules is:

P(A(j)) > max(rq,st).

We conclude that the above constitutes a valid inference procedure which
is applicable to the MYCIN type situation.
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We now turn to the question whether MYCIN's own inference scheme can
be reconstructed as a valid inference scheme in probability semantics.
In other words, does the MYCIN inference scheme lead to probabili-
stically valid conclusions in every probability model? In order to
carry out this analysis it is necessary to introduce some constraint on
the relation between certainty factors and probabilities. The very name
"certainty factor" suggests a monotonic relation to probabilities.
Indeed, if hypothesis h is given a higher certainty factor than
hypothesis h', users of MYCIN will undoubtably infer that h is more
likely to be true than h'. However, the negative results which we reach
below can be derived under much weaker assumption. It suffices to
assume that there is some function f: [0,1] -• [-1,1], taking
probabilities into certainty factors and satisfying:

f"X(l) - 1; f'^-l) - 0; and

f is the same for all probability models.

Under these two very weak assumptions we show that MYCIN's scheme cannot
be probabilistically valid when the conditional probabilities in (4) are
interpreted either as P(A | B) or P(A || B). We consider each
possibility in turn.

Using P(A | B) in definition (4) and assuming P(A | B) > P(A), we
can represent a MYCIN inference as:

9) P(A | B) - q(l - P(A)) + P(A)

P(A(j)) /f'^qfCr)); 0.2 < q, f(r)

Here, q is the certainty factor in the corresponding MYCIN rule.
Theorem 2 shows that this scheme is invalid if q, f(r) < 1; we can find
a probability model P satisfying the premises of (9) such that P(A(j)) -
0. This implies that qf(r) - -1. However, as q, f(r) 0.2, this is
clearly impossible.

Next, we consider using P(A || B) in (4). We represent P(h) as P(A).
Were we to use P(A(j)) instead of P(A), then the value of the certainty
factor would depend on the individual J being considered, and this is
clearly not the intention of the definition. This yields the following
representation of a MYCIN inference:

10) P(A || B) - q(l - P(A)) + P(A)
- r

P(A(j)) £ f-1(qf(r)); 0.2 < q, f(r)

Choose predicates A and B such that equality holds in the remark
following Theorem 1. Then P(A(j)) - P(B(j))P(A || B). Writing a - P(A)
and assuming q < 1, (10) implies:

11) f(r(q(l - a) + a)) - qf(r).
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»

Using the transformation x - q(l-a) + a, setting r - 1 and recalling
that f(l) - 1, we find:

f(x) - q - (x - a)/(l - a); x < 1.

We see that the value of f at x must depend on a. To see that the MYCIN
scheme cannot be probabilistically valid, it suffices to consider a
second probability model P' such that:

12) (P'(A || B) - P'(A))/(1 - P'(A)) - q' > 0.2;

13) a' - P'(A) * P(A)

14) q'(l - a') + a' - q(l - a) + a.

MYCIN would now permit an inference of the form (10) with P' replacing
P. However, repeating the above argument with P' replacing P would lead
us to conclude:

(x - a')/(l - a') - (x - a)/(l - a),

which implies that x - 1. It follows that MYCIN's inference scheme is
not probabilistically valid under any interpretation of the certainty
factors in terms of probabilities which associates maximal certainty
with probabilities one and zero and which is invariant for all
probability models.

5. Conclusion

In concluding his critical analysis of the combination rule (5),
Adams states:

The empirical success of MYCIN using the model of Shortliffe and
Buchanan stands in spite of theoretical objections of the types
discussed in the preceding sections. It is probable that the model
does not founder on the difficulties pointed out because in actual
use the chains of reasoning are short and the hypotheses simple.
However, there are many fields in which, because of its
shortcomings, this model could not enjoy comparable success. (Adams
1976, p. 184-185)

The analysis in the preceding sections provides a further understanding
of Adam's claim that MYCIN works well only if the chains of inference
are short.

First of all, in spite of the fact that no valid reconstruction of
the MYCIN inference scheme suggests itself, there is a valid inference
scheme which is applicable to the MYCIN situations. This is the scheme
embodied in (2), with combination rules (7) and (8). From combination
rule (7) it is obvious that a premise involving several conjuncts will
not survive unless the probability of each conjunct is high. This will
obviously prevent long chains of inference where probability is lost at
each step. The comparable MYCIN rule (6) may in principle permit longer
chains of inference. However, if in fact the chains of inference are
short, this effect may not be too strong.
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Second, the prompt used by Buchanan and Shortliffe in soliciting
certainty factors from experts may well produce the same, or roughly the
same numerical results as the prompt appropriate to the valid inference
scheme discussed in Section 4.

Finally, Buchanan and Shortliffe (1984, p. 219) note that MYCIN's
diagnoses are extremely robust with respect to coarse graining the scale
of the certainty factors. Distinguishing only 5 values for certainty
factors did not lead to large differences in diagnosis or therapy
recommendation.

In light of these facts, it would seem that the valid inference
scheme proposed here could give a good explanation of MYCIN's success,
and would allow a realistic appraisal of its potential in other domains.
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