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The oblique shock impinging on the supersonic turbulent boundary layer leads to a mixing
layer and the emergence of large-scale coherent structures within the interaction zone
which leave significant velocity defect and turbulence amplification downstream. In the
present study, we investigate the turbulence recovery in the post-shock region by exploiting
direct numerical simulation data of the oblique-shock/turbulent boundary layer interaction
flow at the incoming Mach number of 2.28 and the shock angle of 33.2◦, with special
attention paid to the contribution of the mixing layer and large-scale structures to flow
dynamics. For that purpose, we propose to split the mean velocity, Reynolds stresses and
spanwise spectra into a canonical portion that is constructed according to the statistics of
canonical turbulent boundary layers, and a mixing-layer-induced portion. We found that
the hidden mixing layer grows with the boundary layer thickness and that the induced
mean shear and Reynolds stresses decay at different rates. The mean velocity recovers to
the canonical profiles at a distance of 13 boundary layer thicknesses downstream where
the mixing-layer-induced mean shear ceases to have strong impacts. The recovery of
Reynolds stresses requires 10 boundary layer thicknesses in the near-wall region but a
much longer streamwise extent in the outer region due to the slow decay of large-scale
motions. These large-scale motions superpose on the near-wall turbulence, intensifying the
turbulent fluctuations, yet having a trivial impact on the skin friction, for the contribution
of the mixing-layer-induced mean shear and Reynolds shear stress are balanced by the
advection term. We further establish a simple physical model capable of approximately
predicting the streamwise evolution of mixing-layer-induced mean shear and turbulent
kinetic energy. This model suggests that the complete recovery of turbulence in the outer
region requires a streamwise extent of approximately 50 boundary layer thicknesses.
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1. Introduction

Shock-wave/turbulent boundary layer interaction has been widely investigated due to its
significant engineering applications (Delery 1985; Andreopoulos, Agui & Briassulis 2000;
Dolling 2001; Smits & Dussauge 2006; Babinsky & Harvey 2011; Gatski & Bonnet 2013).
When a supersonic turbulent boundary layer is impinged by an oblique shock wave, the
incident and the reflected shock waves lead to pressure rise, mean flow deceleration and
even flow separation within the interaction zone due to the low momentum near the
wall. The induced abundant flow features have received considerable attention in previous
research (Andreopoulos et al. 2000; Dolling 2001; Smits & Dussauge 2006; Babinsky &
Harvey 2011; Gaitonde 2015).

Once the flow separation occurs, the mean flow reversal from the separation point to
the reattachment point will lead to a strong mixing layer that detaches from the wall. It
has been proven by Dupont, Haddad & Debieve (2006), Dupont et al. (2008) and Dupont,
Piponniau & Dussauge (2019) that the statistics near this mixing layer resemble those of
free mixing layers, including the Reynolds stress, spreading rate and entrainment velocity.
Helm, Martín & Williams (2021) further verified this postulation in supersonic/hypersonic
turbulent flows over compression ramps at incoming Mach numbers of 3.0, 7.0 and
9.0. The inflectional mean flow profiles lead to Kelvin–Helmholtz instability (Selig
et al. 1989; Priebe & Martín 2012), inducing large-scale shedding vortices (Pirozzoli &
Grasso 2006; Pirozzoli & Bernardini 2011a; Zhuang et al. 2018). These velocity and
pressure fluctuations travel upstream, leading to low-frequency unsteady shock motions
and the ‘breathing’ of separation bubbles (Ganapathisubramani, Clemens & Dolling
2007; Wu & Martin 2008; Priebe & Martín 2012; Clemens & Narayanaswamy 2014).
They are also convected downstream by the mean flow, resulting in the intensification
of wall heat flux and pressure fluctuations (Bernardini, Pirozzoli & Grasso 2011;
Volpiani, Bernardini & Larsson 2018, 2020), the enhancement of mass and momentum
entrainment between the boundary layer and free-stream flow (Wu & Martin 2007, 2008;
Piponniau et al. 2009; Priebe & Martín 2012) and the amplification of the Reynolds
stress (Smits & Muck 1987; Zheltovodov, Lebiga & Yakovlev 1989; Fang et al. 2020;
Yu et al. 2022).

The flow adjacent to the interaction zone is basically in a non-equilibrium state
(Pirozzoli, Bernardini & Grasso 2010; Zuo et al. 2019; Adler & Gaitonde 2020). The
statistics and flow structures will take a certain streamwise extent to recover, requiring
modifications of turbulent models to capture such non-equilibrium phenomena (Morgan
et al. 2013). Therefore, the flow domain under investigation should be sufficiently long in
the post-shock region in order to investigate their evolution (Wu & Martin 2007, 2008;
Humble, Scarano & van Oudheusden 2009). Previous studies on this recovery process
primarily focus on three aspects: mean velocity, turbulent fluctuations and flow structures.
In the oblique-shock-wave/turbulent boundary layer interaction (OSBLI) flows, Pirozzoli
& Grasso (2006) showed that at the incoming Mach number M∞ = 2.9 and the shock
angle of 33.2◦, where the flow within the interaction zone goes through mild separation,
the mean velocity profile recovers to an equilibrium state at a distance of around 10
boundary layer thicknesses past the interaction zone. During this process, the ‘dip’
in the mean velocity profile, which is the residue of the mixing layer caused by the
flow separation within the interaction zone, gradually disappears. For turbulent kinetic
energy (TKE) and its transport, the turbulence in the inner region rapidly recovers to the
equilibrium state (Pirozzoli & Bernardini 2011a). The relaxation of turbulence in the outer
region is incomplete, leaving much stronger turbulent fluctuations even at the end of the
computation zone/measuring aera (Pirozzoli & Grasso 2006; Wu & Martin 2007; Baidya
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et al. 2020). Moreover, the anisotropy and transport of the Reynolds stress tensor resemble
those of the free mixing layer (Pirozzoli et al. 2010; Fang et al. 2020). In the aspect of flow
structures, recent experimental and numerical investigations have shown that the upstream
near-wall small-scale low-speed streaks (Robinson 1991) are twisted as they pass through
the interaction zone, and become weaker and less organized right after the reattachment
point (Fang et al. 2020). The small-scale near-wall structures recover rapidly within one
interaction length scale (Baidya et al. 2020). The large-scale motions, on the other hand,
are strengthened by the shock wave and decay slowly downstream, with the wall-normal
locations of their maximal intensities statistically aligning with the centre of the mixing
layer (Wu & Martin 2008; Humble et al. 2009; Priebe & Martín 2012). Pirozzoli et al.
(2010) reported similar phenomena on the previously mentioned three aspects in transonic
shock/boundary layer interaction. It is found that the low-speed streaks in the near-wall
region are reformed at a distance of five interaction length scales downstream of the
impinging shock wave.

The proceeding investigations have revealed that the turbulence upstream and
downstream of the interaction zone is disparate, thereby raising the fundamental questions:
How do the turbulent structures that are prominent in the post-shock region, such as
the mixing layer and the large-scale motions, influence the turbulent dynamics and
skin friction? How long will it take for the turbulence to fully recover to the upstream
equilibrium state? To answer these questions, we propose to decompose the mean
velocity and Reynolds stress into the canonical and mixing-layer-induced portions: the
former is constructed as the canonical turbulent boundary layers, leaving the residue
as the latter. This decomposition enables us to directly evaluate the contribution of the
mixing-layer-related flow features to skin friction and TKE in the post-shock region, thus
providing a physical depiction of their evolution and their impact on the flow dynamics. To
the best of our knowledge, this method has not been proposed or applied to study OSBLI
flows yet.

The remainder of this paper is organized as follows. The physical model and numerical
settings are briefly introduced in § 2. The evolution of mean velocity and Reynolds stress
downstream of the interaction zone is firstly discussed in § 3. In §§ 4 and 5, the methods
to decompose the mean velocity and Reynolds stress are proposed, which are further
utilized to investigate the evolution of the mixing-layer-related mean shear and Reynolds
stress downstream. Their contributions to the skin friction, TKE and its transport are also
discussed. A simplified physical model to roughly predict the turbulent recovery process
is proposed in § 6. Concluding remarks are given in § 7.

2. Physical model and numerical implements

The flow configuration under investigation is depicted in figure 1. We study the fully
developed supersonic turbulent boundary layer at the incoming Mach number M∞ = 2.28,
temperature T∞ = 155.8 K and Reynolds number Rein = ρ∞U∞δin/μ∞ = 12 000, where
ρ∞, U∞, δin and μ∞ are the density, velocity, nominal boundary layer thickness (where
the mean velocity reaches 99 % of the free-stream values) and dynamic viscosity of
the incoming flow. To simulate the oblique-shock wave generated by a wedge, we impose
the inviscid Rankine–Hugoniot (RH) jump condition at the top boundary. The angle of the
wedge is set as 8◦, generating an oblique shock impinging at ximp = 30δin with the angle
of 33.2◦. Under these flow parameters, the flow within the interaction zone goes through
mild separation (Pirozzoli & Grasso 2006).
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Figure 1. Sketch of the computational domain.

The flow is governed by the following three-dimensional Navier–Stokes equations for a
compressible Newtonian gas, satisfying mass, momentum and energy conservations, cast
as follows in Cartesian coordinates (xi, i = 1, 2, 3, also referred to as x, y, z):

∂ρ

∂t
+ ∂ρuj

∂xj
= 0, (2.1)

∂ρui

∂t
+ ∂ρuiuj

∂xj
= − ∂p

∂xi
+ ∂τij

∂xj
, (2.2)

∂ρE
∂t

+ ∂ρujE
∂xj

= −∂puj

∂xj
+ ∂uiτij

∂xj
− ∂qj

∂xj
, (2.3)

where ρ, p and T represent density, pressure and temperature and ui (i = 1, 2, 3, also
referred to as u, v, w) the velocity in xi direction. The thermodynamic quantities satisfy
the state equations for the calorically perfect gas

p = ρRT, E = e + 1
2 uiui, e = CvT. (2.4a–c)

The viscous stress and heat transfer are obtained by the constitutive equations for
Newtonian gas, i.e.

τij = 2μSij − 2
3
μSkkδij, qj = −λ ∂T

∂xj
, (2.5a,b)

with Sij the strain rate tensor. The dynamic viscosity μ is determined by Sutherland’s law
and heat conductivity λ = μ/(PrCp), with the Prandtl number is set as Pr = 0.72. The
gas constant, constant-pressure and constant-volume specific heat are denoted by R, Cp
and Cv , respectively.

The boundary conditions are specified as follows. The mean velocity of the incoming
turbulent boundary layer is given by the formula proposed by Musker (1979). The velocity
fluctuations are generated by the synthetic digital filtering approach as in Klein, Sadiki &
Janicka (2003). The average and fluctuation of temperature are determined by those of the
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M∞ Cfr δ∗
r /δr θr/δr Reθr Reτ r Hr

2.28 3.104 × 10−3 0.334 0.0902 982 201 3.70

Table 1. Statistics at the reference plane xr = 15.0δin. Here, the skin friction coefficient is defined
as Cf = 2τw/(ρ∞U2∞), δ∗

r and θr are the displacement and momentum thicknesses, Reθr = ρ∞U∞θr/μ∞,
friction Reynolds number Reτ r = ρwuτ θr/μw and shape factor Hr = δ∗

r /θr.

velocity with the generalized Reynolds analogy (Zhang et al. 2014). The non-reflecting
conditions proposed by Pirozzoli & Colonius (2013) are adopted at the top and outflow
boundaries, except that the inviscid RH jump condition is enforced at the top boundary, as
stated previously. At the lower wall, no-slip and no-penetration conditions are applied for
velocity, and the isothermal condition is applied for temperature, set as Tw = 1.92T∞, the
recovery temperature of the incoming flow, to mimic an adiabatic wall. Periodic conditions
are applied in the spanwise direction.

Direct numerical simulation (DNS) is performed utilizing the open-source ‘STREAmS’
solver developed by Bernardini et al. (2021), which solves the governing equations
(2.1)–(2.5a,b) by the finite difference method. This solver has been widely verified
in supersonic channels, boundary layers and OSBLI flows. The convective terms are
approximated by the sixth-order kinetic-energy-preserving scheme (Pirozzoli 2010), and
switched to the fifth-order weighted essentially non-oscillation scheme (Jiang & Shu 1996)
when strongly compressive events are detected by the criterion used in Ducros et al. (1999).
The viscous terms are cast as Laplacian forms and approximated by the sixth-order central
difference scheme. Wray’s three-stage third-order scheme is adopted for time advancement
(Wray 1990).

The sizes of the computational domain in the streamwise (x), wall-normal (y) and
spanwise (z) directions are set as 60δin, 12δin and 6.5δin, respectively. It is discretized
by 2000 × 320 × 240 grids in the three directions. The grids are uniformly distributed
in the x and z directions with the mesh intervals being Δx+ ≈ 5.4 and Δz+ ≈ 4.9 under
viscous scales at the inlet of the boundary layer. In the wall-normal direction, the grids are
stretched by a hyperbolic-sine function within y = 2.5δin and uniformly distributed above
it. The minimal grid interval is set at the wall, being Δy+

w ≈ 0.7.
The statistics are averaged in the spanwise direction with 900 instantaneous flow fields

over the period of t = 351δin/U∞ ∼ 959δin/U∞. To further obtain smoother statistics,
the results are also averaged in the streamwise direction across 11 grids, within which the
streamwise variation of the mean flow is insignificant. The database has been validated
in our previous study (Yu et al. 2022), including the streamwise distributions of the skin
friction and mean pressure and the wall-normal distributions of the mean velocity and
Reynolds stresses upstream of the interaction zone. The reference station free from the
impact of the impinging shock wave is chosen at xr = 15.0δin. Some of the important
flow parameters at this station are listed in table 1, denoted by the subscript r. The mean
velocity and turbulent fluctuations upstream of the interaction zone, the skin friction
and wall pressure distributions along the streamwise direction agree with the reference
in Bernardini et al. (2016). In discussing those results, we reported that the lengths of
the interaction and separation zones are Lint ≈ 3.27δr and Lsep ≈ 1.65δr, respectively,
consistent with the results reported by Volpiani et al. (2018, figure 12).

As further validation of the velocity variances in the post-shock region, in figure 2, we
compare the distributions of the non-zero Reynolds stress components with those reported
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Figure 2. Reynolds stress distribution, (a) Ruu, (b) Rvv , (c) Rww, (d) Ruv , flooded: present results, lines:
reference data from Bernardini et al. (2016).

by Bernardini et al. (2016). The Reynolds stress normalized by the mean kinetic energy of
the incoming free-stream flow is defined as

Ruiuj =
ρu′′

i u′′
j

ρ∞U2∞
. (2.6)

Herein, the ensemble average of a generic flow quantity ϕ is denoted as ϕ̄, and the
corresponding fluctuation by ϕ′, the density-weighted average (or Favre average) by ϕ̃

and the corresponding fluctuation ϕ′′. The superscript ∗ denotes the rescaled interaction
coordinate, defined as

x∗ = (x − ximp)/δr, y∗ = y/δr. (2.7a,b)

Quantitatively, the results in the present study conform reasonably well with those in
Bernardini et al. (2016). The slight difference can be attributed to the different Reynolds
numbers between the two datasets. They are also qualitatively consistent with the results
reported by previous studies (Pirozzoli & Bernardini 2011a; Bernardini et al. 2016; Fang
et al. 2020). Upstream of the interaction zone (x∗ � −3.0), the maxima of the Reynolds
normal and shear stresses are attained in the near-wall region below y∗ ≈ 0.1. As the
flow goes through the interaction zone, the normal components of the Reynolds stress
(figure 2a–c) are greatly amplified, with their peaks rising from the near-wall region to
y∗ ≈ 0.3. It has been proven in our previous study (Yu et al. 2022) that the physical
counterparts of the highly intensified turbulent fluctuations in the outer region are the
large-scale low-speed streaks and cross-stream circulations downstream of the interaction
zone, as can be visualized in figure 3. As the flow approaches further downstream, the
large-scale structures gradually decay. The instantaneous field in figure 3(a) and the
reappearing near-wall peak of Ruu below y∗ ≈ 0.1 in figure 2(a) further indicate that the
near-wall small-scale structures start to reform at x∗ ≈ 4.0. The Reynolds shear stress in
figure 2(d) reaches maxima at x∗ ≈ 1.0, a slightly downstream location compared with the
Reynolds normal stresses.
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0 0.2

(a)

(b)

0.4 0.6 0.8 1.0 1.2

Figure 3. Instantaneous fields, isosurface of (a) velocity fluctuation u′′/U∞ = −0.1, (b) the second invariant
of velocity gradient Q = 10.0, coloured by the wall-normal coordinate y. Transparent isosurfaces: incident and
reflected shocks, vertical slices: numerical Schlieren exp(−|∇ρ|/ρ).

3. Mean velocity and Reynolds stress

In the subsequent discussions, we primarily present the statistical results at the streamwise
station xr = 15δin (x∗

r = −10.0) as the reference for canonical wall-bounded turbulence,
and at the stations downstream the interaction zone at x1 = 35δin (x∗

1 = 3.3), x2 = 40δin
(x∗

2 = 6.7), x3 = 45δin (x∗
3 = 10.0), x4 = 50δin (x∗

4 = 13.3) and x5 = 55δin (x∗
5 = 16.7) to

analyse the turbulent evolution in the post-shock region, as displayed in figure 4. Line
legends are listed in table 2.

The mean velocity profiles at the six streamwise stations are displayed in figure 5.
The abscissa and the ordinate in figure 5(a) are normalized by the local boundary layer
thickness δ and the mean velocity at the outer edge of the boundary layer uδ , hereinafter
referred to as the ‘outer scales’. Figure 5(b) displays the van Driest transformation of mean
velocity, written as

u+
VD = 1

uτ

∫ ũ

0

√
ρ̄

ρ̄w
du. (3.1)

The abscissa and the ordinate are normalized by viscous scales, defined as

τw = μw
∂ ū
∂y

∣∣∣∣
w

, uτ =
√

τw

ρ̄w
, δν = μw

ρ̄wuτ

, y+ = y
δν

, (3.2a–d)

with τw, ρ̄w and μw denoting the mean shear stress, density and dynamic viscosity on
the wall. The van Driest transformed velocity at the reference station xr follows that of
the canonical wall-bounded turbulence, obeying the linear law in the viscous sublayer
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xr = 15δin

x1 = 35δin

x1
∗ = 3.3

xr
∗ = –10.0

–0.25 –0.15 –0.05 0.05 0.15 0.25

x2
∗ = 6.7

x3
∗ = 10.0

x4
∗ = 13.3

x5
∗ = 16.7

x2 = 40δin

x3 = 45δin
x4 = 50δin

x5 = 55δin

Figure 4. Streamwise stations in the subsequent analysis. Contours on the cross-stream slices: velocity
fluctuation u′′/U∞, on the vertical slice: numerical Schlieren exp(−|∇ρ|/ρ).

Table 2. Streamwise stations and line legends in the subsequent analysis.

y+ � 5, and the logarithmic law above y+ ≈ 30. For the mean velocity at x1 immediately
downstream of the interaction zone, the intercept in the logarithmic region is significantly
lower than the standard value 5.0, while the velocity in the wake region rises to a higher
value. This indicates a lower wall shear stress and a stronger mean shear above y+ ≈ 10.
Under the outer scales, it is observed that the velocity defect is increased, and there is
an obvious inflection point at y/δ ≈ 0.3. These are caused by the mixing layer related
to the flow retardation and separation within the interaction zone. Compared with the
mean velocity profile at xr, the shear rate is lower below y/δ ≈ 0.1, and much higher
from y/δ ≈ 0.2 to the outer edge of the boundary layer. As it goes downstream, the mean
velocity profiles gradually return to those of the canonical wall-bounded turbulence. At
x4, a distance nearly 13.3δr downstream of the impinging point, the intercepts in the
logarithmic region rise anew to 5.0 and the residue of the mixing layer vanishes visually.
These results are consistent with those reported in previous studies (Pirozzoli & Grasso
2006; Baidya et al. 2020).

The Reynolds stress distributions have been discussed in § 2. Here, we primarily focus
on the distributions of Reynolds stress components along the wall-normal direction at the
six streamwise stations in figure 4 and table 2. The results are plotted under viscous scales
in figure 6. Compared with the statistics at the reference station xr, all the Reynolds stress
components are enhanced, especially in the outer region. As it approaches downstream,
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ũ/
u δ
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0.2 0.4 0.6 0.8 1.0 1.20

0.2

0.4

0.6

0.8

1.0

(a) (b)

y+
100 101 102 103

5

10

15

20

25

30

Figure 5. Mean velocity profiles, (a) normalized by outer scales, (b) van Driest transformed, normalized by
viscous scales. Line legends refer to table 2, symbols: reference data reported by Pirozzoli & Bernardini (2011b)
at M∞ = 2 and Reτ = 200.

R+ uu

R+ v
v

R+ w
w

–
R+ uv

100 101 102 103 100 101 102 103

100 101 102 103 100 101 102 103

0
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15(a) (b)
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0
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y+ y+
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10

0

2
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6

Figure 6. Wall-normal distributions of Reynolds stresses, normalized by the wall shear stress τw, (a) R+
uu,

(b) R+
vv , (c) R+

ww and (d) −R+
uv . Symbols: reference data at Reτ ≈ 200 and M∞ = 2 (Pirozzoli & Bernardini

2011b). Line legends refer to table 2.

the peaks in the outer region gradually diminish. These peaks retain significant until the
end of the computational zone, suggesting that the decay of these large-scale motions
requires a streamwise extent much longer than 16.7δr.

In the inner region within y+ � 30, R+
vv and −R+

uv downstream x∗
3 = 10 collapse to those

at xr. These are reckoned as the ‘detached variables’ in the concept of the ‘attached-eddy
model’ (Townsend 1976; Hwang 2015). The large-scale motions in the outer region do
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not leave strong ‘footprints’ in the near-wall region due to the no-penetration condition.
Parameters R+

uu and R+
ww, on the other hand, are the wall-attached variables and do not

share such a feature. The value of R+
uu collapses to a uniform distribution below y+ ≈ 40

downstream of x2 but obviously higher than the statistics at the reference station xr. The
value of R+

ww continuously decreases with x, whose convergence is not achieved until
x5. We attribute these seemingly anomalous behaviours to two contradictory factors: the
increasing Reynolds number and the decaying large-scale motions in the outer region. The
increasing Reynolds number intensifies wall-attached velocities in the near-wall turbulence
(Cheng et al. 2020; Smits 2020; Chen & Sreenivasan 2021). The large-scale motions in
the outer region leave footprints on the near-wall region, enhancing the near-wall turbulent
intensities (Marusic, Mathis & Hutchins 2010; Mathis, Hutchins & Marusic 2011). In turn,
the decay of those large-scale motions will lead to the diminishment of the near-wall
fluctuation variances. Based on this scenario, we conjecture that, for the R+

uu component,
the two factors are coincidentally cancelled out, leading to the convergence of the near-wall
fluctuation variances. As for the R+

ww component, the decaying of the large-scale motions
has more influence on the near-wall turbulence than the increasing Reynolds number,
thereby continuously decreasing the near-wall fluctuation intensity as the flow approaches
downstream. This statement will be further supported by the discussions in § 5.1.

Considering that the R+
uu and R+

ww components are highly affected by the Reynolds
number and the large-scale motions in the outer region that decay particularly slowly,
we suggest to determine the recovery of the near-wall turbulence by either R+

vv or −R+
uv .

Therefore, the near-wall turbulence is concluded to return to the canonical and equilibrium
state at x∗

3 = 10.0.

4. Skin friction contributed by the mixing layer

4.1. Extracting the mixing layer
The qualitative descriptions of the mean velocity profiles in figure 5 revealed that the
mixing layer due to the flow separation within the interaction zone is retained downstream.
In other words, there exists a mixing layer hidden inside the boundary layer. To
quantitatively depict its distribution, we propose to construct the mean velocity profile as
in the canonical wall-bounded turbulence, denoted by ũc, thereby the mixing-layer-induced
portion ũm can be obtained as ũm = ũc − ũ to ensure it is positive. The van Driest
transformed canonical mean profile is constructed as follows:

ũ+
c,VD =

⎧⎪⎪⎨⎪⎪⎩
ũ+

r,VD( y+), y+ < 30
2.55 ln y+ + 5, y+ > 30, y/δ < 0.3
2.55 ln y+ + 5 + 2.55β(cos(0.3π) − cos(πy/δ)), 0.3 < y/δ < 1
2.55 ln δ+ + 5 + 2.55β(cos(0.3π) + 1), y/δ > 1.

(4.1)

In this formula, the mean velocity within the buffer layer y+ < 30 is interpolated from
that at the reference station xr. In the logarithmic region between y+ > 30 and y/δ <

0.3, it is constructed by the standard logarithmic law of the turbulent boundary layer
(Pirozzoli & Bernardini 2011b). In the outer region 0.3 < y/δ < 1.0, the wake law is
further added. Considering that the friction Reynolds number is relatively low and varying
in the streamwise direction, the coefficient β differs at different streamwise locations.
Postulating that the variation of β with Reτ is linear and that the recovery of the mean
velocity is achieved at x5, this function can be expressed as β = 0.0005Reτ − 0.411, with
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ũ c/

u c,
δ

−
(d
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Figure 7. Mean velocity distributions, (a,b) original ũ and constructed ũc, (a) van Driest transformation
normalized by viscous scales, (b) normalized by outer scales, lines with symbols: ũ, lines: ũc.
(c) Mixing-layer-induced portion ũm. (d) Open symbols: gradient of ũm, lines: curve fitting with cubic
polynomials within y/δ = 0.3 ∼ 0.9, solid symbols: the maxima of the fitting curve. Line legends refer to
table 2.

the coefficients obtained from the mean profiles at xr and x5. The reversed van Driest
transformation is further adopted to obtain the ũc distribution.

The original and the constructed canonical mean velocity profiles are shown in
figure 7(a,b), normalized by viscous and outer scales, respectively. The constructed
canonical mean velocity distributions ũc by formula (4.1) conform with those at xr, x4
and x5, indicating its validity. The divergence of the original mean velocity profiles ũ
from the canonical profiles ũc gradually weakens as it approaches downstream. This ‘gap’
is the mixing-layer-induced portion ũm, whose distribution is shown in figure 7(c). In the
wall-normal direction, ũm attains maximum at y = 0.2δ. Above this location until the outer
edge of the boundary layer, ũm decreases monotonically. This mixing layer grows with the
boundary layer, with the identical thicknesses. At x4 and x5, this mixing layer ceases to
have strong impact on the mean flow, with its contribution to the mean velocity by less
than 4 %. The mean gradient of ũm across the boundary layer is shown in figure 7(d)
with symbols. Cubic polynomials are adopted to fit the curves, in order to locate the
approximate maxima. As marked with the solid symbols in figure 7(c,d), the maximal
velocity gradient lies at y/δ ≈ 0.65 and is weakly dependent on the streamwise location.
According to our examination, the self-similarity of the mean profiles can be roughly
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Figure 8. Distributions of Reynolds shear stress in the wall-normal direction, (a) original τ̄t, (b) constructed
canonical portion τ̄t,c, (c) mixing-layer-induced portion τ̄t,m. Line legends refer to table 2.

satisfied when normalized by their maxima. However, due to the restriction of the lower
wall, the distribution of mean velocity and its gradient are unsymmetrical.

4.2. Splitting the Reynolds shear stress and skin friction
We further extract the Reynolds shear stress induced by the mixing layer in the post-shock
region. To do this, we propose to split the total shear stress τ̄ as follows:

τ̄ = τ̄v + τ̄t

= τ̄v,c + τ̄v,m + τ̄t,c + τ̄t,m

= τ̄c + τ̄v,m + τ̄t,m, (4.2)

with τ̄v and τ̄t denoting the viscous and Reynolds shear stresses, and the subscripts c
and m the constructed canonical and the mixing-layer-induced portions, respectively. The
mixing-layer-induced Reynolds shear stress τ̄t,m is therefore obtained as

τ̄t,m = τ̄ − τ̄c − τ̄v,m, (4.3)

under the assumption that the τ̄c values at each location are the same function of y/δ as
that of xr due to the self-similarity of turbulent boundary layers over flat walls (Kumar
& Mahesh 2021). The original Reynolds shear stress τ̄t and its canonical portion τ̄t,c are
plotted in figure 8(a,b). The latter collapse well at different streamwise stations, except for
the slight difference below y = 0.1δ. The mixing-layer-induced portion τ̄t,m displayed in
figure 8(c) decreases monotonically as it approaches downstream. The maximal values are
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attained approximately at the same wall-normal locations y/δ ≈ 0.5, lower than those of
the maximal gradient of ũm.

The skin friction contributed by the mixing-layer-induced mean shear and Reynolds
shear stress is evaluated utilizing the decomposition formula proposed by Renard &
Deck (2016) (hereinafter referred to as the ‘RD formula’). This formula was extended
to compressible turbulent boundary layers by Fan, Li & Pirozzoli (2019), written as

Cf = 2
ρδu3

δ

∫ δ

0
τ̄v,xy

∂ ũ
∂y

dy︸ ︷︷ ︸
CV

+ 2
ρδu3

δ

∫ δ

0
τ̄t,xy

∂ ũ
∂y

dy︸ ︷︷ ︸
CT

+ 2
ρδu3

δ

∫ δ

0
(ũ − uδ)

∂ p̄
∂x

dy︸ ︷︷ ︸
CP

+ 2
ρδu3

δ

∫ δ

0
(ũ − uδ)

(
ρ̄

(
ũ
∂ ũ
∂x

+ ṽ
∂ ũ
∂y

)
− ∂

∂x
(τ̄v,xx + τ̄t,xx)

)
dy︸ ︷︷ ︸

CG

, (4.4)

where CV , CT and CG denote the skin friction caused by viscous shear stress, Reynolds
shear stress and mean advection, respectively. The mean pressure-gradient term, CP, is
only significant within the interaction zone, as will be demonstrated later. Divided by the
skin friction coefficient Cf , these terms can be formulated as

CV

Cf
=

∫ δ+

0

uτ

uδ

τ̄+
v,xy

∂ ũ+

∂y+ dy+ (4.5)

CT

Cf
=

∫ δ+

0

uτ

uδ

τ̄+
t,xy

∂ ũ+

∂y+ dy+ (4.6)

CG

Cf
=

∫ δ+

0

(
ũ
uδ

− 1
)

∂τ̄+
xy

∂y+ dy+. (4.7)

We further substitute the proposed decomposition for the mean velocity and the Reynolds
shear stress, i.e. ũ = ũc − ũm and τ̄t = τ̄t,c + τ̄t,m, into the first two terms CV and CT , they
can further be decomposed as those contributed genuinely by the canonical portions and
the mixing-layer-related portions,

CVc

Cf
=

∫ δ+

0

uτ

uδ

τ̄+
v,xy,c

∂ ũ+
c

∂y+ dy+,
CVm

Cf
= CV

Cf
− CVc

Cf
. (4.8a,b)

CTc

Cf
=

∫ δ+

0

uτ

uδ

τ̄+
t,xy,c

∂ ũ+
c

∂y+ dy+,
CTm

Cf
= CT

Cf
− CTc

Cf
. (4.9a,b)

The pre-multiplied integrands of these terms (denoted by the subscript ‘int’) in the
wall-normal direction are displayed in figure 9. Compared with the distributions at the
upstream reference station xr, the magnitudes of the viscous term CV (figure 9a) are lower
below y+ ≈ 30 in the near-wall region at x1, x2 and x3 downstream of the interaction zone.
This can be easily inferred from the mean velocity profiles. The mean shear related to
the mixing layer is of the opposite sign to that of the canonical mean velocity, leading
to the lower total mean shear. Its canonical portion CVc (figure 9b) is higher in the
post-shock region, which is compensated by the negative mixing-layer-induced portion
CVm (figure 9c). Although the mean shear in the outer region is much stronger than the
canonical profile from x1 to x3 (recall figure 7), the pre-multiplied integrand is small,
indicating its negligible integrated contribution to the skin friction.
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Figure 9. Distribution of the pre-multiplied integrands in formulas (4.4)- (4.9a,b), normalized by viscous
scales. (a–c) Viscous terms, (a) CV,int, (b) CVc,int, (c) CVm,int. (d– f ) Reynolds shear stress terms, (d) CT,int,
(e) CTc,int, ( f ) CTm,int. (g) Advection term CG,int. Line legends refer to table 2.

The pre-multiplied integrands of the Reynolds stress term CT (figure 9d) increase
significantly in the outer region, while those in the inner region remain almost unaffected
compared with that of the upstream reference station at xr. We can infer from figure 9(e)
that the unchanged part is primarily attributed to the canonical portion CTc, whose
variation in the outer region is also not prominent against the streamwise location. The
mixing-layer-induced portion CTm (figure 9 f ), on the other hand, contributes significantly
to the skin friction in the outer region.

The pre-multiplied integrands of the advection term CG, as shown in figure 9(g), are
negligible below y+ = 10. They first decrease to a negative value, then increase and alter
their signs in the outer region. The areas surrounded by the abscissa and the negative
part of the curve are greater than the positive part, resulting in their negative overall
contributions to the skin friction.

The decomposed skin friction terms in formulas (4.4)–(4.9a,b) along the streamwise
direction are reported in figure 10. The summation (CV + CT + CG)/Cf is higher than
0.997, indicating that the presently used RD formula for zero-pressure-gradient boundary
layers is valid when discussing the skin friction upstream and downstream of the
interaction zone. The mean pressure gradient outside the interaction zone is not high
enough to manifest their magnitude. Upstream of the interaction zone, the viscous term
CV and the Reynolds shear stress term CT constitute the total skin friction Cf almost
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Figure 10. Skin friction decomposition by the RD formula in (4.4)–(4.9a,b), grey-shaded region: interaction
zone, with the extension of 1.2δr in both directions.

equivalently by around 50 %, while the advection term CG by less than 10 %. As the flow
approaches the shock wave, the advection term CG decreases to a negative value, while
the CV and CT terms increase. Due to the flow separation, the total skin friction within the
interaction zone (grey-shaded region) is small, and therefore will not be discussed here.
Downstream of the interaction zone, the viscous term CV constitutes the skin friction
by around 40 %. The constructed canonical portion CVc is almost the same as CV , as it
can be inferred from figure 9(a,b). The Reynolds shear stress term CT is significantly
higher than the viscous term CV , even higher than the skin friction Cf itself. Its canonical
portion CTc, however, contributes to the skin friction by around 50 %, similar to the
upstream CT term. This high ratio primarily comes from its mixing-layer-induced term
CTm, which is mostly balanced by the negative CG term. To verify this statement, we
also report the summation of the mixing-layer-induced terms and the advection term, i.e.
CVm + CTm + CG in figure 10. Their overall contribution to the total skin friction is less
than 15 %, and this percentage decreases to around 11 % at x∗ ≈ 10.0 and retains this value
further downstream. We may conclude that although the mixing-layer-induced large-scale
motions in the outer region are significant (recall figure 6), its contribution to the skin
friction is trivial.

In the aspect of its physical significance, the RD formula is obtained by integrating the
mean kinetic energy (MKE) budget in the convective frame (Renard & Deck 2016). The
physical interpretations of CV , CT and CG terms are quite straightforward, representing the
mean power supplied by the wall that transfers the MKE to (a) internal energy by viscous
dissipation (CV term), (b) TKE by turbulent production (CT term) and (c) spatial growth
of the boundary layer (CG term). It can be proved that CG should satisfy 0 ≤ CG/Cf ≤ 1
under the assumption that the TKE production is non-negative and the total shear stress
is non-increasing. The former can be satisfied in the presently studied flow (see figure 15
below). The latter, however, cannot be guaranteed, as it can be inferred from the Reynolds
shear stress distributions in figure 8. The negativity of CG term indicates that the loss of
MKE in the convective frame, or the entrainment of MKE from the mean flow in the wall
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Figure 11. Evolution of boundary layer thicknesses, (a) nominal boundary layer thickness δ/δr, (b) red dashed
line: displacement thickness δ∗/δr, blue dash-dotted line: kinetic energy thickness δ∗∗/δr, black solid line:
(δ∗ + δ∗∗)/δr.

frame (Renard & Deck 2016). The following equation may provide further interpretation:

1
2ρũ3

δ

(
δ∗ + δ∗∗) = 1

2

(
ρũ3

δδ −
∫ δ

0
ρũ3 dy

)
, (4.10)

with δ∗ and δ∗∗ denoting the displacement and kinetic energy thicknesses. The summation
(δ∗ + δ∗∗) reflects the loss of kinetic energy in the boundary layer. As shown in figure 11,
although the nominal boundary layer thickness δ grows rapidly downstream of the
interaction zone, the displacement and kinetic energy thicknesses almost remain constants,
suggesting that the MKE is merely redistributed along the wall-normal direction by mean
convection without significant dissipation.

In this section, we propose to decompose the mean velocity and the Reynolds shear
stress in the post-shock region as the canonical and the mixing-layer-induced portions
to investigate the mixing layer hidden inside the boundary layer. Its contribution to skin
friction is further evaluated utilizing the skin friction decomposition formula proposed by
Renard & Deck (2016) and Fan et al. (2019). Although the mean shear and the Reynolds
shear stress related to the mixing layer are strong, they only constitute a small portion of
the total skin friction, which is primarily composed of the canonical viscous and Reynolds
stress components CVc and CTc.

5. Turbulent kinetic energy

5.1. Splitting the kinetic energy
Unlike the mean velocity and the Reynolds shear stress, the decomposition of velocity
fluctuation variances into its canonical and mixing-layer-induced portions is no simple
task. Despite the recent progress made by Chen & Sreenivasan (2021), Smits et al. (2021)
and Smits & Hultmark (2021), it is still challenging to construct the canonical portion
directly. Therefore, we adopt a different strategy, to follow the ‘inner–outer decomposition’
proposed by Hu & Zheng (2018) and Wang, Hu & Zheng (2021). In their studies, the
empirical functions of the near-wall spectra that are considered to be Reynolds number
independent are formulated utilizing the results of a turbulent channel flow at Reτ = 110,
thereby decomposing the spectra and variances of velocity fluctuation into the inner and
outer portions. Instead of seeking for such empirical functions, in the present study, we
simply reckon the spanwise spectra at the reference station xr as the canonical near-wall
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Figure 12. Pre-multiplied spanwise spectra for density-weighted velocity fluctuations at x3, (a–c) canonical
portion kzE+

uiui,c, normalized by viscous scales, (d– f ) the original spectra, kzEuiui , (g–i) the
mixing-layer-induced portion, kzEuiui,m, normalized by outer scales, (a,d,g) streamwise component kzEuu,
(b,e,h) wall-normal component kzEvv , (c, f,i) spanwise component kzEww.

portion Euiui,c. The mixing-layer-induced portion Euiui,m is thus obtained by subtraction.
Integrating the spectra over the wavenumber kz, we may further obtain their fluctuation
variances. Note that all the above-mentioned procedures are completed under viscous
scalings.

The pre-multiplied spanwise spectra of the density-weighted velocity fluctuations√
ρu′′

i at x3 are shown in figure 12. We first discuss their canonical portions, namely
the spectra at xr, as displayed in figure 12(a–c). Expectedly, the distributions of these
spectra resemble those of the low Reynolds number canonical wall-bounded turbulence
(Hwang 2013; Yin, Huang & Xu 2017; Wang, Wang & He 2018). For the streamwise
component, the spectra kzE+

uu attain maxima at y+ ≈ 12 with the characteristic length
scale of λ+z ≈ 100, representing the near-wall low-speed streaks. The peaks of the spectra
of the wall-normal and spanwise components kzE+

vv and kzE+
ww are reached at y+ ≈ 50 and

y+ ≈ 20, respectively, with the characteristic length scale of λ+z ≈ 150, representing the
quasi-streamwise vortices in the near-wall region.
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The pre-multiplied spanwise spectra at x3 for the three velocity components are shown
in figure 12(d– f ). For the streamwise component, there are two peaks in the kzEuu
distribution, representing the small-scale low-speed streaks in the near-wall region and the
large-scale motions in the outer region. The latter lies at y∗ ≈ 0.5 with the characteristic
scale of λ∗z ≈ 1.0. The spectra of the other two components kzEvv and kzEww do not
manifest the double-peak feature, while they spread more widely in the scale space
compared with the canonical near-wall spectra in figure 12(b,c). The peaks are also located
in the outer region at y∗ ≈ 0.5 with the characteristic scale of λ∗z ≈ 1.0, the same as those
of the kzEuu distribution.

The mixing-layer-induced portions, with the canonical near-wall spectra removed,
are shown in figure 12(g–i). For the streamwise component kzEuu,m, the peak in the
inner region at small scales is substituted by a small-valued negative region. The same
phenomenon has been observed by Hu & Zheng (2018), which was explained to be caused
by the nonlinear modulation effect of the large-scale motions on the small-scale motions.
The peak of the spectra in the outer region retains, penetrating to the near-wall region
and leaving ‘footprints’, similar to the ‘superposition effect’ of the large-scale structures
in high Reynolds number wall-bounded turbulence (Marusic et al. 2010; Mathis et al.
2011; Smits 2020). This leads to the increment of the turbulent intensities in the inner
region, further supporting our previous discussions in § 3. The wall-normal velocity is
not a wall-attached variable, therefore the large-scale motions corresponding to the peak
in the outer region of the spectra kzEvv,m have no obvious superposition effect on the
near-wall turbulence. The spectra of the spanwise component kzEww,m resemble those of
the streamwise component kzEuu,m, except that the superposition effects are stronger and
spread wider in scale space. This is consistent with our previous presumption in § 3 that
the superposition effect has more impact on the near-wall spanwise velocity intensity.

The spectra at the other streamwise locations x1, x2, x4 and x5 (not shown here) are
similar to those at x3, with the approximately identical wall-normal locations and spanwise
length scales of the peaks in the outer region. This partially reflects the self-similarity of
these mixing-layer-induced large-scale motions.

Integrating the mixing-layer-induced spectra, we can further obtain the corresponding
velocity fluctuation variances (Reynolds normal stress components). The results are
shown in figure 13, where the Reynolds shear stress is also plotted for comparison (note
that the Reynolds shear stress plotted here is also obtained via the ‘spectrum removal’
procedure in this section for the consistency of discussion). Expectedly, the turbulent
fluctuation intensities decrease as the flow approaches downstream. At x1, the maxima
of the Reynolds stress components lie at y = 0.5δ. As the flow approaches downstream,
the peak locations gradually get lower. Like the Reynolds shear stress, these peaks also
lie at different wall-normal locations from maximal mixing-layer-induced mean shear
(y = 0.65δ, recall figure 7). Moreover, the mixing-layer-induced velocity variances are
unsymmetrical due to the restriction of the wall, as illustrated in § 3. The anisotropy, i.e.
the Reynolds stress normalized by the local kinetic energy 2K, is almost constant from
y/δ ≈ 0.3 to y/δ ≈ 1.0, with the values of 0.49, 0.23, 0.28 and 0.15 for the streamwise,
wall-normal, spanwise velocity variances, and the Reynolds shear stress, respectively.
According to these values, we further calculate the second and third invariants (II and
III) of the Reynolds stress anisotropy tensor. The values of (II, III) within the range of
y/δ ≈ 0.3 ∼ 1.0 approximately lies on the line that represents the axisymmetric expansion
in the map of Lumley triangle, as demonstrated in § A. This is consistent with the results
reported by Pirozzoli et al. (2010) and Fang et al. (2020), and was pointed out to be the
typical state of turbulence in a mixing layer (Pope 2000).
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Figure 13. Mixing-layer-induced Reynolds stress components (a,c,e,g) and their anisotropy (b,d, f,h),
(a,b) Ruu,m, (c,d) Rvv,m, (e, f ) Rww,m, (g,h) −Ruv,m, with K∞ representing the MKE of the incoming flow
and Km the TKE. Line legends refer to table 2.
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Figure 14. (a) Convective Mach number Mc. Ratios between the maximal values, (b) Rvv,m/Ruu,m,
(c) −Ruv,m/Ruu,m.

We further compare these ratios with those of the compressible mixing layers. To
incorporate the compressibility effects, the convective Mach number is defined as

Mc = Δu
au + al

, (5.1)

where Δu denotes the velocity difference between the upper and lower stream, and au
and al the corresponding sound speed in the free mixing layer. Herein, we take Δu as
the maximum of ũm along the wall-normal coordinate, and au and al the sound speed on
the wall and at the outer edge of the boundary layer. For the presently considered cases,
Mc approximately varies from 0.32 to 0 downstream of the interaction zone, as shown in
figure 14(a).

We plot the ratios Rvv,m/Ruu,m and −Ruv,m/Ruu,m above in figure 14(b,c), along with the
results reported by some of the previous research. The ratios obtained in the present study
are consistent with those of the free mixing layers, further validating their resemblance.
Moreover, although it has been long recognized that compressibility effects have certain
influences on the statistics of the mixing layer flows (Pantano & Sarkar 2002; Dupont et al.
2019), the convective Mach number in the present study is not high enough for them to be
manifested. This may not be the case when the incoming Mach number is higher (Helm
et al. 2021).
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Figure 15. Budget of TKE transport, normalized by viscous scales, (a) advection term CK , (b) production
term PK , (c) diffusion term TK , (d) dissipation term DK . Line legends refer to table 2.

5.2. Transport of TKE
To provide useful information for turbulent modelling and the establishment of the
physical model in the subsequent discussions, in this section, we report the budget of
the TKE transport equation, cast as (Pirozzoli & Bernardini 2011a)

∂ρ̄K
∂t

= − ∂ρ̄ũjK
∂xj︸ ︷︷ ︸
CK

− ρ̄ũ′′
i u′′

j
∂ ũi

∂xj︸ ︷︷ ︸
PK

+ ∂

∂xj

[
−1

2
ρ̄ ˜u′′

i u′′
i u′′

j − p′u′′
j + τ ′

iju
′′
i

]
︸ ︷︷ ︸

TK

− τ ′
ij
∂u′′

i
∂xj︸ ︷︷ ︸

DK

+ p′ ∂u′′
i

∂xi︸ ︷︷ ︸
ΠK

+ u′′
i

(
∂τ̄ij

∂xj
− ∂ p̄

∂xi

)
︸ ︷︷ ︸

BK

. (5.2)

The right-hand side terms of this equation represent the mean flow advection CK ,
production by the mean shear PK , spatial diffusion TK , viscous dissipation DK , pressure
dilatation ΠK and mass diffusion BK . The last two terms directly reflect the compressibility
effects. However, they can be neglected in the presently studied flow at M∞ = 2.28, as
has been proved by previous studies (Li et al. 2010; Jammalamadaka, Li & Jaberi 2014;
Tong et al. 2017), and therefore are not shown here. The first four terms are displayed
in figure 15. As we can infer from these budget terms, the TKE is produced by the
mean shear (figure 15b) and dissipated by viscosity (figure 15d). Their ratios DK/PK
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Figure 16. Contribution of canonical and mixing-layer-related portions to the turbulent production at (a) x1,
(b) x2, (c) x3 and (d) x4.

within y/δ = 0.2 ∼ 1.0 are approximately −0.8. Due to the spatial inhomogeneity, it is
transferred from y/δ � 0.5 to the inner region and downstream by the mean flow advection
CK (figure 15a), and from 0.2 � y/δ � 0.7 to the inner and outer regions by turbulent
diffusion TK (figure 15c). At x1, x2 and x3, the CK and TK terms play significant roles in
the TKE transport, while they decay rapidly downstream. At x4 and x5, only the production
PK and dissipation DK are dominant.

We further split the turbulent production PK term into those contributed by canonical
and mixing-layer-induced portions,

PK,αβ = −Ruv,α

∂ ũβ

∂y
, (5.3)

where the subscripts α and β represent ‘c’ or ‘m’. Thus, the turbulent production can be
split as PK,cc, PK,cm, PK,mc and PK,mm. In figure 16, we plot the ratios PK,αβ/PK to evaluate
their respective contributions. At x1, the PK,mm and PK,cm terms are dominant. As the flow
goes downstream, the contribution from PK,mm gradually decreases, and that from PK,cc
increases. This is consistent with our previous observation that the mixing-layer-induced
mean shear ceases to have strong impacts on flow dynamics at x4, where the mean
velocity profile recovers to that of the canonical boundary layer. The mixing-layer-induced
Reynolds shear stress PK,mc, on the other hand, retains to a very long streamwise extent. Its
contribution to the turbulent production in the outer region manifests no trend to decrease.
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Figure 17. Pressure-strain terms of the Reynolds stress components, normalized by viscous scales, (a) Π+
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(b) Π+
22, (c) Π+

33, (d) variation of Π+
22 and Π+

33 against Π+
11 in y+ > 40 and y/δ < 1.3. Line legends refer to

table 2.

The pressure-strain term of Reynolds stress components, defined as

Πij = −p′ ∂u′′
i

∂xj
, (5.4)

reflects the inter-component energy transfer. The results are shown in figure 17,
normalized by viscous scales. The streamwise component Π+

11 is negative, while the
other two components Π+

22 and Π+
33 are positive above y/δ ≈ 0.1, indicating that the

TKE is transferred from the streamwise component to the cross-stream components.
Moreover, these components approximately obey Π22 ≈ Π33 ≈ −0.5Π11, as displayed
in figure 17(d), further suggesting the maintenance of the axisymmetric expansion state
of Reynolds stress in the dynamical sense (Foysi, Sarkar & Friedrich 2004; Khlifi & Lili
2016; Li et al. 2022).

6. Discussion

Due to the slow dissipation of large-scale turbulent motions, directly simulating the flow
until its full recovery is inevitably computationally expensive. In a recent study, Ding &
Smits (2021) investigated the relaxation of turbulence behind a square bar roughness in a
pipe, where strong flow separation occurs. They characterized the response of turbulence
to the roughness as three different stages: the development of shear layer, turbulent
redistribution and decay and oscillatory and long-lasting recovery. Some of these processes
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have been identified in OSBLI flows as well. Within the interaction zone, where the
flow separation occurs and the related mixing layer is formed, the genesis of large-scale
velocity streaks and cross-stream circulations can be observed. This has been investigated
in our previous study (Yu et al. 2022). The presently studied turbulence relaxation process
corresponds to the second and the third stages in the study of Ding & Smits (2021).
Specifically, these two flows also share commonalities in that the mean velocity returns
quickly to the canonical state, while the Reynolds stresses suffer a long-lasting process
of recovery. Ding & Smits (2021) proved that this process may require longer than 100
times the radius of the pipe. Intriguingly, they observed the oscillation of Reynolds
stress as it approaches downstream, which was further described using a simple physical
model. Since the streamwise extent in the present study is not long enough to contain the
complete relaxation process, we try to establish a simple model to roughly describe the
streamwise evolution of the mixing-layer-induced mean shear and kinetic energy, under
the enlightenment by the work of Ding & Smits (2021),

Integrating the transport equation of MKE and TKE in the wall-normal direction,
the following integral equation for the streamwise evolution of MKE and TKE of the
mixing-layer-induced portion can be formulated as

dRm

dx
≈ −

∫ δ

0
α12Km

∂ ũm

∂y
dy −

∫ δ

0
μ

(
∂ ũm

∂y

)2

dy, (6.1)

dQm

dx
≈ −

[∫ δ

0
α12Km

∂ ũc

∂y
dy −

∫ δ

0
α12Km

∂ ũm

∂y
dy

]
+

∫ δ

0
εKm dy, (6.2)

where Rm and Qm are the energy flux across a streamwise plane, defined as

Rm =
∫ δ

0
ρũũmũm dy, Qm =

∫ δ

0
ρũKm dy. (6.3a,b)

In these equations, the contributions of spatial diffusion and convection terms are
considered negligible after integration based on their physical significance, and the
Reynolds shear stresses are substituted by α12Km, the TKE multiplied by the anisotropic
factor. These equations state that the MKE is transferred to TKE and dissipated by
viscosity, and the TKE receives energy from the mean flow, and is dissipated by viscosity.
Note that these are not the precise budget equations, they are merely simplified models
that qualitatively describe the transport of the mixing-layer-induced kinetic energy.

We further assume that the decomposed mean profiles and TKE are self-similar, i.e.

ũc = Uδf (η), ũm = Umg(η), Km = Km0G(η), (6.4a–c)

where η = y/δ, Um and Km0 are functions of x only, and Uδ is a constant. Substituting
these formulas into (6.1) and (6.2), the following ordinary differential equations can be
obtained:

β11Uδ

dU2
m

dx
= −α12β12Km0Um − β13U2

m, (6.5)

β21Uδ

dKm0

dx
= (−α12 + β20)[β22Km0Uδ − β23UmKm0], (6.6)
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with the parameters defined as follows:

β11 =
∫ 1

0
fg2δ dη, (6.7a)

β12 =
∫ 1

0
Gg′ dη, (6.7b)

β13 =
∫ 1

0
μg2δ dη, (6.7c)

β21 =
∫ 1

0
G( f + g)δ dη, (6.7d)

β22 =
∫ 1

0
Gf ′δ dη, (6.7e)

β23 =
∫ 1

0
Gg′δ dη, (6.7f )

and β20, concerning the viscous dissipation, is assumed as a constant value β20 = 0.8α12,
relying on the observation from TKE budget terms in figure 15 that the ratio |Dk|/|PK | in
the outer region is approximately 0.8.

To further simplify the analysis, we assume the self-similar canonical mean flow f as the
1/7 power law, the mixing-layer-induced mean flow g and TKE distribution G as Gaussian
distributions (the former following the self-similarity solutions of planar wake turbulence)

f (η) = η1/7, g(η) = exp(−3.5η2), G(η) = exp(−8(η − 0.5)2), (6.8a–c)

with the parameters in the Gaussian distribution selected to guarantee that the value at
η = 1 is negligible.

The values of Um and Km0 at x∗ = 2.0 are used as the initial values to integrate
the equation. The results are shown in figure 18, along with the DNS results. It is
encouraging that this roughly established model, under numerous assumptions, is capable
of approximately replicating the evolution of Um and Km within a certain range. The results
also support the previous observation that the mean shear induced by the mixing layer
decays rapidly, while the TKE suffers a recovery decaying exponentially. Moreover, we
can infer from the figure that it may require longer than 50 boundary layer thicknesses for
the TKE to fully recover. These are also qualitatively consistent with the results reported by
Ding & Smits (2021) for the evolution of turbulence behind a roughness bar in turbulent
pipe flows. The distinction between the two flow is also obvious. For the turbulent pipe
flow, they observed the oscillation of Reynolds stress as it approaches downstream. This,
however, is not shown in the presently studied flow. We speculate that it is the boundary
of the pipe that restricts the spatial growth of the mixing layer.

7. Concluding remarks

In the present study, we investigated the evolution of turbulent fluctuations in the
post-shock region of the oblique-shock/turbulent boundary layer interaction flow. We
performed the direct numerical simulation of the impinging oblique shock with the angle
of 33.2◦ on a M = 2.28 supersonic boundary layer, where the incipient flow separation
occurs. The interaction zone induces a strong shear layer resembling the free mixing layer,
which enhances the large-scale motions downstream of the interaction zone.
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Figure 18. The distribution of (a) Um and (b) Km, line: model, symbols: DNS.

In order to investigate the statistics directly related to the mixing layer, we proposed
to decompose the mean velocity and Reynolds shear stress into the canonical and the
mixing-layer-induced portions. The former is constructed by the canonical turbulent
boundary layer flows, leaving the latter induced by the flow separation in the interaction
zone. We found that the mixing layer grows with the boundary layer thickness. The
induced mean shear and Reynolds shear stress are unsymmetrical due to the restriction
of the wall. The return to the equilibrium state of mean flow is achieved within 13
boundary layer thicknesses downstream of the interaction zone, where the ‘hidden’ mixing
layer cease to have strong impacts on the mean flow. Based on the Renard–Deck skin
friction decomposition, we found that upstream of the interaction zone, the skin friction
is composed of the contribution from the viscous stress and Reynolds shear stress, while
downstream of the interaction zone, the advection term is also significantly enhanced. This
advection term is mostly balanced by the mixing-layer-related terms, while the constructed
canonical portions contribute primarily to the skin friction, as in the upstream region of
the shock wave.

The TKE induced by the mixing layer is extracted from the spanwise spectra by
removing the canonical near-wall spectra. The velocity variances in the inner region return
anew to the equilibrium state at merely 10 boundary layer thicknesses downstream of the
interaction zone. The large-scale motions in the outer region that intensify the velocity
fluctuation variances decay slowly. The anisotropy of the Reynolds stress tensor in the
outer region behaves similarly to the incompressible and weakly compressible mixing
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Figure 19. Distribution of the anisotropy tensor of Reynolds stress between y/δ = (0.3 ∼ 1.0), plotted in
(a) ξ–η and (b) III–II planes.

layer, consistent with the numerous previously reported experimental and numerical
results. Moreover, the large-scale motions superpose in the near-wall region, leading to
the anomalous behaviour of the near-wall streamwise and spanwise velocity variances.
The wall-normal variance and the Reynolds shear stress, therefore, are better quantities to
determine the complete relaxation of near-wall turbulence.

Lastly, a simple model to describe the relaxation of turbulence downstream is
established based on the observations of the DNS results. The evolutions of mean flow
and TKE predicted by this model are consistent with the DNS results. It further shows that
the large-scale motions decay exponentially, and it may require longer than 50 boundary
layer thicknesses for the turbulence to fully recover to the canonical state.
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Appendix A. Distribution of the Reynolds stress invariant

In figure 19 we present the anisotropic tensor of the Reynolds stress within y/δ = 0.3 ∼
1.0 in the map of Lumley’s triangles, plotted in the maps of ξ–η and III–II. Here, we
define the anisotropic tensor bij as

bij = Rij

Rii
− 1

3
δij, (A1)

and the second and the third invariants as

6η2 = −2II = bijbji, 6ξ3 = 3III = bijbjkbki. (A2a,b)
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As can be observed in figure 19, the invariants of the Reynolds stress tensor within the
range of y/δ = 0.3 ∼ 1.0 are situated close to the line that represents the axisymmetric
expansion.
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