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Abstract

The sequence a(1), a(2), a(3), . . . , labelled A088431 in the Online Encyclopedia of Integer Sequences, is
defined by: a(n) is half of the (n + 1)th component, that is, the (n + 2)th term, of the continued fraction
expansion of

∞∑
k=0

1
22k .

Dimitri Hendriks has suggested that it is the sequence of run lengths of the paperfolding sequence,
A014577. This paper proves several results for this summed paperfolding sequence and confirms
Hendriks’s conjecture.

2020 Mathematics subject classification: primary 11B83.
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1. Introduction and preliminaries

According to Ben-Abraham et al. [4], the regular paperfolding sequence was dis-
covered in the mid-1960s by three NASA physicists: John Heighway, Bruce Banks
and William Hartner. Martin Gardner celebrated their work in Scientific American
[7], after which Davis and Knuth [5] developed the mathematical underpinnings of
paperfolding. Since that time, many papers have been written exploring the diverse
features of this sequence, notably Dekking et al. [6], Allouche and Shallit [1], Mendès
France and van der Poorten [9], and Mendès France and Shallit [8].

We start with two alternative definitions of sequence A088431, both found in the
Online Encyclopedia of Integer Sequences [13].

DEFINITION 1.1 (A088431 continued fraction definition [13]). The sequence
A = a(1)a(2)a(3) . . . is defined by: a(n) is half of the (n + 1)th component, that is,
the (n + 2)th term, of the continued fraction expansion of

∞∑
k=0

1
22k .
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TABLE 1. Initial terms of the sequence A088431.

a(n) Formula Value

a(1) a(1) = 2 2
a(2) 1, since undefined 1
a(3) a(a(1) + 1) = a(2 + 1) 2
a(4) a(a(1) + a(2) + 1) = a(2 + 1 + 1) 2
a(5) 3, since undefined 3
a(6) a(a(1) + a(2) + a(3) + 1) = a(2 + 1 + 2 + 1) 2
a(7) 1, since undefined 1

DEFINITION 1.2 (A088431 alternative definition [13]). The sequence
A = a(1)a(2)a(3) . . . is given by the following rule: let i = 1, 2, 3, . . . and a(1) = 2.
Then

a(a(1) + a(2) + a(3) + · · · + a(n) + 1) = 2

and the ith undefined term of A is the ith term of the sequence

1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, . . . .

EXAMPLE 1.3. Based on Definition 1.2, we give the first few terms of the sequence
A088431 in Table 1.

Dimitri Hendriks in [13] has suggested that sequence A088431 appears to be the
sequence of run lengths of the regular paperfolding sequence A014577. We prove
several results concerning this summed paperfolding sequence and confirm Hendriks’s
conjecture.

In what follows, for simplicity and where no ambiguity exists, we remove the
commas from sequences. For example, for a sequence only having values 1, 2 or 3,
the sequence 2, 2, 1, 3 becomes 2213.

Davis and Knuth [5] prove the following result which we adopt as a definition for
the paperfolding sequence. The notation is taken from Bates et al. [2].

DEFINITION 1.4 (Paperfolding sequence). Let Sn be the paperfolding sequence of
length 2n − 1 and let SR

n be Sn in reverse order with 0 becoming 1 and 1 becoming
0. Then, S1 = 1, Sn+1 = Sn1SR

n and SR
n+1 = Sn0 SR

n .

Bates et al. [2, 3] identify the following results for Sn.

THEOREM 1.5 (Expression for Sn). For n > 0 and h, k ≥ 0, Sn = f1 f2 . . . f2n−1, where

fi =

{
1 if i = 2k(4h + 1),
0 if i = 2k(4h + 3).
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THEOREM 1.6 (Paperfolding runs). The paperfolding sequence, Sn, contains only runs
of single, double or triple entries of 0; or single, double or triple entries of 1. In
particular, for n ≥ 4, Sn contains:

(i) 2n−4 instances of the triple 111, and 2n−4 − 1 instances of the triple 000;
(ii) 2n−3 instances of the double 11, and 2n−3 + 1 instances of the double 00;
(iii) 2n−4 instances each of the single 1, and the single 0.

THEOREM 1.7 (Interleaved paperfolding). Let S = f1 f2 f3 . . . be the paperfolding
sequence of infinite length. Then

S = S3 f1 SR
3 f2 S3 f3 SR

3 f4 S3 f5 SR
3 . . . .

That is, S is formed from the alternating interleave of two subsequences, S3 and SR
3 ,

with itself.

We consider the runs of identical terms in Sn or S, that is, the sizes of the sequence
of successive digits 1 and 0 of Sn or S. We begin with a definition of these runs.

DEFINITION 1.8 (Summed paperfolding sequence). For Sn = f1 f2 . . . f2n−1:

• the summed paperfolding sequence, Gn, is the sequence of the sizes of successive
digits 1 and 0 of Sn;

• the summed paperfolding sequence of infinite length is G = limn→∞ Gn and is
designated as G = g(1)g(2)g(3) . . .

We show in Theorem 1.10 that Gn has length 2n−1.

EXAMPLE 1.9. S4 = 110110011100100, G4 = 21223212 and G = 21223212 . . . .

The key results in this paper are:

• Theorem 2.1, a closed-form expression for G analogous to the expression for Sn (and
by extension S) given at Theorem 1.5;

• Theorem 2.2 identifying the main internal relationships within G;
• Theorem 4.1 (Main Result) confirming Hendriks’s conjecture [13]. That

is, the sequence A = a(1)a(2)a(3) . . . of A088431 is exactly the sequence
G = g(1)g(2)g(3) . . . of Definition 1.8.

THEOREM 1.10 (Length of Gn). |Gn| = 2n−1, where |Gn| is the length of Gn.

PROOF. For n < 4, our result is true. From Theorem 1.6, for n ≥ 4, there are 2n−4 111s,
2n−4 − 1 000s, 2n−3 11s, 2n−3 + 1 00s, 2n−4 1s and 2n−4 0s. Hence,

|Gn| = 2n−4 + 2n−4 − 1 + 2n−3 + 2n−3 + 1 + 2n−4 + 2n−4 = 2n−1. �

Note that from Definition 1.4, since Sn+1 = Sn1SR
n , the initial |Gn| terms of Gn+1 will

be Gn. Since by Theorem 1.10, |Gn| = 2n−1, we can write

Gn = g(1)g(2) . . . g(2n−1 − 1)g(2n−1).
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2. Basic facts concerning G

We now develop an analogous expression for G to that given at Theorem 1.5 for Sn
(and, by extension, S).

THEOREM 2.1 (Expression for G). For h, k, p ≥ 0, G = g(1)g(2)g(3) . . . , where

g(n) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if (i) n = 8k + 2, or
if (ii) n = 8k + 7,

2 if (iii) n = 8k + 1 and k = 2p(4h + 3), or
if (iv) n = 8k + 3, or
if (v) n = 8k + 4 and k is even, or
if (vi) n = 8k + 5 and k is odd, or
if (vii) n = 8k + 6, or
if (viii) n = 8k + 8 and k + 1 = 2p(4h + 1).

3 if (ix) n = 8k + 1 and k = 2p(4h + 1), or
if (x) n = 8k + 4 and k is odd, or
if (xi) n = 8k + 5 and k is even, or
if (xii) n = 8k + 8 and k + 1 = 2p(4h + 3).

PROOF. From Theorem 1.6, S only contains singles, doubles and triples. Thus, the
only possible terms in G are 1, 2 and 3. From Theorem 1.7, each S3 and SR

3

starts with 11 and ends with 00 and the component S3 fi SR
3 fi+1 is followed by

S3 fi+2 SR
3 fi+3, which is followed by S3 fi+4 SR

3 fi+5, and so on, indefinitely. Let the

0th component be S3 f1 SR
3 f2. Then the kth component is S3 fi SR

3 fi+1 where i is odd

and k = (i − 1)/2. Thus, the translation from S to G of the kth component, S3 fi SR
3 fi+1,

can be represented by eight terms, g(8k + 1) to g(8k + 8), where k = (i − 1)/2 with two
possible configurations:

• fi = 0 : S3 fi SR
3 fi+1 becomes (2 or 3)123221(2 or 3); or

• fi = 1 : S3 fi SR
3 fi+1 becomes (2 or 3)122321(2 or 3),

where bracketed entries are determined by the values of fi−1 and fi+1.
We consider each of g(n) = 1, 3 and 2 separately.

(1) g(n) = 1. In the 8-term translations above, we have g(8k + 2) and g(8k + 7) always
taking the value 1, irrespective of the values of fi−1, fi or fi+1, and there are no
other values of 1 in this 8-term translation. Thus, g(n) = 1 if n = 8k + 2 or 8k + 7.

(2) g(n) = 3. Consider the component S3 fi SR
3 fi+1.

(i) If fi = 0, then g(4i) = g(8k + 4) where from Theorem 1.5, i = 2p(4h + 3).
Since i is odd, p = 0. Thus, 8k + 4 = 4(4h + 3) and so k = 2h + 1 which is
odd. It follows that g(8k + 4) = 3 for k odd.
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(ii) If fi+1 = 0, then g(4(i + 1)) = g(8k + 8) where from Theorem 1.5,
i + 1 = 2m(4h + 3). Since i + 1 is even, m > 0. Thus, 8k + 8 = 4(i + 1) =
2m+2(4h + 3). That is, k + 1 = 2m−1(4h + 3) = 2p(4h + 3) for p = m − 1,
that is, for p ≥ 0. It follows that g(8k + 8) = 3 for k + 1 = 2p(4h + 3) where
p ≥ 0.

(iii) If fi = 1, then g(4i + 1) = g(8k + 5) where from Theorem 1.5,
i = 2p(4h + 1). Since i is odd, p = 0. Thus, 8k + 5 = 4(4h + 1) + 1 and
so k = 2h. It follows that g(8k + 5) = 3 for k even.

(iv) If fi−1 = 1, then for i ≥ 3, that is, k ≥ 1, g(4(i − 1) + 1) = g(4i − 3) =
g(8k + 1) where from Theorem 1.5 i − 1 = 2m(4h + 1). Since i − 1 is even,
m > 0. Thus, 8k + 1 = 2m+2(4h + 1) + 1, that is, k = 2m−1(4h + 1). It follows
that g(8k + 1) = 3 if k = 2p(4h + 1) for p = m − 1 ≥ 0.

(3) g(n) = 2. Since the only possible terms in G are 1, 2 and 3, all terms not part of
conditions (i) and (ii) must be terms having value 2. The result follows. �

The following theorem identifies important internal relationships within G.

THEOREM 2.2 (Relationships in G). Let G = g(1)g(2)g(3) . . . be the summed paper-
folding sequence of infinite length, then:

(a) g(2) = 1, g(2n) = 2 for n > 1;
(b) g(3) = 2, g(2n + 1) = 3 for n > 1;
(c) g(2n − i) = g(i + 1) for 0 ≤ i < 2n−1 − 1;
(d) g(2n + i) = g(i) for 1 < i < 2n−1 or 2n−1 + 1 < i < 2n − 1;
(e) g(6) = 2, g(2n + 2n−1) = 3 for n > 2;
(f) g(7) = 1, g(2n + 2n−1 + 1) = 2 for n > 2;
(g) g(2n + 2m) = g(2m) = 2 for n > m + 1 > 2;
(h) g(2n + 2m + 2r) = g(2m + 2r) for n > m + 1 > r + 1;
(i) g(2k1 + 2k2 + · · · + 2kr ) = g(2k2 + 2k3 + · · · + 2kr ) for k1 > k2 > · · · > kr and r > 2;
(j) g(2k1 + 2k2 + · · · + 2kr ) = g(2kr−2 + 2kr−1 + 2kr ) for k1 > k2 > · · · > kr and r > 2.

PROOF. The assertions follow from Theorem 2.1, with its subcases denoted by items
(i) to (xii).

(a) g(2) = 1 by item (i); g(4) = 2 by item (v); g(2n) = 2 for n > 2 by item (viii).
(b) g(3) = 2 by item (iv); g(5) = 3 by item (xi); g(2n + 1) = 3 for n > 2 by item (ix).
(c) The first 2n−1 − 1 elements of Gn+1 are the sums of runs of 1 and 0, and the last

2n−1 − 1 elements are the same sums, but of 0 and 1 and in reverse order. So,
g(2n − i) = g(i + 1) for 0 ≤ i < 2n−1 − 1.

(d) As 2n + i = 2n+1 − (2n − i) if 1 < i < 2n−1, by part (c) applied twice,

g(2n + i) = g(2n − (i − 1)) = g(i).

If 2n−1 + 1 < i < 2n − 1, then i = 2n−1 + 2n−2 + · · · + 2r + j, where either r = n − 1
and 1 < j < 2r−1 − 1 or r < n − 1 and 0 ≤ j < 2r−1 − 1. In both cases, by part (c),
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g(2n + i) = g(2n+1 − (2r − j)) = g(2r − (j − 1)) = g(2n − (2r − j)) = g(i).

(e) g(6) = 2 by item (vii); g(12) = 3 by item (x); g(2n + 2n−1) = g(3.2n−1) = 3 for
n > 3 and 2n−1 + 1 < i < 2n − 1 by item (xii).

(f) g(7) = 1 by item (ii), g(13) = 2 by item (vi); g(2n + 2n−1 + 1) = g(3.2n−1 + 1) = 2
for n > 3 by item (iii).

(g) For p = n − m ≥ 2, g(2n + 2m) = g(2m(2p + 1)) = 2 by item (viii) and
g(2m) = 2 if m = 0, 1 and g(2m) = 2 if m ≥ 3 by item (viii). Thus, if n > m + 1 > 2,
g(2n + 2m) = g(2m) = 2, by parts (d) and (a).

(h) For n > m + 1 or r > 0, by item (viii),

g(2m + 2r) = g(2r(2m−r + 1)) = g(2r(4h0 + 1)) = 2.

For n > m + 1 > r + 1, by part (d) and item (viii),

g(2n + 2m + 2r) = g(2r(2n−r + (4h0 + 1))) = g(2r(4h1 + (4h0 + 1)))
= g(2r(4(h1 + h0) + 1)) = 2.

(i) For r > 2 and k1 > k2 > · · · > kr, by part (d),

g(2k1 + 2k2 + · · · + 2kr ) = g(2k2 + 2k3 + · · · + 2kr ).

(j) By repeated use of part (i) of this proof. �

Note that for n > 1, g(2n) = 2 and, for n > 2, g(2n) + 1 = 3. This follows from
observing that the sequence prior to g(2n−1) is mirrored to give the sequence after
g(2n−1 + 1), reflected around 2, 3 in each case.

3. The expression h(n)

The following definition is important in developing our main result.

DEFINITION 3.1 (Expression for h(n)). For n > 0,

h(n) = g(1) + g(2) + g(3) + · · · + g(n).

THEOREM 3.2 (Relationships involving h(n)). Assume n > 0.

(a) If n = 4q + 1, then h(n) = 2n.
(b) If n = 2k(4q + 1) and k > 0, then h(n) = 2n − 1.
(c) If n = 4q + 3, then h(n) = 2n − 1.
(d) If n = 2k(4q + 3) and k > 0, then h(n) = 2n.

PROOF. The proof is by induction on n. For n = 1, 5 and 6, h(n) = 2n; and for n = 2, 3
and 4, h(n) = 2n − 1. So conditions (a) to (d) hold for these minimal values of n.
Assume conditions (a) to (d) for values less than some n. Suppose n = 2k(4q + 1) > 3
and let q =

∑r
i=1 2qi . Then

n = 2k +

r∑
i=1

2qi+k+2
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and

h(n) =
2q1+k+2∑

j=1

g(j) +
n−2q1+k+2∑

j=1

g(2q1+k+2 + j).

If q2 < q1 − 1, then n − 2q1+k+2 < 2q1+k+1, so by Theorem 2.2(b) and (d),

g(2q1+k+2 + 1) = 3 = g(1) + 1

and

h(n) =
2q1+k+2∑

j=1

g(j) + 1 +
n−2q1+k+2∑

j=1

g(j) = h(2q1+k+2) + 1 + h(n − 2q1+k+2).

So by the induction hypothesis, if k > 0,

h(n) = 2q1+k+3 − 1 + 1 + 2n − 2q1+k+3 − 1 = 2n − 1.

If q2 = q1 − 1, by Theorem 2.2(e), (b) and (f),

g(2q1+k+2 + 2q2+k+2) = 3 = g(2q2+k+2) + 1

g(2q1+k+2 + 2q2+k+2 + 1) = 2 = g(2q2+k+2 + 1) − 1.

So by Theorem 2.2(d), for the other values of j,

h(n) =
2q1+k+2∑

j=1

g(j) + 1 +
n−2q1+k+2∑

j=1

g(j) = 2n − 1

as before, so we have condition (b). If, instead, k = 0, the induction hypothesis gives

h(n) = 2q1+k+3 − 1 + 1 + 2n − 2q1+k+3 = 2n,

then we have condition (a). If n = 2k(4q + 3), the working is as above, except that the
induction hypothesis gives, for k > 0,

h(n) = 2q1+k+3 − 1 + 1 + 2n − 2q1+k+3 = 2n,

and for k = 0,

h(n) = 2q1+k+3 − 1 + 1 + 2n − 2q1+k+3 − 1 = 2n − 1,

so we have conditions (d) and (c). �

THEOREM 3.3 (Limits on h(n)). If h(n) + 1 � 2, 7 (mod 8), then g(h(n) + 1) = 2 and
for no other values of m is g(m) = 2.

PROOF. If n = 4q + 1, by Theorem 3.2(a), h(n) + 1 = 2n + 1 = 8q + 3. So by Theorem
2.1(iv), we have the result.

If n = 2k(4q + 1) and k > 0, by Theorem 3.2(b), h(n) + 1 = 2n = 2k+1(4q + 1) and
we have the result by Theorem 2.1(viii) if k > 1, and by Theorem 2.1(v) if k = 1.

If n = 4q + 3, by Theorem 3.2(c), h(n) + 1 = 2n = 8q + 6. So by Theorem 2.1(vii),
we have the result.
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If n = 2k(4q + 3), by Theorem 3.2(d), h(n) + 1 = 2n + 1 = 2k+3q + 2k+2 + 2k+1 + 1.
So by Theorem 2.2(j), g(h(n) + 1) = g(2k+2 + 2k+1 + 1) and the result follows from
Theorem 2.2(f).

By Theorem 3.2, the value of g(m) when m = 8q + 7 or 8q + 2 is 1, and for
m = 8q + 1, 2k+1(4q + 3) with k > 0 or 2k+1(4q + 1) + 1 with k > 0, g(m) = 3.

Summarising, g(m) = 2, where m = 8q + 3, 8q + 6, 2k+1(4q + 1) with k > 0 and
2k+1(4q + 3) + 1 with k > 0. So all the cases when g(m) = 2 are obtained when
m = h(n) + 1. �

4. Confirmation of Hendriks’s conjecture

We are now able to state our main result, namely that the sequence A = a(1)a(2)a(3) . . .
of A088431 is exactly the sequence G = g(1)g(2)g(3) . . . .

THEOREM 4.1 (Confirmation of Hendriks’s conjecture). The sequences A and G are
the same, that is, a(n) = g(n).

PROOF. By Theorem 2.2(c), g(2n − i) = g(i) for 0 ≤ i < 2n−1 − 1, and

g(2n − 2n−1 + 1) = g(2n−1 − 1) = 3 = g(2n−1) + 1.

Let GR+1
n denote the reverse of Gn with a 1 added to the new first term. Then

Gn+1 = GnGR+1
n .

Since

G5 = 2122321231232212,

G5 has the subsequences: 321, 123, 1223, 3221, 212, 312, 232 and 231. Thus, 321 and
213 will appear in GR+1

5 and so in G6. For n > 3,

g(2n−1) = g(2n−1 + 2) = 2 and g(2n−1 + 1) = 3,

so the middle sequence of any Gn will be 232. No new sequence of this kind can be
generated in any Gn or GR+1

n . Leaving out all the 2s in G, every 1 is followed by a 3 and
every 3 is followed by a 1, giving 1, 3, 1, 3, . . . . By Theorem 3.3, g(n) has the defining
properties of a(n) given at Definition 1.2. �

The referee advised us of the existence of the free software Walnut, which is
described by Shallit [12]. Walnut can decide first-order predicates about automatic
sequences, including the paperfolding sequence. The referee confirmed Theorem 4.1
using Walnut code. Walnut is authored by Hamoon Mousavi, and has been used
extensively in confirming features of sequences found in the Online Encyclopedia of
Integer Sequences (OEIS).
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5. Summed paperfolding and continued fractions

There is an interesting connection between continued fractions and summed
paperfolding. Shallit [11] identifies the continued fraction expansion of

∑u+1
k=0 1/m2k

for m an integer greater than 1, once the continued fraction expansion of
∑u

k=0 1/m2k
is

known. Thus, if
u∑

k=0

1
m2k = [a0; a1, . . . , an],

then
u+1∑
k=0

1
m2k = [a0; a1, . . . , an−1, an + 1, an − 1, an − 1, an−1, an−2, . . . , a2, a1].

He acknowledges that for m = 2, which is the focus of our attention, the expansion
contains a number of terms having value 0. This is not problematic as the following
equality allows for the conversion of such continued fractions:

[a0; a1, . . . , ai, 0, ai+1, ai+2, . . . , an] = [a0; a1, . . . , ai + ai+1, ai+2, . . . , an].

He also shows that
∑∞

k=0 1/m2k
for m ≥ 2 is irrational and proves some interesting

results relating to the partial denominators of its continued fraction.
Pethö [10] generalises the method found by Shallit [11] to develop a continued

fraction expansion for Fredholm numbers of the second kind. The number
∑∞

k=0 1/22k
,

upon which the summed paperfolding sequence is based, is an example of a Fredholm
number of the second kind.
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