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Let %lc denote the variety of all nilpotent groups of class :g c, that is,
%tc is the class of all groups satisfying the law

[x1, • • •, xc+1j = 1,

where we define, as usual, [^1,^2] = x^x^Xj^x^ and, inductively,
[xlt- • •, xn] = [[xlt • • •, xn_{\, xn]. Further, let Fk(%) denote a free group
of 3lc of rank k. In her book Hanna Neumann ([4], Problem 14) poses the
following problem: Determine d(c), the least k such that Fk(3lc) generates
3ic. Further, she suggests, incorrectly, that d(c) = [c/2] + l. However,
as we shall prove here, the correct answer is d(c) = c—1, for c 2g 3. 2 More
generally, we shall prove the following result.

THEOREM. Let var Fffi,.) denote the variety generated by F^Wl,.). Then

(1) var FtW.) < var F2{%) < • • • < var F^Ql,) = % for all c ^ 3.

For convenience we will divide the proof into two parts. In part I the
inequalities in (1) are established by constructing, for each k sS c, a law in
Fk_2$lc) which is not a law in irfc_1(9

li(.). In part II the final equality in (1)
is established by showing that Fk(^lc) is residually a (c—1) generator group,
for any k ^ c. 3

Par t I:

(2) var Fi^Qft,) < var Ft(%), 2 ^ k ^ c - 1 .

PROOF OF PART I. To show (2) for 3 ^ k ^ c— 1 (the case k — 2 is
trivial) it is sufficient to find a law QktC— 1 which holds in Fk_r^Sle) but

1 The author gratefully acknowledges the support of the National Science Foundation.
2 Since preparing this manuscript the author has received a letter reporting two inde-

pendent proofs of this result from M. F. Newman in Canberra [1], both based on somewhat
less elementary arguments, however.

3 All notation and terminology not specified follows that of [3] or [4].
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not in Fk(3lc). The particular law we have chosen is constructed as follows:
Let

(3) Qk = IT[** .^ ( i ) . - - - . ^ (* - i ) ] " 1

where a runs through all permutations of{ l , • • •, k — 1} and \a\ = 1 if a
is even, \a-\ = — 1 if cr is odd. Then we define Qc^1>e to be Qc and, for
3 ^ k ^ c — 2, QKc= [Qk+1, xk+2, •••,«„]. We first prove the following.

(A) Qe = 1 holds in F._,{%) but not in F,_,(%), c ^ 3.

PROOF OF (A). Let Rk = Z[y1, • • -, yk] be a. free associative ring over
Z in the free non-commuting indeterminates yx, • • •, yk, and let Ik>c+1 be
the (two-sided) ideal in Rk generated by all monomials of degree c+1 .
In Rk c = RkIIkc+1 any element 1+t/,- has an inverse l—y^y? — • • • ±y\,
and, hence, we may consider the multiplicative group Gk c in Rk e generated
by the elements l-\-y{, i = 1, • • -, k. We define (z1, z2) = z1z2—z2z1 and,
inductively, (z1( • • •, zn) = [(zlt • • •, z,,^), zn), zts Rk. A direct computa-
tion shows that

(4) [l-f-Zi> • • ", l+2«] = ! + (^i. " ' ". zn)+terms of higher degree,

for any l+z t e Gkc. Since the w-length commutator (z1, • • -, zn) is a homo-
geneous polynomial of degree n in the zt, it follows that Gkc e%lc. In fact
(cf., [3], Chapter 5), Gk<c ^ Fk(yic). In particular,

n [ i+ze , l + ^ d ) , • • •, i+««,(^-i)]|<r| = 1 + 2 w\(zc,^i), • • - . ^ ( O - D ) .

for elements 1 -\-zt:e Gk> e. Hence, to prove (A) it is sufficient to prove

(5) Q'c = 2M(*.,*rti), '--.a'«r(e-i)) = 0

in Rc-2,c but not in i?c_ljC. (In this context, Q'e may be considered as
element in the free associative ring Re(x) = Z[xlt • • •, xc] just as Qc may
be considered as an element of the free group on xlt • • -, orc (cf., [3]).)

The proof of (5) is based on the following lemma.

LEMMA. Let P ^ 0 be a homogeneous polynomial in Rc of total degree
c (5: 3) and of degree 1 in each indeterminate yi: • • •, yc. If P is a linear
combination of c-fold commutators, i.e., elements of the form (alt • • •, ac),
then for some i ^ j , P ^ O modulo yi = y},. (The latter statement will be
abbreviated by P{y{ — y3} i=- 0.)

PROOF. First we note that the polynomial

(6) P, = PAvi,-- -. yc) = 1 \o\yM) • • • y«*.

https://doi.org/10.1017/S1446788700005929 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700005929


30 Frank Levin [3]

where a runs through all permutations of (1, • • •, c} satisfies PJy{ = «/,-} = 0,
for any i =fc j . Prt c 25 3. is not a. linear combination of c-fold. commutators.
For, if it were, then by the DynHn-Soecht-Wever Theorem (cf., [3]),
we would ha.ve

However, a. straightforward, induction starting with

P., = 2{xy, x%, xa) + 2(^ , xx, a:,)+ 2(a;,, x,, x9),

which is 0 by the Tacobi identity, and noting that, for c > 3,

shows that {Pr} = 0 for all c ^ 3.
To complete the proof of the Lemma it suffices to show that any P

described in the Lemma, which satisfies P{yt = .y,} = 0 for all i ^ j , is a
multiple of P c . The proof is by induction on c (starting with c = 2. however).
For c = 2, P =-. nyfy^-^-my^y-,, and P{y-, — y,} = 0 imnlies that m = —n,
i.e.. P =-- nP%.

Next, let c > 2 and write P in the form

where the A( are homogeneous of total decree c—1 in yx, • • •, y(> • • •, yc

(t/i omitted). Since P{yv = yn} — 0 for any p, q ̂  k. it follows by induction
that

where Pr-X,k = Pc-i(yi> ' ' '> Vk, ' " '. y,-), as defined by (6). Thus,

(7) P = 2»*Pc-i.*y*,
k—\

However, since P{y-, = yk} = 0 for any k ^ 1, it follows from a comparison
of the first and ft-th summands in (7) that this is possible only if

niPr,-r.ryi+nkP,_lkyk = nx J \a\ynW • • • yniK),
(T

where the summation is restricted to all those a for which either a{c) = 1 or
a(c) = k. Since this is to be true for all k. it follows that P = n^P,,. This
proves the Lemma.

We may now apply the Lemma to (5). Since the component of Q',.
(considered as a. polynomial in Rf) of terms with left factor x, is precisely
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5 , XcXrr(X) ' ' ' Xa-le~l)>

it, is dear that Q'r ^ 0. Further, Q'r is antisvmmetric in the xx, • • -, xr_-,,
so that Q'rlx,, = xj\ = 0 for any i, j ^ c, i =/= j . Since Q'n =/= 0, it follows
from the Lemma tba.t Q'c{xr = #,} ̂  0 for some j =fc c. Thus. Q'r = 0 is not
a law in Rc_y„, which means that Qr = 1 is not. a. law in JF0_,I(SR,) as well.

As just observed. Q'6 = 0 if any two of the z,, • • •, x^_.y, are identified.
Thus, in RK_?., c if the x,- are replaced, by the jy,. then since there axe just, c — 2
distinct y,. it follows that (^ will vanish. To decide whether Q'c= Q'r {xx ,---,xr)
(i.e., considered as a. function of the x4) vanishes over all of Rr_.<>, „ or not
it is enough modulo Ir_9 n+1 to consider linear substitutions of the ys for
the xt. However, since Q'r(Xi, • • •, xc) is multilinear in the xs. such a sub-
stitution yields a linear combination of terms of the form Q'c(vx, • • •, ve),
vt e {Vi- ' ' "> y<•.-?}• By the previous remark, each of these terms vanishes.
Hence, Q'n = 0 is a la.w in Rr_?._c and Qr = 1 is a law in Fr_0(^lr). This
completes the proof of (5) and. hence, of (A).

The above argument shows that var F .̂_,(9Zn) < var F,_i(9l,.). To
complete the proof of Part I we must show that 0h K is trivial over Fh_-, (?flr)
but not over Fk(%), 3 ^ k <L c—2.4 That (?fc.c = 1 is a law for F,...,(5Rr)
follows immediately from the above arguments ree-a.rdine ()„. Further, as
we have seen above, Q'r.{xh = a;,} 7̂  0 for some 7 7̂  ̂ . This imnlies, however,
that

(8) [(?*{»* = a:c}, z^+t, •••,zc]^l

where zt e {x,, • • •, x^}, so that (?,.„ will not be a law for _Fj.(9?,). This is a
direct consequence of the more general, remark that if P 6 R» is a, poly-
nomial with at least two distinct w,- aoDesxine in each term, then for any
yt, (P, y,) ^ 0. To see this, express P in the form P = J y r ^ ™ - where
the Am a,re polynomials without terms with left y, factors. We may assume
that no Am has a term of degree 0. Then,

ytP = 2
This completes the oroof of Part I.

Part II:

For any k ^ c ^ 3, Fh($lr) is residually a (c— 1) generator group.

PROOF OF PART II.. The proof is by induction o n c ^ 3. First, it is

known, for any c ^ 3, that the variety of meta.beJia.n groups nilpotent of

* This portion of the proof of Part 1 based on the law Qie_ c for k g c—2. has been sug-
gested to the author by M. F. Newman and is included, here with bis permission. It replaces
the author's original proof which was based on a slightly more comnlir.ated law with a result-
ing lengthier argument.
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class c is generated by its 2-generator groups (Baumslag, Neumann,
Neumann, Neumann [2], cf., [4], 36. 34). This proves the case c = 3.
Next, let c > 3 and set F = Fk($le), for an arbitrary k Si c. By induction,

where ye F denotes the c-th term of the lower central series of F, is residual-
ly (c—2) generator. Hence, consider geycF. Note that g is a product of
commutators of the form [«!,•• •, «„]. If g involves more than c generators,
say gi, • • •, gm, set g' = g{ge+1 = = • • • = gm = 1}. We may assume, after a
possible reordering of the indices of the git that g' ^ 1. From the Lemma it
follows that g'{g,: = gj} =7̂  1 for some » ^ /, i, / 52 c. Thus, if A7̂  is the normal
closure of the elements gjgj1, gc+i, • • •, gm in F, it follows that g' $N, and
since F/N is generated by (c— 1) elements, it follows that Fk(3lc) is residually
a (c—1) generator group, as desired. This completes the proof of Part II
and, hence, of the theorem.
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