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Let 9, denote the variety of all nilpotent groups of class = ¢, that is,
N, is the class of all groups satisfying the law

(@, " %]l = 1,

where we define, as usual, [z, %,] = a7 a; 2,2, and, inductively,
[y, 2,] = [[%y, ", y_1], x,]. Further, let F,(N,) denote a free group
of N, of rank £. In her book Hanna Neumann ([4], Problem 14) poses the
following problem: Determine d(c), the least & such that F,(%,) generates
N,. Further, she suggests, incorrectly, that d(c) = [¢/2]+1. However,
as we shall prove here, the correct answer is d(c) = ¢—1, for ¢ = 3. 2 More
generally, we shall prove the following result.

THEOREM. Let var F (R,) denote the variety generated by F,(R.). Then
(1) var F;(MN,) < var Fo(\,) <---<var F,_ (N,) =N, forall c = 3.

For convenience we will divide the proof into two parts. In part I the
inequalities in (1) are established by constructing, for each 2 < ¢, a law in
F,_,(%,.) which is not a law in F_;(:,). In part II the final equality in (1)
is established by showing that F,(®,) is residually a (¢—1) generator group,
for any £ = ¢. 3

Part I:
(2) var F,_,(N,) < var F(N,), 2<k<c—1.

ProoF OF PART I. To show (2) for 3 <k <c—1 (thecase k=21is
trivial) it is sufficient to find a law @, ., = 1 which holds in F,_(%®,) but

! The author gratefully acknowledges the support of the National Science Foundation.
% Since preparing this manuscript the author has received a letter reporting two inde-
pendent proofs of this result from M. F. Newman in Canberra [1], both based on somewhat
less elementary arguments, however.
3 All notation and terminology not specified follows that of [3] or [4].

28

https://doi.org/10.1017/51446788700005929 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700005929

2] Generating groups for nilpotent varieties 29

not in F(MN,). The particular law we have chosen is constructed as follows:

Let
(3) Qe = IT (%, Zory» * * ) T ]'”!

o
where ¢ runs through all permutations of {1, B k—1} and o] =1 if ¢
is even, |of = —1 if o is odd. Then we define Q,_, , to be @, and, for
3Zk=<c—2 Qp,= [Qrirs Taye, "+ 4,]. We first prove the following.

(A) ©Q,=1holdsin F,_,(N,) but not in F,_;(N,), ¢ = 3.

Proor oF (A). Let R, = Z{y,, - - -, ] be a free associative ring over
Z in the free non-commuting indeterminates y,, - - -, y;, and let I, ., be
the (two-sided) ideal in R, generated by all monomials of degree c+1.
In R, ., = Ry/I; .4, any element 14y, has an inverse 1—y,+y3— - - - +y%,
and, hence, we may consider the multiplicative group G, , in Ry, , generated
by the elements 14y, 1 =1,--- k. We define (z,, 2z,) = 2,2,—2,2, and,
inductively, (z;, -, 2,) = ((21, " * ", 2,_1), 2,), 2; € R;. A direct computa-
tion shows that :

(4) N-Fzy, -, 14-2,] = 14(24, - - -, 2,) +terms of higher degree,

for any 142, € Gy ,. Since the #n-length commutator (zy, - - -, 2,) is a homo-
geneous polynomial of degree # in the z,, it follows that G, , e %,. In fact
(cf., (3], Chapter 5), G, , ~ F,(M,). In particular,

H [1+zc’ 1+za(1)’ Y 1'*_2"0'(4:—1)]'0’| = 1+ z |U|(Zc’ Zanys " " s za(c—l))’
4 T

for elements 14z, € G, ,. Hence, to prove (A) it is sufficient to prove
(5) Q; = z |G|(xc’ Loy, " % xa(c—l)) =0
o

in R,_, , but not in R,_; ,. (In this context, Q, may be considered as

element in the free associative ring R,(z) = Z[x,, ' * -, @] just as Q, may

be considered as an element of the free group on z,---, . (cf., [3]).)
The proof of (5) is based on the following lemma.

LEMMA. Let P # 0 be a homogeneous polynomial in R, of total degree
¢ (= 3) and of degree 1 in each indeterminate y,, -+, y,. If P is a linear
combination of c-fold commutators, i.e., elements of the form (a,,-- -, a,),
then for some ¢ 5 j, P = 0 modulo y, = y,. (The latter statement will be
abbreviated by P{y, = y;} # 0.)

Proor. First we note that the polynomial

(6) Pc=Pc(ylr”'r yc) =zlolya(1)”'yu(c)’
o
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where o runs through all vermutations of {1, - - -, ¢} satisfies P {y, = y,} = 0,
foranvz s£4. P,, ¢ = 3. is not a linear combination of c-fold commutators.
For, if it were, then by the Dynkin-Svecht-Wever Theorem (cf., [3]),
we would have

{Pc} = z IO” (yﬂll)r Y yrrln)) == C"Pc'

44

However, a straightforward, induction starting with
Py = 2(my, 5, 23) +2(25, @a, ) +2(,, 7, 7,),

which is 0 by the Tacobi identity, and noting that, for ¢ > 3,

{P.} :i 2 N ey 5 Yter)s

k=1 mic\=k

shows that {P,} = 0 for all ¢ = 3.

To complete the proof of the Lemma it suffices to show that any P
described in the T.emma. which satisfies Ply, = y,} = 0 for all 7 £ 1, is a
multivle of P, The proof is by induction on ¢ (starting with ¢ = 2. however),

For ¢ = 2. P = ny,y,-+my,y,, and Ply, = y,} = 0 imvlies that m = —n,
ie., P =nP,.
Next. let ¢ > 2 and write P in the form
4
P = Z A,
)

where the A4, are homogeneous of total deeree c—1 in ¥, - 4, -, ¥,
(y, omitted). Since P{y, = y,} = 0 for any p, ¢ # k. it follows by induction
that

Ak:”kpn._l_k, e Z,

where P,_; = P,_,(y1, ", %, - - -, ¥.), as defined by (6). Thus,

(7) P = anpc—l.kyk;

k=1

However, since P{y, = y,} = 0 for any £ # 1, it follows from a comparison
of the first and £-th summands in (7) that this is possible only if

Py s+ Py 2wy = 1y Z [01Y oy * " Yty
m

where the summation is restricted to all those ¢ for which either o(c) = 1 or
o(c) = k. Since this is to be true for all %. it follows that P = n, P,. This
proves the Lemma,

We may now apply the Lemma to (5). Since the comvonent of Q;
(considered as a polynomial in R,) of terms with left factor z, is precisely
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Z ZeTainy " * " T(e—1)s
o

it is clear that Q) # 0. Further, @, is antisvmmetric in the 2, - -, z,_,,
so that Ql{w; = x,} = 0 for any i,§ # ¢, 1 #%1. Since Q, # 0. it follows
from the Lemma, that Q.{x, = »,} 0 for some 7 # ¢. Thus. (), = 0 is not
alawin R, , ,, which means that §, = 1 is not a law in F,_,(R,) as well.

As just observed. @, = 0 if any two of the =,, - - -, #.__,, are identified.
Thus, in R,_, , if the z, are replaced by the y.. then since there are jnst c—2
distinct , it follows that Q, will vanish. To decide whether Q.= Q. (z,,--, x,)
(i-e., considered as a. function of the z,) vanishes over all of R, , , or not
it is enough modulo I,_, .., to consider linear substitutions of the y, for
the x,. However, since Q.(z,, - - -, z,) is multilinear in the .. such a sub-
stitution yields a linear combination of terms of the form Q. (v,, - - -, v,),
v, € {1, " Yo} By the previons remark, each of these terms vanishes.
Hence, 0. =0is a lawin R,_, , and Q, = 11is a law in F,_,(M,). This
completes the proof of (5) and. hence. of (A).

The ahove argument shows that var F, ,(MN.,) < var F,_,(R,). To
complete the proof of Part I we must show that O, , is trivial over F,_,(N,)
but not over F,(N,), 3 <k <c—24 That 0, , = 1is a law for F,_,(N,)
follows immediately from the above areuments regarding Q,. Further, as
we have seen above, Q.{x, = x,} # 0 for some 1 # k. This implies, however,
that

(8) [Olr{irk = xc}: Zyaq, 2] #E 1

where z; € {z,, - * -, 7.}, so that O, , will not be a law for F.(R,). This is a
direct consequence of the more general remark that if P e R, is a poly-
nomjal with at least two distinct #. appearing in each term. then for any
Y., (P,y;) # 0. To see this. exoress P in the form P = > yT'A,., where
the A, are polynomials without terms with left w. factors. We may assurae
that no A4,, has a term of degree 0. Then,

y.P =3yt A, # Py, = 3 yr Ay,
This completes the vroof of Part I.
Part II:
For any k = ¢ = 3, F,.(N,) is restdually a (c—1) generator group.

Proor oF Part II. The proof is by induction on ¢ = 3. First. it is
known, for any ¢ = 3, that the variety of metabelian groups nilpotent of

4 This portion of the proof of Part 1 based on the law QO ¢ for & < ¢—2. bas been sug-
gested to the author by M. F. Newman and is included here with his permission. It replaces
the author’s original proof which was based on a slightly more comolicated law with a result-
ing lengtbier argnment.
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class ¢ is generated by its 2-generator groups (Baumslag, Neumann,
Neumann, Neumann [2], cf., [4], 36. 34). This proves the case ¢ = 3.
Next, let ¢ > 3 and set F = F;(R,), for an arbitrary 2 = c. By induction,

F/ycF = Fk(mc—l)’

where p, F denotes the c-th term of the lower central series of F, is residual-
ly (¢—2) generator. Hence, consider g e y, I'. Note that g is a product of
commutators of the form [4,, - - -, 4.]. If g involves more than ¢ generators,
Say &1, " " &m, St & = g{€es1 = - = g = 1}. We may assume, after a
possible reordering of the indices of the g,, that g’ 4 1. From the Lemma it
follows that g'{g, = g,} # 1 for some ¢ +# §, 4, § =< c. Thus, if N is the normal
closure of the elements g,¢7%,8,.1, " * -, &, in F, it follows that g’ ¢ N, and
since F/N is generated by (c—1) elements, it follows that F;(®%,) is residually
a {c—1) generator group, as desired. This completes the proof of Part II
and, hence, of the theorem.
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