
Canad. J. Math. Vol. 60 (6), 2008 pp. 1267–1282

Nonadjacent Radix-τ Expansions of
Integers in Euclidean Imaginary
Quadratic Number Fields

Ian F. Blake, V. Kumar Murty, and Guangwu Xu

Abstract. In his seminal papers, Koblitz proposed curves for cryptographic use. For fast operations on

these curves, these papers also initiated a study of the radix-τ expansion of integers in the number fields

Q(
√
−3) and Q(

√
−7). The (window) nonadjacent form of τ -expansion of integers in Q(

√
−7)

was first investigated by Solinas. For integers in Q(
√
−3), the nonadjacent form and the window

nonadjacent form of the τ -expansion were studied. These are used for efficient point multiplications

on Koblitz curves. In this paper, we complete the picture by producing the (window) nonadjacent

radix-τ expansions for integers in all Euclidean imaginary quadratic number fields.

1 Introduction

In many applications, it is convenient to express an integer n in a binary form

n =

t
∑

i=0

bi2
i , bi ∈ {0, 1}.

The window nonadjacent form (NAF) generalizes the binary expansion and is used

in cryptographic computations, especially to speed up elliptic curve point multipli-
cation. In this form, given a positive integer w, every integer n can be represented

as

n =

t
∑

i=0

bi2
i ,

with

• bi ∈ {−2w−1 + 1,−2w−1 + 3, . . . ,−1, 1, . . . , 2w−1 − 3, 2w−1 − 1} ∪ {0}, for each

i = 0, 1, · · · , t ,
• any segment of coefficients {bi , bi+1, . . . , bi+w−1} contains at most one nonzero

element.

This is called the nonadjacent form with window width w [1, 5, 10].

In his seminal paper [6], Koblitz proposed the use in cryptography of curves

K(2, a, m) : y2 + xy = x3 + ax2 + 1,
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over F2m , where a = 0 or 1. These curves are now known as Koblitz curves. For
fast computation on such curves, Koblitz also considered the base-τ expansion of

elements in the ring Z[τ] with τ the Frobenius endomorphism of K(2, a, 1), which

can be identified as 1+
√
−7

2
. Meier and Staffelbach showed how to improve point

multiplication on Koblitz curves [9].
Müller [11] considered the Frobenius endomorphisms Φ of elliptic curves over

small fields of characterisic two and devloped radix-Φ expansions for elements in
Z[Φ]. Smart generalized these further to small fields of odd characteristic [13]. These

radix-Φ expansions were used to obtain more efficient point multiplication algo-

rithms.
The celebrated window τ NAF method for Z[τ] which improves the point mul-

tiplication on Koblitz curves dramatically was proposed by Solinas [14]. By this

method, each a + bτ ∈ Z[τ] can be written as

a + bτ =

s
∑

i=1

biτ
i ,

where

• each nonzero coefficient bi is an element with the least norm in the (mod τw) class
of some odd number r satisfying |r| < 2w−1,

• any segment of coefficients {bi , bi+1, . . . , bi+w−1} contains at most one nonzero

element.

Given a point P on a Koblitz curve and an integer n, there is a reduction procedure

for getting a + bτ such that nP = (a + bτ)P. Therefore the point multiplication nP

can be done much faster using the above sparse form of a + bτ . In [2] we defined a
“wider” window τ NAF, and proved its existence .

Koblitz introduced another family of elliptic curves [7], this family being defined
over F3m :

K(3, a, m) : y2
= x3 − x − (−1)a

with a = 0 or 1, and applied them to digital signatures. It is noted that these curves
are also useful in the ID-based cryptosystem, see [4]. The fast point multiplications

on these curves using (non-adjacent) base-τ expansion of elements in the ring Z[τ]

with τ =
3+

√
−3

2
was also suggested in [7]. The more general window τ NAF in this

case was discussed in [3], and greater efficiency was achieved.
In this paper, the results of [2, 3, 6, 14] are extended to all Euclidean imaginary

quadratic number fields. More specifically, let R be the ring of integers of such a

field, and fix a nonunit, nonzero element τ ∈ R with the least norm. It is proved that
for any integer w > 2, a suitable finite set C ⊂ R can be chosen so that every element

r ∈ R can be uniquely written as

(1.1) r =

t
∑

i=0

ciτ
i

with
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• ci ∈ C for i = 0, 1, . . . , t ,
• any segment of coefficients {ci, ci+1, . . . , ci+w−1} contains at most one nonzero

element.

Equation (1.1) is the so called radix-τ width w NAF (nonadjacent form) for r.

For the cases that w = 2, we still have the desired radix-τ width 2 NAF and the

uniqueness hold for fields Q(
√
−7), Q(

√
−3), and Q(

√
−11). In fact, for Q(

√
−3)

the existence and uniqueness of radix-τ (width 2) NAF for Q(
√
−3) is a theorem of

Koblitz [7].
The case of w = 1 is also of particular interest. In this case equation (1.1) is simply

the usual radix-τ form of the integer r. Our results show that every integer in R has a

radix-τ form with coefficients taken from the set of units. The form is also shown to
be unique for the field Q(

√
−11). It is noted for the field Q(

√
−7), the radix-τ form

was first considered by Koblitz [6].

We first develop criteria for the divisibility of (algebraic) integers by a power of τ
and these, in turn, will be used to characterize the class of integers modulo τw. The

set C of coefficients of the above representation will then be easily determined.
This is a problem of independent interest, but it is obviously useful in the fast

point multiplication for a large family of CM-curves where τ corresponds to an en-

domorphism that is efficiently computable. We can derive algorithms for obtaining
radix-τ width w NAF for any integer.

It is noted that the minimality of the norm of τ is not necessary. As we can see in

the discussion, the results are easier to establish for τ with bigger norm.
There are five Euclidean imaginary quadratic number fields:

Q(
√
−1), Q(

√
−2), Q(

√
−3), Q(

√
−7), Q(

√
−11),

and their corresponding rings of integers are

(1.2) Z[
√
−1], Z[

√
−2], Z

[ 1 +
√
−3

2

]

, Z

[ 1 +
√
−7

2

]

, Z

[ 1 +
√
−11

2

]

.

Without loss of generality, we fix a nonunit, nonzero τ with the least norm for each
ring:

Ring of integers Z[
√
−1] Z[

√
−2] Z

[

1+
√
−3

2

]

Z
[

1+
√
−7

2

]

Z
[

1+
√
−11

2

]

τ 1 +
√
−1

√
−2 3+

√
−3

2
1+

√
−7

2
1+

√
−11

2

The organization of this paper is as follows. In §2, the divisibility of elements
by a power of τ is discussed for each of the rings listed in (1.2). The existence and

uniqueness of the radix-τ NAF for these rings of integers is given in §3. In §4, two

algorithms are presented for obtaining the radix-τ NAF for integers in Q(
√
−1) and

Q(
√
−11). An example of fast arithmetic on some Koblitz curves using the radix-τ

NAF is also included. The last section contains some comments and a summary of
the paper.

Throughout this paper, for a real number x, we denote by ⌊x⌋ the largest integer

less than or equal to x, and ⌈x⌉ the smallest integer greater than or equal to x.
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2 Divisibility by a Power of τ

In this section, the problem of τ k |a + bτ is considered. It is translated to properties

in terms of a and b and operations in Z. This provides an easier way to determine
the congruence classes modulo τw. The results in this section will be used later in

determining the coefficients of the radix-τ expansions.

The first three results are for the rings Z[
√
−1], Z[

√
−2], and Z[ 1+

√
−3

2
], and they

are similar in pattern.

Lemma 2.1 Let τ = 1 +
√
−1. If k is a positive integer and a + bτ ∈ Z[τ] (=

Z[
√
−1]), then

(i) τ k
= 2⌊

k
2
⌋ exp

( ⌊ k
2
⌋π
√
−1

2

)

τ⌈ k
2
⌉−⌊ k

2
⌋

(ii) τ k |a + bτ ⇐⇒ 2⌈
k
2
⌉ |a and 2⌊

k
2
⌋ |b.

Proof (i) This follows since τ =
√

2 exp
(

π
4

√
−1

)

.

(ii) Since exp
( ⌊ k

2
⌋π

√
−1

2

)

is a unit in Z[τ], τ k is associated with 2⌊
k
2
⌋τ⌈ k

2
⌉−⌊ k

2
⌋. The

argument then follows from the fact that

a + bτ =















2⌊
k
2
⌋
( a

2⌈
k
2
⌉ +

b

2⌊
k
2
⌋ τ

)

if k is even,

( a + b

2⌊
k
2
⌋ +

−a

2⌈
k
2
⌉ τ

)

if k is odd.

Lemma 2.2 Let τ =
√
−2. If k is a positive integer and a + bτ ∈ Z[τ], then

τ k |a + bτ ⇐⇒ 2⌈
k
2
⌉ |a and 2⌊

k
2
⌋ |b.

Proof The proof is straightforward and is omitted.

Lemma 2.3 Let τ =
3+

√
−3

2
. If k is a positive integer and a+bτ ∈ Z[τ](= Z[ 1+

√
−3

2
]),

then

(i) τ k
= 3⌊

k
2
⌋ exp

( ⌊ k
2
⌋π
√
−1

3

)

τ⌈ k
2
⌉−⌊ k

2
⌋,

(ii) τ k |a + bτ ⇐⇒ 3⌈
k
2
⌉ |a and 3⌊

k
2
⌋ |b.

Proof Similar to the proof of Lemma 2.1. See also [3].

For the rings Z[ 1+
√
−7

2
] and Z[ 1+

√
−11

2
], another approach must be developed. We

start with some facts in p-adic analysis.

Let p be a prime in Z and m an integer such that p 6 | m. Consider a quadratic
polynomial f (x) = x2 +mx+ p. Let a0 = 0. Then f (a0) ≡ 0 mod p, f ′(a0) 6≡ 0 mod

p. Using the Hensel procedure, one finds a j with 0 ≤ a j < p, j = 1, 2, . . . , k − 1,
such that the integer tk = a0 + a1 p + a2 p2 + · · · + ak−1 pk−1, satisfies

f (tk) ≡ 0 mod pk.
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The tk is called the k-th p-adic approximation of a zero of f (x).
The coefficient ak−1 can be obtained through (see [8, 12])

(2.1) ak−1m +
f (tk−1)

pk−1
≡ 0 mod p.

Since p | tk−1, (2.1) is equivalent to

(m + tk−1)(tk−1 + ak−1 pk−1) + p ≡ 0 mod pk.

Therefore, one gets the following relation

tk ≡ −(m + tk−1)−1 p mod pk.

Theorem 2.4 Let p be a prime in Z, and m an integer which is not divisible by p. Let

α be a root of x2 + mx + p = 0. Then for any positive integer k,

αk |a + bα in Z[α] ⇐⇒ a + btk ≡ 0 mod pk.

Proof We proceed by induction. It is obvious that this is a true statement when

k = 1, i.e.,

α |a + bα in Z[α] ⇐⇒ p |a.
Let k > 1. Assume the statement is true for each integer less than k. It suffices to

consider the case that p |a. Observe that

a + bα

α
=

(

b− ma

p

)

+
(

− a

p

)

α.

So

αk |a + bα in Z[α] ⇐⇒ αk−1 |
(

b− ma

p

)

+
(

− a

p

)

α in Z[α]

⇐⇒ b− ma

p
− a

p
tk−1 ≡ 0 mod pk−1

⇐⇒ bp − am − atk−1 ≡ 0 mod pk

⇐⇒ a + b(m + tk−1)−1(−p) ≡ 0 mod pk

⇐⇒ a + btk ≡ 0 mod pk.

Since τ =
1+

√
−7

2
is a root of the equation x2 − x + 2 = 0, applying Theorem 2.4

one immediately gets the following.

Lemma 2.5 Let τ =
1+

√
−7

2
and k a positive integer. Let tk be the k-th 2-adic approx-

imation of τ . Then for a + bτ ∈ Z[τ],

τ k |a + bτ ⇐⇒ a + btk ≡ 0 mod 2k.
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Remark 2.6. The above lemma is due to Solinas [14], but the proof there uses Lucas
sequences instead of 2-adic analysis.

Similarly we get the next lemma by considering a root of x2 − x + 3 = 0.

Lemma 2.7 Let τ =
1+

√
−11

2
and k a positive integer. Let tk be the k-th 3-adic ap-

proximation of τ . Then for a + bτ ∈ Z[τ],

τ k |a + bτ ⇐⇒ a + btk ≡ 0 mod 3k.

3 Window Radix-τ Expansion

We begin with a general discussion and come back to each of the individual fields
later.

Let F be a Euclidean imaginary quadratic number field and OF be the ring of

integers of F. For k ∈ F as an element of C, the norm of k denoted by N(k), is simply

the product of k with its complex conjugate. In particular, the norm of a nonzero
element is positive.

Let α ∈ OF and N(α) > 1. Let C ⊂ OF and w be a positive integer. An element

k ∈ OF is said to have a radix-α width w NAF (nonadjacent form) with respect to C if

k =
∑n

i=0 uiα
i , where

• for each i = 0, 1, . . . , n, ui ∈ C;
• any w consecutive coefficients ui, ui+1, . . . , ui+w−1 contains at most one nonzero

element.

We will call a radix-α width 1 NAF a radix-α form.

Now suppose N(αw) ≥ 12. Let R = {k ∈ OF : α 6 | k}. Let C1,C2, . . . ,Ct be
the congruence classes of R modulo αw. It is noted that all units of OF are in R and

no class Ci contains more than two units. For each 1 ≤ i ≤ t , if Ci contains a

unit, then denote it by ci . If Ci does not contain a unit, fix an element ci of Ci with
N(ci) < N(αw) (this can be done since the ring is Euclidean). Set

(3.1) C = {c1, c2, . . . , ct} ∪ {0}.

The first result of this section is general.

Theorem 3.1 Every element k ∈ OF has a unique radix-α width w NAF with respect

to C defined by (3.1), for N(αw) ≥ 12.

Proof Existence: We prove the existence by induction on the norm.

As F is an imaginary quadratic field, elements of norm 1 are necessarily units, and
so they are in C already; hence they have the width w NAF.

Let m be a positive integer. Assume that all elements of norm less than m have a

width w NAF. Let k ∈ OF and N(k) = m.

If α |k, then N(kα−1) < m. By induction, kα−1 has the width w NAF. Multiplying

this NAF by α, we get a width w NAF for k.

https://doi.org/10.4153/CJM-2008-054-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2008-054-1


Radix-τ Expansions 1273

If α 6 | k, by the Euclidean division, there are q ∈ OF and non-zero ci0
∈ C such

that k = qαw + ci0
. It suffices to show that q has a width w NAF. This is true since

N(q) < N(k). In fact, N(k) > 1 implies that |k| ≥
√

2. So

|q|
|k| =

|k− ci0
|

|α|w|k| ≤
1

|α|w +
1

|k| ≤
1

2
√

3
+

1√
2

< 1.

Uniqueness: Suppose that k ∈ OF has two width w NAFs with coefficients in C,

k =

n
∑

i=1

uiα
i + u0 =

n ′

∑

i=1

viα
i + v0.

We may assume that u0 6= 0. This means that α 6 | k, so v0 6= 0. These force that

u1 = · · · = uw−1 = 0 and v1 = · · · = vw−1 = 0. Therefore u0 and v0 are in the same

class modulo αw and hence they are equal.
The rest follows from a standard induction argument.

Remark 3.2. (i) Since we consider Euclidean imaginary fields, our choice of coef-
ficient set C is natural, i.e., the elements are remainders with norm less than N(αw)

and all units are included. It is remarked that one should be careful in selecting the

coefficient set for radix-α width w NAFs. For example, let α be a root of x2−3x+5 =

0. Let w = 2. If we choose

C =

{

i ∈ Z : −52 − 1

2
≤ i ≤ 52 − 1

2
, and 5 6 | i

}

,

then it can be easily checked that element 1 + α does not have a radix-α width 2 NAF

with respect to this C. Some discussions related to this can be found in [2].
(ii) A radix-α width w NAF of k ∈ Z[α] might not be obtainable by using the

results in [11,13] and considering radix-αw expansion, (i.e., a polynomial in αw with
coefficients from a complete set of reminders modulo N(αw)), since Z[α] is usually

larger than Z[αw]. The above example also shows that 1 + α does not have a radix-α2

expansion with respect to

C =

{

i ∈ Z : −52 − 1

2
≤ i ≤ 52 − 1

2

}

.

Theorem 3.1 can be refined further for each specific Euclidean imaginary quad-

ratic number field. The cases of N(τw) < 12 are considered.

3.1 Gaussian Integers

In this case, let τ = 1 +
√
−1 and consider the radix-τ window NAF for elements in

Z[
√
−1](= Z[τ]).

By Lemma 2.1, we can get a simple description of the congruence relation mod-

ulo τw. Consider the elements of Z[τ] that are not divisible by τ . Then the set of
representatives of the classes is

R = {x + yτ : 0 ≤ x ≤ 2⌈
w
2
⌉ − 1, 0 ≤ y ≤ . . . , 2⌊

w
2
⌋ − 1 and 2 6 | x}.
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Let w ≥ 3. The units of Z[
√
−1] are 1, −1 (≡ 2⌈

w
2
⌉ − 1 mod τw),

√
−1

(≡ (2⌈
w
2
⌉ − 1) + τ mod τw), and −

√
−1 (≡ 1 + (2⌊

w
2
⌋ − 1)τ mod τw). They belong

to four different classes modulo τw. We choose, for each x + yτ ∈ R, one element
x̃ + ỹτ from the class of x + yτ such that N(x̃ + ỹτ) < N(τw) = 2w. The coefficients

of width w NAF consists of zero, units and other x̃ + ỹτ ’s which are not divisible by

τ . To be more specific, the set of coefficients is

(3.2) C = {0, 1,−1,
√
−1,−

√
−1} ∪ {x̃ + ỹτ : x + yτ ∈ R, N(x̃ + ỹτ) > 1}.

Theorem 3.3 If w > 2, then every element a + bτ ∈ Z[τ] has a unique width w NAF

with respect to C defined by (3.2).

Proof If w > 3, then N(τw) > 12 and it becomes a special case of Theorem 3.1.

If w = 3, then according to the proof of Theorem 3.1, we only need to show that
for k ∈ Z[

√
−1] \ C the norm decreases during the expansion. This means that

if for some q ∈ Z[
√
−1] and c ∈ C one has k = qτ 3 + c, then this implies that

N(q) < N(k).

If N(k) = 2, then k is associated to τ , and the result follows. Otherwise since

Z[
√
−1] contains no elements of norm 3, so N(k) ≥ 4. Thus

|q|
|k| =

|k− c|
|τ |3|k| ≤

1

2
3
2

+
1

|k| < 1.

Since N(τ 3) = 8, distinct units cannot be in the same (mod τ 3) class. This also
means that distinct elements in C cannot be in the same class. Thus the uniqueness

follows.

Theorem 3.3 cannot be generalized to the cases of w ≤ 2. For example, take

w = 2. If we choose one element from each class of modulo τ 2
= 2
√
−1, then the

set of coefficients would be something like C = {0, 1,
√
−1}. But we claim that −1

cannot have a radix-τ width 2 NAF with respect to such C. If there were a width 2

NAF of−1

−1 =

n
∑

i=0

uiτ
i ,

then we would have u0 = 1, u1 = 0, u2 =
√
−1, u3 = 0, u4 =

√
−1, . . . , and n

would not be finite.

If we can take more than one element from each class modulo τw, width w NAF

can be still produced, even though not necessarily unique. The main ideas of the
proof follow along the same lines as that of Theorem 3.1 and Theorem 3.3, and so

will be omitted.

Theorem 3.4 (i) Every element a + bτ ∈ Z[τ] has a radix-τ width 2 NAF with

respect to C = {0, 1,−1,
√
−1,−

√
−1}.

(ii) Every element a + bτ ∈ Z[τ] has a radix-τ form with respect to C = {0, 1,−1}.
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Proof (i) The main ideas of the proof of the result can be traced from that of Theo-
rem 3.1 and Theorem 3.3. The details will be omitted.

(ii) In this part, induction will be used on the norm. Consider a general term

a + bτ ∈ Z[τ].

If N(a + bτ) ≤ 1, then the argument is true. In fact, when a + bτ /∈ {0, 1,−1},
then a + bτ = ±

√
−1 = ±(τ − 1).

Otherwise, there are several cases to consider.

If a is even, then a + bτ is divisible by τ and the argument is reduced to a+bτ
τ whose

norm is smaller.

If a is odd, then (a± 1) + bτ is divisible by τ . Notice that

N((a± 1) + bτ)− N(a + bτ) = 1± 2(a + b).

Without loss of generality, we may assume that a + b ≥ 0. Thus

N((a− 1) + bτ)− N(a + bτ) ≤ 1.

This implies that

N
( (a− 1) + bτ

τ

)

< N(a + bτ)

since N(a + bτ) > 1. So (a−1)+bτ
τ has a radix-τ form with respect to {0, 1,−1}.

Therefore

a + bτ =

( (a− 1) + bτ

τ

)

τ + 1,

has a radix-τ form.

As an example, we see that 3 = −τ 4 − 1 = −
√
−1τ 2 + 1, so the radix-τ width 2

NAF in the above theorem is not unique.

An example that shows the radix-τ of part (ii) of the theorem need not be unique

is τ 4 + 1 = τ 3 − τ − 1.

3.2 Integers in Q(
√
−2)

Let τ =
√
−2. By Lemma 2.2, the set of representatives of the classes of elements not

divisible by τ can be taken as

R = {x + yτ : 0 ≤ x ≤ 2⌈
w
2
⌉ − 1, 0 ≤ y ≤ · · · , 2⌊

w
2
⌋ − 1 and 2 6 | x}.

Similar to the previous argument, for each x + yτ ∈ R, choose x̃ + ỹτ from the

class of x + yτ such that N(x̃ + ỹτ) < N(τw) = 2w. Set

(3.3) C = {0, 1,−1} ∪ {x̃ + ỹτ : x + yτ ∈ R, N(x̃ + ỹτ) > 1}.

Theorem 3.5 If w > 2, then every element a + bτ ∈ Z[τ] has a unique width w NAF

with respect to C defined by (3.3).

https://doi.org/10.4153/CJM-2008-054-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2008-054-1


1276 I. Blake, V. K. Murty, and G. Xu

Proof As in the proof of Theorem 3.3, we only consider the case of w = 3.
Let k ∈ Z[

√
−2] and N(k) > 1.

If N(k) = 2, then k is associated to τ .
If N(k) = 3, then k ∈ {1 + τ, 1 − τ,−1 + τ,−1 − τ}. Notice that 1 + τ ≡

1− τ mod τ 3 and−1 + τ ≡ −1− τ mod τ 3.

It can be checked that there is no other element in the class of 1 +τ with norm less
than N(τ 3) = 8, so one of 1 + τ and 1− τ must be in C. Without loss of generality

we may assume that 1 + τ ∈ C. Then 1− τ = (1 + τ) + τ 3.

A similar discussion applies to−1 + τ and−1− τ .
If N(k) ≥ 4, then the proof is similar to that of theorem 3.3.

Since −1 does not have a width 2 NAF with respect to {0, 1}, Theorem 3.5 can
not be generalized to cases of w ≤ 2. But we can relax the set of coefficients to get the

following theorem.

Theorem 3.6 (i) Every element a + bτ ∈ Z[
√
−2] has a radix-τ width 2 NAF with

respect to C = {0, 1,−1, 1 + τ}.
(ii) Every element a+bτ ∈ Z[

√
−2] has a radix-τ form with respect to C = {0, 1,−1}.

We omit the proof as its ideas can be found in the proofs of previous results.

Note that 3 = τ 4−1 = −τ 2 + 1, and we see that the forms satisfying Theorem 3.6
are not unique.

3.3 Eisenstein Integers

Let τ =
3+

√
−3

2
, and set

R = {x + yτ : 0 ≤ x ≤ 3⌈
w
2
⌉ − 1, 0 ≤ y ≤ 3⌊

w
2
⌋ − 1 and 3 6 | x}.

Then R consists of the representatives of the (mod τw) classes of those elements not

divisible by τ . Once again, we take x̃ + ỹτ to be an element in the class of x + yτ with

norm less then N(τw) = 3w.
Note that the set of units of Z[τ] is U6 = {ω ∈ C : ω6

= 1}.
Let

(3.4) C = {0} ∪U6 ∪ {x̃ + ỹτ : x + yτ ∈ R, N(x̃ + ỹτ) > 1}.

The next theorem generalizes a theorem of Koblitz [6] from w = 2 to any w > 1
and its existence part was first established in [3]. For the uniqueness part, we need to

notice that any two distinct coefficients are not congruent modulo τw.

Theorem 3.7 If w > 1, then every element a + bτ ∈ Z[τ] has a unique width w NAF

with respect to C defined by (3.4).

We have already showed [3] that 2− τ cannot have a radix-τ form with respect to

{0, 1,−1}. But we have the following.

Theorem 3.8 Every element a+bτ ∈ Z[τ] has a radix-τ form with respect to {0}∪U6.
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3.4 Integers in Q(
√
−7)

Let τ =
1+

√
−7

2
and w a positive integer. By Lemma 2.5, the (mod τw) classes of

elements not divisible by τ can be represented by 1, 3, . . . , 2w − 1. The units of Z[τ]

are 1 and −1.

Let ci ≡ i and N(ci) < N(τw) = 2w. Set

(3.5) C = {0, 1,−1} ∪ {ci : 1 < i < 2w − 1}.
The next theorem generalizes results of Solinas [14]; its existence part was estab-

lished in [2].

Theorem 3.9 If w > 1, then every element a + bτ ∈ Z[τ] has a unique width w NAF

with respect to C defined by (3.5).

We can verify that−1 does not have a radix-τ form with respect to {0, 1}. But the
following theorem of Koblitz [6] gives the radix-τ form for every integer in Q(

√
−7)

with−1 added to the coefficient set.

Theorem 3.10 (Koblitz) Every element a+bτ ∈ Z[τ] has a radix-τ form with respect

to C = {0, 1,−1}.
Notice that τ − 1 = τ 2 + 1, so the radix-τ form is not unique.

3.5 Integers in Q(
√
−11)

Let τ =
1+

√
−11

2
and w a positive integer. There are only two units in Z[τ]: 1 and−1.

They are not congruent modulo τw.

Let tw be the w-th 3-adic approximation of τ defined in §2. Then 3 | tw. By Lemma

2.7, 1, 2, 4, 5, . . . , 3w− 1 are representatives of classes modulo τw of elements in Z[τ]
which are not divisible by τ .

Let ci ≡ i mod τw and N(ci) < N(τw) = 3w. Set

(3.6) C = {0, 1,−1} ∪ {ci : 1 < i < 3w − 1 and 3 ∤ i}.
Theorem 3.11 Let w be any positive integer. Then every element a + bτ ∈ Z[τ] has a

unique width w NAF with respect to C defined by (3.6).

Proof If w > 2, then the theorem follows from Theorem 3.1. If w = 2, consider

an element k ∈ Z[τ] with N(k) > 1. Since Z[τ] contains no element of norm 2, so
N(k) ≥ 3. We will show that if k = qτ 2 + c for some q ∈ Z[τ] and c ∈ C, then

N(q) < N(k) and the induction applies. In fact

|q|
|k| =

|k− c|
|α|2|k| ≤

1

|α|2 +
1

|k| < 1.

Next we consider the case of w = 1. In this case, C = {0, 1,−1}. If 1 < N(k) < 9,
then it is easily checked that k ∈ {±(1− τ),±(−τ 2 + τ − 1),±(1 + τ),±(−τ 2− 1)}.

If N(k) ≥ 9, write k = qτ + c with q ∈ Z[τ] and c ∈ C. Then similar to the
previous argument, we have N(q) < N(k). The result follows by induction.

Finally the uniqueness for the cases of w ≤ 2 is due to the fact that no two elements

in C are in the same class modulo τw.
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The next table summarizes the results of this section.

Fields τ Radix τ Uniqueness of

width w NAF width w NAF

Q(
√
−1) 1 +

√
−1 Yes w > 2

Q(
√
−2)

√
−2 Yes w > 2

Q(
√
−3) 3+

√
−3

2
Yes w > 1

Q(
√
−7) 1+

√
−7

2
Yes w > 1

Q(
√
−11) 1+

√
−11

2
Yes all w

4 Algorithms and Applications

In the first part of this section, two algorithms for computing the width w NAF of

integers in Q(
√
−1) and Q(

√
−11) are presented. Other cases are similar. One can

find similar corresponding algorithms for integers in Q(
√
−7) in [14] and integers

in Q(
√
−3) in [3, 7].

In the second part of this section, some Koblitz curves over F5m are proposed. The
width w NAF in Q(

√
−11) will be used in the fast point multiplication on those

curves.

4.1 Algorithms

Algorithm 4.1 concerns width w NAF of Gaussian integers. In this case, τ = 1+
√
−1.

Let w be a positive integer. If w ≥ 3, then the four units ±1,±
√
−1 belong to

different classes modulo τw. The representatives of the (mod τw) classes of elements
not divisible by τ are

(4.1) x + yτ : x = 1, 3, . . . , 2⌈
w
2
⌉ − 1, y = 0, 1, 2, . . . , 2⌊

w
2
⌋ − 1.

If, for each x + yτ in (4.1), we take one element x̂ + ŷτ from the class of x + yτ with

the least norm and set C = {x̂ + ŷτ ; x + yτ as in (4.1)}, then C contains±1,±
√
−1.

If w < 3, set C = {1,−1,
√
−1,−

√
−1}. This algorithm provides an efficient way

of producing radix-τ width w NAF for any element in Z[
√
−1] with nonzero coeffi-

cients in C.

It is noted that when w = 1, the algorithm outputs radix-τ form with respect
to {0, 1,−1,

√
−1,−

√
−1}. One can easily formulate an algorithm for the radix-τ

form of a Gaussian integer with respect to {0, 1,−1} based on the proof of part (ii)

of Theorem 3.4.

Algorithm 4.2 considers the width w NAF for integers in Q(
√
−11). In this case,

τ =
1+

√
−11

2
.

Let w be a positive integer and tw the w-th 3-adic approximation of τ . We list the

first eight tw’s in the next table.
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Algorithm 4.1 Radix -τ width w NAF Method.

INPUT: an element ρ = r0 + r1τ of Z[
√
−1]

OUTPUT: S, the array of coefficients of width w NAF for ρ.

S←<>
While N(r0 + r1τ) ≥ 1

If 2 6 | r0 then

x← r0 mod 2⌈
w
2
⌉

y ← r1 mod 2⌊
w
2
⌋

r0 ← r0 − x̂

r1 ← r1 − ŷ

prepend x̂ + ŷτ to S

Else

prepend 0 to S

Endif

t ← r0

r0 ← r0 + r1

r1 ←
−t

2
Endwhile

If r0 = 0 and r1 = 0 then

prepend r0 + r1τ to S
Endif

Return S

w 1 2 3 4 5 6 7 8

tw 0 3 12 66 228 228 1686 1686

Recall that Lemma 2.7 shows that for a + bτ ∈ Z[τ],

τw |a + bτ ⇐⇒ a + btw ≡ 0 mod 3w.

Therefore 1, 2, 4, 5, . . . , 3w − 1 are representatives of classes modulo τw of elements
not divisible by τ .

For each i such that 1 ≤ i < 3w and 3 6 | i, let ai +biτ be an element in the (mod τw)

class of i with the least norm, and set

C = {ai + biτ : 1 ≤ i < 3w and 3 | i}.

It is noted that the units of Z[τ] are ±1 and they are both in C.
An algorithm that outputs radix-τ width w NAF for any integer in Q(

√
−11) with

nonzero coefficients in C is as follows.
We can also derive width w NAF for those τ which are not of minimal norm. For

example, let

τ =
3 +
√
−11

2
.
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Algorithm 4.2 Radix -τ width w NAF Method.

INPUT: an element ρ = r0 + r1τ of Z
[

1+
√
−11

2

]

OUTPUT: S, the array of coefficients of width w NAF for ρ.

S←<>
While r0 6= 0 or r1 6= 0

If 3 6 | r0 then

u← r0 + r1tw mod 3w

r0 ← r0 − au

r1 ← r1 − bu

prepend au + buτ to S
Else

prepend 0 to S
Endif

t ← r0

3

r0 ← t + r1

r1 ← −t

Endwhile

Return S

This τ satisfies X2 − 3X + 5 = 0.

Let w be a positive integer and tw the w-th 5-adic approximation of τ . The first

eight tws are:

w 1 2 3 4 5 6 7 8

tw 0 10 35 410 2910 15410 15410 249785

We have that for a + bτ ∈ Z[τ],

τw |a + bτ ⇐⇒ a + btw ≡ 0 mod 5w.

Similar to the discussion of Algorithm 4.2, we can find a set of coefficients and an

algorithm for width w NAFs of Z[τ].

4.2 Applications

The radix-τ width w NAFs in Q(
√
−3) and Q(

√
−7) have been used in the efficient

point multiplications of two families of Koblitz curves, namely

K(2, a, m) : y2 + xy = x3 + ax2 + 1/F2m , where a ∈ {0, 1},

and

K(3, a, m) : y2
= x3 − x− (−1)a/F3m , where a ∈ {0, 1}.

See [2, 3, 6, 7, 14].
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Here we give an example of using radix-τ width w NAF in Q(
√
−11) for point

multiplication on the following Koblitz curves

K1(5, a, m) : y2
= x3 + x − (−1)a/F5m , where a ∈ {0, 1},

and
K2(5, a, m) : y2

= x3 − x − (−1)a2/F5m , where a ∈ {0, 1}.
For simplicity, we consider the family of curves K2(5, 1, m) : y2

= x3 − x + 2/F5m .

First, note that the Frobenius map

τ : K2(5, 1, 1)→ K2(5, 1, 1)

(x, y) 7→ (x5, y5)

extends to K2(5, 1, m) for any m > 1. The characteristic polynomial of τ is

X2 − 3X + 5.

Therefore τ is identified as 3+
√
−11

2
. Also note that the operation of τ can be efficiently

implemented.

Secondly, in practice the number m should be chosen so that #K2(5, 1, m) is a
product of a small number and a large prime. As the number #K2(5, 1, m) can be

easily computed using the zeta function, it is checked that #K2(5, 1, m) = 3pm where

pm is a prime number, for m ∈ {167, 227, 311}.
Finally, for any P ∈ K2(5, 1, m) and positive integer n, an efficient computation of

the point multiplication nP can be outlined as follows:

• Compute a + bτ such that n ≡ a + bτ (mod τm − 1). Since (τm − 1)P = O, we

have nP = (a + bτ)P.
• By the discussion in the previous subsection, we have an algorithm to find a width

w radix-τ NAF for a + bτ :

a + bτ =

s
∑

i=0

ciτ
ki ,

with ci ∈ C and ki − ki−1 ≥ w.
• Precompute Qc = cP for each c ∈ C.
• The point multiplication nP is then

(a + bτ)P = τ k1 (τ k2−k1 (· · · (τ ks−ks−1 Qcs
+ Qcs−1

) + · · · + Qc1
) + Qc0

.

5 Conclusion

In this paper, the radix-τ width w NAF is established for every integer in a Euclidean
imaginary quadratic number field. These forms are unique provided w > 2 (in some

fields, this can be true even for w = 2 or 1). Algorithms for computing these forms
are presented, and applications to efficient computation of point multiplication on

some Koblitz curves are given. This is a continuation and completion of the work of

Koblitz [6, 7], Solinas [14] and ours [2, 3].
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