
1 Decoupling and Hierarchies of Scale

The world around us contains a cornucopia of length scales, ranging (at the time of
writing) down to quarks and leptons at the smallest and up to the universe as a whole
at the largest, with qualitatively new kinds of structures – nuclei, atoms, molecules,
cells, organisms, mountains, asteroids, planets, stars, galaxies, voids, and so on –
seemingly arising at every few decades of scales in between. So it is remarkable
that all of this diversity seems to be described in all of its complexity by a few
simple laws.

How can this be possible? Even given that the simple laws exist, why should it be
possible to winkle out an understanding of what goes on at one scale without having
to understand everything all at once? The answer seems to be a very deep property
of nature called decoupling, which states that most (but not all) of the details of
very small-distance phenomena tend to be largely irrelevant for the description of
much larger systems. For example, not much needs to be known about the detailed
properties of nuclei (apart from their mass and electrical charge, and perhaps a few of
their multipole moments) in order to understand in detail the properties of electronic
energy levels in atoms.

Decoupling is a very good thing, since it means that the onion of knowledge can
be peeled one layer at a time: our initial ignorance of nuclei need not impede the
unravelling of atomic physics, just as ignorance about atoms does not stop working
out the laws describing the motion of larger things, like the behaviour of fluids or
motion of the moon.

It so happens that this property of decoupling is also shared by the mathematics
used to describe the laws of nature [1]. Since nowadays this description involves
quantum field theories, it is gratifying that these theories as a group tend to predict
that short distances generically decouple from long distances, in much the same way
as happens in nature.

This book describes the way this happens in detail, with two main purposes in
mind. One purpose is to display decoupling for its own sake since this is satisfying
in its own right, and leads to deep insights into what precisely is being accomplished
when writing down physical laws. But the second purpose is very practical; the
simplicity offered by a timely exploitation of decoupling can often be the difference
between being able to solve a problem or not. When exploring the consequences
of a particular theory for short distance physics it is obviously useful to be able to
identify efficiently those observables that are most sensitive to the theory’s details
and those from which they decouple. As a consequence the mathematical tools –
effective field theories – for exploiting decoupling have become ubiquitous in some
areas of theoretical physics, and are likely to become more common in many more.

The purpose of the rest of Chapter 1 is twofold. One goal is to sketch the broad
outlines of decoupling, effective lagrangians and the physical reason why they work,5
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6 Decoupling and Hierarchies of Scale

all in one place. The second aim is to provide a toy model that can be used as a
concrete example as the formalism built on decoupling is fleshed out in more detail
in subsequent chapters.

1.1 An Illustrative Toy Model ♦

The first step is to set up a simple concrete model to illustrate the main ideas. To
be of interest this model must possess two kinds of particles, one of which is much
heavier than the other, and these particles must interact in a simple yet nontrivial way.
Our focus is on the interactions of the two particles, with a view towards showing
precisely how the heavy particle decouples from the interactions of the light particle
at low energies.

To this end consider a complex scalar field, φ, with action1

S := −
∫

d4x
[
∂μφ

∗∂μφ + V (φ∗φ)
]
, (1.1)

whose self-interactions are described by a simple quartic potential,

V (φ∗φ) =
λ
4

(
φ∗φ − v2

)2
, (1.2)

where λ and v2 are positive real constants. The shape of this potential is shown in
Fig. 1.1.

1.1.1 Semiclassical Spectrum

The simplest regime in which to explore the model’s predictions is when λ � 1 and
both v and |φ | are O

(
λ−1/2

)
. This regime is simple because it is one for which the

semiclassical approximation provides an accurate description. (The relevance of
the semiclassical limit in this regime can be seen by writing φ := ϕ/λ1/2 and
v := μ/λ1/2 with ϕ and μ held fixed as λ → 0. In this case the action depends
on λ only through an overall factor: S[φ, v, λ] = (1/λ)S[ϕ, μ]. This is significant
because the action appears in observables only in the combination S/�, and so the
small-λ limit is equivalent to the small-� (classical) limit.)2

In the classical limit the ground state of this system is the field configuration that
minimizes the classical energy,

E =
∫

d3x
[
∂tφ

∗∂tφ + ∇φ∗ · ∇φ + V (φ∗φ)
]
. (1.3)

Since this is the sum of positive terms it is minimized by setting each to zero; the
classical ground state is any constant configuration (so ∂tφ = ∇φ = 0), with |φ | = v

(so V = 0).

1 Although this book presupposes some familiarity with quantum field theory, see Appendix C for a
compressed summary of some of the relevant ideas and notation used throughout. Unless specifically
stated otherwise, units are adopted for which � = c = 1, so that time ∼ length and energy ∼ mass ∼
1/length, as described in more detail in Appendix A.

2 The connection between small coupling and the semi-classical limit is explored more fully once power-
counting techniques are discussed in §3.

https://doi.org/10.1017/9781139048040.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781139048040.004


7 1.1 An Illustrative Toy Model

Fig. 1.1 The potential V(φR,φI), showing its sombrero shape and the circular line of minima at |φ | = v.

In the semi-classical regime, particle states are obtained by expanding the action
about the classical vacuum, φ = v + φ̃,

S = −
∫

d4x

{
∂μφ̃

∗∂μφ̃ +
λ

4
[
v(φ̃ + φ̃∗) + φ̃∗φ̃

]2}
, (1.4)

and keeping the leading (quadratic) order in the quantum fluctuation φ̃. In terms
of the field’s real and imaginary parts, φ̃ = 1√

2
(φ̃R + iφ̃I), the leading term in the

expansion of S is

S0 = −
1
2

∫
d4x
[
∂μφ̃R ∂

μφ̃R + ∂μφ̃I ∂
μφ̃I + λv

2 φ̃2
R

]
. (1.5)

The standard form (see §C.3.1) for the action of a free, real scalar field of mass
m is proportional to ∂μψ ∂μψ + m2ψ2, and so comparing with Eq. (1.5) shows φ̃R

represents a particle with mass m2
R = λv

2 while φ̃I represents a particle with mass
m2

I = 0. These are the heavy and light particles whose masses provide a hierarchy of
scales.

1.1.2 Scattering

For small λ the interactions amongst these particles are well-described in perturba-
tion theory, by writing S = S0 + Sint and perturbing in the interactions

Sint = −
∫

d4x

[
λv

2
√

2
φ̃R

(
φ̃2

R + φ̃
2
I

)
+
λ
16

(
φ̃2

R + φ̃
2
I

)2
]

. (1.6)

Using this interaction, a straightforward calculation – for a summary of the steps
involved see Appendix B – gives any desired scattering amplitude order-by-order in
λ. Since small λ describes a semiclassical limit (because it appears systematically
together with � in S/�, as argued above), the leading contribution turns out to come
from evaluating Feynman graphs with no loops3 (i.e. tree graphs).

3 A connected graph with no loops (or a ‘tree’ graph) is one which can be broken into two disconnected
parts by cutting any internal line. Precisely how to count the number of loops and why this is related to
powers of the small coupling λ is the topic of §3.
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Fig. 1.2 The tree graphs that dominate φ̃R φ̃I scattering. Solid (dotted) lines represent φ̃R (φ̃I), and ‘crossed’
graphs are those with external lines interchanged relative to those displayed.

Consider the reaction φ̃R(p) + φ̃I(q) → φ̃R(p′) + φ̃I(q′), where pμ = {p0, p} and
qμ = {q0, q} respectively denote the 4-momenta of the initial φ̃R and φ̃I particle,
while p′μ and q′μ are 4-momenta of the final φ̃R and φ̃I states. The Feynman graphs
of Fig. 1.2 give a scattering amplitude proportional to4 ARI→RIδ4(p + q − p′ − q′),
where the Dirac delta function, δ4(p + q − p′ − q′), expresses energy–momentum
conservation, and

ARI→RI = 4i

(
−λ

8

)
+

(
i2

2

) (
− λv

2
√

2

)2 [ 24(−i)

(p − p′)2 + m2
R

+
8(−i)

(p + q)2 +
8(−i)

(p − q′)2

]
= − iλ

2
+

i(λv)2

2m2
R

[
3

1 − 2q · q′/m2
R

− 1
1 − 2p · q/m2

R

− 1
1 + 2p · q′/m2

R

]
.

(1.7)

Here the factors like 4, 24 and 8 in front of various terms count the combinatorics of
how many ways each particular graph can contribute to the amplitude. The second
line uses energy–momentum conservation, (p − p′)μ = (q′ − q)μ, as well as the
kinematic conditions p2 = −(p0)2 + p2 = −m2

R and (q′)2 = q2 = −(q0)2 + q2 = 0,
as appropriate for relativistic particles whose energy and momenta are related by
E = p0 =

√
p2 + m2.

Notice that the terms involving the square bracket arise at the same order in λ
as the first term, despite nominally involving two powers of Sint rather than one
(provided that the square bracket itself is order unity). To see this, keep in mind
m2

R = λv
2 so that (λv/mR)2 = λ.

For future purposes it is useful also to have the corresponding result for the
reaction φ̃I(p) + φ̃I(q) → φ̃I(p′) + φ̃I(q′). A similar calculation, using instead the
Feynman graphs of Fig. 1.3, gives the scattering amplitude

AII→ II = 24i

(
− λ

16

)
+ 8

(
i2

2

) (
− λv

2
√

2

)2

×
[

−i

(p + q)2 + m2
R

+
−i

(p − p′)2 + m2
R

+
−i

(p − q′)2 + m2
R

]
= − 3iλ

2
+

i(λv)2

2m2
R

[
1

1 + 2p · q/m2
R

+
1

1 − 2q · q′/m2
R

+
1

1 − 2p · q′/m2
R

]
.

(1.8)

4 See Exercise 1.1 and Appendix B for the proportionality factors.
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Fig. 1.3 The tree graphs that dominate the φ̃I φ̃I scattering amplitude. Solid (dotted) lines represent φ̃R and φ̃I

particles.

1.1.3 The Low-Energy Limit

For the present purposes it is the low-energy regime that is of most interest: when
the centre-of-mass kinetic energy and momentum transfers during scattering are very
small compared with the mass of the heavy particle. This limit is obtained from the
above expressions by taking |p·q |, |p·q′ | and |q ·q′ | all to be small compared with m2

R .
Taylor expanding the above expressions shows that both ARI→RI and AII→ II are

suppressed in this limit by powers of (q or q′)/mR, in addition to the generic small
perturbative factor λ:

ARI→RI � 2iλ

(
q · q′

m2
R

)
+ O

(
m−4

R

)
, (1.9)

while

AII→ II � 2iλ

[
(p · q)2 + (p · q′)2 + (q · q′)2

m4
R

]
+ O

(
m−6

R

)
. (1.10)

Both of these expressions use 4-momentum conservation, and kinematic conditions
like q2 = 0 etc. to simplify the result, and both expressions end up being suppressed
by powers of q/mR and/or q′/mR once this is done.

The basic simplicity of physics at low energies arises because physical quantities
typically simplify when Taylor expanded in powers of any small energy ratios (like
scattering energy/mR in the example above). It is this simplicity that ultimately under-
lies the phenomenon of decoupling: in the toy model the low-energy implications of
the very energetic φ̃R states ultimately can be organized into a sequence in powers of
m−2

R , with only the first few terms relevant at very low energies.

1.2 The Simplicity of the Low-Energy Limit ♦

Now imagine that your task is to build an experiment to test the above theory by
measuring the cross section for scattering φ̃I particles from various targets, using
only accelerators whose energies, E, do not reach anywhere near as high as the mass
mR. Since the experiment is more difficult if the scattering is rare, the suppression of
the order-λ cross sections by powers of q/mR and/or q′/mR at low energies presents
a potential problem. But maybe this suppression is an accident of the leading, O(λ),
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10 Decoupling and Hierarchies of Scale

prediction? If the O(λ2) result is not similarly suppressed, then it might happen that
A � λ2 is measurable even if A � λ(E/mR)2 is not.

It turns out that the suppression of φ̃I scattering at low energies persists order-by-
order in the λ expansion, so any hope of evading it by working to higher orders would
be in vain. But the hard way to see this is to directly compute the O(λn) amplitude as
a complete function of energy, and then take the low-energy limit. It would be much
more efficient if it were possible to zero in directly on the low-energy part of the result
before investing great effort into calculating the complete answer. Any simplicity that
might emerge in the low-energy limit then would be much easier to see.

Indeed, a formalism exists precisely for efficiently identifying the nature of
physical quantities in the low-energy limit – effective field theories – and it is this
formalism that is the topic of this book. This formalism exists and is so useful
because one is often in the situation of being faced with a comparatively simple
low-energy limit of some, often poorly understood, more complicated system.

The main idea behind this formalism is to take advantage of the low-energy
approximation as early as possible in a calculation, and the best way to do so is
directly, once and for all, in the action (or Hamiltonian or Lagrangian), rather than
doing it separately for each independent observable. But how can the low-energy
expansion be performed directly in the action?

1.2.1 Low-Energy Effective Actions

To make this concrete for the toy model discussed above, a starting point is the
recognition that the low-energy limit, Eq. (1.10), of AII→ II has precisely the form
that would be expected (at leading order of perturbation theory) if the φ̃I particles
scattered only through an effective interaction of the form Seff = Seff 0 + Seff int, with

Seff 0 = −
1
2

∫
d4x ∂μφ̃I ∂

μφ̃I, (1.11)

and

Seff int =
λ

4m4
R

∫
d4x (∂μφ̃I ∂

μφ̃I)(∂ν φ̃I ∂
ν φ̃I), (1.12)

up to terms of order λ2 and/or m−6
R .

What is less obvious at this point, but nonetheless true (and argued in detail
in the chapters that follow), is that this same effective interaction, Eqs. (1.11)
and (1.12), also correctly captures the leading low-energy limit of other scattering
processes, such as for φ̃Iφ̃I → φ̃Iφ̃Iφ̃Iφ̃I and reactions involving still more φ̃I

particles. That is, all amplitudes obtained from the full action, Eqs. (1.5) and (1.6),
precisely agree with those obtained from the effective action, Eqs. (1.11) and (1.12),
provided that the predictions of both theories are expanded only to leading order in λ
and m−2

R [2].
Given that a low-energy action like Seff exists, it is clear that it is much easier to

study the system’s low-energy limit by first computing Seff and then using Seff to work
out any observable of interest, than it is to calculate all observables using S0 + Sint of
Eqs. (1.5) and (1.6), and only then expanding them to find their low-energy form.

As an example of this relative simplicity, because each factor of φ̃I appears
differentiated in Eq. (1.12), it is obvious that the amplitudes for more complicated
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11 1.2 The Simplicity of the Low-Energy Limit

scattering processes computed with it are also suppressed by high powers of the low-
energy scattering scale. For instance, the amplitude for φ̃Iφ̃I → N φ̃I (into N final
particles) computed using tree graphs built using just the quartic interaction Seff int

would be expected to give an amplitude proportional to at least

AII→ I· · ·I ∝ λN/2
(

scattering energy
mR

)N+2

(1.13)

in the low-energy limit. Needless to say, this type of low-energy suppression is much
harder to see when using the full action, Eqs. (1.5) and (1.6).

It may seem remarkable that an interaction like Seff exists that completely captures
the leading low-energy limit of the full theory in this way. But what is even more
remarkable is that a similar effective action also exists that reproduces the predictions
of the full theory to any fixed higher order in λ and m−2

R . This more general effective
action replaces Eq. (1.12) by

Seff int =

∫
d4x Leff int, (1.14)

where

Leff int = a (∂μφ̃I∂
μφ̃I)(∂ν φ̃I∂

ν φ̃I)

+ b (∂μφ̃I∂
μφ̃I)(∂ν φ̃I∂

ν φ̃I)(∂ρφ̃I∂
ρφ̃I) + · · · , (1.15)

where the ellipses represent terms involving additional powers of ∂μφ̂I and/or its
derivatives, though only a finite number of such terms is required in order to
reproduce the full theory to a fixed order in λ and m−2

R .
In principle, the coefficients a and b in Eq. (1.15) are given as a series in λ once

the appropriate power of mR is extracted on dimensional grounds,

a =
1

m4
R

[
λ
4
+ a2λ

2 + O(λ3)

]
and b =

1
m8

R

[
b1λ + b2λ

2 + b3λ
3 + O(λ4)

]
,

(1.16)

which displays explicitly the order-λ value for a found above that reproduces low-
energy scattering in the full theory. Explicit calculations in later sections also show
b1 = 0. More generally, to the extent that the leading (classical, or tree-level) part of
the action should be proportional to 1/λ once mR is eliminated for v using m2

R = λv
2

(as is argued above, and in more detail in Eq. (2.24) and §3), it must also be true that
b2 vanishes.

1.2.2 Why It Works

Why is it possible to find an effective action capturing the low-energy limit of a
theory, along the lines described above? The basic idea goes as follows.

It is not in itself surprising that there is some sort of Hamiltonian describing the
time evolution of low-energy states. After all, in the full theory time evolution is
given by a unitary operation

|ψ f (t)〉 = U (t, t ′) |ψi (t
′)〉, (1.17)
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12 Decoupling and Hierarchies of Scale

where U (t, t ′) = exp[−iH (t − t ′)] with a Hamiltonian5 H = H (φ̂R, φ̂I) depending on
both the heavy and light fields. But if the initial state has an energy Ei < mR it cannot
contain any φ̂R particles, and energy conservation then precludes φ̂R particles from
ever being produced by subsequent time evolution.

This means that time evolution remains a linear and unitary transformation even
when it is restricted to low-energy states. That is, suppose we define

Ueff(t, t ′) := PΛU (t, t ′) PΛ := exp [−iHeff(t − t ′)] , (1.18)

with P2
Λ
= PΛ being the projection operator onto states with low energy E < Λ �

mR. PΛ commutes with H and so also with time evolution. Because Heff = PΛHPΛ
if H is hermitian then so must be Heff and so if U (t, t ′) is unitary then so must be
Ueff(t, t ′) when acting on low-energy states.

Furthermore, because the action of Heff is well-defined for states having energy
E < Λ, it can be written as a linear combination of products of creation and
annihilation operators for the φ̂I field only (since these form a basis for operators that
transform among only low-energy states).6 As a consequence, it must be possible to
write Heff = Heff[φ̂I], without making any reference to the heavy field φ̂R at all.

But there is no guarantee that the expression for Heff[φ̂I] obtained in this way is
anywhere as simple as is H[φ̂R, φ̂I]. So the real puzzle is why the effective interaction
found above is so simple. In particular, why is it local,

Heff[φ̂I] =
∫

d3x Heff(x), (1.19)

with Heff(x) a simple polynomial in φ̂I(x) and its derivatives, all evaluated at the
same spacetime point?

Ultimately, the simplicity of this local form can be traced to the uncertainty
principle. Interactions, like Eq. (1.12), in Heff not already present in H describe
the influence on low-energy φ̂I particles of virtual processes involving heavy φ̂R

particles. These virtual processes are not ruled out by energy conservation even
though the production of real φ̂R particles is forbidden. One way to understand
why they are possible is because the uncertainty principle effectively allows energy
conservation to be violated,7 E f = Ei + ΔE, but only over time intervals that are
sufficiently short, Δt <∼ �/ΔE. The effects of virtual φ̂R particles are necessarily
localized in time over intervals that are of order 1/mR, which are unobservably short
for observers restricted to energies E � mR. Consequently, they are described at
these energies by operators all evaluated at effectively the same time.

In relativistic theories, large momenta necessarily involve large energies and since
the uncertainty principle relates large momenta to short spatial distances, a similar
argument can be made that the effect of large virtual momentum transfers on the

5 The convention here is to use φ̃ to denote the fluctuation when this is a non-operator field (appearing

within a path integral, say) and instead use φ̂ for the quantum operator fluctuation field.
6 See the discussion around Eq. (C.9) of Appendix C for details.
7 More precisely, energy need not be conserved at each vertex when organized in old-fashioned

Rayleigh–Schrödinger perturbation theory from undergraduate quantum mechanics classes. Once
reorganized into manifestly relativistic Feynman–Schwinger–Dyson perturbation theory energy

actually is preserved at each vertex, but internal particles are not on-shell: E �
√

p2 +m2. Either way
the locality consequences are the same.
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13 1.2 The Simplicity of the Low-Energy Limit

low-energy theory can also be captured by effective interactions localized at a single
spatial point. Together with the localization in time just described, this shows that the
effects of very massive particles are local in both space and time, as found in the toy
model above.

Locality arises explicitly in relativistic calculations when expanding the propaga-
tors of massive particles in inverse powers of mR, after which they become local in
spacetime since

G(x, y) := 〈0|T φ̂R(x)φ̂R(y) |0〉 = −i
∫

d4p

(2π)4
eip(x−y)

p2 + m2
R

(1.20)

� − i

m2
R

∞∑
k=0

∫
d4p

(2π)4

(
− p2

m2
R

)k
eip(x−y) = − i

m2
R

∞∑
k=0

(
m2

R

)k
δ4(x − y),

where the ‘T’ denotes time ordering, p(x − y) := p · (x − y) = pμ (x − y)μ and
= ∂μ∂

μ = −∂2
t + ∇2 is the covariant d’Alembertian operator.

The upshot is this: to any fixed order in 1/mR the full theory usually can be
described by a local effective lagrangian.8 The next sections develop tools for its
efficient calculation and use.

1.2.3 Symmetries: Linear vs Nonlinear Realization

Before turning to the nitty gritty of how the effective action is calculated and used, it
is worth first pausing to extract one more useful lesson from the toy model considered
above. The lesson is about symmetries and their low-energy realization, and starts by
asking why it is that the self-interactions among the light φ̂I particles – such as the
amplitudes of Eqs. (1.9) and (1.10) – are so strongly suppressed at low energies by
powers of 1/m2

R .
That is, although it is natural to expect some generic suppression of low-energy

interactions by powers of 1/m2
R , as argued above, why does nothing at all arise at

zeroeth order in 1/mR despite the appearance of terms like λφ̂4
I in the full toy-model

potential? And why are there so very many powers of 1/mR in the case of 2φ̂I → N φ̂I

scattering in the toy model? (Specifically, why is the amplitude for two φ̂I particles
scattering to N φ̂I particles suppressed by (1/mR)N+2?)

This suppression has a very general origin, and can be traced to a symmetry of
the underlying theory [3–5]. The symmetry in question is invariance under the U (1)
phase rotation, φ → eiωφ, of Eqs. (1.1) and (1.2). In terms of the real and imaginary
parts this acts as (

φR

φI

)
→

(
cosω − sinω
sinω cosω

) (
φR

φI

)
. (1.21)

A symmetry such as this that acts linearly on the fields is said to be linearly
realized. As summarized in Appendix C.4, if the symmetry is also linearly realized
on particle states then these states come in multiplets of the symmetry, all elements
of which share the same couplings and masses. However (as is also argued in

8 For nonrelativistic systems locality sometimes breaks down in space (e.g. when large momenta coexist
with low energy). It can also happen that the very existence of a Hamiltonian (without expanding the
number of degrees of freedom) breaks down for open systems – the topic of §16.

https://doi.org/10.1017/9781139048040.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781139048040.004
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Appendix C.4) linear transformations of the fields – such as (1.21) – are insufficient
to infer that the symmetry also acts linearly for particle states, |p〉 = a∗p |0〉, unless
the ground-state, |0〉, is also invariant. If a symmetry of the action does not leave the
ground state invariant it is said to be spontaneously broken.

For instance, in the toy model the ground state satisfies 〈0|φ(x) |0〉 = v, and so
the ground state is only invariant under φ → eiωφ when v = 0. Indeed, for the toy
model if v = 0 both particle masses are indeed equal: mR = mI = 0, as are all of
their self-couplings. By contrast, when v � 0 the masses of the two types of particles
differ, as does the strength of their cubic self-couplings. Although φ → eiωφ always
transforms linearly, the symmetry acts inhomogeneously on the deviation φ̂ = φ −
v = 1√

2
(φ̂R + iφ̂I) that creates and destroys the particle states. It is because the

deviation does not transform linearly (and homogeneously) that the arguments in
Appendix C.4 no longer imply that particle states need have the same couplings and
masses when v � 0.

To see why this symmetry should suppress low-energy φ̂I interactions, consider
how it acts within the low-energy theory. Even though φ transforms linearly in the
full theory, because the low-energy theory involves only the single real field φ̂I, the
symmetry cannot act on it in a linear and homogeneous way. To see what the action
of the symmetry becomes purely within the low-energy theory, it is useful to change
variables to a more convenient set of fields than φ̂R and φ̂I.

To this end, define the two real fields χ and ξ by9

φ =

(
v +

χ
√

2

)
eiξ/

√
2 v . (1.22)

These have the advantage that the action of the U (1) symmetry, φ → eiωφ takes a
particularly simple form,

ξ → ξ +
√

2 v ω, (1.23)

with χ unchanged, so ξ carries the complete burden of symmetry transformation.
In terms of these fields the action, Eq. (1.1), becomes

S = −
∫

d4x
⎡⎢⎢⎢⎢⎣12 ∂μχ∂μχ + 1

2

(
1 +

χ
√

2 v

)2

∂μξ∂
μξ + V (χ)

⎤⎥⎥⎥⎥⎦ , (1.24)

with

V (χ) =
λ
4

(√
2 v χ +

χ2

2

)2

. (1.25)

Expanding this action in powers of χ and ξ gives the perturbative action S = S0+Sint,
with unperturbed contribution

S0 = −
1
2

∫
d4x
[
∂μχ∂

μχ + ∂μξ∂
μξ + λv2 χ2

]
. (1.26)

This shows that χ is an alternative field representation for the heavy particle, with
m2
χ = m2

R = λv
2. ξ similarly represents the massless field.

It also shows the symmetry is purely realized on the massless state, as an
inhomogeneous shift (1.23) rather than a linear, homogeneous transformation.

9 Numerical factors are chosen here to ensure fields are canonically normalized.
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15 1.2 The Simplicity of the Low-Energy Limit

Such a transformation – often called a nonlinear realization of the symmetry
(both to distinguish it from the linear realization discussed above, and because the
transformations turn out in general to be nonlinear when applied to non-abelian
symmetries) – is a characteristic symmetry realization in the low-energy limit of
a system which spontaneously breaks a symmetry.

The interactions in this representation are given by

Sint = −
∫

d4x

[(
χ
√

2 v
+
χ2

4 v2

)
∂μξ∂

μξ +
λv

2
√

2
χ3 +

λ
16
χ4
]

. (1.27)

For the present purposes, what is important about these expressions is that ξ always
appears differentiated. This is a direct consequence of the symmetry transformation,
Eq. (1.23), which requires invariance under constant shifts: ξ → ξ + constant. Since
this symmetry forbids a ξ mass term, which would be ∝ m2

I ξ
2, it ensures ξ remains

exactly massless to all orders in the small expansion parameters. ξ is what is called a
Goldstone boson for the spontaneously broken U (1) symmetry: it is the massless
scalar that is guaranteed to exist for spontaneously broken (global) symmetries.
Because ξ appears always differentiated it is immediately obvious that an amplitude
describing Ni ξ particles scattering into Nf ξ particles must be proportional to at
least Ni + Nf powers of their energy, explaining the low-energy suppression of light-
particle scattering amplitudes in this toy model.

For instance, explicitly re-evaluating the Feynman graphs of Fig. 1.3, using the
interactions of Eq. (1.27) instead of (1.6), gives the case Ni = Nf = 2 as

Aξξ→ ξξ

= 0 + 8
(

i2

2

) (
− 1
√

2 v

)2 [−i(p · q)(p′ · q′)

(p + q)2 + m2
R

+
−i(p · p′)(q · q′)

(p − p′)2 + m2
R

+
−i(p · q′)(q · p′)

(p − q′)2 + m2
R

]
=

2iλ

m4
R

[
(p · q)2

1 + 2p · q/m2
R

+
(q · q′)2

1 − 2q · q′/m2
R

+
(p · q′)2

1 − 2p · q′/m2
R

]
,

(1.28)

in precise agreement with Eq. (1.8) – as may be seen explicitly using the identity
(1 + x)−1 = 1 − x + x2/(1 + x) – but with the leading low-energy limit much more
explicit.

This representation of the toy model teaches several things. First, it shows that
scattering amplitudes (and, more generally, arbitrary physical observables) do not
depend on which choice of field variables are used to describe a calculation [8–10].
Some kinds of calculations (like loops and renormalization) are more convenient
using the variables φ̂R and φ̂I, while others (like extracting consequences of
symmetries) are easier using χ and ξ.

Second, this example shows that it is worthwhile to use the freedom to perform
field redefinitions to choose those fields that make life as simple as possible. In
particular, it is often very useful to make symmetries of the high-energy theory as
explicit as possible in the low-energy theory as well.

Third, this example shows that once restricted to the low-energy theory it need
not be true that a symmetry remains linearly realized by the fields [11–13], even
if this were true for the full underlying theory including the heavy particles. The
necessity of realizing symmetries nonlinearly arises once the scales defining the
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16 Decoupling and Hierarchies of Scale

low-energy theory (e.g. E � mR) are smaller than the mass difference (e.g. mR)
between particles that are related by the symmetry in the full theory, since in this
case some of the states required to fill out a linear multiplet are removed as part of
the high-energy theory.

1.3 Summary

This first chapter defines a toy model, in which a complex scalar field, φ, self-interacts via a potential
V = λ

4 (φ∗φ − v2)2 that preserves a U (1) symmetry:φ → eiωφ. Predictions for particle masses and
scattering amplitudes are made as a function of the model’s two parameters,λ and v, in the semiclassical
regimeλ � 1. This model is used throughout the remaining chapters of Part I as a vehicle for illustrating
how the formalism of effective field theories works in a concrete particular case.

The semiclassical spectrum of the model has two phases. If v = 0 the U (1) symmetry is preserved
by the semiclassical ground state and there are two particles whose couplings and masses are the same
because of the symmetry. When v � 0 the symmetry is spontaneously broken, and one particle is massless
while the other gets a nonzero mass m =

√
λ v.

The model’s symmetry-breaking phase has a low-energy regime, E � m, that provides a useful
illustration of low-energy methods. In particular, the massive particle decouples at low energies in
the precise sense that its virtual effects only play a limited role for the low-energy interactions of the
massless particles. In particular, explicit calculation shows the scattering of massless particles at low
energies in the full theory to be well-described to leading order in λ and E/m in terms of a simple
local ‘effective’ interaction with lagrangian density Leff = aeff(∂μξ ∂μξ)2, with effective coupling:
aeff = λ/(4m 4). The U (1) symmetry of the full theory appears in the low-energy theory as a shift
symmetry ξ → ξ + constant.

Exercises

Exercise 1.1 Use the Feynman rules coming from the action S = S0 + Sint given in
Eqs. (1.5) and (1.6) to evaluate the graphs of Fig. 1.2. Show from your result
that the corresponding S-matrix element is given by

〈φ̂R(p′), φ̂I(q
′) |S | φ̂R(p), φ̂I(q)〉 = −i(2π)4ARI→RI δ

4(p + q − p′ − q′),

with ARI→RI given by Eq. (1.7). Taylor expand your result for small q, q′ to
verify the low-energy limit given in Eq. (1.9). [Besides showing the low-energy
decoupling of Goldstone particles, getting right the cancellation that provides
this suppression in these variables is a good test of – and a way to develop faith
in – your understanding of Feynman rules.]

Exercise 1.2 Using the Feynman rules coming from the action S = S0 + Sint given in
Eqs. (1.5) and (1.6) evaluate the graphs of Fig. 1.3 to show

〈φ̂I(p′), φ̂I(q
′) |S | φ̂I(p), φ̂I(q)〉 = −i(2π)4AII→II δ

4(p + q − p′ − q′),
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17 Exercises

with AII→II given by Eq. (1.8). Taylor expand your result for small q, q′ to
verify the low-energy limit given in Eq. (1.10).

Exercise 1.3 Using the toy model’s leading effective interaction S = Seff 0 + Seff int,
with Feynman rules drawn from (1.11) (1.12), draw the graphs that produce
the dominant contributions – i.e. carry the fewest factors of λ and (external
energy)/mR – to the scattering process φ̂I + φ̂I → 4φ̂I. Show that these agree
with the estimate (1.13) in their prediction for the leading power of λ and of
external energy.

Exercise 1.4 Using the Feynman rules coming from the action S = S0 + Sint given in
Eqs. (1.26) and (1.27) evaluate the graphs of Fig. 1.3 to show

〈ξ(p′), ξ(q′) |S | ξ(p), ξ(q)〉 = −i(2π)4Aξξ→ξξ δ
4(p + q − p′ − q′),

with Aξξ→ξξ given by Eq. (1.28). [Comparing this result to the result in
Exercise 1.2 provides an illustration of Borcher’s theorem [8–10], which states
that scattering amplitudes remain unchanged by a broad class of local field
redefinitions.]
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