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A long-wave asymptotic model is developed for a viscoelastic falling film along the inside
of a tube; viscoelasticity is incorporated using an upper convected Maxwell model. The
dynamics of the resulting model in the inertialess limit is determined by three parameters:
Bond number Bo, Weissenberg number We and a film thickness parameter a. The free
surface is unstable to long waves due to the Plateau–Rayleigh instability; linear stability
analysis of the model equation quantifies the degree to which viscoelasticity increases
both the rate and wavenumber of maximum growth of instability. Elasticity also affects
the classification of instabilities as absolute or convective, with elasticity promoting
absolute instability. Numerical solutions of the nonlinear evolution equation demonstrate
that elasticity promotes plug formation by reducing the critical film thickness required
for plugs to form. Turning points in travelling wave solution families may be used as a
proxy for this critical thickness in the model. By continuation of these turning points, it
is demonstrated that in contrast to Newtonian films in the inertialess limit, in which plug
formation may be suppressed for a film of any thickness so long as the base flow is strong
enough relative to surface tension, elasticity introduces a maximum critical thickness past
which plug formation occurs regardless of the base flow strength. Attention is also paid
to the trade-off of the competing effects introduced by increasing We (which increases
growth rate and promotes plug formation) and increasing Bo (which decreases growth rate
and inhibits plug formation) simultaneously.
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1. Introduction

The flow of highly viscous films along the inside or outside of tubes arises in
numerous applications in engineering and the sciences (Oron, Davis & Bankoff 1997;
Grotberg & Jensen 2004; Craster & Matar 2009), and many modelling, experimental and
computational studies have been conducted to better understand these flows. In contrast
to films falling along an inclined plane, in which surface tension acts to stabilize any
free-surface instabilities, these flows are unstable to long-wave disturbances as surface
tension plays both a stabilizing and destabilizing role due to the curvature of the free
surface (see, e.g. Goren 1962; Yih 1967; Hickox 1971). This Plateau–Rayleigh instability
is the same mechanism at work in the breakup of liquid jets; depending on the set-up, other
instability mechanisms can be at play as well, e.g. the Kapitza instability (Kapitza 1948)
which arises due to inertial effects. As the focus of the current study is highly viscous
films, the Plateau–Rayleigh instability is primarily in mind here.

Experiments show that there are multiple dynamical outcomes for falling film flows
inside a tube. If the film is thinner than some critical thickness, the instability growth will
saturate resulting in a free surface consisting of travelling wave trains. However, if the
film is thicker than this critical thickness, wave growth can accelerate with the wave crest
approaching the centre of the tube in finite time, resulting in the formation of a liquid plug.
This critical thickness depends on the strength of the base flow relative to the effects of
surface tension (measured by, e.g. the Bond number Bo). The presence of a base flow, here
driven by gravity, provides a nonlinearly stabilizing mechanism to halt wave growth; hence
the critical thickness is larger with stronger base flow.

Lubrication theory provides a modelling framework to study these flows; a brief review
of the modelling studies most closely related to the current set-up is now given. Hammond
(1983) derived a thin-film model for the free-surface evolution of a film coating a tube in
the absence of any base flow due to gravity or core flow. Frenkel (1992) derived a thin-film
model valid for a falling film along the inside or outside of a tube, and numerically studied
the free surface evolution and travelling wave solutions (Kerchman & Frenkel 1994).
Kalliadasis & Chang (1994) used self-similar solutions to the model of Frenkel (1992) to
find an expression for the blow-up of solitary wave solutions which provides a condition for
plug or droplet formation. Craster & Matar (2006), Kliakhandler, Davis & Bankoff (2001),
Ji et al. (2019), Camassa & Lee (2006), Camassa, Ogrosky & Olander (2014) and others
all developed what will be termed here as ‘long-wave’ models for the same set-up, with
the first three focused on flow outside of a tube, and the last two focused on flow inside a
tube. The designation ‘long-wave’ is used here to distinguish these models – in which the
film is not necessarily assumed to be thin relative to the tube radius – from those in which
the thinness of the film is assumed small and directly exploited in the development of the
model. A weighted-residual integral boundary-layer (WRIBL) model was developed by
Dietze & Ruyer-Quil (2015) for the same set-up, also accounting for the presence of core
flow.

The long-wave and WRIBL models have been shown to provide good quantitative
agreement with experimental outcomes, with the WRIBL models capable of describing
flows with small to moderate Reynolds number particularly well. The linear growth and
propagation of free-surface disturbances seen in experiments, as well as the relationship
between volume flux and film thickness, has been well captured by both types of models
(Smolka, North & Guerra 2008; Camassa et al. 2014). When linear stability analysis is
conducted from a spatiotemporal viewpoint, instabilities may be classified as absolute
or convective (borrowing from the nomenclature of the study of plasmas). Duprat et al.
(2007) used the model of Craster & Matar (2006) to show that this classification
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Falling upper convected Maxwell film inside a tube

quantitatively matched experiments on the exterior of a tube in which instability growth
was or was not visible near the inlet, respectively; this was subsequently extended for
the case of flows along the interior of a tube by Camassa et al. (2014). Jensen (2000)
studied the conditions under which symmetric unduloids might form plugs. Further studies
using long-wave and WRIBL models have highlighted the role gravity plays in breaking
wave symmetry and modifying the critical thickness required for plugs to form; numerical
simulations of these models predict this critical thickness well (Camassa et al. 2014;
Dietze, Lavalle & Ruyer-Quil 2020).

This critical thickness is also well captured by families of travelling wave solutions
found for long-wave and WRIBL models. Such families, when found for constant values
of Bo and varying film thickness, e.g. have a turning point at some thickness, where two
branches of travelling wave solution families parametrized by thickness merge; for larger
thicknesses, no such solutions are found. This turning-point thickness has been shown to
be a good proxy for the critical thickness required for plug formation to occur in both types
of models over a variety of parameters (Camassa et al. 2014, 2016; Ding et al. 2019; Dietze
et al. 2020; Schwitzerlett, Ogrosky & Topaloglu 2023).

In some applications – e.g. the flow of airway surface liquid lining human airways
(Chen et al. 2019) – the film is non-Newtonian. A variety of constitutive equations have
been proposed to incorporate the effects of elasticity, with two of the simplest and most
common being the Oldroyd-B and upper convected Maxwell (UCM) models. The linear
stability of a falling viscoelastic film has been studied by Zhou et al. (2014), who conducted
linear stability analysis of a UCM film in the presence of shear and surfactant. They
showed that elasticity is destabilizing for a falling film in the absence of shear, but that
elasticity can have a stabilizing or destabilizing effect in the presence of shear. Zhou
et al. (2016) developed an integral boundary layer model for a viscoelastic film falling
down a flexible tube to study the impact of elasticity on the Kapitza and Plateau–Rayleigh
instabilities; travelling wave solutions and transient numerical solutions demonstrated the
impact elasticity has on wave speed, profile and plug formation. Kang & Chen (1995)
developed an asymptotic model for the flow of an Oldroyd-B film down an inclined plane
and considered both elastic instability and instability arising from inertia; as with other
previous studies, they found that elasticity increases linear instability growth rates, and
the weakly nonlinear growth of instabilities was studied. Khayat & Kim (2006) modelled
the flow of an Oldroyd-B film flowing over axisymmetric substrates, studying the effects
of both inertia and elasticity, and showed the role of viscoelasticity in increasing the
accumulation of the film at the inlet. Halpern, Fujioka & Grotberg (2010) developed a
lubrication-theory-type model for a viscoelastic film inside a tube in the absence of any
base flow, showing that growth rates, plug formation and wall stresses were promoted
by elasticity. The impact of elasticity on wall stresses, particularly before and after plug
formation or rupture, was further studied numerically by Romano et al. (2021), who used
an axisymmetric finite volume method to investigate the wall stresses for Oldroyd-B and
FENE-CR films; they showed that elasticity results in a second peak in stress gradients
arising after plug formation, with this second peak large enough to cause damage to
epithelial cells in human airways. Patne (2021) studied the linear stability of a viscoelastic,
shear-thinning film over a flexible wall with surfactant at the free surface in the presence of
shear from airflow; liquid elastic modes, excited by the first normal stress difference across
the free surface, and solid elastic modes, triggered by the shear, can undergo resonance
leading to an amplified growth rate. Patne (2024) studied the impacts of air temperature
on a UCM film sheared by turbulent airflow inside a tube, demonstrating the stabilizing
effects of warm air on free-surface instabilities. The role of viscoelasticity on mucociliary
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clearance in lungs has been studied by Choudhury et al. (2023), who used the slip model
of Bottier et al. (2017) and Bottier (2017) to model the beating of cilia on clearance of an
Oldroyd-B film and also explored the impact of shear-thinning on mucociliary clearance.
The impact of plug formation on mucus clearance and flow resistance in the lungs was
studied by Fujioka et al. (2016), who developed a semiempirical formula for flow resistance
caused by plugs, and Bahrani et al. (2022), who considered elastoviscoplastic plugs. Erken
et al. (2023) incorporated elastoviscoplastic properties of mucus for healthy patients and
patients with a variety of airway diseases in an airway closure model. The effect of
surfactant on a viscoplastic layer was explored in detail by Shemilt et al. (2022, 2023),
who showed that both surfactant and yield stress suppress plug formation.

Experimentally, Kim et al. (1986) studied air-driven transport of a viscoelastic film up
a tube, showing that viscoelasticity greatly reduced the pressure drop across the tube;
viscoelasticity was also found to increase the speed of film transport in vertical tubes with
(asymmetric) oscillatory airflow (Kim, Iglesias & Sackner 1987) and with constant upward
airflow (Kim et al. 1986). Boulogne, Pauchard & Giorgiutti-Dauphiné (2012) studied flow
on a fibre, showing that a shear-thinning film was thinner than its Newtonian counterpart
for fixed volume flux, and that growth rate increased. They also point out that the polymers
responsible for non-Newtonian rheology also created an effective surface tension lower
than the original. Boulogne et al. (2013) discuss how polymers can even suppress the
Plateau–Rayleigh instability for viscoelastic films on a fibre. For films inside a tube,
experiments by Olander (2020) demonstrated that the addition of a small concentration of
polymers may lower the surface tension of a fluid film while producing negligible elastic
properties.

In the current study, we develop an asymptotic model for the free-surface evolution
of a falling viscoelastic film using a UCM model for the constitutive equations. This
model will be used to determine the impact of elasticity on the linear instability of a film,
with an analytical expression obtained for the classification of instabilities as absolute
or convective. The nonlinear evolution of the free surface will be explored numerically,
and travelling wave solution families are explored via numerical continuation of the
limit points that serve as proxy for the critical film thickness in model simulations. This
continuation succinctly shows the reduction in critical thickness that elasticity induces in
the model.

The rest of the paper is organized as follows. The model is developed in § 2, and
parameter values corresponding to previous experiments are discussed. Linear stability
analysis from both a temporal and spatiotemporal viewpoint is conducted in § 3. Solutions
to the model, including those for travelling waves, are found numerically and discussed in
§ 4. Conclusions are given in § 5.

2. Long-wave model

In this section, a long-wave asymptotic model is derived for a highly viscous viscoelastic
falling film coating the interior of a vertical rigid tube.

2.1. Governing equations and UCM model
The governing equations are the incompressible, axisymmetric Navier–Stokes equations
in cylindrical coordinates,

ρ̄(∂t̄ ū + ū∂r̄ ū + w̄∂z̄ū) = −∂r̄ p̄ + 1
r̄
∂r̄(r̄σ̄rr) + ∂z̄σ̄rz− σ̄θθ

r̄
, (2.1a)
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ā
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ḡ

Figure 1. Sketch of the flow configuration and variable definitions.

ρ̄(∂t̄w̄ + ū∂r̄w̄ + w̄∂z̄w̄) = −∂z̄p̄ + 1
r̄
∂r̄(r̄σ̄rz) + ∂z̄σ̄zz + ρ̄ḡ, (2.1b)

1
r̄
∂r̄(r̄ū) + ∂z̄w̄ = 0, (2.1c)

where ρ̄ is the density of the fluid, ḡ is acceleration due to gravity, p̄ is pressure, t̄ is time,
and σ̄ is the deviatoric stress tensor with components σ̄rr, σ̄rz and σ̄zz. Overbars denote
dimensional quantities and partial derivatives with respect to, e.g. r̄, are denoted ∂r̄. The
coordinates are (r̄, θ̄, z̄) with associated velocity components (ū, v̄, w̄); see figure 1. Here,
the axial coordinate z̄ increases in the downward direction along the tube. The flow is
assumed to be axisymmetric, so the θ̄ and v̄ components are taken to be zero.

A model for the deviatoric stress components is needed to close the system. Many
models have been proposed and seen widespread use; here, we choose to use the UCM
model. Under the UCM model, each of the stress components σ̄ij are assumed to obey the
following constitutive equations:

σ̄rr + λ̄[∂t̄σ̄rr + ū∂r̄σ̄rr + w̄∂z̄σ̄rr − 2(∂r̄ ū)σ̄rr − 2(∂z̄ū)σ̄rz] = 2μ̄∂r̄ ū, (2.2a)

σ̄rz + λ̄[∂t̄σ̄rz + ū∂r̄σ̄rz + w̄∂z̄σ̄rz − (∂r̄w̄)σ̄rr − (∂r̄ ū + ∂z̄w̄)σ̄rz − (∂z̄ū)σ̄zz]

= μ̄(∂z̄ū + ∂r̄w̄),
(2.2b)

σ̄zz + λ̄[∂t̄σ̄zz + ū∂r̄σ̄zz + w̄∂z̄σ̄zz − 2(∂r̄w̄)σ̄rz − 2(∂z̄w̄)σ̄zz] = 2μ̄∂z̄w̄, (2.2c)

σ̄θθ + λ̄[∂t̄σ̄θθ + ū∂r̄σ̄θθ + w̄∂z̄σ̄θθ ] = 2μ̄ū
r̄

, (2.2d)

where λ̄ is the relaxation time, μ̄ is the dynamic viscosity and where the right-hand side
of (2.2) are the components of the rate-of-strain tensor τ̄ .

Boundary conditions at the tube wall, r̄ = ā, are no-slip,

ū = w̄ = 0. (2.3)

1001 A14-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

10
83

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1083


R. Camassa, H.R. Ogrosky and J. Olander

At the free surface, r̄ = R̄(z̄, t̄), the boundary conditions are given by: (i) continuity of
tangential stress; (ii) jump in normal stress according to the Young–Laplace equation; and
(iii) a kinematic boundary condition,

σ̄rz + (∂z̄R̄)(σ̄rr − σ̄zz) − (∂z̄R̄)2σ̄rz = 0, (2.4a)

− p̄[1 + (∂z̄R̄)2] + σ̄rr − 2(∂z̄R̄)σ̄rz + (∂z̄R̄)2σ̄zz

= γ̄ [1 + (∂z̄R̄)2]
(

1
R̄[1 + (∂z̄R̄)2]1/2

− ∂z̄z̄R̄
[1 + (∂z̄R̄)2]3/2

)
,

(2.4b)

ū = ∂t̄R̄ + w̄∂z̄R̄, (2.4c)

where the background pressure has been set to zero for convenience.
Equations (2.1)–(2.4) may be non-dimensionalized by the scales

r = r̄
R̄0

, z = z̄
Λ̄

, u = ū
Ū0

, w = w̄
W̄0

, t = t̄W̄0

Λ̄
, p = p̄

ρ̄ḡR̄0
, σij = σ̄ij

ρ̄ḡR̄0
,

(2.5a–g)

where R̄0 = ā − h̄0 is the distance from the centre of the tube to the mean free surface
of the film, Λ̄ is a typical wavelength of a free-surface disturbance, and where Ū0 and
W̄0 = ρ̄ḡR̄2

0/μ̄ are velocity scales in the radial and axial directions, respectively. The
model development that follows will make use of a long-wave assumption that exploits an
assumed small ratio of length scales ε = R̄0/Λ̄ � 1. The continuity equation then dictates
that Ū0 = εW̄0. This results in the following dimensionless governing equations:

ε2R̃e(∂tu + u∂ru + w∂zu) = −∂rp + 1
r
∂r(rσrr) + ε∂zσrz−σθθ

r
, (2.6a)

εR̃e(∂tw + u∂rw + w∂zw) = −ε∂zp + 1
r
∂r(rσrz) + ε∂zσzz + 1, (2.6b)

1
r
∂r(ru) + ∂zw = 0, (2.6c)

where R̃e = ρ̄R̄0W̄0/μ̄ is the Reynolds number. In dimensionless form, the constitutive
equations are

σrr + εW̃e[∂tσrr + u∂rσrr + w∂zσrr − 2(∂ru)σrr − 2ε(∂zu)σrz] = 2ε∂ru, (2.7a)

σrz + W̃e[ε∂tσrz + εu∂rσrz + εw∂zσrz − (∂rw)σrr − ε(∂ru + ∂zw)σrz − ε2(∂zu)σzz]

= ε2∂zu + ∂rw,

(2.7b)

σzz + W̃e[ε∂tσzz + εu∂rσzz + εw∂zσzz − 2(∂rw)σrz − 2ε(∂zw)σzz] = 2ε∂zw, (2.7c)

σθθ + εW̃e[∂tσθθ + u∂rσθθ + w∂zσθθ ] = 2εu
r

, (2.7d)

where W̃e = λ̄W̄0/R̄0 is the Weissenberg number, the value of which specifies the ratio
of elastic forces to viscous forces in the problem. Boundary conditions at the tube wall,
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Falling upper convected Maxwell film inside a tube

r = a, where a = ā/R̄0, are
u = w = 0, (2.8)

and at the free surface, r = R(z, t),

[1 − ε2(∂zR)2]σrz + ε(∂zR)(σrr − σzz) = 0, (2.9a)

−p[1 + ε2(∂zR)2] + σrr − 2ε(∂zR)σrz + ε2(∂zR)2σzz

= 1
B̃o

[1 + ε2(∂zR)2]
(

1
R[1 + ε2(∂zR)2]1/2 − ε2∂zzR

[1 + ε2(∂zR)2]3/2

)
, (2.9b)

u = ∂tR + w∂zR, (2.9c)

where B̃o = ρ̄ḡR̄2
0/γ̄ is the Bond number, whose value specifies the ratio of gravity forces

to capillary forces. We thus have a total of five dimensionless parameters governing the
flow: film thickness parameter a, Reynolds number R̃e, Bond number B̃o, Weissenberg
number W̃e and aspect ratio ε.

2.2. Leading-order equations and solution
Integrating the continuity equation (2.6c) across the fluid layer and applying the boundary
conditions (2.8) and (2.9c) results in an evolution equation for the free surface R(z, t),

∂tR = 1
R

∂z

∫ a

R
wr dr. (2.10)

All that is needed to close the model is an expression for the axial velocity w. To find
an approximation of w, a regular perturbation expansion in ε is used, with each variable
expressed as

w = w0 + εw1 + O(ε2), p = p0 + εp1 + O(ε2), (2.11a)

u = u0 + εu1 + O(ε2), σij = σij,0 + εσij,1 + O(ε2). (2.11b)

Substituting (2.11) into the governing equations (2.6) and truncating at leading order in ε

results in

∂rp0 = 1
r
∂r(rσrr,0)−σθθ,0

r
,

1
r
∂r(rσrz,0) = −1,

1
r
∂r(ru0) + ∂zw0 = 0, (2.12a–c)

and the constitutive equations of the UCM model are given by

σrr,0 = 0, (2.13a)

σrz,0 − W̃e(∂rw0)σrr,0 = ∂rw0, (2.13b)

σzz,0 − 2W̃e(∂rw0)σrz,0 = 0, (2.13c)

σθθ,0 = 0. (2.13d)

The no-slip boundary condition at r = a dictates u0 = w0 = 0, and at r = R(z, t), the
boundary conditions are

σrz = 0, −p0 + σrr,0 = 1
B̃o

(
1
R

− ε2Rzz

)
, (2.14)

where we have retained one term of higher order in ε. While a full discussion of the
retention of this term is omitted here, this term is commonly included in long-wave
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asymptotic models and has been shown to be the first-appearing term in the expansion
that prevents shock formation; it also provides the correct cut-off wavenumber for linearly
unstable modes and produces excellent agreement with experiments for Newtonian films.

The leading-order solution to (2.12a–c)–(2.14) is given by

u0 = R(∂zR)

4r

(
r2 − a2 − 2r2 log

r
a

)
, σrz,0 = 1

2r
(R2 − r2),

w0 = 1
4

(
a2 − r2 + 2R2 log

r
a

)
, σzz,0 = W̃e

2r2 (R2 − r2)2,

p0 = − 1
B̃o

(
1
R

− ε2∂zzR
)

, σrr,0 = σθθ,0 = 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(2.15)

Note that the presence of elasticity does not modify the leading order base flow (u, w),
but does modify the σzz,0 component of the stress tensor. Equation (2.15) results in a
leading-order model

∂tR = 1
R

∂z

∫ a

R
w0r dr = 1

2

(
R2 − a2 − 2R2 log

R
a

)
∂zR. (2.16)

2.3. First-order equations and long-wave model
Next, the base flow may be used to find the first-order axial velocity w1. The case of
low-Reynolds-number flow, i.e. R̃e = O(ε), is considered first. In this case, the inertial
terms appear at O(ε2) and the governing equations at first-order in ε are given by

∂rp1 = 1
r
∂r(rσrr,1) + ∂zσrz,0−σθθ,1

r
, (2.17a)

1
r
∂r(rσrz,1) = ∂zp0 − ∂zσzz,0, (2.17b)

1
r
∂r(ru1) + ∂zw1 = 0. (2.17c)

The UCM model constitutive equations are

σrr,1 = 2∂ru0, (2.18a)

σrz,1 + W̃e[∂tσrz,0 + u0∂rσrz,0 + w0∂zσrz,0

−(∂rw0)σrr,1 − (∂rw1)σrr,0 − (∂ru0 + ∂zw0)σrz,0] = ∂rw1,
(2.18b)

σzz,1 + W̃e[∂tσzz,0 + u0∂rσzz,0 + w0∂zσzz,0

−2(∂rw0)σrz,1 − 2(∂rw1)σrz,0 − 2(∂zw0)σzz,0] = 2∂zw0,
(2.18c)

σθθ,1 = 2u0

r
. (2.18d)

Once again, no-slip boundary conditions apply at the wall r = a, while at the free surface
r = R(z, t), the first-order boundary conditions are

σrz,1 + (∂zR)(σrr,0 − σzz,0) = 0, (2.19a)

−p1 + σrr,1 − 2(∂zR)σrz,0 = 0. (2.19b)

While each equation and condition has been given through first-order, only (2.17b), (2.18a),
(2.18b) and (2.19a) are needed to derive the first-order axial velocity w1. In solving for w1,
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Falling upper convected Maxwell film inside a tube

note that (2.18b) contains ∂tσrz,0 = RRt/r; to evaluate this contribution from the leading
order stress, we use the leading order model (2.16) to substitute for ∂tR. This approach is
identical to that taken by e.g. Camassa et al. (2014) to incorporate inertial effects. Note
that this approach may not be applicable to settings without a base flow, as considered by
Halpern et al. (2010), for example. This results in the following expression for w1:

w1 = 1
4B̃o

(
r2 − a2 − 2R2 log

r
a

) (
∂zR
R2 + ∂zzzR

)
+ W̃eR(∂zR)

8

[
r2 − a2 − R2 + a2R2

r2 + 2(a2 − R2) log
r
a

+ 4R2 log
r
a

(
log

R
a

+ log
R
r

)]
. (2.20)

Using (2.15) and substituting w0 + εw1 into (2.10), the model equation is

∂tR = 1
16R

∂z

[
f1(R; a)

(
1 − a2

Bo

(
∂zR
R2 + ∂zzzR

))
− WeR(∂zR)

2a
f2(R; a)

]
, (2.21)

where

f1(R; a) = a4 − 4a2R2 + 3R4 − 4R4 log
R
a

, (2.22a)

f2(R; a) = 3a4 − 3R4 − 4R4 log
R
a

+ 16a2R2 log
R
a

+ 8R4
(

log
R
a

)2

, (2.22b)

and where we have dropped the ε’s from the final model equation. This corresponds to
returning to the original aspect ratio in the dimensionless problem; while the ε’s are
no longer in the model equation, it must be pointed out that the strict validity of the
model derivation still relies on the assumption ε � 1 is satisfied. Note that (2.21) has
been expressed in terms of a rescaled Bond number Bo = a2B̃o and Weissenberg number
We = aW̃e; these rescaled numbers Bo = ρ̄ḡā2/γ̄ and We = λ̄ρ̄ḡā/μ̄ have the advantage
of being independent of film thickness and depend only on parameters density, viscosity,
tube radius, surface tension and relaxation time. It is interesting to note that the same
model equation may be derived using the Oldroyd-B constitutive equations in place of the
UCM model, so that the dynamical outcomes produced by either constitutive model are
identical. Note that fi(R; a) > 0 (for i = 1, 2) since 0 < R < a.

In the case where Re = O(1), the inertial terms appear at first-order; the details of the
derivation in the case of a Newtonian film can be found from Camassa et al. (2014) and
are omitted here as the resulting terms are identical (up to choice of scales):

∂tR = 1
16R

∂z

[
f1(R; a)

(
1 − a2

Bo

(
∂zR
R2 + ∂zzzR

))
−WeR(∂zR)

2a
f2(R; a) − Re

a3 f3(R; a)∂zR
]

, (2.23)

where

f3(R; a) = 59
48 R7 − 15

16 a2R5 − 9
16 a4R3 + 13

48 a6R − 17
4 a2R5 log(R/a) + 7

4 a4R3 log(R/a)

− 5
2 R7(log(R/a))2 + 5

2 a2R5(log(R/a))2 + 2R7(log(R/a))3, (2.24)
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R. Camassa, H.R. Ogrosky and J. Olander

and where Re = a3R̃e = ρ̄2ḡā3/μ̄2 is a rescaled Reynolds number. As the focus here is on
highly viscous films, model results will be primarily presented for (2.21), but comments
will be given on (2.23) as well. It is again the case that f3(R; a) > 0 for 0 < R < a.

In the thin-film limit, the nonlinearities in the model simplify considerably. A film
thickness h, scaled so that h = 0 at the wall and h = 1 at the mean free surface, may
be defined by

h = a − R
a − 1

. (2.25)

Substituting R = a − βh, with β = a − 1, into (2.21) and expanding about β = 0 results
in

∂th + 1
3
∂z

[
h3

(
1 + 1

Bo∗ (∂zh + ∂zzzh)

)
+ We∗h4(∂zh)

]
= 0, (2.26)

where Bo∗ = Bo/β, We∗ = β2We and where time has been rescaled by β2. Equation
(2.26) is similar to that of Frenkel (1992) but with viscoelasticity included, and is also
similar to that of Kang & Chen (1995) for flow down an inclined plane but includes the
effects of azimuthal curvature. Note that the viscoelastic term is proportional to h4, while
surface tension and advection terms contain h3. In that respect – having a higher-order term
that will be shown to drive instability growth – it bears some resemblance to the equation
derived by Benney (1966) for film flow down an inclined plane, in which instability growth
is provided by an inertial term proportional to h6. For certain parameter values, unbounded
solutions to this Benney equation can arise, which has no physical relevance for the
falling-film-down-plane problem; this issue can be addressed through use of the WRIBL
modelling approach (see, e.g. Ruyer-Quil & Manneville 1998; Dietze & Ruyer-Quil 2015).
It would be interesting to conduct a detailed study of (2.26) for similar features, especially
since unbounded solutions are not necessarily physically irrelevant given the potential for
plug formation in the tube problem considered here, but nonlinear results will be presented
here strictly for the model (2.21).

2.4. Parameter values
Before presenting model results, a brief discussion is given concerning the range of
parameter values for Bo, Re, We and a that are in mind here. As the model is derived
to consider highly viscous flows, we briefly consider some experimental set-ups for which
this model could apply.

In the Newtonian experiments of Camassa et al. (2014), a highly viscous silicone
oil is used as the solvent, with density, dynamic viscosity and surface tension given
approximately by

ρ̄ = 0.97 g cm−3, μ̄ = 125 P, σ̄ = 21.5 dyn cm−1, (2.27a–c)

respectively. The inner radius ā of the tube in the experiments ranged from 0.5 cm down to
0.17 cm; the thickness of the film h̄0 in viscous gravity-driven experiments varied, but most
experiments had film thicknesses between 0.1 and 0.2 cm. Using these values results in the
following estimated ranges for the dimensionless parameters in the model for a Newtonian
fluid,

Bo = 1.3 − 11.1, Re = 3 × 10−4 − 7 × 10−3, a = 1.25 − 2.5. (2.28a–c)

As Re < 0.01 for all these cases, the focus will primarily be on the inertialess model (2.21),
with values of Bond number primarily lying in the range 0.5 < Bo < 15 and tube radius
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Falling upper convected Maxwell film inside a tube

parameter 1 < a < 3, occasionally showing results for other values of Bo or a to illustrate
a point about the model.

For viscoelastic films, Shaqfeh, Larson & Frederickson (1989) (see also Kang & Chen
1995) found that the Oldroyd-B model is capable of capturing the behaviour of polymeric
thin films so long as We < 2.5. Based on this criteria, and given that the model equation
here is identical to that obtained using the Oldroyd-B equations, we will largely restrict
results to We < 2.5.

The addition of polymers to a Newtonian fluid may also modify the surface tension; e.g.
an increase in We may in some cases be accompanied by a corresponding increase in Bo.
This effect was seen, e.g. in experiments conducted by Olander (2020), in which the falling
film consisted of polybutene (PB) and various small concentrations of polyisobutylene
(PIB); the PIB concentrations were small enough to result in negligible values of We but
still lower the value of Bo through reduction of the surface tension. Some attention will
thus be given to the increase in Bo required to offset a given increase in We to produce an
equivalent dynamical outcome.

One of the motivations for the experimental values chosen by Camassa et al. (2014)
was the study of mucus lining human airways; the viscosities, surface tension and tube
radii (and hence Bo) were chosen to be representative of upper airways. The rheological
properties of human mucus can vary widely with patient, disease and airway generation,
with elasticity decreasing with airway generation and increasing in the presence of airway
diseases like cystic fibrosis (Lai et al. 2009).

3. Linear stability analysis

It is well known that the free surface of a film coating the interior or exterior of a tube is
unstable to long-wave disturbances due to the Plateau–Rayleigh instability. The impact of
viscoelasticity on this instability is explored next from both a temporal and spatiotemporal
viewpoint, with the latter allowing classification of instabilities as convective or absolute.

3.1. Temporal linear stability analysis
To study the linear stability of a flat-interface solution R(z, t) = 1, let the free surface be
perturbed by a superposition of small-amplitude Fourier modes,

R = 1 + R̂ exp(i(kz − ωt)), (3.1)

where k is a spatial wavenumber and where it is assumed that R̂ � 1; while exploring the
temporal stability of the free surface, the wavenumber k will be taken to be real-valued.
Substituting (3.1) into (2.21) results in the dispersion relation

ω = k
2
(a2 − 1 − 2 log a) + ia2

16Bo
(k2 − k4)f1(1; a) + iWe k2

32a
f2(1; a). (3.2)

The real part of (3.2), Re[ω]/k, determines the phase speed of disturbances, while the
imaginary part, Im[ω], dictates the growth of their amplitude. As with other thin-film
models, the dispersion relation is similar to that of the Kuramoto–Sivashinsky (KS)
equation in the dependence on wavenumber k. For reference, the dispersion relation for
the model with inertial terms (2.23) and for the inertialess thin-film model (2.26) are also
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included:

ω = k
2
(a2 − 1 − 2 log a) + ia2

16Bo
(k2 − k4)f1(1; a) + iWe k2

32a
f2(1; a) + iRek2

16a3 f3(1; a)

(3.3)

and

ω = 1
3

(
k + iβ

Bo
(k2 − k4) + iWeβ2k2

)
, (3.4)

respectively.
Equation (3.2) has been well studied for Newtonian films (We = 0); similar to other

settings where the Plateau–Rayleigh instability is the dominant one, the film is unstable
to long-wave disturbances with cut-off wavenumber kc = 1 and the wavenumber of
maximum growth rate, kmax = 1/

√
2, set by a balance of destabilization of the free surface

due to its azimuthal curvature and stabilization due to its axial curvature, both arising due
to surface tension. The phase speed of disturbances is set by the balance of gravity and
viscous forces. In the linear regime, the dimensionless growth rates of this model are
determined by the k2 and k4 terms arising due to the Plateau–Rayleigh instability, with the
growth rates increasing monotonically with a and with 1/Bo. The inclusion of base flow
due to gravity in this first-order model does not impact these dimensionless growth rates
as the hyperbolic terms in (2.21) associated with the effects of gravity arise solely in the
real part of the dispersion relation, similar to many other first-order film flow models with
base flow. This model dispersion relation has been shown to agree well with that of the
Stokes equations (Camassa et al. 2014).

In the case where We > 0, the presence of elasticity introduces a second mechanism of
free-surface destabilization. Figure 2(a) shows the growth rates Im[ω(k)] (3.2) for a = 1.4,
Bo = 1 and a variety of We values; the growth rate increases with increasing We for all
wavenumbers k. The k2 terms of (3.2) are identical to those of Zhou et al. (2014) in their
long-wave analysis without surfactant. Both the wavenumber kmax of maximum growth
rate and the cutoff wavenumber kc increase as well, according to

kc =
√

1 + We Bo f2(1; a)

2a3f1(1; a)
, kmax = kc/

√
2, (3.5a,b)

so that the product Bo We = λ̄ρ̄2ḡ2ā3/μ̄γ̄ determines the change in kmax and kc for fixed
a. Figure 2(b) shows this dependence of kc and kmax on We for a = 1.4. As the value of Bo
increases, changing We results in a larger change in kmax.

As with the Newtonian film, the growth rates increase with a and 1/Bo, but the
relative impact of increasing We depends non-monotonically on film thickness parameter
a. Figure 2(c) shows the growth rates for a much thinner film with a = 1.05. As may
be expected, the growth rates are smaller than for a = 1.4, but it is also true that the
growth rate curves are closer together than in figure 2(a), indicating that increasing We
has a smaller relative impact on the growth rates and on kmax when a = 1.05 than when
a = 1.4. This may be anticipated from (3.5a,b) or from the thin-film dispersion relation
(3.4) in which the term proportional to We occurs at higher order in β than the other terms.

For moderate values of a, the impact of a on kmax must be assessed by examining
f2(1; a)/[a3f (1; a)] in (3.5a,b); this quantity is plotted in figure 2(d). This value reaches
a maximum at a ≈ 1.375; i.e. this value of a produces the largest impact on kmax and
largest relative impact on the maximum growth rate GRmax for small We as determined by
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Figure 2. (a) Growth rates of (2.21) for a = 1.4, Bo = 2 and various values of We. Here, × symbols denote
the maximum growth rate GRmax and · symbols denote cutoff wavenumber kc. (b) kmax and kc for a = 1.4
and various values of Bo and We. (c) Same as panel (a) but with a = 1.05. (d) f2(1; a)/[a3f1(1; a)]; maximum
value obtained at a ≈ 1.375. Open circles denote a values used in panels (a,c).

[(∂GRmax/∂We)/GRmax]|We=0 = f2(1; a)Bo/[a3f1(1; a)]. We also note that for thick films
(large a), the relative impact of viscoelasticity on kmax and growth rates is again small, as
f2(1; a)/[a3f1(1; a)] behaves like 1/a3 for large a.

In summary, linear instability is driven by both surface tension and viscoelasticity. While
growth rates increase monotonically with a and 1/Bo, the relative impact of viscoelasticity
on growth rates is highest for moderately thick films.

Note that while the base flow w0 is unchanged by the presence of viscoelasticity, the
normal stress is positive, σzz,0 > 0. This stress term plays a crucial role in determining the
sign of the first-order velocity w1 through (2.17b); w1 may be expressed as the sum of three
parts:

w1 = wST + wNS + wUCM, (3.6)

where

w1,ST = 1
4B̃o

(
r2 − a2 − 2R2 log

r
a

) (
∂zR
R2 + ∂zzzR

)
, (3.7a)

w1,NS = W̃eRRz

2

(
r2 − a2 + 2R2 log

a
r

(
1 + log

a
R

+ log
r
R

))
, (3.7b)

w1,UCM = W̃eRRz

8

(
3a2 − 3r2 − R2 + a2R2

r2 + 6R2 log
r
a

+ 2a2 log
r
a

− 4R2 log
r
a

(
log

R
a

+ log
R
r

))
, (3.7c)
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where ST denotes surface tension, NS denotes normal stress corresponding to σzz,0 and
UCM refers to the contribution of the terms in brackets in (2.18b). For R < r < a, note that
if Rz > 0, then w1,NS < 0, w1,UCM > 0 and w1,NS + w1,UCM < 0. As a result, the normal
stresses (specifically the gradient ∂zσzz,0) generated by the base flow are responsible for
the instability growth seen in the current model.

3.2. Absolute and convective instability
Linear stability analysis may also be conducted from a spatio-temporal viewpoint, which
allows classification of instabilities as absolute or convective. In experiments, convectively
unstable films are those in which visible instability growth is only evident downstream, far
from the inlet, while absolutely unstable films exhibit visible instability growth right at or
near the inlet.

Deissler, Oron & Lee (1991) first classified instabilities for a falling Newtonian film on
the exterior of a tube by applying the methods developed and explored by Bers (1983),
Briggs (1964) and Huerre & Monkewitz (1990) among others. They identified a critical
velocity separating absolute instability from convective instability for a two-dimensional
KS equation, with the critical velocity dependent on the azimuthal mode number. Duprat
et al. (2007) applied these techniques to a strongly nonlinear model similar to (2.21) with
We = 0 for the exterior case. First finding a critical value for the thin-film parameter Bo∗
and then transforming the thin-film dispersion relation to the long-wave dispersion relation
through a substitution, Duprat et al. (2007) identified a condition on Bond number Bo∗ and
film thickness parameter a that must be met for films to be absolutely unstable. Camassa
et al. (2014) later applied this approach to identify a threshold thickness for Newtonian
films inside a tube; films thicker than this threshold were shown to be absolutely unstable,
while thinner films were convectively unstable.

We briefly state this threshold condition for the Newtonian case. The dispersion relation
of the Newtonian case (denoted by subscripts of N),

ωN = kN

2
(a2 − 1 − 2 log a) + ia2

16BoN
(k2

N − k4
N)f1(1; a), (3.8)

exhibits absolute instability if the criteria

2a2f1(1; a)

BoN(a2 − 1 − 2 log a)
> 8(−17 + 7

√
7)1/2 (3.9)

is met, where BoN denotes the Bond number in the Newtonian case. This condition
matches that found by Camassa et al. (2014) (adjusted for choice of scalings), and arises
from considering branches of solutions to (3.8) found for complex wavenumber k and
identifying parameter values at which distinct branches coalesce (see, e.g. Huerre &
Monkewitz (1990), Duprat et al. (2007) and Camassa et al. (2014) for further discussion
and a thorough derivation of this criteria).

How does the presence of elasticity affect this condition? The dispersion relation of the
Newtonian case (3.8) may be transformed into (3.1) through the substitution

(kN, ωN) =
(

1 + We Bof2(1; a)

2a3f1(1; a)

)−1/2

(k, ω), BoN =
(

1 + We Bof2(1; a)

2a3f1(1; a)

)−3/2

Bo.

(3.10a,b)
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Figure 3. (a) Boundary in Bo-a space between absolute and convective instability for a variety of We values.
(b) Same as panel (a) but for a larger range of Bo values. Blue dots denote maximum values of a obtained along
each curve.

Substituting (3.10a,b) into (3.9) results in the following condition for absolute instability:

2Bo1/2f1(1; a)

a(a2 − 1 − 2 log a)

(
a2

Bo
+ Wef2(1; a)

2af1(1; a)

)3/2

> 8(−17 + 7
√

7)1/2. (3.11)

Figure 3 shows the a-Bo boundary between absolute and convective instability for a variety
of We values. For We = 0, the boundary between absolute and convective instability
monotonically increases with increasing Bo. For large values of Bo (or a), the boundary
is governed by Bo ≈ a4/[4(−17 + 7

√
7)1/2], which may be found by using f1(1; a) =

a4 + O(a2) and f2(1; a) = 3a4 + O(a2) in (3.11).
Increasing We results in a greater region of absolute instability, with the effect most

pronounced for larger Bo values. In contrast to the We = 0 case, the boundary for We > 0
exhibits non-monotonic behaviour, reaching some maximum attainable value of ac for
a given fixed positive We. This maximum value, denoted by blue dots in figure 3(b),
occurs when Bo = 4a3f1(1; a)/[Wef2(1; a)]. Past this value of Bo, the boundary decreases
monotonically as Bo → ∞, the scaling of which may be found in the thin-film limit by
substituting a = 1 + β and Bo = bβα into (3.11) with β � 1. This results in

16β1−α

3b
(1 + Webβα+1)3/2 > 8(−17 + 7

√
7)1/2. (3.12)

There are two consistent scalings possible, corresponding to one of the two terms inside
parentheses providing the dominant balance with the right-hand side of (3.12). If the
second term dominates, then α = −5 and Bo = 9(−17 + 7

√
7)/4We3β5, corresponding

to the border between absolute and convective instability for large Bo. The other scaling,
with α = 1 and Bo = 2β/[3(−17 + 7

√
7)1/2], corresponds to the border for small Bo and

is independent of We.

4. Nonlinear results

In this section, the nonlinear equation (2.21) is solved numerically. Travelling wave
solutions are found in § 4.2.
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4.1. Evolution equation
A finite difference method was used to solve (2.21) numerically. Spatial derivatives
were calculated using fourth-order approximations; time-stepping was done with an
explicit second-order predictor-corrector method. An initial condition was prescribed by
perturbing a constant free surface with a superposition of small-amplitude Fourier modes.
In a typical simulation, 40 modes were used to perturb the free surface, though a variety of
values were tried. The number of initial modes played a role in the transient dynamics as
instabilities initially grew, but once the evolution had settled into a quasi-steady state, there
was – in almost all cases – no clear signature of the initial conditions. The one exception
to this is for films with a mean thickness very near the critical thickness – in which plug
formation would only be triggered by wave mergers and not linear wave growth – where a
change in initial conditions could result in a change of the final state (plug or no plug) in
the finite-time simulations conducted. This was also noted in a study of Newtonian films
with wall slip; see Schwitzerlett et al. (2023) for numerical tests and further discussion of
this point.

At z = 0, inlet boundary conditions were prescribed by populating several ghost nodes
upstream of the inlet using a periodic extension of the initial condition moving at the linear
phase speed of the free-surface disturbances. At z = L, outlet boundary conditions were
prescribed by populating several ghost nodes downstream of the inlet using a reflection of
the final nodes within the domain. Other outlet boundary conditions were also tried; the
exact prescription of these ghost nodes downstream only had a significant impact on the
final few nodes near z = L, which will be largely ignored in the results. Simulations were
also conducted using periodic boundary conditions. Since the dynamical outcomes of the
simulations did not change when the boundary conditions were varied, these results are
omitted, and results using inlet/outlet boundary conditions will be presented here.

Two dynamical outcomes are evident in simulation snapshots shown in figure 4(a–c).
The baseline case in figure 4(a) shows a snapshot of the film in the tube using Bo = 10,
We = 0 and a = 1.8. This snapshot is taken near t = 500, long after the dynamics have
settled into a quasi-steady state. The gently perturbed film entering the domain at the inlet
(left) is clearly convectively unstable, with disturbances growing as the film falls down the
tube. Between z = 100 and z = 150, this growth saturates, with the remainder of the tube
coated with a wavy film consisting of small-amplitude travelling-wave-like ripples.

A second outcome is shown in figure 4(b) with identical parameter values to figure 4)(a)
except for Bo = 5. The film is still convectively unstable, but visible growth is seen closer
to the inlet, e.g. near z ≈ 50; the free-surface waves also have larger amplitude than with
Bo = 10. However, the simulation is halted near t = 150 as one of the waves – near
z = 220 – begins to undergo accelerated growth, with the free surface at the wave crest
approaching R = 0 in finite time. Figure 4(d) shows the evolution of max R and min R
over the domain as a function of time. As with other studies of asymptotic models, R
approaching zero may be taken as the model’s prediction that plug formation is about
to occur. No attempt is made here to continue running the model forward past this time,
as the nonlinearities in (2.21) include logarithms and inverse powers of R, preventing the
model from being run forward as it is, though there has been interesting recent work in this
direction. Most notably, Dietze et al. (2020) modified a WRIBL model for film flow inside
a tube to prevent R from reaching a value of zero during plug formation; this was achieved
through inclusion of a novel pressure term that allowed for arbitrarily narrow filaments of
core fluid (air) to form where the model exhibited plug formation. Here, the focus is on
whether plugs may be expected to form or not, and their propagation after formation is left
for future work.
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Figure 4. (a–c) Snapshots of the film evolution for a = 1.8 and for various Bo and We values. In panels (b,c),
the snapshot is taken just prior to the formation of the first plug. (d) Maximum and minimum values of R over
the domain in each simulation as a function of t.

Figure 4(a,b) indicates that for a = 1.8, there is some critical Bond number 5 < Boc <

10 such that for Bo > Boc, plugs do not form; while for Bo < Boc, plugs do form. This
is consistent with previous work (Camassa et al. 2014; Dietze et al. 2020; Ogrosky 2021)
showing that stronger base flow inhibits plug formation in Newtonian films. The impact of
viscoelasticity is examined next.

Figure 4(c) shows a snapshot of the film with Bo = 10, We = 0.9 and a = 1.8; note
that all three panels of figure 4 have the same value of film thickness parameter a. Once
again, the film is convectively unstable, though instability growth is visible even closer
to the inlet, consistent with the higher linear growth rates found in § 3. The free-surface
waves with We > 0 appear to have shorter typical wavelength than those with We = 0;
e.g. in the simulation snapshots shown in figure 4, the average wavelength from z = 100 to
z = 300 was approximately 9.5 in figure 4(b) and 7.7 in figure 4(c). This shorter average
wavelength may be expected given the impact of viscoelasticity on wavelength shown in
(3.5a,b). Similar to figure 4(b), the simulation was halted (near t = 95) as one wave – near
z = 150 – underwent accelerated amplitude growth, resulting in R → 0 indicating plug
formation.

The results above indicate that either increasing We or decreasing Bo past some critical
value while holding the film thickness constant results in plug formation. Said another way,
for fixed Bo and We, there is a critical value of a such that if a exceeds this value, plug
formation may be expected to occur; increasing We or decreasing Bo leads to a reduction
in this critical value of a.

4.2. Travelling wave solutions
Since the free surface in figure 4 evolves into a travelling wave train, travelling
wave solutions are sought next. Substituting Q(Z) = Q(z − ct) = R(z, t) into (2.21) and
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integrating once results in a third-order ordinary differential equation,

8cQ2 + K +
[

1 − a2

Bo

(
Q′

Q2 + Q′′′
)]

f1(Q; a) − We QQ′

2a
f2(Q; a) = 0, (4.1)

with speed c and constant of integration K. The approach used to find solutions to this ODE
follows the approach outlined by Camassa et al. (2016) and is briefly outlined here. First,
fixed point solutions are found for the three-dimensional dynamical system associated with
(4.1); these correspond to constant solutions Q = Q0. If the wave speed c is varied, a Hopf
bifurcation in the solution family is identified using XPP/AUTO; XPP is a numerical tool
for simulating and analysing dynamical systems (Ermentrout 2002) and also provides a
front end to the numerical continuation and bifurcation package AUTO (Doedel et al.
2008). This bifurcation is a zero-Hopf bifurcation, which can be somewhat difficult to find
numerically; to avoid this issue, a small viscosity-like term ηQ′′ was added to (4.1) which
makes continuation onto a family of periodic solutions easier. Once periodic solutions
have been found, the viscosity parameter η may be taken to zero. The mean value of Q2 is
ensured to be equal to one by imposing an integral condition. As the focus here is on waves
with profiles similar to those seen in transient solutions like figure 4, only solution families
with such profiles are presented here; other families, e.g. were considered by Zhou et al.
(2016) for an integral boundary layer model.

Figure 5(a) shows several families of travelling wave solutions with period 4π for a
variety of values of Bo and We; the period 4π was chosen as it is approximately the period
of waves for We = 0 seen in figure 4(a) especially near the bottom of the tube, e.g. from
z = 150 to z = 250. Each curve shows the wave amplitude of solutions within a family as
a function of film thickness parameter. Before discussing the impact of viscoelasticity on
these curves, we first note that each family has a turning point (denoted by a red dot) at
some critical value ac of the thickness parameter a. For We = 0, this critical thickness ac
has previously been shown to be a reliable proxy for the critical thickness required for plugs
to form (Camassa et al. 2014, 2016; Ding et al. 2019; Dietze et al. 2020; Camassa et al.
2021). The critical thickness associated with the turning point solution depends on the
value of Bo, with higher values of Bo corresponding to higher critical thickness, consistent
with the results of § 4.1 and with the results of Dietze et al. (2020) showing that while the
base flow does not contribute to the linear growth/decay of small disturbances, it plays
a nonlinearly stabilizing role. Note that the horizontal axis shows (a − 1)/a, with values
close to 0 representing thin films, and values close to 1 representing thick films (since
in the limit a → 1 (thin films), (a − 1)/a → 0, while in the limit a → ∞ (thick film),
(a − 1)/a → 1). For each thickness (a − 1)/a less than the turning-point thickness, there
are two travelling wave solutions found, one lying on a ‘lower’ branch with relatively
small amplitude and one lying on an ‘upper’ branch with relatively large amplitude.
Lower branch solutions are shown for several values of We in figure 5(c); these lower
branch solutions correspond well to the waves seen in numerical simulations like those of
figure 4(a–c). Upper branch solutions have a qualitatively similar shape, but are omitted
here as waves with such large amplitude are not seen in numerical simulations (but see
examples of these waves in, e.g. Camassa et al. 2014 for a Newtonian film).

How does the presence of viscoelasticity impact the critical thickness associated with
the turning point of solution families? Figure 5(a) shows that as We increases, this
turning-point thickness – which serves as a proxy for the critical thickness required
for plugs to form – decreases, again consistent with the results of § 4.1 showing that
viscoelasticity promotes plug formation. The impact is most pronounced for larger values
of Bo. Figure 5(b) shows the solution corresponding to the turning point denoted in red in
panel (a) for Bo = 10; as We increases, the support of these waves decreases significantly.
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Figure 5. (a) Families of travelling wave solutions with Bo = 1 and Bo = 10 for four values of We. Turning
points indicated by red dots. (b) Travelling wave solutions with Bo = 10 corresponding to red dots in panel (a).
(c) Travelling wave solutions with Bo = 10 and a = 1.5 corresponding to blue dots in panel (a).

While some of this change in support could be attributed to the different film thickness of
each wave, viscoelasticity also plays a role; to demonstrate this, figure 5(c) shows travelling
wave solutions (corresponding to blue dots in figure 5c) for fixed a and Bo and various We.
Despite having uniform thickness, the change in support persists, most noticeable when
one observes the markedly different distance from wave crest to the trough (capillary
ripple) that precedes the crest.

How does the turning point in travelling wave solution families depend on the chosen
period size? Figure 6(a) shows the dependence of ac on period for We = 0 and We = 1.5.
For both curves, there appears to be a value of ac which the curves approach asymptotically
in the limit of large period, while for small period, the value of ac increases rather sharply.
The period 4π is denoted along both curves by a (blue or red) dot.

Given that figure 4(a–c) indicates that elasticity produces waves with shorter
wavelength, it may be that a more accurate estimate of the critical thickness would be
provided by a turning point found for shorter-wavelength travelling wave solutions for
We > 0. Figure 6(b) shows the Bo = 10 travelling wave solution families for We = 0 and
We = 1.5 for period 4π (dashed lines), as well as the solution family for We = 1.5 and
period ≈8.5 (solid line). This shorter wavelength produces a turning point at a larger value
of ac than the 4π domain waves, as expected.
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Figure 6. (a) Dependence of ac on period size for We = 0 and We = 1.5. (b) Families of travelling wave
solutions with Bo = 10 for We = 0 and We = 1.5; dashed grey and black lines show period 4π solutions
(corresponding to the dots in panel a), solid grey line shows period ≈8.5 solutions (corresponding to red × in
panel a). Thick dots denote the maximum value of hmax during numerical simulations of (2.21); see text for
details. Vertical (red and blue) dashed lines indicate thickness at which plugs formed in nonlinear simulations.

To assess which period length better predicts the critical thickness in model solutions,
an additional test was conducted. Model solutions were found using an initial condition
with a thickness well below the critical thickness. Once the free surface had settled into a
quasi-steady state, the film thickness was increased by a small amount. This process was
repeated until the simulation indicated plug formation through R → 0 in finite time. The
average value of minz R was calculated over a period once a quasi-steady state had been
achieved for each thickness; the resulting data points are plotted in figure 6(b) for We = 0
and We = 1.5, with the thickness resulting in plug formation indicated by a vertical dashed
line. It appears that for both the Newtonian and non-Newtonian films, the 4π solutions
provide a reasonable estimate of the critical thickness.

How does ac depend on Bo for various values of We? Figure 7 shows the dependence
of the critical thickness parameter ac on Bo and We; panel (a) shows this dependence with
various fixed Bo while in panel (b), We is held fixed. For We = 0, the critical thickness
increases arbitrarily with increasing Bo. Ogrosky (2021) noted that for Newtonian flow
(We = 0), there appeared to be a scaling law between Bo and ac in the limit of strong base
flow (weak surface tension), i.e. Bo → ∞; an empirical fit was found with a 1/5 scaling.
Here, we note that the scaling appears to lie somewhere between 1/5 and 1/6 in figure 7(b).
A brief justification (relying partially on numerical observations) for the existence of a
scaling law is given in Appendix A, where the relationship

Bo ∝ a6
c

log ac
(4.2)

is identified for ac → ∞. Thus, in the absence of elasticity, a film may be arbitrarily thick
and still not form plugs, provided the base flow is strong enough relative to the effects of
surface tension.

For small values of Bo, the presence of elasticity only slightly modifies the value of ac,
consistent with the results of figure 5(a). The curves for various fixed We nearly overlap
for small Bo and approach a value corresponding to a film thickness of 12 % of the tube
radius (denoted with a grey horizontal dashed line). This percentage has been identified
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Figure 7. (a) Critical thickness ac as a function of We for various fixed values of Bo. (b) ac versus Bo for
various fixed values of We. Grey dashed lines show slopes m = 1/5 and m = 1/6; black dashed line shows the
approximate critical thickness for vanishing Bo.

in previous studies with thin-film models as an approximate estimate of the thickness
required for plugs to form (Gauglitz & Radke 1988) in a surface-tension dominated limit.

In contrast to the Newtonian case, however, there is now a maximum value of ac that is
attainable for some Bo at a given fixed We > 0; past this Bo value, the critical thickness
ac decreases monotonically. Some intuition for this result may be found by revisiting the
temporal linear stability analysis. Recall that the maximum growth rate is given by

GRmax = a2f1(1; a)

16Bo
(k2

max − k4
max) + Wef2(1; a)

32a
k2

max, (4.3)

where kmax is given in (3.5a,b). Substituting (3.5a,b) into (4.3), taking a derivative with
respect to Bo and setting equal to zero, a local minimum in GRmax as a function of Bo may
be found at Bo = 2a3f1(1; a)/Wef2(1; a) (or alternately, when kmax = 1). This is depicted
in figure 8, in which growth rate curves for We = 0.8 and a = 1.4 are shown for various
Bo values. The dependence of GRmax on Bo (through kmax in (3.5a,b)) is shown by the
dashed line. For these fixed values of a and We, there is some value of Bo for which the
growth rate is minimized over all Bo. While a minimum in the (linear) growth rate cannot
be expected to exactly correspond to a maximum in critical thickness, it seems reasonable
to conjecture that the existence of such a minimum may indicate a value of Bo for which
linear instabilities may more readily saturate in the nonlinear regime, suppressing plug
formation and allowing for a relatively large value of ac.

It is important to note that the addition of polymers to a previously Newtonian film not
only introduces elasticity (modifying We) but can also change the surface tension of the
film (modifying Bo). Thus, if polymers reduce the film’s surface tension, it is possible
that their presence could actually inhibit plug formation, despite the plug-promoting role
of elasticity. It may be important, therefore, to quantify the dependence of ac on both Bo
and We, particularly for We � 1. Similar to figure 7, figure 9(a) shows curves containing
turning point solutions but now for various fixed values of ac. Each of these curves reaches
a maximum value of We, consistent with the discussion regarding figure 7. The blue dashed
lines are tangent lines to each curve at We = 0, and indicate the slope or (∂Bo/∂We)|We=0
for isolines of ac. Those slopes are also shown in figure 9(b) by the three blue dots, with
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Figure 8. Growth rates of (2.21) for a = 1.4, We = 0.8 and various values of Bo. × symbols denote the
maximum growth rate GRmax, and · symbols denote cutoff wavenumber kc. Black dashed line indicates
dependence of GRmax on Bo through kmax defined in (3.5a,b).
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Figure 9. (a) Critical thickness ac isolines as a function of We and Bo. Also shown are the maximum value
of We for fixed ac (red dots) and the tangent line to each curve at We = 0 (blue dashed lines). (b) Derivative
∂Boc/∂Wec|We=0,a=ac plotted as a function of Bo (see text for interpretation of this term).

the black curve showing the dependence of this slope on Bo. This dependence indicates
that the slope (∂Bo/∂We)|We=0 scales with Bo2.

For example, if polymers are introduced to a Newtonian film with ac = 1.5, the impact
on plug formation is as follows: if the polymers increase Bo by an amount greater
than We × (∂Bo/∂We)|We=0 ≈ 1.0We, plug formation will be suppressed. If, however, Bo
increases by less than this, or is unchanged or decreases, then plug formation will be
promoted by the addition of polymers.

Before concluding, we summarize the model results on plug formation and instability
classification (absolute versus convective) in figure 10. The combinations of Bo and a
values that produce each outcome are shown in figure 10(a) for several values of We and
small to moderate Bo; figure 10(b) shows this for higher values of Bo, highlighting the
dramatic effect an increase in We has for large values of Bo. Note also that, for some small
Bo (e.g. Bo ≈ 0.125 for We = 0), the AI/CI boundary and the plug/no-plug boundary
cross, indicating the possibility of absolutely unstable films that do not form plugs for
Bo � 0.125.
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Figure 10. (a) Boundary separating plug formation from no plug formation as determined by turning points
in travelling wave families (red lines), and the boundary separating absolutely unstable films from convectively
unstable films (grey lines), shown for three values of We. (b) Same as panel (a) but for larger values of Bo.

5. Conclusion

We have developed a long-wave asymptotic model for a viscoelastic falling film inside
a tube. An upper convected Maxwell model was used to incorporate viscoelasticity; the
resulting model equation is identical to that obtained using an Oldroyd-B model (up
to first-order). Linear stability analysis allowed the impact of elasticity on the cutoff
wavenumber and wavenumber of maximum growth rate to be determined analytically.
Similarly, the impact of elasticity on the classification of instabilities as absolute or
convective was determined, with elasticity promoting absolute instability. The impact
of elasticity was more pronounced as the Bond number increased. In contrast to the
Newtonian case, for We > 0, the AI/CI boundary exhibits non-monotonic behaviour with
increasing Bo.

Numerical solutions to the model equation show that elasticity promotes plug formation.
Travelling wave solution families were found, and the turning points in those families may
be used as a proxy for the critical thickness required for plugs to form. By continuation
of these turning points, the impact of elasticity on plug formation is easily demonstrated
throughout parameter space. In contrast to the Newtonian version of the model (in which
plug formation can be suppressed in a film of any thickness, provided the base flow is
strong enough), any amount of elasticity creates a maximum critical thickness, past which
plugs form regardless of the base flow strength.

The addition of polymers to a Newtonian film may not only introduce elasticity but
also modify the surface tension. The trade-off between increasing We (which promotes
instability growth and plug formation) and increasing Bo (which inhibits instability growth
and plug formation) was explored.

It would be interesting to test the impact of other constitutive equations on these results,
particularly on the large impact that increasing We has on ac for large values of Bo; this is
left for future work.

One potential application of this information relates to the airway surface liquid lining
human airways. It is well established that this highly viscous fluid is viscoelastic, and the
information provided here may be important in accounting for plug formation and rupture
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Figure 11. Limit point travelling wave solution with Bo = 1, We = 0, period 40π; solution domain is [0, 40π]
but solution is only shown near wave crest for clarity. Red (blue) × symbols denote locations where Q = Qs
(Q = Q∗).

in human airway models, specifically in upper airways where gravity may be expected to
play a role in the lining’s evolution.
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Appendix A. Scaling law for turning point solutions with We = 0 and large Bo

In figure 7(b), there appears to be a scaling law between Bo and ac for Newtonian films
as Bo → ∞ (or, alternatively, ac → ∞). A brief justification for this will be given here.
For simplicity, a wave with very large period will be considered here, though the idea may
be readily adapted to the solutions shown in the text. Recall that an integral condition is
enforced when finding travelling wave solutions with period L: (1/L)

∫ L
0 Q2 dZ = 1.

In all of the travelling wave solutions computed here, there are two values of Q for which
Q′/Q2 + Q′′′ = 0. One of these corresponds to the substrate thickness Qs far away from
the wave crest; for very large-domain waves, this value Qs ≈ 1. This value is obtained
at many values of Z downstream of the wave. Figure 11 shows a limit point travelling
wave solution with Bo = 1, We = 0 and extended period of 40π; red × symbols denote
locations where Q(Z) obtains this value Qs.

At any such location along the profile where Q attains this value, (4.1) simplifies to

K = −8c − f1(1; a). (A1)

Substituting (A1) into (4.1) results in

8c(Q2 − 1) − f1(1; a) + f1(Q; a) = a2

Bo

(
Q′

Q2 + Q′′′
)

f1(Q; a). (A2)

The second value of Q for which Q′/Q2 + Q′′′ = 0, denoted here as Q∗ < Qs, is
obtained exactly twice in the single-hump travelling wave solutions computed here – once
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on the leading edge and once on the trailing edge of the wave crest. These points are
denoted by blue × symbols in figure 11. At these points, (A2) becomes

8c[(Q∗)2 − 1] − f1(1; a) + f1(Q∗; a) = 0, (A3)

which can be solved for c to get

c = a2

2
− (Q∗)2 − 1

2[(Q∗)2 − 1]
log a − 3[(Q∗)4 − 1] + 4(Q∗)4 log Q∗. (A4)

Next, this expression for c may be plugged into the full travelling wave equation to get
(after simplification)[

−4[(Q∗)4 − 1](Q2 − 1)

(Q∗)2 − 1
+ 4(Q4 − 1)

]
log a + O(1)

= a2

Bo

(
Q′

Q2 + Q′′′
) (

a4 − 4a2Q2 + 3Q4 + 4Q4 log
a
Q

)
. (A5)

One additional numerical observation is that as a gets larger, it appears to be the case for
solutions computed here that Q′/Q2 + Q′′′ = O(1) for turning point solutions. Using this
observation in (A5), it is clear that for large a, we must have

Bo ∝ a6

log a
. (A6)

Appendix B. Long-wave Oldroyd-B model

If the upper convected Maxwell constitutive model is replaced by the Oldroyd-B model,
where the deviatoric stress can be split into the sum of a Newtonian (viscous) component
and an extra stress τ , the constitutive model (2.2) is replaced by

σ̄r̄r̄ = 2μ̄s∂r̄ ū + τ̄r̄r̄, (B1a)

σ̄r̄z̄ = μ̄s(∂z̄ū + ∂r̄w̄) + τ̄r̄z̄, (B1b)

σ̄z̄z̄ = 2μ̄s∂z̄w̄ + τ̄z̄z̄, (B1c)

where μ̄s is the viscosity of the Newtonian solvent and where the extra stress is modelled
by

τ̄r̄r̄ + λ̄1[∂t̄τ̄11 + ū∂r̄τ̄r̄r̄ + w̄∂z̄τ̄r̄r̄ − 2(∂r̄ ūτ̄r̄r̄ + ∂z̄ūτ̄r̄z̄)] = 2μ̄p∂r̄ ū, (B2a)

τ̄r̄z̄ + λ̄1[∂t̄τ̄12 + ū∂r̄τ̄r̄z̄ + w̄∂z̄τ̄r̄z̄ − (∂r̄w̄τ̄r̄r̄ + (∂r̄ ū + ∂z̄w̄)τ̄r̄z̄) + ∂z̄ūτ̄z̄z̄] = μ̄p(∂z̄ū + ∂r̄w̄),

(B2b)

τ̄z̄z̄ + λ̄1[∂t̄τ̄22 + ū∂r̄τ̄z̄z̄ + w̄∂z̄τ̄z̄z̄ − 2(∂r̄w̄τr̄z̄ + ∂z̄w̄τ̄z̄z̄)] = 2μ̄p∂z̄w̄, (B2c)

where λ̄1 is the relaxation time, μ̄p is the polymeric viscosity and μ̄0 = μ̄s + μ̄p is the
total viscosity (Bird, Armstrong & Hassager 1987; Zhang, Matar & Craster 2002).

We next non-dimensionalize (2.1), (B1)–(B2), (2.3)–(2.4) using scales (2.5a–g) with
W̄0 = ρ̄ḡR̄2

0/μ̄0 and τij = τ̄ij/(ρ̄ḡR̄0).
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Substituting these scales in (B1) and (B2) results in

σrr = 2ε(1 − μ)ur + τrr, (B3a)

σrz = (1 − μ)(ε2uz + wr) + τrz, (B3b)

σzz = 2ε(1 − μ)wz + τzz, (B3c)

and

τrr + εW̃e[∂tτrr + u∂rτrr + w∂zτrr − 2(∂ru)τrr − 2ε(∂zu)τrz] = 2εμ∂ru, (B4a)

τrz + W̃e[ε∂tτrz + εu∂rτrz + εw∂zτrz − (∂rw)τrr − ε(∂ru + ∂zw)τrz − ε2(∂zu)τzz]

= μ(ε2∂zu + ∂rw),
(B4b)

τzz + W̃e[ε∂tτzz + εu∂rτzz + εw∂zτzz − 2(∂rw)τrz − 2ε(∂zw)τzz] = 2εμ∂zw, (B4c)

respectively, where W̃e = λ̄1W̄0/R̄0 is the Weissenberg number and μ = μ̄p/μ̄0.
Continuing the long-wave model derivation as before produces the final model equation

∂tR = 1
16R

∂z

[
f1(R; a)

(
1 − a2

Bo

(
∂zR
R2 + ∂zzzR

))
− μWeR(∂zR)

2a
f2(R; a)

]
. (B5)

REFERENCES

BAHRANI, S.A., HAMIDOUCHE, S., MOAZZEN, M., SECK, K., DUC, C., MURADOGLU, M., GROTBERG,
J.B. & ROMANO, F. 2022 Propagation and rupture of elastoviscoplastic liquid plugs in airway reopening
model. J. Non-Newtonian Fluid Mech. 300, 104718.

BENNEY, D. 1966 Long waves in liquid films. J. Math. Phys. 45, 150–155.
BERS, A. 1983 Space-time evolution of plasma instabilities-absolute and convective. In Handbook of Plasma

Physics (ed. M.N. Rosenbluth & R.Z. Sagdeev), vol. I, pp. 451–517. North-Holland.
BIRD, R.B., ARMSTRONG, R.C. & HASSAGER, O. 1987 Dynamics of Polymeric Liquids, vol. 1, 2nd edn.

John Wiley.
BOTTIER, M., PEÑA FERNÁNDEZ, M., PELLE, G., ISABEY, D., LOUIS, B., GROTBERG, J.B. & FILOCHE,

M. 2017 A new index for characterizing micro-bead motion in a flow induced by ciliary beating. Part 2.
Modeling. PLoS Comput. Biol. 13 (7), e1005552.

BOTTIER, M., et al. 2017 A new index for characterizing micro-bead motion in a flow induced by ciliary
beating. Part 1. Experimental analysis. PLoS Comput. Biol. 13 (7), e1005605.

BOULOGNE, F., FARDIN, M.A., LEROUGE, S., PAUCHARD, L. & GIORGIUTTI-DAUPHINÉ, F. 2013
Suppression of the Rayleigh-Plateau instability on a vertical fibre coated with wormlike micelle solutions.
Soft Matt. 9, 7787–7796.

BOULOGNE, F., PAUCHARD, L. & GIORGIUTTI-DAUPHINÉ, F. 2012 Instability and morphology of polymer
solutions coating a fibre. J. Fluid Mech. 704, 232–250.

BRIGGS, R.J. 1964 Electron-Stream Interaction with Plasmas. MIT Press.
CAMASSA, R. & LEE, L. 2006 Advances in Engineering Mechanics – Reflections and Outlooks (ed.

A. Chwang, M. Teng & D. Valentine), 222–238. World Scientific.
CAMASSA, R., MARZUOLA, J., OGROSKY, H.R. & SWYGERT, S. 2021 On the stability of traveling wave

solutions to thin-film and long-wave models for film flows inside a tube. Physcia D 415, 132750.
CAMASSA, R., MARZUOLA, J., OGROSKY, H.R. & VAUGHN, N. 2016 Traveling waves for a model of

gravity-driven film flows in cylindrical domains. Physica D 333, 254–265.
CAMASSA, R., OGROSKY, H.R. & OLANDER, J. 2014 Viscous film flow coating the interior of a vertical

tube. Part 1. Gravity-driven flow. J. Fluid Mech. 745, 682–715.
CHEN, Z., ZHONG, M., LUO, Y., DENG, L., HU, Z. & SONG, Y. 2019 Determination of rheology and surface

tension of airway surface liquid: a review of clinical relevance and measurement techniques. Respir. Res.
20, 274.

CHOUDHURY, A., FILOCHE, M., RIBE, N.M., GRENIER, N. & DIETZE, G.F. 2023 On the role of
viscoelasticity in mucociliary clearance: a hydrodynamic continuum approach. J. Fluid Mech. 971, A33.

CRASTER, R.V. & MATAR, O.K. 2006 On viscous beads flowing down a vertical fibre. J. Fluid Mech. 553,
85–105.

1001 A14-26

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

10
83

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1083


Falling upper convected Maxwell film inside a tube

CRASTER, R.V. & MATAR, O.K. 2009 Dynamics and stability of thin liquid films. Rev. Mod. Phys. 81 (3),
1131–1198.

DEISSLER, R.J., ORON, A. & LEE, Y.C. 1991 Evolution of two-dimensional waves in externally perturbed
flow on a vertical cylinder. Phys. Rev. A 43 (8), 4558–4561.

DIETZE, G., LAVALLE, G. & RUYER-QUIL, C. 2020 Falling liquid films in narrow tubes: occlusion scenarios.
J. Fluid Mech. 894, A17.

DIETZE, G.F. & RUYER-QUIL, C. 2015 Films in narrow tubes. J. Fluid Mech. 762, 68–109.
DING, Z., LIU, Z., LIU, R. & YANG, C. 2019 Thermocapillary effect on the dynamics of liquid films coating

the interior surface of a tube. Intl J. Heat Mass Transfer 138, 524–533.
DOEDEL, E.J., CHAMPNEYS, A.R., DERCOLE, F., FAIRGRIEVE, T., KUZNETSOV, Y., OLDEMAN, B.,

PAFFENROTH, R., SANDSTEDE, B.J., WANG, X. & ZHANG, C. 2008 AUT0-07P: Continuation and
Bifurcation Software for Ordinary Differential Equations. Montreal Concordia University.

DUPRAT, C., RUYER-QUIL, C., KALLIADASIS, S. & GIORGIUTTI-DAUPHINE, F. 2007 Absolute and
convective instabilities of a viscous film flowing down a vertical fiber. Phys. Rev. Lett. 98, 244502.

ERKEN, O., FAZLA, B., ROMANO, F., GROTBERG, J.B., IZBASSAROV, D. & MURADOGLU, M. 2023
Effects of elastoviscoplastic properties of mucus on airway closure in healthy and pathological conditions.
Phys. Rev. Fluids 8, 053102-1–26.

ERMENTROUT, B. 2002 Simulating, Analyzing, and Animating Dynamical Systems: A Guide to XPPAUT for
Researchers and Students. Society for Industrial and Applied Mathematics.

FRENKEL, A.L. 1992 Nonlinear theory of strongly undulating thin films flowing down vertical cylinders.
Europhys. Lett. 18, 583–588.

FUJIOKA, H., HALPERN, D., RYANS, J. & GAVER III, D.J. 2016 Reduced-dimension model of liquid plug
propagation in tubes. Phys. Rev. Fluids 1, 053201.

GAUGLITZ, P. & RADKE, C. 1988 An extended evolution equation for liquid film breakup in cylindrical
capillaries. Chem. Engng Sci. 43 (7), 1457–1465.

GOREN, S.L. 1962 The instability of an annular thread of fluid. J. Fluid Mech. 12 (2), 309–319.
GROTBERG, J.B. & JENSEN, O.E. 2004 Biofluid mechanics in flexible tubes. Annu. Rev. Fluid Mech. 36,

121–147.
HALPERN, D., FUJIOKA, H. & GROTBERG, J.B. 2010 The effect of viscoelasticity on the stability of a

pulmonary airway liquid layer. Phys. Fluids 22, 011901.
HAMMOND, P.S. 1983 Nonlinear adjustment of a thin annular film of viscous fluid surrounding a thread of

another within a circular pipe. J. Fluid Mech. 137, 363–384.
HICKOX, C.E. 1971 Instability due to viscosity and density stratification in axisymmetric pipe flow. Phys.

Fluids 14 (2), 251–262.
HUERRE, P. & MONKEWITZ, P.A. 1990 Local and global instabilities in spatially developing flows. Annu.

Rev. Fluid Mech. 22, 473–537.
JENSEN, O.E. 2000 Draining collars and lenses in liquid-lined vertical tubes. J. Colloid Interface Sci. 221,

38–49.
JI, H., FALCON, C., SADEGHPOUR, A., ZENG, Z., JU, Y.S. & BERTOZZI, A.L. 2019 Dynamics of thin

liquid films on vertical cylindrical fibres. J. Fluid Mech. 865, 303–327.
KALLIADASIS, S. & CHANG, H.-C. 1994 Drop formation during coating of vertical fibres. J. Fluid Mech.

261, 135–168.
KANG, F. & CHEN, K.P. 1995 Nonlinear elastic instability of gravity-driven flow of a thin viscoelastic film

down an inclined plane. J. Non-Newtonian Fluid Mech. 57, 243–252.
KAPITZA, P.L. 1948 Wave flow of thin layer of viscous fluid. Zh. Eksp. Teor. Fiz. 18, 3–28.
KERCHMAN, V. & FRENKEL, A. 1994 Interactions of coherent structures in a film flow: simulations of a

highly nonlinear evolution equation. Theor. Comput. Fluid Dyn. 6 (4), 235–254.
KHAYAT, R.E. & KIM, K.-T. 2006 Thin-film flow of a viscoelastic fluid on an axisymmetric substrate of

arbitrary shape. J. Fluid Mech. 552, 37–71.
KIM, C.S., GREENE, M.A., SANKARAN, S. & SACKNER, M.A. 1986 Mucus transport in the airways by

two-phase gas-liquid flow mechanism: continuous flow model. J. Appl. Physiol. 60, 908–917.
KIM, C.S., IGLESIAS, A.J. & SACKNER, M.A. 1987 Mucus clearance by two-phase gas-liquid flow

mechanism: asymmetric periodic flow model. J. Appl. Physiol. 62, 959–971.
KIM, C.S., RODRIGUEZ, C.R., ELDRIDGE, M.A. & SACKNER, M.A. 1986 Criteria for mucus transport in

the airways by two-phase gas-liquid flow mechanism. J. Appl. Physiol. 60, 901–907.
KLIAKHANDLER, I., DAVIS, S.H. & BANKOFF, S. 2001 Viscous beads on vertical fibre. J. Fluid Mech. 429,

381–390.
LAI, S.K., WANG, Y.-Y., WIRTZ, D. & HANES, J. 2009 Micro- and macrorheology of mucus. Adv. Drug

Deliv. Rev. 61, 86–100.

1001 A14-27

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

10
83

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1083


R. Camassa, H.R. Ogrosky and J. Olander

OGROSKY, H.R. 2021 Linear stability and nonlinear dynamics in a long-wave model of film flows inside a
tube in the presence of surfactant. J. Fluid Mech. 908, A23.

OLANDER, J. 2020 Newtonian and non-Newtonian flows in a simple model of the human trachea. Dissertation,
University of North Carolina.

ORON, A., DAVIS, S.H. & BANKOFF, S.G. 1997 Long-scale evolution of thin liquid films. Rev. Mod. Phys.
69 (3), 931.

PATNE, R. 2021 Purely elastic instabilities in the airways and oral area. J. Fluid Mech. 928, A22.
PATNE, R. 2024 Effect of inhaled air temperature on mucus dynamics in the proximal airways. J. Fluid Mech.

978, A15.
ROMANO, F., MURADOGLU, M., FUJIOKA, H. & GROTBERG, J.B. 2021 The effect of viscoelasticity in an

airway closure model. J. Fluid Mech. 913, A31.
RUYER-QUIL, C. & MANNEVILLE, P. 1998 Modeling film flows down inclined planes. Eur. J. Phys. B 6,

277–292.
SCHWITZERLETT, M., OGROSKY, H.R. & TOPALOGLU, I. 2023 A long-wave model for film flow inside a

tube with slip. J. Fluid Mech. 974, A22.
SHAQFEH, E.S.G., LARSON, R.G. & FREDERICKSON, G.H. 1989 The stability of gravity driven viscoelastic

film-flow at low to moderate Reynolds number. J. Non-Newtonian Fluid Mech. 31, 87–113.
SHEMILT, J.D., HORSLEY, A., JENSEN, O.E., THOMPSON, A.B. & WHITFIELD, C.A. 2022

Surface-tension-driven evolution of a viscoplastic liquid coating the interior of a cylindrical tube. J. Fluid
Mech. 944, A22.

SHEMILT, J.D., HORSLEY, A., JENSEN, O.E., THOMPSON, A.B. & WHITFIELD, C.A. 2023 Surfactant
amplifies yield-stress effects in the capillary instability of a film coating a tube. J. Fluid Mech. 971, A24.

SMOLKA, L., NORTH, J. & GUERRA, B. 2008 Dynamics of free surface perturbations along an annular
viscous film. Phys. Rev. E 77, 036301.

YIH, C.-S. 1967 Instability due to viscosity stratification. J. Fluid Mech. 27 (2), 337–352.
ZHANG, Y.L., MATAR, O.K. & CRASTER, R.V. 2002 Surfactant spreading on a thin weakly viscoelastic

film. J. Non-Newtonian Fluid Mech. 105, 53–78.
ZHOU, Z.-Q., PENG, J., ZHANG, Y.-J. & ZHUGE, W.-L. 2014 Instabilities of viscoelastic liquid film coating

tube in the presence of surfactant. J. Non-Newtonian Fluid Mech. 204, 94–103.
ZHOU, Z.-Q., PENG, J., ZHANG, Y.-J. & ZHUGE, W.-L. 2016 Viscoelastic liquid film flowing down a flexible

tube. J. Fluid Mech. 802, 583–610.

1001 A14-28

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

10
83

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1083

	1 Introduction
	2 Long-wave model
	2.1 Governing equations and UCM model
	2.2 Leading-order equations and solution
	2.3 First-order equations and long-wave model
	2.4 Parameter values

	3 Linear stability analysis
	3.1 Temporal linear stability analysis
	3.2 Absolute and convective instability

	4 Nonlinear results
	4.1 Evolution equation
	4.2 Travelling wave solutions

	5 Conclusion
	Appendix A. Scaling law for turning point solutions with We=0 and large Bo
	Appendix B. Long-wave Oldroyd-B model
	References

